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ABSTRACT

Automatic Synthesizer Programming is the task of transform-
ing an audio signal that was generated from a virtual instru-
ment, into the parameters of a sound synthesizer that would
generate this signal. In the past, this could only be done for
one virtual instrument. In this paper, we expand the current
literature by exploring approaches to automatic synthesizer
programming for multiple virtual instruments. Two different
approaches to multi-task automatic synthesizer programming
are presented. We find that the joint-decoder approach per-
forms best. We also evaluate the performance of this model
for different timbre instruments and different latent dimension
sizes.

Index Terms— Automatic Synthesizer Programming,
VAE, Synthesizer Sound Matching

1 Introduction
Since the advent of electronic instruments, sound synthe-

sizers have become increasingly important in many different
genres of music. They are most popular in electronic dance
music (EDM) genres, but have also seen prominence in film
scores, jazz fusion, contemporary classical music, and many
other genres. Despite the ubiquity of the synthesizer as an
instrument, understanding how to program the synthesizer to
achieve a specific sound still presents a challenge to many as-
piring music producers. As such, it may be of use to provide
a tool to allow for people to more easily be able to associate
specific sounds with synthesizer parameters.

Automatic Synthesizer Programming (ASP) aims to fix
this problem. The goal is to build algorithms that can ex-
tract synthesizer parameter data from a given audio signal.
Previous approaches have accomplished this task for a single
virtual instrument at a time, that is the extraction of param-
eters from audio is specific to a given synthesizer. However,
this has severe limitations for real world usage. Most mu-
sic producers use many synthesizers, and the above formula-
tion would mean learning separate ASP models for each of
them. Alternatively, we propose novel methods for perform-
ing parameter inference for several synthesizers at a time. We
achieve this by using a multi-task ASP framework. Code and

data for this project is available on Github1 and Zenodo2.

2 Literature Review
There have been many different approaches to ASP

throughout the years. These include harmonic analysis [1],
genetic algorithms [2, 3, 4], machine learning approaches
like linear models [5], convolutional neural networks [6, 7],
differiential DSP [8, 9], and graphical methods [10]. All
of these approaches have shown some success, however the
introduction of Variational Autoencoders (VAEs) [11] stands
out as especially promising. VAEs have been widely used in
deep learning because of their ability to generate new samples
based on interpretable latent codes. Generative applications
where specific controls are needed are suited for VAEs. In
the field of audio and music, VAEs have been used to gen-
erate controllable real time audio [12] [8] and music scores
[13]. The addition of normalizing flows to VAEs [14] in ASP
allowed for very accurate parameter inference [15] since it al-
lowed the model to learn complex multi-modal distributions
in its latent space. This along with one-hot encoding [16]
for categorical parameters allowed models to converge for
synthesizers with high parameter counts.

3 Approach
We propose two multi-task variations of the VAE ap-

proach in [15, 16]. Our first method uses a VAE with a
decoder for representation learning and separate decoders
for each synthesizer parameter vector to be inferred. This
approach has the advantage of decoders that could potentially
be trained individually for parameter inference of additional
synthesizers. Our second method uses the same VAE for rep-
resentation learning. However, this method uses only a single
decoder for every synthesizer. Smaller parameter vectors are
padded to equal the dimensions of the output of the decoder.
Unlike the original models, we removed normalizing flows
to simplify the approach and better isolate the effect of the
multi-task variations.

3.1 Model
We construct two different multi-task ASP models as

shown in Figure 1. Each model has a mel spectrogram
1https://github.com/dafaronbi/Multi-Task-

Automatic-Synthesizer-Programming
2https://zenodo.org/record/7686668#.ZAodmOzMK3JIC
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encoder pϕ(z|xs) and decoder pθ(x̂s|z) for representation
learning, where xs is mel-spectrogram audio data. Each ap-
proach also includes n parameter decoders pψi(p̂|z,mi) for
parameter inference. Where mi is a mask inputted into the
model to give an understanding of what synthesizer parameter
vector is being inferred.
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Fig. 1. Diagram for our approach to multi-task ASP.

