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ABSTRACT

Localizing a moving sound source in the real world involves deter-
mining its direction-of-arrival (DOA) and distance relative to a mi-
crophone. Advancements in DOA estimation have been facilitated
by data-driven methods optimized with large open-source datasets
with microphone array recordings in diverse environments. In con-
trast, estimating a sound source’s distance remains understudied.
Existing approaches assume recordings by non-coincident micro-
phones to use methods that are susceptible to differences in room
reverberation. We present a CRNN able to estimate the distance
of moving sound sources across multiple datasets featuring diverse
rooms, outperforming a recently-published approach. We also char-
acterize our model’s performance as a function of sound source dis-
tance and different training losses. This analysis reveals optimal
training using a loss that weighs model errors as an inverse function
of the sound source true distance. Our study is the first to demon-
strate that sound source distance estimation can be performed across
diverse acoustic conditions using deep learning.

Index Terms— distance estimation, multichannel audio, sound
source localization, mean percentage error

1. INTRODUCTION

Sound source localization (SSL) — the task of localizing the posi-
tion of a sound source relative to a microphone — has been an active
area of research for decades [1, 2, 3]. SSL has important down-
stream applications, including sound source separation [4], audio-
based navigation systems [5], and urban surveillance [6]. SSL can
be broken down into two subtasks: direction-of-arrival (DOA) esti-
mation, which approximates sound directivity in terms of azimuth
and elevation angles, and distance estimation, which approximates
the separation between the sound source and the microphone.

Recent developments have focused in DOA estimation. This
includes large open-source datasets with DOA annotations for mov-
ing sound events in real [7, 8] and simulated [9, 10] acoustic con-
ditions. Using these datasets, researchers have developed models
able to simultaneously carry out DOA estimation and classifica-
tion (i.e. speech vs music vs engine, etc.) [11, 12]. In contrast,
distance estimation remains understudied, partly because it is con-
sidered to be more difficult [13]. While recent DOA approaches,
notably those developed in the context of the DCASE challenge
[8, 9, 10, 11, 12], output 3D coordinates to localize sources, they
assume those sources to be in the unit sphere, effectively only esti-
mating azimuth and elevation (i.e. DOA). To the best of our knowl-
edge, existing distance estimation approaches include signal pro-
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cessing methods that assume a room’s T60 to contrast sounds reach-
ing a microphone directly versus indirectly [14, 15]. Data-driven
approaches have also been developed, but using small datasets that
feature only a handful of rooms [16, 17], or framing the task as clas-
sification instead of directly estimating distance [18, 16, 17, 19].

While popular datasets used for DOA estimation lack distance
annotations, many have metadata from where this information can
be recovered. In this study we add distance annotations to existing
open-source datasets. We use these to optimize a convolutional re-
current neural network (CRNN) that estimates the distance of mov-
ing sound sources from tetrahedral microphone recordings. Ours
system is the first of its kind (i.e. using deep learning), being able
to carry out the task of distance estimation, and evaluated in diverse
acoustic conditions. We also analyze the effect of different loss
functions to learn the task. Our model outperforms a recent dis-
tance estimation approach [20] evaluated on the open-source LO-
CATA dataset [7]. Additionally we evaluate our model’s perfor-
mance across other datasets. In summary, our contributions are:

1. Distance annotations for a collection of open-source datasets
previously used for DOA estimation.

2. A model able to estimate the distance of sound sources in
diverse environments and acoustic conditions.

3. An analysis of model performance resulting from using dif-
ferent loss functions.1

2. RELATED WORK

Sound source distance estimation is straightforward if the onset time
to and the speed of sound c are known. In a microphone recording,
the sound would appear at time tr > to. The sound source distance
d can be calculated by d = c×(tr−to). In the real world, however,
knowing to is virtually impossible.

