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ABSTRACT

The synthesis of sound textures, such as flowing water, crackling
fire, an applauding crowd, is impeded by the lack of a quantita-
tive definition. McDermott and Simoncelli proposed a perceptual
source-filter model using summary statistics to create compelling
synthesis results for non-tonal sound textures. However, the pro-
posed method does not work well with tonal components. Com-
paring the residuals of tonal sound textures and non-tonal sound
textures, we show the importance of residual modeling. We then
propose a method using auto regressive modeling to reduce the
amount of data needed for resynthesis and delineate a modified
method for analyzing and synthesizing both tonal and non-tonal
sound textures. Through user evaluation, we find that modeling
the residuals increases the realism of tonal sound textures. The re-
sults suggest that the spectral content of the residuals has an impor-
tant role in sound texture synthesis, filling the gap between filtered
noise and sound textures as defined by McDermott and Simoncelli.
Our proposed method opens possibilities of applying sound texture
analysis to musical sounds such as rapidly bowed violins.

1. INTRODUCTION

Sound textures are signals that have more structure than filtered
noise, but, like visual textures, not all of the details are perceived
by the auditory system. Saint-Arnaud [1] gives a qualitative def-
inition of sound textures in terms of having constant long term
characteristics that, unlike music or speech, do not carry a message
which can be decoded. Figure 1 illustrates the relative information-
bearing potential of music, speech, sound textures, and noise, show-
ing how sound textures lie between music/speech and noise. Ex-
amples of sound textures include natural sounds such as water
flowing, leaves rustling, fire crackling, or man-made sounds like
the sound of people babbling, a crowd applauding or sounds of
machinery such as drills. There can be textural components in mu-
sical sounds such as fast violin-bowing or guitar-string scraping.

A better understanding of sound textures can provide insights
into our auditory process, and what information we extract from
auditory inputs. Furthermore, such knowledge can be used to find
sparse representations and applied to analysis/synthesis of envi-
ronmental sounds, sound texture identification, data compression,
and gap-filling.

Since Saint-Arnaud’s work on sound texture, there has been
a gradual increase of interest in this area and various approaches
have been explored [2, 3]. One approach that has been extensively
used is granular synthesis [4, 5, 6, 7, 8, 9]. In most cases, the gen-
eral approach is to parse the audio during analysis, usually into
sound events and background din, and then recompose the com-
ponents according to a stochastic rule. The advantage of these

approaches is that the original source is used for resynthesis, re-
sulting in output quality as good as the source. This also means,
however, that the method is bound by the source signal and that
the methods may not be generalizable. Other approaches include
applying various metrics and theories such as polyspectra [10],
wavelets [11], dynamic systems [12] and scattering moments [13]
to analyze sound textures.

Another approach is that of source-filter modeling. One source-
filter approach is time-frequency linear predictive coding (TFLPC)
also called cascade time-frequency linear prediction (CTFLP) [14,
15]. In TFLPC, time domain linear prediction, which captures the
spectral content, is followed by frequency domain linear predic-
tion, which models the temporal envelope of the residuals.

McDermott and Simoncelli [16] propose a source-filter ap-
proach using perceptual multiband decomposition, looking at the
long term statistics of the multiband signal and its modulations. To
evaluate the proposed model, the extracted statistics are imposed
onto subband envelopes using an iterative method. The subband
envelopes are multiplied with a noise signal to create the synthe-
sized signal. An advantage of this approach is that there are no
assumptions regarding the nature of the sound source, as it models
how the auditory system processes the sound.

A limitation of the method proposed by McDermott and Si-
moncelli is that it does not work well for tonal sounds. The resyn-
thesized results of sounds with tonal components such as wind
chimes and church bells were perceived to have low realism.

Liao et al.[17] applied McDermott and Simoncelli’s approach
directly to a short-time Fourier transform (STFT), where marginals
and subband correlations are extracted from the STFT of source
signal, then iteratively imposed onto a new STFT for resynthesis.

Although there are a set of sounds that are generally accepted
as sound textures, such as water flowing, fire crackling, and babble
noise, there is not yet a generally quantitative definition for sound
textures. Moreover, how sound texture is defined or rather defin-
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Figure 1: Potential information content of a sound texture vs. time
(from Saint-Arnaud[4])
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Figure 2: Sound texture decomposition. The schematic illustrates the sound texture decomposition process for a single subband.

ing the scope of sound textures, i.e., specifying which sounds are
included in a given class of sound textures, in turn affects the ap-
proach to analyzing and synthesizing sound textures in that class.

