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ABSTRACT

The complex modulators of coherent demodulation make the
algorithm a natural fit for source separation, but the overlap-
ping bands typically found in real audio mixtures present in-
terference problems for the algorithm. This paper proposes
reframing coherent demodulation as an optimization problem
that distributes the energy in overlapping bands according to
an optimally low-frequency strategy. The extension is shown
to improve separation for sinewave mixtures and for mixtures
of speech and music.

Index Terms— Modulation, Optimization methods,
Source separation

1. INTRODUCTION

Several new algorithms have been developed in the past sev-
eral years for deconstructing a signal into a slowly-varying
modulator and the corresponding fine-temporal carrier. Co-
herent demodulation [1] is unique among these algorithms in
that it utilizes a complex modulator, while other methods re-
quire a real modulator (and, in most cases, a non-negative real
modulator). The preservation of complex phase within the
modulator is useful for many reasons, most especially that it
preserves linearity in mixtures of multiple sources.

Modulation has been used as a source separation criterion
in past research [2, 3, 4, 5], and it has also been shown that the
use of complex phase can improve source separation for other
non-negative real representations [6], so coherent demodula-
tion would seem to be a natural fit for source separation. And,
indeed the method has been shown to perform reasonably well
for a flute and castanet mixture [7].

However, overlapping components create an important
problem for separation via coherent demodulation — inter-
ference between bands [8]. In source separation, this inter-
ference manifests as sources bleeding into each other and is
especially problematic in signals with a rich harmonic profile.

This paper will present an extension to the coherent de-
modulation algorithm that finds the optimal low-frequency
solution for overlapping bands that preserves additivity across
components. It will be shown that this extension improves

the performance of the algorithm for recovering sources from
mixtures of sinusoids, music, or speech.

2. COHERENT DEMODULATION

The coherent demodulation algorithm considers a harmonic
signal within a sum-of-products model:

s[n] =

K−1∑
k=0

sk[n] =

K−1∑
k=0

mk[n] · ck[n]. (1)

The carriers ck are restricted to unit-norm complex and are
usually the harmonics of the original signal (as measured by
a pitch esimator). As a result, the modulators mk can be esti-
mated by multiplying the signal by the complex conjugate of
the carrier (thus canceling out the carrier) and low-pass filter-
ing. So, the kth modulator is given by

mk[n] = h[n] ∗ (s[n] · ck[n]∗) (2)

where h[n] is a low-pass filter and ∗ denotes complex con-
jugation. This formulation ensures the modulator is low-
frequency and also allows it to include complex phase.

This algorithm is elegant and simple, and it is linear, time-
invariant (LTI) as long as the carrier is re-estimated after the
time shift.

2.1. The Overlapping Subband Problem

However, a problem arises with overlapping bands. If the es-
timated carriers are separated by less than the bandwidth of
the low-pass filter (h[n] in Eq. (2)), the bands will interfere
with each other in the modulator estimation. This issue is
avoidable in the single-source case, because the carriers are
separated by the pitch, and so the filter bandwidth can be se-
lected to ensure it is less than the lowest pitch. But, in the case
of multiple sources, the problem is more difficult to avoid.

If bands do overlap, their modulators will include their
own band’s energy as well as energy from all other overlap-
ping bands. This will not only corrupt the individual modu-
lator estimates, but also will amplify the energy in the over-
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Fig. 1. The spectrogram of a synthetic signal of overlapping
components modulated by the sinusoidal signals in Fig. 2(a).

lapping regions for the summation in Eq. (1), because the in-
terfering energy has spread to multiple bands and is therefore
added multiple times.

A simple demonstration of this concept is to demodulate
a series of overlapping, modulated sinusoids, such as the mix-
ture shown in Fig. 1. This signal is made of four intersecting
carriers modulated by the slowly-varying envelopes shown in
Fig. 2(a). Coherent demodulation of this signal yields the
modulators shown in Fig. 2(b). These modulators are visibly
distorted by the interference between overlapping bands.

It is possible to reduce this interference by reframing co-
herent demodulation as an optimization problem, presented in
the next section.