We focus on sound source distance estimation in enclosed, re-
verberant environments. Early approaches were inspired by hu-
man listening. Humans use the direct-to-reverberant ratio (DRR)
[21, 22], which is the ratio between the signal energy directly
reaching the listener and energy from wall reflections. The DRR
can be applied to multi-channel recordings to carry out sound
source distance estimation [14, 15]. Alternatives include binaural
cues like spectral magnitude difference [23] and signal coherence
[24]. More recently, data-driven approaches have been proposed,
including feedforward neural networks (FNNs) or convolutional
neural networks (CNNs) with a classification output to categorize
sound source distances into one of N pre-defined distance ranges
[16, 18, 17, 19]. These models have been developed and evaluated

1Code and data:github.com/sakshamsingh1/sound_distance_estimation
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Dataset Range Avg Ntr Nts L R M

DCASE 1.35-7.15 3.34 900 300 60.0 9 Y
STARSS 0.42-7.02 1.83 87 74 162.2 16 Y
LOCATA 0.50-3.49 1.78 27 5 18.9 1 Y
MARCo 2.6-12 4.01 5 7 78.6 1 N
METU 0.3-2.2 1.41 146 98 2.0 1 N

Table 1: Summary of datasets used in our study. Columns indi-
cate the range of distances (“Range”) and average distance (“Avg”)
(both in meters), the number of training (“Ntr”) and test (“Nts”)
recordings in each dataset, the average recording duration (“L”) (in
seconds), the number of unique rooms featured in the dataset (“R”),
and whether sound sources move (“M”) (Y: yes; N: no). DCASE
and STARSS are split into training, validation, and test sets, each
with a unique set of rooms.

using synthetic datasets (i.e. using simulated wave propagations)
[19] or recordings in a handful of rooms with specific microphone
and loudspeaker configurations [18, 16, 17].

When it comes to DOA estimation, many studies have used
CRNNs2 that estimate x, y, z coordinates on an assumed unit sphere
(i.e. only estimating azimuth and elevation) [12, 11, 9, 10]. These
approaches benefit from open-source data, sometimes produced by
generators able to yield large-scales of training data [9, 10]. Gener-
ators use real-world multi-channel impulse responses (IR) and noise
samples collected in different rooms. Sound scenes can be produced
where events can be stationary or move along trajectories traced
along neighboring IRs. Datasets with real recordings in rooms also
exist [8, 7], and are used to evaluate models in real-world contexts.

Besides DOA estimation, these datasets could also be used to
develop distance estimation methods. For instance, Daniel et al.
[20] developed a technique that compares higher-order ambisonics
(HOA) channels (4th order; 25 total channels) to find temporal rela-
tions between a sound source’s wall reflections and infer the delay
of the propagating signal. This representation is called the Gener-
alized Time-domain Velocity Vector (GTVV) [25]. While their im-
plementation is not publicly-available, they did evaluate it on LO-
CATA [7], allowing for future comparison between methods using
this dataset as a point of reference.

3. METHODS

3.1. Datasets

We annotate sound source distances in existing open-source datasets
and a data generator featuring single sound events in real, dynamic,
and diverse rooms. We select datasets that use EigenMike since it
has been commonly used for DOA estimation research [3, 13, 8].

We use the open-source data generator3 by Politis et al. [10].
It places sounds in nine unique rooms with predefined trajectories
where sounds can appear featuring different power levels. We mod-
ified its code to annotate the sound source distance, which we in-
ferred via each room’s metadata files where the possible trajectories
are delineated. With this generator we create a “DCASE” dataset
with recordings separated into training and test splits, each using a
different set of rooms. We also use four datasets featuring record-
ings in real-world environments. We use STARSS (2023 version)

2The survey by Grumiax et al. [13] reviews all relevant SSL literature.
3
github.com/danielkrause/DCASE2022-data-generator

Acronym Full name �

AE absolute error |y − ŷ|

SE squared error (y − ŷ)2

APE absolute percent error 1
y
|y − ŷ|

SPE squared percent error ( 1
y
(y − ŷ))2

TAPE thresholded APE max(δ, 1
y
|y − ŷ|)

Table 2: Different regressors � that we investigate in the loss func-
tion. We try TAPE with δ = 0.01, δ = 0.1, δ = 0.20.

