
Linear Predictive Coding is

All-Pole Resonance Modeling

Hyung-Suk Kim

Center for Computer Research in Music and Acoustics,
Stanford University

1 Why another article on LPC?

Linear predictive coding (LPC) is a widely used technique in audio signal pro-
cessing, especially in speech signal processing. It has found particular use in
voice signal compression, allowing for very high compression rates. As widely
adopted as it is, LPC is covered in many textbooks and is taught in most ad-
vanced audio signal processing courses. So why another article on LPC?

Despite covering LPC during my undergraduate coursework in electrical en-
gineering, it wasn’t until implementing LPC for my own research project that I
understood what the goals of LPC were and what it was doing mathematically
to meet those goals. A great part of the confusion stemmed from the some-
what cryptic name, Linear-Predictive-Coding. “Linear” made sense, however
“Predictive” and “Coding”, sounded baffling, at least to the undergraduate me.
What is it trying to predict? And coding? What does that mean?

As we will find in the following sections, the name LPC does make sense.
However, it is one catered to a specific use, speech signal transmission, possibly
obscuring other applications, such as cross-synthesis. It takes a moment to
understand the exclamation, “I used linear predictive coding to cross-synthesize
my voice with a creaking ship!”.

Thus the purpose of this article is to explain LPC from a general perspective,
one that makes sense to me and hopefully to others trying to grasp what LPC
is. Another purpose is to present a complete derivation in simple linear algebra
terms before mentioning other concepts and approaches.

Finally, I prefer calling LPC, All-Pole Resonance Modeling.

2 The LPC Model

The original objective of LPC was to model human voice production. LPC is
a source-filter model in that there is a sound source that goes through a filter.
(Figure 1) The source, e(n), models the vocal chords, while the resonant filter,

1



Source

e(n)

t

t

Filter

h(n)

f

Signal

x(n)

t

Figure 1: The LPC Model

h(n) models the vocal tract. The resulting signal is,

x(n) = h(n) ∗ e(n). (1)

There are two possible signals for the source: an impulse train or random
white noise. These signals model pitched sounds and plosive/fricatives respec-
tively. The common characteristic for both impulse train and white noise is that
they are spectrally flat; all spectral information is modeled in the filter. The
keen reader will notice the source signal is labeled e(n). This was chosen so for
reasons to be revealed in the following sections.

LPC assumes the filter is a p-th order all-pole filter. Though not physiolog-
ically exact, it provides an extendable method for modeling resonances. This
also allows for a tractable solution when estimating h(n) from x(n), which we
will cover in §4.

Though initially developed for speech signals, the assumption of a spectrally
flat source signal and a resonant filter applies well to modeling signals from most
tonal instruments as well as many naturally occuring sounds.

3 The LPC Problem

For a filter design problem, like that of designing sound with an analog synthe-
sizer, one would control filters, h(n), with a source signal, e(n), to create an
interesting result, x(n). However, for the problem at hand, the only known is
x(n), the resulting signal of the system. From x(n), we need to estimate h(n)
and e(n).

Let’s take a moment to think about a system with p poles only. For a discrete
time system, each pole corresponds to a delay, thus the system has memory and
the current sample x(n) will be the result of the current input e(n) and past
samples x(n−k), k = 1 . . . p. Inversely, this means that h(n) imposes a relation
between the past samples and the current sample. If we have enough examples
of this imposed relation, we should be able to extract some information about
the filter. Let’s push this idea further.

2



We can formulate the relation between the input and output as,

X(z) = H(z)E(z)

=
1

1−
∑p

k=1 akz
−kE(z). (2)

With a simple reordering, X(z) can be expressed in terms of the input E(z)
and past samples z−kX(z).

X(z) =

p∑
k=1

akz
−kX(z) + E(z) (3a)

Z⇐⇒ x(n) =

p∑
k=1

akx(n− k) + e(n) (3b)

The problem has now become that of finding the coefficients ak, k = 1 . . . p.
Again for reasons to be revealed, let’s leave e(n) as it is for now.