3. AUGMENTING COHERENT DEMODULATION
WITH OPTIMIZATION CRITERIA

In order to improve performance with overlapping carriers,
we first must require that Eq. (1) hold in all cases, which
will force the energy in overlapping bands to somehow be
divided between those bands. However, there is an infinite
set of strategies for dividing the overlapping energy, such as
greedily giving all energy to the nearest carrier, or splitting it
equally between all proximate bands. So, the second criterion
required is to define the strategy by which the energy should
be divided. Because demodulation is fundamentally based on
low-frequency modulators, a sensible choice for the strategy
is to create the optimally low-frequency set of modulators.

Combining these principles into an optimization problem,
the new algorithm can be posed as

minimize
K−1∑
k=0

||WF{mk}||2 + λ||s−
K−1∑
k=0

mk · ck||2 (3)

where F denotes the Fourier transform and W is a diagonal
matrix of frequency-dependent weights.

In this problem, W can be designed to penalize high-
frequency content in the modulators mk (similarly to in [9]),
and the second term in the cost function penalizes any devia-
tion from the sum-of-products model in Eq. (1). The regular-
ization parameter λ allows for prioritizing the two costs.

The problem can be further simplified by recognizing
that a properly designed W will make modulator frequencies
above some cutoff too expensive to include in the modulators.
So, the dimensionality of the optimization can be reduced by
instead optimizing for the DFT coefficients only up to that
cutoff frequency, which for slowly-varying modulators will
be quite low (50 Hz in the examples to follow). With this in
mind, the optimization in Eq. (3) can be redesigned to solve
for the DFT coefficients xk instead of the modulators mk.

minimize
K−1∑
k=0

||BWxk||2 + λ||s−
K−1∑
k=0

(Bxk) · ck||2 (4)

The columns of the new matrix B are the DFT sinusoids at
the appropriate frequencies for the corresponding coefficients
in xk. As a result, Bxk = mk.

One may wonder why the sum-of-products cost was not
included instead as a linear equality constraint, which would
ensure the sum-of-products model holds, instead of simply
encouraging it to hold, as the optimization in Eq. (4) does.
The selected approach is preferred for several reasons.

The first reason to include the summation in the cost func-
tion rather than as a constraint is that, in some cases, such
as noisy signals, bandlimited modulators will not be able to
perfectly replicate the entire signal (specifically, the regions
between widely spaced harmonics). Including the summation
in the cost function allows some leniency in these cases.

Second, by posing the problem as it is with no constraints
and only l2-norms, the problem can be solved with simple
least-squares minimization rather than requiring slower and
more cumbersome gradient descent.

x = (BT
WBW + λBT

CBC)
−1(λBC)

T s̃ (5)

In this equation, x is a vector concatenation of the DFT coeffi-
cients for all modulators. BW is a block diagonal matrix with
the weighted DFT sinusoidsBW repeatingK times. The ma-
trix BC is built from horizontally concatenated repetitions of
the matrixB multiplied by each successive carrier ck. Finally,
s̃ is the analytic signal of s. Conceptually, it is only important
to understand that Eq. (5) is the solution to Eq. (4).

It is worth noting that in this extension to coherent demod-
ulation, much of the original process remains the same. Es-
sentially, the only change is that the low-pass filter h[n] in Eq.
(2) is replaced by a time varying filter ht[n] whose frequency
response at any given time is determined by the optimization.

4. EXAMPLES

In the following examples, the frequency-dependent weight-
ing was set to a linearly increasing value W (f) = f

50 and
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(a) Original
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(b) Coherent Estimate

0 0.2 0.4 0.6 0.8
−0.2

0.2

Time (s)

0 0.2 0.4 0.6 0.8
−0.2

0.2

Time (s)

0 0.2 0.4 0.6 0.8
−0.2

0.2

Time (s)

0 0.2 0.4 0.6 0.8
−0.2

0.2

Time (s) Student Version of MATLAB

(c) Optimized Coherent Estimate

Fig. 2. The modulators applied to each component from the original signal in Fig. 1 are shown in (a). The extracted modulators
using the coherent method (b) and the optimized coherent method (c) are also shown. Interference is seen in the coherent
modulators while the optimized coherent method suppresses the interference.

the regularization variable was set to λ = 1. Experimenta-
tion with these numbers showed general robustness to small
variations, though it is important to increase the weight with
frequency if a low-frequency solution is sought.