[8], which contains sound source distance annotations by its origi-
nal authors [8]. It features recordings in sixteen unique rooms. We
only estimate the distance of single sound sources. Therefore we
masked samples where overlapping sounds are present by replacing
them with the room’s ambient noise. For STARSS we used the “de-
velopment” set, which comes with recordings separated into train-
ing and test splits. LOCATA [7] features recordings in a single room
and contains metadata files encoding the sound source distance. We
split it by using all “Task 1” and “Task 5” files for training, and
“Task 3 evaluation” for testing (consistent with [20] to compare
performance)4. The 3D-MARCo dataset [26] contains recordings
of musical performances inside a reverberant church. We consulted
the dataset’s documentation and original authors to determine the
precise sound source distance. We used the “single sources” record-
ings for testing and the rest for training. We excluded the “trio”
recording as it features simultaneous sound sources at different dis-
tances. Finally, METU-SPARG [27] features IRs recorded in an
office, sampled over a 3D grid around the microphone. Distance
information is present in its metadata files. We use IRs collected
below the microphone’s center for testing, and the rest for train-
ing. Table 1 summarizes datasets. Because of the small number
of recordings in LOCATA, MARCo, and METU-SPARG we use
channel-swapping [28] to augment the training set of these datasets
by a factor of eight (not reflected in Table 1).

3.2. Model and loss

We train a CRNN to dynamically estimate the distance of non-
simultaneous sound sources. We modify the CRNN published by
Adavane et al. [3] to have two outputs: event detector d̂ and dis-
tance estimator ŷ. d̂ is trained with binary cross-entropy (BCE) and
ŷ with a regressor �. The model’s loss is

L =
1

N

1

T

N−1∑
n=0

T−1∑
t=0

dn,t�(yn,t, ŷn,t) + BCE(dn,t, d̂n,t), (1)

where y ∈ R+ and ŷ ∈ R+ are the true and estimated sound source
distance, respectively. d ∈ {0, 1} and d̂ ∈ [0, 1] are the true and
predicted sound presence, respectively. N is the batch size, and T
is the corresponding model output length along the time dimension.
dn,t multiplies � to avoid distance estimates from contributing to
the loss in the absence of sound events.

Reducing the model’s absolute or squared error prioritizes the
accurate estimation of more distant sound sources. In other words,
an error of 0.1 meters is more dramatic if the target is 1 meter away

4Other “tasks” in LOCATA feature overlapping sounds
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Model Exp Best � Mean ↓ Median ↓ Std ↓

CRNN

TWL SPE 0.413 0.330 0.347
TWA SE 0.368 0.340 0.244
FWL-S APE 0.337 0.290 0.246
FWL-D APE 0.352 0.269 0.275

avg pred 0.452 0.410 0.283
[20] 0.448 0.326 0.416

Table 3: Comparison of distance estimation performance on the
LOCATA test set across experiments. For each experiment we re-
port the model using the � that resulted in the best cross-validation
performance. in each experiment is also shown. TWL: train with
LOCATA. TWA: train with all. FWL-S: fine-tune with LOCATA
from STARSS, FWL-D: fine-tune with LOCATA from DCASE.

Figure 1: Qualitative comparison between the ground truth and
best-model predictions on two excerpts from the LOCATA test set.

versus 10 meters away. Therefore, we also try using the absolute
percent error and squared percent error, which should result in a
loss that uniformly weighs errors across ground truth distances. Fur-
thermore, we also experiment with the thresholded absolute percent
error. Table 2 shows the � equations we experiment with.

We keep the model’s original input, consisting of a tetrahe-
dral microphone’s Log-mel spectrograms and generalized cross-
correlation (GCC), capturing the difference in time of signal arrival
between microphones. To obtain the tretrahedral microphone (4
channels) from EigenMike (32 channels) recordings, we selected
channels 6, 10, 26, and 22, consistent with the STARSS dataset [8].

3.3. Training procedures

First we trained the CRNN to carry out sound detection using the
DCASE data. During this phase the model’s parameters are trained
to optimally output d̂, but the ŷ output, the distance estimator, re-
mains untrained. We initialized model parameters with the Kaiming
method and trained using an Adam optimizer (learning rate 1e− 3)
with patience of 40 epochs based on optimal cross-validation per-
formance (15% of recordings randomly separated as a validation
set). This resulted on a sound event detector with an F1 = 0.94
on the DCASE test set. We refer to this model as the “pre-trained
sound event detector” (PSED)5.