In this paper, we limit our definition of sound textures to what
can be synthesized using structured noise, that is, sounds that can
be reproduced by shaping noise in a structured way. Despite the
limiting definition, this approach can cover a broad range of sounds,
as demonstrated by the aforementioned source-filter models. With
this definition, sounds with pitch inflections, such as the sound of
a baby crying or cars accelerating, will likely not fall into this cate-
gory and thus will not be considered. Such a definition works well
in conjunction with sines+noise synthesis [18] in which sinusoidal
modeling handles any tonal components while texture classifica-
tion, analysis, and synthesis can be applied to the residual signal
after the tonal components are removed.

In the following sections, we examine sound textures with
tonal components, compare it to non-tonal sound textures, and ap-
ply the insights gained from the comparisons to the developement
of an analysis/synthesis model that includes tonal components.

2. SOUND TEXTURE DECOMPOSITION

We begin by formulating a method to decompose a sound tex-
ture into its subband sideband modulations, which we will call
envelopes, and its residuals.1 The decomposition process is illus-
trated in Figure 2.

The source sound texture x[n] is first separated into subbands
xi[n] with a subband filter bank equally spaced on an equivalent
rectangular bandwidth (ERB) scale hi[n] [19]. We choose hi[n]
such that its Fourier transform Hi[k] satisfies,

∑
i

∣∣Hi[k]
∣∣2 = 1. (1)

Thus, {hi} forms an FIR power-complementary filter bank [20].
The filter bank hi[n] is applied to the signal for both the analysis
and synthesis steps. The analysis step gives

xi[n] = hi[n] ∗ x[n]. (2)

For subband xi[n], we first apply an analysis window w[n]
with 50% overlap on the signal at frame rate fenv . The length
of the window is L = 2R = 2/fenv . We choose w[n] to have

1This follows McDermott and Simoncelli’s terminology. The term
“modulation” is used to describe the frequency components of the en-
velopes.

constant overlap-add (OLA), i.e.,∑
m

w2[n+mR] = 1. (3)

The window w[n], like hi[n], is applied to the signal for the
analysis and synthesis steps. We define the m-th windowed seg-
ment of xi[n] as

xim[n] = w[n]xi[n−mR]. (4)

For each subband segment xim[n], we derive the uncompressed
envelope of the segment ei[m] by taking the power within the win-
dowed segment and normalizing it by the squared sum of the win-
dow w[n],

ei[m] =

{∑L−1
n=0 (xim[n])2∑L−1
n=0 (w[n])2

} 1
2

(5)

Finally, a compression, simulating basilar membrane compres-
sion, is applied to ei[m] to obtain the subband envelopes si[m].

si[m] = fcomp(ei[m]) = (ei[m])0.3 (6)

Once we have the subband envelopes, we calculate the statis-
tics for the envelope mean, variance, skewness, kurtosis, cross cor-
relation, the envelope modulation power, between subband (C1)
modulation correlation and within subband (C2) modulation cor-
relation. The variance of each subband, which is equivalent to the
subband power, is also saved.

The residual of segment xim[n] is derived by dividing the seg-
ment by the envelope value.

rim[n] = xim[n]/ei[m] (7)

The segment residuals are merged to obtain the subband resid-
ual ri[n] and the subband residuals are summed to obtain the signal
residual r[n].

ri[n] =
∑
m

w[n+mR]rim[n+mR] (8)

r[n] =
∑
i

hi[n] ∗ ri[n] (9)

While this decomposition process differs from McDermott and
Simoncelli [16], the resulting envelope si[m] is very similar. The
envelope statistics imposing algorithm from McDermott and Si-
moncelli can be applied with little modification. The advantage
of this formulation is that all the residuals are aggregated into one
signal r[n].
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Figure 3: Examples of sound texture decomposition and residual power spectral density. The first row shows the subband envelopes si[m]
of each signal. The second row shows the spectrogram of the residual r[n]. The third row is the power spectral density of the residual
obtained using Welch’s method. The y-axis of the envelope plot and the residual plot is different. (ERB scale vs. linear scale)

3. RESIDUAL ANALYSIS

The envelopes and residuals from the sound texture decomposi-
tion can be viewed to have a carrier-modulation relation where
the subband envelopes si[m] are the amplitude modulations and
the residual signal r[n] is a temporally stable carrier signal. The
subband envelopes, the spectrogram of the residual signal and the
power spectral density (PSD) of the residual signal for example
sound textures are shown in Figure 3.