On a sidenote, this all-pole approach is also known as auto-regression (AR),
since it is finding the future value of itself from the past.

4 Finding the Resonances

If we have N � p samples, which is easily the case, then we have N equations
for ak, thus ak is overdetermined.1 Let’s transform equation 3b to matrix form.

For xi =
[
x(n− 1 + i) · · ·x(n− p+ i)

]
∈ R1×p and

a =

a1...
ap

 ∈ Rp×1,

we get the following N equations.

x(n) = x0 · a + e(n)

x(n+ 1) = x1 · a + e(n+ 1)

... (4)

x(n+N) = xN · a + e(n+N)

Forming the variables by stacking the variables,

1The order of the all-pole filter, p, sets a lower bound for the number of samples LPC needs
to effectively model the signal.

3



b =

 x(n)
...

x(n+N)

 ∈ RN×1, e =

 e(n)
...

e(n+N)

 ∈ RN×1 and A =

x0

...
xN

 ∈ RN×p,

then replacing the variables in equation 4 and rearranging the matrix multi-
plication term, we get

e = b−A · a (5a)

= b− b̂ (5b)

where b̂ ≡ A · a.
The equation above is known as linear regression, where b̂ is an estimate of

b based on A with weights a. The error of estimation or residual is e.
As mentioned before, the equation is overdetermined and there is no exact

solution, we can only try to find a “good fit”. A well studied solution or “fit”
to this problem is least squares, the solution of choice for LPC. For the least
squares solution, we choose the values ak that minimize ‖e(n)‖2, the power of
the residual e. The solution is simple to compute:

a = A†b

= (ATA)−1ATb (6)

where A† is the Moore-Penrose pseudoinverse.

5 Residuals

Now that we have found values for a, by equation 6, we can calculate the
residuals e. If we have done a good job of modeling the resonances, we should
be left with either an impulse train of a certain frequency(pitched), a random
noise signal(unpitched) or a mixture of the two. If not, some of the resonance
will have leaked into e, and it will not be spectrally flat.

We first need to determine whether the signal is pitched or unpitched which
requires pitch detection. Pitch detection is a widely studied subject. It is not a
trivial task and is beyond the scope of this article. Simple methods include, zero-
crossing detection and auto-correlation methods. More sophisticated methods
use cepstrums, adaptive filtering or perceptual models. For the pitched case,
we need the power of the source signal along with the fundamental frequency.
For a random signal, all we need to measure is the variance of the samples σ2,
which is also the power of the source signal, e(n).

It is known that 3 peak frequencies of the vocal tract, called formants, are
enough to descriminate most vowels. Thus setting p = 6 will work well for
speech signal. This is one reason LPC works well with speech. Choosing the
optimal value p for other classes of signals is an open problem.

4



6 Analysis/Resynthesis

We have found the coefficients ak and have a model for the signal. Great!
However, the solution from §4 will only produce a single resonant sound, like
“ah”, not the whole sentence “I’m cool like that.”. Real world signals, like
music and speech, are time varying. So what do we do? Divide and conquer!
Specifically, we need to cut the signal into small chunks and model each chunk
using the equations from §4. This also adds a few conditions to the equations
covered in §4, but the overall process holds.

The usual approach in audio processing is to use a technique called overlap-
add (OLA). For OLA, we window the signal with a window function w(n) that
has a constant OLA property.

∞∑
m=−∞

w(n−mR) = 1 (7)

Equation 7 is the constant OLA equation, where R is called the step size.
Thus instead of running LPC on the full signal x(n), we use a windowed version
xm(n) = w(n)x(n+mR). Because of the constant overlap-add property, simply
adding the windowed signals will return the original signal.

∞∑
m=−∞

w(n−mR)x(n) = x(n) (8)

A window function of length N is zero outside the window. Thus the win-
dowing imposes the condition that any value outside length N is zero. This
means for xi in equation 4, x(n−m+ i) = 0, if n−m+ i < 0 or n−m+ i ≤ N ,
where m = 1 . . . p.