4.1. Sinusoidal Example

A synthetic example (Fig. 1) was utilized previously to
demonstrate the interference between overlapping bands in
coherent demodulation (seen in Fig. 2(b)). We can now ex-
amine the modulators from the optimized coherent approach,
shown in Fig. 2(c). It is clear that the new approach has
reduced the interference and resulted in modulators that more
closely match the desired modulators. The improvement is
also quantifiable, with error reduced by 3 orders of magni-
tude.

Also note that the second modulator has regions of both
positive and negative values, a situation that cannot be mod-
eled with non-negative demodulation algorithms, such as the
Hilbert envelope or half-wave rectification.

In the case of added white noise (with the same synthetic
base signal), both methods decline smoothly and similarly,
with optimized coherent consistently outperforming the orig-
inal algorithm (error rates shown in Fig. 3).

4.2. Music and Speech Mixtures

It is not surprising that the optimized coherent approach out-
performs the original coherent algorithm in the synthetic case
above, because it was previously known that, for that exam-
ple, the optimally low-frequency modulators are the ideal so-
lution. However, it is not as certain or obvious that the op-
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Fig. 3. Mean-squared error for both algorithms applied to the
sinusoidal example in Fig. 1 with added white noise.

timally low-frequency solution will improve separation for
mixtures of real audio sources.

To test the new algorithm with real audio, 8 signals of 3-
5 seconds in length were selected, 4 musical (cello, clarinet,
flute, piano) and 4 speech (2 by the same male speaker, 2 by
the same female speaker). All signals were single channel and
resampled to 16kHz. Every pairwise mixture of these signals
was then created (28 total combinations) and separated us-
ing both coherent demodulation and the optimized coherent
method introduced here. The mixtures were processed in 0.5
second, windowed blocks with a step of 0.25 seconds. It is
important to note, though, that pitch estimates were used from
the original signals rather than requiring multi-pitch estima-
tion for the experiment.

A comparison of separations by the two algorithms can be
seen in Fig. 4, which plots the SNR of the separated signals
for each algorithm, with noise defined as the error from the
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Fig. 4. Power ratios of the component signal to residual
noise after separation from music/music, music/speech, and
speech/speech mixtures for coherent demodulation (x-axis)
and optimized coherent demodulation (y-axis). Data points
located above the diagonal line were improved by the opti-
mization extension.

clean source representation for each respective algorithm.
It is clear in the plot that the optimized coherent algorithm

improves on standard coherent demodulation in all but one
case, with an average improvement of 5.78 dB.

Interestingly, the one example where standard coherent
separates better than optimized coherent (though both per-
form very well) is a flute separated from a piano, which is
the same source (flute) that was successfully separated in [7].

It is also worth noting that both algorithms perform best
with music sources separated from music sources, and worst
with speech signals (especially when separated from another
speech signal by the same speaker), though improvement
from the optimization extension is similar in all cases.

5. CONCLUSION

This paper introduced a new framing of coherent demodula-
tion that optimally determines the ideal low-frequency set of
modulators that simultaneously minimize error in the signal
representation. This not only allows the algorithm to preserve
the sum-of-products model even in the case of overlapping
bands, but it was also shown to improve the separation of real
audio sources from mixtures.

The results presented demonstrate a noteworthy improve-
ment over the original algorithm, but they also make an in-
teresting statement about low-frequency modulation decom-
positions. The algorithm presented finds the optimally low-
frequency solution, a solution that improves on previous re-
sults. Conceptually, this is an important finding in support of
modulation decompositions. In real audio, the foundational
principles do indeed translate to improved results.

However, that doesn’t necessarily mean that the low-
frequency solution is the best approach. While the sepa-
rations are improved, they are not perfect, and it is quite
possible that an alternative strategy would improve perfor-
mance even further. Fortunately, by shifting the algorithm
into an optimization framework, incorporating new strategies
such as alternative modulator criteria, cross-band correlation,
or source-specific profiles is straightforward. It is hoped that
future research will explore these other possibilities.
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