The residual of crackling fire and flowing water is very close to
pink (1/f) noise [21]. This is the result of normalizing the subband
power over an ERB scale. Replacing the residual with pink noise
for synthesis works well.

However, for a tonal sound like wind chimes (Figure 3c), the
power spectral density is spiky due to the tonal components. Re-
placing the residual with pink noise would diffuse the tonal com-
ponents, exciting the whole subband instead of focusing the signal
power on a narrow band.

Inspecting the spectrogram of the residual in Figure 3c, the
subband residuals do not look temporally stable, contrary to our
assumption of carrier stability. Comparing the carrier spectrogram
to the subband envelopes, we see that the subband envelopes have
a small value where the tonals are missing. Thus, replacing the
residual in Figure 3c with a temporally stable residual would not
change the perceived output when merged with the subband en-
velopes.

Welch’s method was used to estimate the power spectral den-
sity of the residual signal. We found that the shape of the tonal
components is well captured when the averaging period is longer
than 0.5 seconds. For the examples in this paper, an averaging
period of 1 second was used at a sampling rate of 20 kHz.

4. RESIDUAL MODELING

We can impose the power spectral density directly onto the residu-
als during the synthesis process to improve the results. Moreover,
this will allow synthesis of sounds with tonal components. How-
ever, the amount of data for directly imposing the PSD is very
large. For our example, 1 second at 20 kHz results in 10001 sam-
ples for the PSD. Much of the data is noise, we only need the
contour of the PSD. One method of reducing the amount of data
needed is by modeling the audio using high order auto-regressive
(AR) modeling. High order AR modeling has been used for gap-
filling and spectral modeling [22, 14]. The advantage of this ap-
proach is that we get high quality results without handling sinusoid
components and noise components separately. A similar approach
to tonal noise modeling has been covered by Polotti and Evange-
lista [23].

For non-tonal sounds, a good approximation can be obtained
using low order AR models. However, for tonal sounds, it is im-
portant to model the tonal components well, especially the peak
sharpness. If a tonal peak is modeled too broadly, that tonal com-
ponent will sound diffused.

In Figure 4a, the residual is modeled evenly at both AR orders
100 and 200. In Figure 4b, the tonal components around 1kHz are
not modeled well at an AR order of 100. Increasing the AR order
to 200 improves the results.

To find a reasonable AR order, we plot the standard deviation
of the magnitude errors against the AR order. For the stream ex-
ample, there is little improvement with higher orders. For the wind
chime example, we see a noticeable improvement between AR or-
der 100 and 200. Examining more examples, an AR order of 200
was sufficient to model the tonal examples used for this paper.
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Figure 4: Residual AR modeling. In the first two columns, the frequency response of an AR model (black) is overlaid on the residual PSD
(gray). Below each power spectrum, the error between the actual response and the AR approximation is plotted. In the third column, the
standard deviation of the modeling errors is plotted for different AR orders. There is little improvement when increasing the AR order for
the stream example. However, for the windchime example, we see a noticeable improvement between AR order 100 and 200.

5. SOUND TEXTURE RESYNTHESIS

In this section, the process of extracting statistics and features from
a source sound texture is covered with a detailed explanation of
how the extracted statistics are used for resynthesis. The analysis
and synthesis process is illustrated in Figure 5.

5.1. Extracting Sound Texture Statistics

After separating the source into subbands, the variance of each
subband is saved. The subband variance is equivalent to the power
of each subband signal. The human auditory system has acute
sensitivity to the power in each subband, thus imposing the sub-
band power correctly is important. The subband variance is used
to “equalize” the subbands when resynthesizing.

Each subband is decomposed into its envelope and residual
components as formulated in §3. The subband envelopes are then
used to extract a subset of the statistics described in McDermott
and Simoncelli [16]. We include modulation statistics in enve-
lope statistics since the modulation statistics are all derived from
the subband envelopes. One noticeable difference is that the en-
velopes are not windowed, windowing is inherently applied in the
decomposition step. A detailed description of the statistics used is
provided in §9.

The subband residuals are merged back into a full-band single
channel residual signal as explained in equation (9). The AR co-
efficients are estimated from the residual signal (§4) and the AR
coefficients are saved for use as an all-pole filter to synthesize a
new residual signal.