Next, we initialized the CRNN with PSED parameters and we
trained both d̂ and ŷ using LOCATA. We used Adam (learning rate
1e − 3) with patience of 40 based on optimal performance on a
hold-out set consisting of the LOCATA “Task 3 training” files. We
refer to this experiment as “Train with LOCATA” (TWL). To study
the potential benefit of using a larger training set, we repeated this

5Pre-training d̂ avoids local minima seen learning d̂ and ŷ from scratch.

Model Exp Best � Mean ↓ Median ↓ Std ↓

CRNN TWD SE 1.032 0.903 0.838
CRNN FWD-S AE 0.952 0.731 0.834
avg pred 1.014 0.866 0.596
CRNN TWM SE 1.346 0.417 2.158
CRNN FWM-S SPE 0.811 0.405 0.508
avg pred 1.183 1.611 0.494
CRNN TWT APE 0.148 0.122 0.126
CRNN FWT-S TAPE∗ 0.167 0.114 0.150
avg pred 0.378 0.289 0.234

Table 4: Performance on diverse datasets compared to the “avg
pred” baseline. D=DCASE. M=MARCo. T=METU-SPARG. TWD
and FWD-S highlight generalization to new rooms at test time.
∗TAPE with threshold of 0.01

experiment but substituted the training set to be all the training data
across datasets listed in Table 1. We refer to this experiment as
“Train with all data” (TWA).

Compared to the DCASE and STARSS datasets, LOCATA is
very small. Therefore, we also experimented with using LOCATA
to fine-tune a model pre-trained with a larger dataset. We first ini-
tialized the CRNN with the PSED parameters to train both d̂ and ŷ
using the STARSS dataset. We used Adam (learning rate 1e − 3)
with patience of 40 based on optimal cross-validation performance
on STARSS (15% of recordings randomly separated as a validation
set). We refer to this as the “STARSS pre-trained model” (SPTM).
Next, we initialized the CRNN with the SPTM parameters to train
both d̂ and ŷ using LOCATA. We used Adam (learning rate 1e− 3)
with patience of 40 based on optimal performance on a hold-out
set consisting of the LOCATA “Task 3 training” files. We refer
to this experiment as “Fine-tune with LOCATA from STARSS”
(FWL-S). We also carried out this procedure using DCASE instead
of STARSS, resulting in an experiment called “Fine-tune with LO-
CATA from DCASE” (FWL-D). Each experiment is run seven times
with a different regressor �: AE, SE, APE, SPE, TAPE(δ = 0.01),
TAPE(δ = 0.1), and TAPE(δ = 0.2), all listed in Table 2.

3.4. Baselines for comparison and metrics

We compare performance on the LOCATA test set against the aver-
age sound source distance in the LOCATA training set (“avg pred”),
and the recent signal processing approach by Daniel et al. [20]. It
is worth noting that [20] did not compare against a baseline since
they consider their approach to be the first to not make assump-
tions about a room’s DRR [20]. In our own literature review, we
did not find other distance estimation approaches evaluated on any
of the open-source datasets that we consider in this study. We use
the same metrics used in the study by Daniel et al. [20], which are
the mean, median, and standard deviation of the model’s absolute-
valued distance estimate error.

4. RESULTS

Table 3 shows that both “avg pred” and Daniel et al. [20] base-
lines have similar “mean” metrics. Thus it is possible that the
method by Daniel et al. is correlated with the global statistics of
the LOCATA training data [20]. Table 3 also shows that all our
experiments resulted in a model that outperforms both baselines.
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The “fine-tuning” experiments (FWL-S and FWL-D) yielded the
best performance according to the “mean” and “median” metrics.
To understand this pattern, let’s remember that STARSS, DCASE
and LOCATA consist of recordings in real rooms with humans pro-
ducing sounds (i.e., speech, footsteps, etc.) around a microphone.
However, STARSS and DCASE have much more room diversity (16
rooms and 9 rooms, respectively) than LOCATA (1 room). There-
fore, initializing the CRNN with the SPTM model parameters (or
the DCASE equivalent) may be providing with an initial representa-
tion of multi-room reverberation, from where it is easier to find the
parameters to optimally perform in the acoustic conditions of the
LOCATA room. Figure 1 qualitatively compares predictions made
by the best FWL-S model versus ground truth. Close alignment is
observed, with errors still tracing the ground truth contour.

