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ABSTRACT
Direction of arrival estimation (DoAE) aims at tracking a
sound in azimuth and elevation. Recent advancements in-
clude data-driven models with inputs derived from ambison-
ics intensity vectors or correlations between channels in a
microphone array. A spherical intensity map (SIM), or acous-
tic image, is an alternative input representation that remains
underexplored. SIMs benefit from high-resolution micro-
phone arrays, yet most DoAE datasets use low-resolution
ones. Therefore, we first propose a super-resolution method
to upsample low-resolution microphones. Next, we bench-
mark DoAE models that use SIMs as input. We arrive to a
model that uses SIMs for DoAE estimation and outperforms
a baseline and a state-of-the-art model. Our study highlights
the relevance of acoustic imaging for DoAE tasks.

Index Terms— spherical intensity maps, acoustic imag-
ing, sound event localization, super-resolution.

1. INTRODUCTION

The release of large-scale sound event localization and detec-
tion (SELD) datasets [1, 2, 3] allowed for deep learning ap-
proaches for direction of arrival estimation (DoAE) in favor
of traditional beamforming [4]. Today, the best-performing
models use a combination of two inputs: 1) the intensity vec-
tors of first order ambisonics (FOA) and 2) the correlations
between channels in a tetrahedral microphone (4 channels)
[5, 6]. However, a spherical intensity map (SIM) is an alter-
native input representation that remains unexplored.

A SIM is computed using delay-and-sum beamforming
(DASB) [7]. DeepWave, an acoustic imaging model [8],
builds upon DASB by applying sparse coding [9] to deblur a
cleaner representation of spatial sound activity (see Figure 1).
We evaluated whether we could use DeepWave’s SIM to lo-
calize sound on the entire LOCATA dataset [2], and we found
that it is possible to achieve great localization performance
(see Table 1, top row). However, DeepWave assumes high-
resolution inputs, such as those captured by the EigenMike
(32 channels) [10] or Pyramic (48 channels) [11] arrays.

In this study we investigate whether high-resolution SIMs
can be used to carry out DoAE. Since most SELD datasets

∗corresponding author email: romanguz@usc.edu

Fig. 1. The acoustic image by DeepWave (top) and DASB
(bottom) for two sound sources. Dots denote ground truth.

use low-resolution arrays, we first demonstrate it is possible
to upsample them using a super-resolution model. Next, we
benchmark models that use SIMs as input to carry out DoAE,
and compare against a baseline and open-source state-of-the-
art (SoTA) model. Our code and data are openly-available.1

In summary, our contributions are:
1. A method to upsample the covariance between chan-

nels in a low-resolution microphone to high-resolution.
2. A benchmark of models that use SIMs for DoAE, eval-

uated on the LOCATA [2] and STARSS23 [1] datasets.

2. RELATED WORK

Current DoAE models process the intensity vectors of FOA
and correlations between channels in a tetrahedral micro-
phone [5, 6]. Significant ones include the “Sound event
localization and detection network” (SELDnet) [12], consid-
ered to be a baseline for the task, as well as SoTA models that
use multi-head self-attention [5] and multi-task outputs [6].

A SIM is an acoustic image indicating the location of a
sound source [13]. SIMs have not been assessed quantita-
tively as input for DoAE deep-learning models. The DASB
algorithm [7] is the most commonly-used method to compute
SIMs, but resulting images exhibit poor angular resolution
[8]. DeepWave achieves an equivalent SIM using a backpro-
jection operation, and further denoises it using deblurring,

x(ℓ) = tanh
(
[B̄ ◦B]Hvec(Σ)︸ ︷︷ ︸

backprojection

+Pθ(L)x
(ℓ−1)︸ ︷︷ ︸

deblurring

−τ
)
, (1)

1https://github.com/adrianSRoman/DeepWaveDOA
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where Σ ∈ CM×M is the instantaneous covariance matrix
of a microphone array with M channels. Backprojection is
equivalent to DASB (sec. 5.2 in [14]). It maps Σ ∈ CM×M

onto a uniformly-tiled SIM (i.e. tesselated [15]), represent-
ing azimuth and elevation. vec(Σ) ∈ CM2

is a column-wise
matrix-flattening operator, B ∈ CM×N is a trainable matrix,
and B̄ is its complex conjugate. ◦ is the Khatri-Rao product
and H denotes a Hermitian matrix. Deblurring iterates over
an initial random spherical map x(0) ∈ RN using graphical
convolutions that clean it. Pθ(L) is a polynomial of the graph
Laplacian L ∈ RNxN , and θ are graph convolution filters.