5.2. Synthesizing from Sound Texture Statistics

For resynthesis, starting with white noise, the envelopes and resid-
uals are synthesized in parallel using the statistics from the anal-
ysis process. The two are then merged into subbands which are
then equalized using the subband variances. The equalized sub-
bands are then summed to form the final output signal.

5.2.1. Envelope Synthesis

After decomposing the subbands from the white noise signal into
envelope and residual components, the residuals are discarded and
only the envelopes are used for this step. The statistics imposing
method was adapted from McDermott and Simoncelli [16]. For
the target envelope statistics Tenv extracted from the source sound
texture and the current envelope statistics Senv , the L2 norm of
Tenv − Senv is minimized using conjugate gradient descent.

Because the envelope mean is not normalized, it is not im-
posed in the gradient descent (See statistics formulas in §9). In-
stead, the envelope mean is imposed separately by adjusting the
envelope means afterwards. It is worth noting that the uncom-
pressed envelope ei[m], defined in equation (5), is proportionate to
the power of the windowed segment xim[n] and thus the envelope
mean is closely related to the subband power. However, because
the synthesized residuals may not be spectrally flat, the subband
variances are enforced after composing the synthesized residuals
and envelopes to ensure the subband powers are correctly equal-
ized.

This process is iterated until the difference between the target
statistics and the current statistics is below a certain threshold or
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Figure 5: Schematic of the sound texture analysis and synthesis procedure. The subband variance, envelope statistics and residual
coefficients are measured and saved, then used for residual synthesis, envelope synthesis and subband equalization.

the number of iterations pass a set limit. The process is not guar-
anteed to converge.

5.2.2. Residual Synthesis

The residual synthesis is straight forward. The input white noise
signal is filtered with an all-pole filter composed of the AR coeffi-
cients from the analysis process. The synthesized residual is then
decomposed into subband residuals and envelope components. The
envelope components are discarded and the subband residuals are
used for merging with the synthesized envelopes into subbands.

5.2.3. Equalization and Subband Rendering

Before merging the subbands, we adjust the variance of each sub-
band. The equalization has a noticeable effect on the perception of
the sound. In the recomposing step and collapse subband step the

windoww[n] and the subband filters hi[n] are applied as synthesis
windows and filters.

6. RESULTS

To test the effectiveness and validity of our model, we ran a user
test where the participants were asked to rate the realism of resyn-
thesized sound textures on a continuous scale from 1 to 7 with
1 being highly unrealistic and 7 being highly realistic.2 Twelve
subjects participated, 9 male, 3 female with a median age of 35.
The participants were presented with the reference audio clip from
which the statistics were extracted, along with 1 sample audio clip
and 3 resynthesized audio clips, presented in random order. All
audio clips were 4 seconds long.

2Sound samples used for the user tests are provided at https:
//ccrma.stanford.edu/~hskim08/soundtextures/
residual.html.
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(a) Non-tonal Sound Textures
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(b) Tonal Sound Textures

Figure 6: User test realism ratings. The median for each sample is shown with a thick black line in within the box. The box covers the first
to third quartile (25% to 75%). The whiskers cover about 99%. The + symbols represent the outliers. The realism scale provided to the
users is 1-Highly unrealistic, 2-Unrealistic, 4-Acceptible, 6-Realistic, 7-Highly Realistic.

The sample clip was taken from a different part of the same
audio file as the reference audio. The three methods of resynthesis
were 1) white noise filtered to match the PSD of the source audio,
2) white noise with only the envelope synthesized, and 3) white
noise with both envelope synthesis and residual synthesis. The
first method simulates residual only resynthesis, while the second
case only uses the envelope statistics for resynthesis.

For the non-tonal sound textures, both the envelope only case
and the case with both envelope and residual synthesis were per-
ceived to have high realism. Filtered noise was perceived to con-
tain low realism. For these examples, it seems most of the per-
ceived information is in the envelopes and thus synthesizing the
envelopes was sufficient to create realistic samples.

For sound textures with tonal components, the effect of the
residual synthesis becomes visible. For violin sounds, filtered noise
scaled higher realism than the envelope synthesis case, implying
that the spectral information was more dominant in the perception
of those sounds. In all cases, using both envelopes and residual for
synthesis was perceived to be more realistic those that used only
one.