We mention this because the terms in equation 5b now become an auto-
correlation which is often how LPC is explained. It is also known as the Yule-
Walker equations. This approach allows for faster implementations using FFT
to calculate the auto-correlations.

Now let’s look at an example using LPC on speech signal. Let’s choose a
window of length N = 240, which is the length of a 30ms window at 8kHz,
reasonable values for speech signals. Let’s also use 50% OLA, which means
R = 0.5N = 120. Since it is speech and we are only interested in 3 peaks (the
formants), so we choose p = 6. For each step, 120 samples, after LPC, we are
left with 7 numbers; the 6 coefficients ak and the variance of the residual σ2.
Thus we have reduced the amount of data from 120 samples to 7 (about 17 to
1). That’s quite impressive. In a sense, we have encoded the original audio into
a compact form.

To decode the signal, we run the coefficients through the LPC model in
Figure 1. Specifically, using the variance σ2 to control the source, and the coef-
ficients ak for the filter, we get an estimated signal x̂m(n) = w(n) (e(n) ∗ hm(n)).
We then overlap-add the decoded windowed signals to obtain the full signal x̂(n).
This can be viewed as playing an LPC synth with LPC encoded parameters.
We will explore this idea in §8.

5



7 Decyphering the name: LPC

Now that we have covered how LPC works, let’s review the name.
Linear Prediction. The system in Figure 1 is a linear system. We use least

squares which solves linear equations. Actually, the system is using linear predic-
tion where in equations 3b and 5b, we are using the past values of x(n) linearly
to find the coefficients ak that best estimate or predict the current value.

Coding. In §6, we covered how LPC can be used to encode(analyze) and
decode(resynthesize) speech signals. So LPC can be viewed as a coding algo-
rithm. Another example of a well known audio coding algorithm is the MP3
codec(coder/decoder). The two audio coding schemes make an interesting com-
parison. Where LPC tries to model how the sound is created (source modeling),
MP3 models how the sound is perceived (listener modeling).

8 Cross-synthesis

xc(n)

xm(n)

LPC

LPC

ec(n) hc(n)

em(n) hm(n)

y(n)

Figure 2: Cross-synthesis

Viewing LPC as a coding method can obscure other possible uses. Looking
at LPC from an analysis/synthesis perspective allows for different applications.
A good example is that of cross-synthesis. (Figure 2) After running a signal
through LPC, we are left with a model of the filter, h(n) and a model of the
source, e(n). The filter controls the resonance or tone of the signal, while the
source controls the utterance. If we run two different signals through LPC, it
would be possible to use the source of one model (carrier, ec(n)) and the filter of
the other model (modulator, hm(n)) to create a different, hopefully interesting,
output signal y(n) = hm(n) ∗ ec(n), thus cross-synthesis.

This creates particularly interesting results when taking the filter from speech
signals and the source from a spectrally rich sound texture such as wind, or
creaking wood.

6



9 Next Steps

As useful as LPC has proven to be, it is not without limitations. For one, the
audio signal should fit the source-filter model for LPC to work well. A signal
with many sounds mixed may not work so well.

Further improvements in sound quality can be acheived without significantly
increasing the data needed by using excitation codes. This approach is called
Code-Excited Linear Prediction (CELP).

The keen reader may have noticed that within a windowed segment, there
is no change in power. The assumption is that the signal within a windowed
segment is stationary. A transient or attack will become smeared by a windows
width. Thus, LPC itself is not suited for sounds with many transients such as fire
crackling. A recent approach to address this problem is that of time-frequency
LPC (TFLPC) or cascaded time-frequency linear prediction (CTFLP), where
the time envelope of the source signal after LPC is modeled in the time-domain
also using an all-pole model.

Despite the limitations, LPC is a good starting point for analyzing and
modeling sounds and worth understanding.

7