DeepWave applies these operations L times with tanh for
sparsity. The trainable parameters are θ, B and τ (a bias
term), and are shared across the L iterations. In practice, F
of these operations happen in parallel, one for each frequency
band. DeepWave’s output acoustic image (or SIM) has N
pixels, proportional to the number of microphone channels.

3. APPROACH

3.1. DoAE from acoustic images via K-means clustering

First we optimized a DeepWave model to get a sense of max-
imum performance on the LOCATA dataset (see Methods).
This model processes a high-resolution microphone. We ap-
ply K-means clustering over DeepWave’s SIMs to calculate
the DoA. For a 32ch input with F = 9 and L = 5, DeepWave
generates a N = 242 acoustic image with values ranging be-
tween 0 and 1. After arranging the N pixels in a 2D space
N = A × E for azimuth (A) and elevation (E) we obtain
I ∈ RF×A×E

[0,1) . Next, we apply a 1D Tukey window along the
elevation axis with a 0.8 tapering factor to remove artifacts
closer to the poles. Finally, we run K-means clustering with
K = 3 on the 15 pixels with the maximal intensity (all others
are clipped to zero). This yields three centroids that repre-
sent DoA coordinates. To make this algorithm robust, we ap-
ply two post-processing heuristics: (1) ignore clusters where
points are separated by more than 15◦ from the centroid, and
(2) merge clusters with centroids within 15◦ of each other.

3.2. Upsampling Σ using super-resolution

DeepWave’s resolution is proportional to the number of mi-
crophone channels. Lower-resolution microphones, such as 4
channel, are commonly used in SELD datasets. We introduce
a channel upsampling method derived from the Deep Back
Projection Network (DBPN) by Haris et al. [16], a computer
vision super-resolution model. Our complex-valued DBPN
(CDBPN) upsamples Σ ∈ C4×4 → Σ ∈ C32×32 (i.e. from a
4ch to a 32ch array; a factor of 8).

3.3. DeepWave SIMs as inputs for DoAE

The original DeepWave processes 100ms at a time and lacks
temporal memory [8]. We also study the effect of adding a

Fig. 2. Signal pipeline in the models we study.

gated recurrent unit (GRU) on top. In other words, Deep-
Wave’s SIM becomes the GRU input (Figure 2). We train
models in an end-to-end fashion using the ADPIT loss, which
makes this type of model have the multi-ACCDOA represen-
tation to localize overlapping sound sources [17].

4. METHODOLOGY

4.1. Datasets

Evaluations with real recordings. We evaluate models on LO-
CATA because it was recorded with an EigenMike (32ch) in a
room where human actors moved while speaking (the micro-
phone also moves in some recordings) [2]. To apply CDBPN
upsampling we simulate a tetrahedral microphone (4ch) using
the 6th, 10th, 22nd, and 26th EigenMike channels (following
Adavane et al.’s [18] approach). Metadata does not indicate a
speaker’s gender, so annotations only have the instantaneous
DoA (every 100ms). Our study focuses on DoAE, so these
annotations are all we need (i.e. we do not classify sound
events into categories). We also evaluate on STARSS23 [1],
which contains more rooms and uses a 4ch microphone. We
only use its DoA annotations, as we do not classify events
into specific classes.

Simulated recordings for training. To train models we
simulate 32ch recordings. Our simulated dataset was gen-
erated using the SpatialScaper library [19]. We integrated
two RIR databases that use the EigenMike. The first one is
METU-SPARG, collected at 240 points on a cubic grid in a
classroom [20], and the second one is ARNI [21], collected
in the “variable acoustics room” at Aalto University. We sim-
ulate soundscapes with speech from the FSD50K dataset [22]
spatialized in either of the two rooms. We generate a total of
50min of data in the METU room and 10min in ARNI.

Models evaluated on STARSS23 are trained using the
companion dataset with simulated 4ch recordings using RIRs
from 12 rooms [3]. We refer to it as “DCASE-sim”.

4.2. Models, ablations, and baselines

The two main models we study are DeepWave+K-means and
DeepWave+GRU. We carry out an ablation study of the Deep-
Wave+GRU model2 to understand the role of the deblurring

2the original DeepWave paper has an ablation study without the GRU [8]
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Input Model / operations LE ↓ (std.) LR ↑ (std.)