Two examples worth noting are that of fire and violin. Despite
having no tonal component, the fully resynthesized sample of fire
was perceived to have lower realism than the other non-tonal ex-
amples. The fully resynthesized sample of violin on the other hand
was perceived to have very high realism compared to other tonal
examples. We believe this is due to the limitations of the temporal
subband shaping modeled with the within subband (C2) modula-
tion correlation. The crackling in fire as well as the attacks of the
tonal examples have a noticeable temporal effect. However, we
have found that the effects of enforcing the C2 correlation seemed
to be limited. When the C2 correlation is easy to match, as in the
violin example, we see that our method creates very compelling
results.

7. CONCLUSIONS

We presented a method of decomposing a sound texture into its en-
velope and residual components. Examining the residuals for dif-
ferent examples, it was observed that non-tonal sound textures had
residuals with power spectral densities close to pink noise, while
that was not the case for tonal sound textures. Thus, the need for

residual modeling. Applying high order auto-regression modeling
to the residual, it was possible to reduce the data needed by a mag-
nitude of two with little perceived differences. We presented a sys-
tem for extracting the statistics from a source sound texture and the
system for using the statistics to resynthesize new examples. The
importance of both the residuals and envelopes was verified by a
user test. For non-tonal sounds, a good envelope model was suffi-
cient to synthesize realistic sounds. Adding the residual modeling
did not affect the realism. However, for tonal sounds, modeling
both the residuals and envelopes gave more realistic results than
modeling just the residuals or the envelopes.

Taking a higher point of view, our approach fills the gap be-
tween filtered noise and the sound texture analysis presented by
McDermott and Simoncelli [16]. Filtered noise captures the short
term statistics in the form of power spectral distribution, includ-
ing tonal components. Meanwhile summary statistics capture the
modulations on the order of seconds.3 Revisiting Saint-Arnaud’s
comparison of speech, music, noise, and sound textures in Figure
1, our model provides an explanation for the intuition behind the
relation between potential information and time. The spectral dis-
tribution for noise can be estimated in a few milliseconds, while
the subband modulations can be estimated on the order of sec-
onds. The structure of speech and music is defined over a time
span greater than that of seconds, usually minutes or longer.

The original objective of the study was to improve the sound
texture model of McDermott and Simoncelli to cover tonal sound
textures such as wind chimes. Over the course of time, we found
that the model could be applied to constant pitch sounds such as
a single note on a violin or guitar. We could model the textu-
ral aspect of the instrument sound such as fast bowing or tremolo
picking. This suggests that the analysis of modulations could be
applied to instrument modeling to add textural timbres.

While AR modeling was used to reduce the amount of data
needed to synthesize the residuals, a sines+noise like approach
could futher reduce the data. We were able to model the resid-
uals of non-tonal sound textures sufficiently using AR orders of
10. By separately modeling the tonal peaks of the PSD, then using
AR modeling only on the remaining residuals, it seems possible to
reduce the amount of data by another order.

3The lowest modulation band used is 0.5Hz. See §9.
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During the user test, the limited effectiveness of within sub-
band (C2) modulation correlation enforcement for temporal mod-
eling was observed. Improvements in temporal modeling seems
to be an important factor in increasing the realism of the proposed
sound texture synthesis method.

For this study, we limited the tonal sound textures to those that
do not have variable pitch trajectories. This excludes most cases
of vocalizations including bird songs, babies crying and speech.
These sounds may require a completely different approach as there
may be tonal components that move between subbands which may
be challenging to model. Once more a sines+noise decomposition
may prove to be useful for such cases, where the tonal components
are modeled separately and the noise component, din, could be
modeled by our proposed method.

Finally, there is a lack of evaluation metrics for sound textures.
Evaluating the samples with PQevalAudio [24], all samples scored
a very low objective difference grade, -3.5 or less, on a scale of 0
to -4 where 0 is imperceivable and -4 is very annoying. This seems
to be caused by the fact that PQevalAudio compares the audio on a
frame to frame basis meaning that it compares short term statistics
whereas the synthesis for sound texture enforces long term statis-
tics and as such the short term statistics can be very different. This
is likely the case for other perceptual audio evaluation metrics. The
short term measurements for sound textures may vary, yet the per-
ception of the sounds are similar [25], suggesting that a different
metric would be needed to programatically evaluate the perceived
quality of resynthesized sound textures. Validating sound texture
models with improved analysis/synthesis results should help make
better perceptual evaluation metrics.
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9. APPENDIX: ENVELOPE STATISTICS

The envelope statistics are adapted from McDermott and Simon-
celli [16], with minor changes to accommodate the differences in
how the subband envelopes si[m] were derived. The most notice-
able difference is the replacement of the window function w(t)
with 1/N . We formulate the statistics here for completeness.