3.1.1 Separate-Decoder
The separate-decoder approach uses n parameter de-

coders and n masks for each decoder to infer parameters for
each synthesizer. For our experiments, n = 3 with ki param-
eter dimensions of each synthesizers parameter vector. The
output p̂i varies for each decoder p̂1 ∈ R480 , p̂2 ∈ R759,
and p̂3 ∈ R327. The masks mi also vary for each decoder.
m1 ∈ {0, 1}480, m2 ∈ {0, 1}759, and m3 ∈ {0, 1}327. The
values of the mask are set during training to indicate which
synthesizer was used to generate the ground truth audio sig-
nal. if mi = {1}ki , the ground truth was generated by the
synthesizer i and decoder i’s weights will be updated during
training. if mi = {0}ki then that decoder will be ignored
during training. For inference, masks can be set to {1}ki or
{0}ki depending on the desired decoder’s output.

3.1.2 Joint-Decoder
The joint-decoder approach attaches a single decoder to

infer parameters. The dimensiality of the output parameters
is the same p̂i ∈ R759 for all synthesizer parameter vectors,
so the parameter vector p̂ is padded with zeros so that the
size of the vector is always equal to 759. p̂1 ∈ R480 ∗ {0}279,
p̂2 ∈ R759∗{0}0, and p̂3 ∈ R327∗{0}432. The dimensionality
of all masks in this model are the same mi ∈ R759, where
m1 ∈ {1}480 ∗ {0}279, m2 ∈ {1}759 ∗ {0}0, and m3 ∈
{1}327 ∗ {0}432 and * is a padding operator to extend the
dimensions of a vector space.

3.2 Training
We train each model for 500 epochs using the ADAM op-

timizer [17]. We use warmup [18] for 100 epochs to ensure
that model learns proper spectrogram reconstruction before it
begins to regularize. The loss of each model is a combination
of the reconstruction loss of the audio representation and pa-
rameters, combined with the regularization of the latent space
to be close to a unit spherical Gaussian prior pθ(z):

Lϕ,θ,ψ = Eϕ(z|xs)[logpθ(x̂s|z)]︸ ︷︷ ︸
spectrogram reconstruction accuracy

+

n∑
i=1

Eϕ(z|xs)[logpψi
(p̂i|z,mi)]︸ ︷︷ ︸

parameter reconstruction accuracy

+Eϕ(z|xs)[logpθ(z)− logqϕ(z|xs)]︸ ︷︷ ︸
regularization term

(1)

4 Experiment Design
We perform experiments to compare the performance of

each of our approaches to multi-task ASP. We first compare
the accuracy of the parameter inference using three different
metrics. Next, we evaluate how accurate the multi-decoder
model performs for different timbre presets. Finally, we eval-
uate the accuracy of the model with different sized latent di-
mensions.

We construct baseline models with separate encoders and
decoders for each synthesizer to provide an understanding of
how the multi-task parameter inference models compare to
single-task models. Each of these models were trained with
only one synthesizer.

To evaluate our model, we use metrics that compare the
ground truth and predicted parameter vectors and also com-
pare the audio generated by these parameters. To evaluate
the parameter estimation accuracy, we use different metrics
for continuous and categorical parameters. For continuous
parameters, we simply take the mean squared error between
ground truth and predicted parameters. For categorical pa-
rameters, we calculate the percentage of parameters that are
categorized correctly. For the audio domain, we use log spec-
tral distance (LSD) as in [9]. We generate an STFT ŷi of the
audio signal generated from inferred parameters p̂i and com-
pare this to the generated STFT yi of audio generated from
ground truth parameters pi.

LSD = ∥ log(|ŷ|2)− log(|y|2)∥ (2)

where ∥ · ∥ is the frobenius norm of a matrix. This metric
captures the distance in spectral characteristics of the audio
signal.