32ch

Backproj → Deblurring → K-means 14.8o (±0.00) 99.20 (±0.00)
Backproj → Deblurring → GRU 20.9o (±3.63) 69.36 (±2.15)
Backproj → GRU 20.0o (±3.01) 70.46 (±4.14)
Backproj → Conv2D → GRU 15.96o (±2.51) 76.36 (±9.21)

4ch → CDBPN → 32ch

Backproj → Deblurring → K-means 27.10o (±0.00) 99.20 (±0.00)
Backproj → Deblurring → GRU 20.30o (±2.76) 72.33 (± 0.04)
Backproj → GRU 18.06o (±3.53) 70.96 (±3.82)
Backproj → Conv2D → GRU 17.42o (±0.73) 82.40 (±5.76)

4ch SELDnet23 16.8o (±0.45) 77.13 (±3.84)
FOA SELDnet23 22.43o (±3.80) 80.73 (±10.98)
FOA + 4ch EINV2 19.83o (±0.75) 80.66 (±7.26)

Table 1. Localization error (LE) and recall (LR) on LOCATA. Scores reflect the average across three experimental replications.
Note that the EINV2 model uses both tetrahedral microphone (4ch) and first order ambisonics (FOA) inputs.

operation given the additional GRU. Therefore we have three
variants: 1) Backproj → Deblur → GRU, 2) Backproj →
GRU, and 3) Backproj → Conv2D → GRU (i.e. we replace
deblurring with a 2D convolution layer)3.

Our optimizations are gradual steps to enable DoAE using
a DeepWave backbone. DeepWave+K-means enables DoAE
on SIMs, provided high-resolution array data. CDBPN intro-
duces low-resolution array upsampling. A GRU on top of a
DeepWave backbone allows end-to-end training using multi-
ACCDOA representations. In each variant DeepWave opera-
tions are key for DoAE.

Across datasets we compare performance against two
models: SELDnet23, a baseline for DoAE, and EINV2, the
highest-ranked open-source model4. Note these models were
designed to carry out SELD (i.e. classification in addition
to DoAE). Also, EINV2 assumes data augmentation, but the
authors did not make this code available on their repository5.
Therefore we use the EINV2 without data augmentation.

4.3. Training procedure and evaluation metrics

CDBPN: We train CDPBN to upsample from 4ch to 32ch. We
use METU soundscapes for training and ARNI for validation.
The input and target are the instantaneous (100ms) 4ch Σ ∈
C4×4×F and 32ch Σ ∈ C32×32×F , respectively. We use the
original DBPN code, but we use F channels instead of RGB,
and train two models, one for the real part and another for the
imaginary part of Σ. We freeze the optimal CDBPN and use
it in experiments where we upsample from 4ch to 32ch.

LOCATA experiments: We train models using the gener-
ated METU soundscapes, and we validate using the ARNI

3The variant that passes Σ directly to the GRU does not learn, indepen-
dent of whether CDBPN upsampling is used.

4acording to the “DCASE” 2023 SELD challenge
5https://github.com/Jinbo-Hu/DCASE2022-TASK3

ones. The final evaluation is carried out across the entire LO-
CATA dataset. Frequency bands are nine total (F = 9) and
linearly spaced from 1.5kHz to 4.5kHz. We evaluate Deep-
Wave models with and without the CDBPN upsampling.

STARSS23 experiments: STARSS23 comes divided in
four directories (“dev-train-tau”, “dev-train-sony”, “dev-test-
tau” and “dev-test-sony”), each with a unique set of rooms,
and each room has its own sound sources (i.e. a set of “actors”
and sounding objects such as a guitar or household blender).
We train models using “DCASE-sim”, “dev-train-tau”, and
“dev-train-sony”, and we validate using “dev-test-tau”. The
final evaluation is carried out on the “unseen” rooms in “dev-
test-sony”. Note that the optimal DeepWave model that we
evaluate on the STARSS23 dataset uses CDBPN since the
STARSS23 and “DCASE-sim” datasets only have 4ch.

Metrics. We evaluate Localization Error (LE), the radial
difference between predicted and true location per sound
event, and Localization Recall (LR), the true positive rate
of instantaneous detections out of the total annotated sound
event instances [23]. We do not measure sound classification
performance since we focus on sound localization.