The envelope statistics can be categorized into subband en-
velope statistics and envelope modulation statistics. The subband
statistics are directly measured from the subband envelopes, whereas
the modulation statistics are measured after the subbands are fil-
tered into modulation bands through a constant Q filter bank f̄u[m]
for the modulation power and an octave spaced filter bank fu[m]
for the C1 and C2 correlations.

9.1. Subband Envelope Statistics

We start by defining the envelope moments. Defining the moments
help simplify the definitions of the marginals. Precalculating the
moments can reduce computation times. For the i-th subband en-
velope si[m], the envelope moments are defined as,

m1[i] = µi =
1

N

N∑
m=1

si[m]

mX [i] =
1

N

N∑
m=1

{si[m]− µi}X , X > 1

The standard deviation σi is also useful to precalculate.

σi =
√

m2[i]

9.1.1. Envelope Marginals

The envelope marginals, except for the envelope mean M1i, are
normalized. This makes the statistics independent from any scal-
ing factors. This is also important when imposing the statistics
using optimization. Because the envelope mean is not normalized
and tends to have smaller values than all other statistics used, it
needs to be enforced separately after the optimization. The enve-
lope marginals help shape the general distribution of the envelopes.

M1i = m1[i] = µi

M2i =
m2[i]

(m1[i])2
=
{σi

µi

}2
M3i =

m3[i]

(m2[i])3/2
=

1

N

∑N
m=1(si[m]− µi)

3

σ3
i

M4i =
m4[i]

(m2[i])2
=

1

N

∑N
m=1(si[m]− µi)

4

σ4
i

9.1.2. Envelope Cross-band Correlation

This is the correlation coefficient of two subband envelopes si[m]
and sj [m].

Cij =
1

N

N∑
m=1

(si[m]− µi)(sj [m]− µj)

σiσj

The envelope cross-band correlation helps enforce the comodula-
tion of the subbands.

9.2. Envelope Modulation Statistics

Each subband envelope is further decomposed into its modulation
bands through another filter bank. The modulation bands cover
frequencies from 0.5Hz to fenv = 400Hz. Two different filter
banks are used for the modulation power and the C1/C2 modu-
lation correlations. The modulation power is calculated using a
constant Q filter bank f̄u[m].

b̄i,u[m] = f̄u[m] ∗ si[m]

The C1/C2 modulation correlations are calculated using an octave
band filter bank fu[m]. An octave band is chosen because of the
formulation of the C2 correlation.

bi,u[m] = fu[m] ∗ si[m]

9.2.1. Modulation Power

The modulation power Mi,u is the root-mean-square of the modu-
lation band normalized by the variance of the whole subband σ2

i .
The modulation power can be viewed as the distribution of the
subband power within the modulation bands.

Mi,u =
1

N

∑N
m=1(b̄i,u[m])2

σ2
i

9.2.2. Between Band Modulation (C1) Correlation

The C1 correlation is the correlation coefficient of two subband
modulations bi,u[m] and bj,u[m] where i and j are the subband
numbers and u is the modulation band number.

C1ij,u =
1

N

N∑
m=1

bi,u[m]bj,u[m]

σi,uσj,u

where,

σi,u =

√√√√ 1

N

N∑
m=1

bi,u[m]

The C1 correlation helps enforce the comodulation of subbands
within the same modulation band.

9.2.3. Within Band Modulation (C2) Correlation

The C2 correlation enforces the temporal shape of a subband by
imposing phase of modulation bands within a subband. To com-
pare the phase of adjacent subbands, the modulation bands are
transformed to its analytic signal ai,u.

ai,u[m] = bi,u[m] + jH{bi,u[m]}

Next, the lower octave signal is expanded an octave by squaring
the values, then normalized.

di,u[m] =
(ai,u[m])2

‖ai,u[m]‖
The correlation coefficient of the two bands is calculated for the
C2 correlation.

C2i,uv =
1

N

N∑
m=1

d∗i,v[m]ai,u[m]

σi,uσi,v
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