4.1 Data
4.1.1 Synthesizers

We collect synthesizer presets from three different virtual
instruments: Serum, Diva, and TyrellN6. These synthesiz-
ers were chosen because they have a large presence of presets
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available online and are diverse in complexity and parameter
vector size. Serum has 315 parameters (273 continuous and
42 discrete), Diva has 281 parameters (190 continuous and 91
discrete), and TyrellN6 has 92 paramers (68 continuous and
24 discrete). Previous studies use data sets from synthesizers
like the Dexed or custom made synthesizer constructed with
Jsyn [19], but we choose these three because of their diversity
in synthesis techniques and complexity. Serum is an advanced
wave-table synthesizer created by Xfer Records that can cre-
ate sounds using almost every modern type of synthesis tech-
nique (subtractive, additive, FM, etc). Diva is an FM sub-
tractive synthesizer created by U-He that can create analog-
sounding sounds. This synthesizer was also used in the first
ASP paper with a VAE model [15]. TyrellN6 is a virtual in-
strument created by U-He. Similarly to Diva, it uses FM and
subtractive synthesis to make analog-like sounds. However,
its variety of oscillators and filters are much more restrictive
when compared to Diva. We collect 2505 presets for Serum,
1694 presets for Diva, and 1870 presets for TyrellN6 and used
an 80-10-10 Train-Test-Validate data set split for our experi-
ments.
4.1.2 Parameter Encoding

We chose to encode continuous and categorical parame-
ters differently as in [16]. Continuous parameters keep the
same dimensionality but categorical parameters are one hot
encoded. This means that categorical parameters take up
more dimensions after being one hot encoded. For example,
if a synthesizer has parameters ∈ R2 where one of the pa-
rameters is continuous and one parameter can be one of three
categories, our encoding will expand the data to R4 where the
first dimension is the same and the 2-4 dimensions are used
to one-hot encode the categorical parameter. When running
inference with our models, the model output will select the
highest value in the one-hot encoded section of the model and
set all others to zero. The parameters will then be collapsed
to their original dimension length.

4.1.3 Generating Sound
Presets were gathered for each synthesizer in FXB for-

mat. This format was used because it is a preset format that
is compatible with multiple digital audio workstations. We
use DAW Dreamer[20] to generate 5 second audio samples
from all of these presets by holding a note down for three sec-
onds and allowing for attenuation after. We generate an audio
sample for midi notes C4-B4 for each preset. We filter out au-
dio samples that have an RMS < -20 dBFS to make sure that
silent presets were not included in training. We extract mel-
spectrograms from these audio clips using librosa[21] with
128 mel bins and a hop size of 512. Each audio sample
is associated with its parameter label. Each parameter sets
categorical variables are one hot encoded as in [16]. For
each sample we do harmonic percussive source seperation
[22] with residual [23] and create timbre groups for when the
harmonic component is between 0-20%, 20-40%, 40-60%,
60-80% and 80-100% of the separation.

5 Results & Discussion

Table 1. Metrics for all synthesizers
Model Metrics

Encoder Decoder LSD Param MSE Parm % AC
Mean STD Mean STD Mean STD

separate separate 86.8 432.8 5.0 3.1 75.3 15.7
joint separate 72.9 297.5 4.9 3.1 75.1 15.6
joint joint 74.2 310.0 5.3 3.2 75.1 15.5

Table 2. Metrics for Serum
Model Metrics

Encoder Decoder LSD Param MSE Parm % AC
Mean STD Mean STD Mean STD

separate separate 64.9 170.5 4.7 3.5 81.7 13.3
joint separate 54.9 144.6 4.8 3.5 81.1 13.7
joint joint 55.2 150.6 5.0 3.6 81.2 13.7

Table 3. Metrics for Diva
Model Metrics

Encoder Decoder LSD Param MSE Parm % AC
Mean STD Mean STD Mean STD

separate separate 183.6 777.9 6.2 3.1 76.9 10.3
joint separate 151.4 522.5 6.0 2.9 76.5 10.3
joint joint 156.5 544.3 6.5 3.0 76.9 9.8

Table 4. Metrics for TyrellN6
Model Metrics

Encoder Decoder LSD Param MSE Parm % AC
Mean STD Mean STD Mean STD

separate separate 28.8 42.8 4.2 2.3 66.4 18.0
joint separate 26.0 35.9 4.1 2.2 66.6 17.6
joint joint 25.5 38.1 4.6 2.5 66.1 17.3

Model Accuracy: We report the mean and standard deviation
of all three metrics for each synthesizer. For mean LSD and

MSE, lower is better. For mean parameter accuracy, higher is
better. For all standard deviation metrics, lower is better. The

best model is marked in bold.