The best models in Table 3 may be overfitting. Contrasting
“fine-tuning” experiments with TWL yields insight into this issue.
TWL initializes the CRNN with PSED parameters, resulting in a
distance estimator d̂ that learns this task only on the LOCATA data.
This makes overfitting to the LOCATA training set likely and we do
see poorer performance at test time. The better-performing TWA
(based on the “mean” metric) shows the benefit of using more train-
ing data and significant mitigation of overfitting compared to TWL.

To further study this issue, we repeated the “Train with
LOCATA” and “Fine-tune with LOCATA from STARSS” ex-
periments with the other datasets:DCASE, MARCo and METU-
SPARG. Table 4 shows the results. Compared to their “avg pred”
baseline, we again see the benefit of initializing the CRNN with
SPTM parameters vs PSED (on DCASE and MARCo according to
the “mean” metric). However, this was not the case for METU-
SPARG. This can be explained by its small size and statistical prop-
erties that are virtually the same across training and test splits. Thus,
overfitting to train data results in good performance on the test split.

Tables 3 and 4 also show what specific � resulted in the best
model. In general, the “percentage” �s were better. For FWL-S,
we analyzed the effect of different � (Table 5). We observe that the
“percentage” �s (APE, SPE, and TAPE) result in improved perfor-
mance compared to AE and SE. This makes sense, as APE, SPE,
and TAPE uniformly weight errors as a function of ground truth
distance. Figure 2 visualizes this effect by plotting the mean FWL-
S model error as a function of ground truth distance for AE, APE,
TAPE(δ = 0.01), and TAPE(δ = 0.2) on the LOCATA test-set.
Note also how AE tries to reduce errors associated with more distant
sound sources and underperforms for sound sources that are closer
to the microphone. In contrast, “percentage” �s reduce prediction
errors for targets closer to the microphone. In general, performance
deteriorates as a function of ground truth distance due to attenuation
and arrival likely to be closely-followed by reverberations.

5. CONCLUSION AND FUTURE WORK

We have proposed a model and optimization routine to carry out
sound source distance estimation, which is an understudied compo-
nent of SSL. Our solution is a CRNN with two outputs: a distance
estimator and a sound event detector. Experiments revealed the ben-
efit of using a loss function that uniformly weighs the model’s es-
timate error across the full range of distances by converting it into
a percentage of the ground truth distance. We also observe how
the model tends to overfit to specific datasets, and the benefit of
training with larger datasets featuring diverse acoustic conditions.
To carry out this study, we have annotated sound source distances
in a large collection of open-source datasets and a data generator,

� Mean ↓ Median ↓ Std ↓

AE 0.438 0.360 0.342
SE 0.374 0.319 0.256
APE 0.337 0.290 0.246
SPE 0.334 0.292 0.259
TAPE (δ = 0.01) 0.322 0.248 0.261
TAPE (δ = 0.10) 0.361 0.312 0.250
TAPE (δ = 0.20) 0.346 0.282 0.260

Table 5: The effect of different � on the best-performing CRNN on
the LOCATA test split. FWL-S experiments are shown since those
yielded the best model. Note how TAPE(δ = 0.01) has the overall
best test-set performance. However, best model selection was ag-
nostic of the test set, and was based on cross-validation performance
to maximally emulate a real testing scenario.

Figure 2: The effect of regressors � on the CRNN distance estimate
error as a function of ground truth distance (on the LOCATA test set
in experiment FWL-S). Lines correspond to the CRNN’s average
error. The 95% confidence interval of the mean is shown.

which we openly-release for future research by the broader com-
munity. In the future, we plan to expand this study by including
more open-source datasets and adding more rooms to the data gen-
erator. Future work could also investigate whether using the GTVV
[25] as an additional or unique input feature to the model could
improve performance. Similarly, other features like spectral magni-
tude difference [23] and signal coherence [24] or alternative input
formats like larger microphone arrays, HOA or binaural audio could
be used. Model architectures such as transformers and conformers
could also be explored.

Finally, a major shortcoming of the model presented here is
its inability to track the distance of simultaneously-occurring sound
sources. Recent solutions to this issue have been proposed in the
DOA estimation literature [12], which could be applied to expand
our approach. Ultimately, we aim to develop a method that can
jointly carry out the tasks of classification, localization, and distance
estimation while being robust to different acoustic conditions.
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