5. RESULTS

Table 1 shows performance by the model variants on the LO-
CATA dataset and compares against SELDnet23 and EINV2.
DeepWave+K-means with 32ch a input outperforms all mod-
els with low LE and high LR. We optimized this model to give
a sense of “ceiling” performance. Its counterpart using 4ch
upsampled with CDBPN shows a deteriorated LE (see Figure
3 bottom), but LR is same. We enhanced CDBPN for upsam-
pling Σ; however, this does not encompass SIM generation,
thus posing challenges for K-means post-processing.

The models with Backprojection, Deblurring, and GRU
show LE around 20o, independent of whether the input is
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Input Model LE ↓ LR ↑

up32ch Backproj → Conv → GRU∗ 20.5o 70.1
4ch SELDnet23 23.3o 82.3
FOA SELDnet23 21.9o 83.0
FOA + 4ch EINV2 24.0o 84.2

Table 2. Performance of SELDnet23, EINV2 and our best
model on the STARSS23 “dev-test-sony” split. ∗Plus two
MHSA layers after the GRU.

32ch or upsampled from 4ch using CDBPN. This indicates
that the GRU is resilient to CDBPN distortions, and can im-
prove LE by ~7o compared to DeepWave+K-means.

The models that only use Backprojection and GRU further
improve LE, indicating that Deblurring is unnecessary given
the GRU. This is consistent with the result we discussed in the
previous paragraph, where we note that the GRU is resilient
to CDBPN distortions. In other words, DeepWave’s Deblur-
ring becomes unnecessary when the GRU is added. Adding
a Conv2D layer between Backprojection and the GRU fur-
ther improves performance. This makes sense, as the Conv2D
layer operates across the F frequency “channels”, and passes
the GRU a representation with encoded information across
frequency bands. In other words, it saves the GRU the step of
having to aggregate information across the frequency axis.

Note that all GRU models show a deteriorated LR com-
pared to the ones using K-means. This could be caused by the
temporal memory that the GRU adds, which may come with
a time constant to “react” in response to sounds appearing
and disappearing from the scene. In contrast, DeepWave+K-
means operated on single frames of audio without memory,
and was optimized to “quickly” react to sound activity.

Next we evaluated the optimal model (CDBPN → Back-
proj → Conv2D → GRU) on STARSS23. Compared to
LOCATA, STARSS23 contains more diverse sound sources
and acoustic conditions. We found optimal performance by
adding two multi-headed self-attention (MHSA) layers after
the GRU [24]. Our model outperforms the LE performance
of SELDnet trained with FOA, as well as SELDnet trained
with 4ch and EINV2. Reasons for the deteriorated EINV2
performance compared to SELDnet23 include the smaller
validation set we used (“dev-test-tau”), and the test set being
smaller and more challenging (“dev-test-sony”). Note that
EINV2 is known to have a female speech LE “a lot higher
than average” [6].

When it comes to CDBPN, we analyzed its perfor-
mance in terms of the magnitude and phase error. Figure
3 breaks down these results. The top matrices show the input
Σ4 ∈ C4×4×F , CDBPN output Σ̂32 ∈ C32×32×F and target
Σ32 ∈ C32×32×F (averaged across the frequency axis) for
magnitude (first row) and phase (second row). The bottom

Fig. 3. CDBPN upsampling of a single reverberant white
noise source directly facing the front of the microphone.

plot shows the magnitude and phase error between avg(Σ̂32)
and avg(Σ32) as a function of frequency (16 logaritmically-
spaced bands). Results indicate that upsampling Σ at higher-
frequency bands is more challenging for CDBPN.

6. CONCLUSION AND FUTURE WORK

We have studied SIMs for DoAE. We focused on DeepWave
because of its high-resolution SIM. We proposed a CDBPN
model to upsample microphone array information from 4ch
to 32ch. This allows our optimal model (4ch → CDBPN →
32ch → Backproj → Conv2D → GRU) to process existing
SELD data with 4ch audio. The model can be interpreted as
the combination of DeepWave (Backprojection to generate a
SIM) and SELDnet23 (Conv2D + GRU) operations. Our sys-
tematic benchmark against the SELDnet and EINV2 models
on the LOCATA and STARSS dataset is an indicator that our
models can be generalized to other DoAE tasks.

Future work includes developing our model to also carry
out sound event classification. Furthermore, generalizing
CDBPN work with arbitrary microphone array shapes will
be an important endeavor. For the time being, our results
demonstrate the advantages of using SIMs for DoAE, which
could benefit existing and future DoAE and SELD models.
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