5.1 Model Accuracy
We compare all three of our approaches to multi-task

parameter inference approaches by evaluating each model
on the same test set data and analyzing how each model
performs per synthesizer using the aforementioned metrics.
Results for each model are shown in Tables 1, 2, 3, and 4.
The joint-encoder separate-decoder module outperforms the
others overall in the error of generated audio and continuous
parameters. A one-way anova test of LSD values revealed sta-
tistically significant differences between the groups (p-value
of 0.0313). However, the separate-encoder separate-decoder
module outperforms others in classification accuracy. This
difference is likely due to the separate-encoder separate-
decoder module over-fitting to specific synthesizer parameter
vectors while the joint-encoder separate-decoder module is
forced to learn a general representation for all synthesizers
that is more aligned with the generated audio signal. Differ-
ence in variance for parameter metrics is negligible between
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Fig. 2. We plot the change in performance measured by Log
Spectral Distance vs the change in the percentage of harmonic
component in each test set preset. Lower is better

all three modules. However, the variance in audio metrics
is always significantly better in the single-encoder separate-
decoder module. This is because the separate-decoder mod-
ule receives more training examples than the separate encoder
module and has specialized decoders that the joint-decoder
module does not. This allows it to have an advantage when
inferring parameters. When comparing performance between
synthesizer types, it seems as though simpler synthesizers are
easier to estimate than complex synthesizers. When you com-
pare Diva and Tyrell (since they have similar representation in
the training set), TyrellN6 outperforms Diva by a significant
margin in the audio domain. Serum also outperforms Diva,
but this is likely due to more training examples of Serum be-
ing used. However, in categorical parameter accuracy, Diva
and Serum outperform TyrellN6. This is because many of
TyrellN6’s categorical parameters have minimal effect on the
generated audio signal.

5.2 Timbre Evaluation

Next we evaluate the effect of timbre on the multi-task
ASP setup using the joint encoder separate decoder model.
To accomplish this, we use the log spectral distance metric.
We draw box plots of the LSD value for 5 different timbre
groups shown in Figure 2. These box plots give us quanti-
tative evidence that sounds with extremely percussive com-
ponents (HPSS harmonic component less than 20%) perform
worse in the model than all other timbre categories. There is
a slight decrease in performance as the harmonic percentage
increases after 20%. However, this change is visibly negligi-
ble. We conclude that the model relies primarily on harmonic
information to perform parameter inference.
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Fig. 3. We plot the change in our metrics as the latent dimen-
sions in our separate-decoder model increase. For MSE and
LSD, lower is better. for % accuracy, higher is better

5.3 Latent Size
We then try to understand the limitation of the latent

space size for encoding multiple synthesizer parameters into
a shared latent space. We train similar joint encoder separate
decoder models with various latent space dimensions ∈ {2,
4, 8, 16, 32, 64, 128, 256, 512}. We evaluate the average log
spectral distance, continuous parameter mean squared error,
and categorical parameter accuracy for each different latent
dimension size and plot the changes in Figure 3. We normal-
ize the data to range from 0-1 and take the finite difference
of each series to find where the series starts to saturate. We
heuristically decide that a finite difference less than 0.1 is set
as the saturation point. This saturation points happens when
the latent dimension size is 64. This is also the latent size
where the LSD metrics variance is at a valley.

6 Conclusion
We have shown a variety of approaches to multi-task

ASP, and come to the conclusion that the separate-decoder
approach is best. However, there are still many other types
of experiments that could be done. Each model did not con-
tain flow transformations in the latent space like past VAE
parameter inference models. We could expand on our work
by exploring multi task approaches with flow transformations
from the latent space to parameter vectors instead of multi
layer perception decoders. It may also be worth exploring
a modified spectrogram decoder that uses DDSP to generate
audio. this may allow for more useful representations to be
learned in the latent space. We hope that future work is able
to explore these topics and build upon the research presented
in this paper.
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