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ABSTRACT

Recent advances in coherent and convex demodulation have
proven useful for analyzing and modifying the low-frequency
envelope structure of speech. This paper reports the ap-
plication of both methods, referred to here as bandwidth-
constrained demodulation, to large-scale speech recognition
in the form of new feature representations. Modulation-based
features yielded measurable improvement when included as
complementary sources of information with a baseline rec-
ognizer. Furthermore, both sets of demodulation features
showed promise for outperforming the conventional Hilbert
envelope method which underlies most modern speech recog-
nition features. These experimental results show the potential
for further development in feature representations based on
recently-developed bandwidth-constrained modulation signal
models.

Index Terms— Modulation, Convex optimization, Fea-
ture extraction, Speech recognition, Speech processing

1. INTRODUCTION

This paper summarizes the results of new modulation-based
acoustic features for automatic speech recognition (ASR),
completed during the 2010 summer workshop hosted by the
Center for Language and Speech Processing at Johns Hop-
kins University. The focus of the workshop was segmental
conditional random fields (SCRF), which are notable for their
ability to integrate multiple classifiers at the word level [1].
Within this framework we combined our experimental fea-
tures with a well-established hidden Markov model (HMM)
word detector. Thus we had the opportunity to complement,
rather than compete with, an existing ASR system while test-
ing theoretical predictions related to foundational concepts of
modulation representations for speech.

Modulation-based features, in the form of the spectro-
gram and mel-frequency cepstral coefficients (MFCC), have
underpinned speech recognition since as early as the mid
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twentieth century. Short-time Fourier coefficients are equiv-
alent to subband-amplitude signals, the magnitudes of which
correspond to a method of demodulation called the Hilbert
envelope. Modern ASR features have since added linear,
nonlinear, discriminative and speaker-adaptive transforms for
improved classification, but fundamentally begin with Hilbert
envelopes.

Generalizing demodulation in terms of a signal-product
model, however, reveals that the Hilbert envelope is an ar-
bitrary solution to an under-determined problem. Different
constraints on the model can therefore lead to better-behaved
results, as developed in the form of coherent [2] and con-
vex [3] demodulation. Alternative methods of demodulation
raise the possibility of building a firmer foundation, other than
the Hilbert envelope, for future development of informative
ASR features. With that in mind, the point of this work is to
demonstrate the viability of bandwidth-constrained demodu-
lation features in a large-scale speech recognition system.

Other methods of modulation-based speech recognition
have focused on modifying the Hilbert envelope. Notable
examples are modulation filtering [4][5][6] and frequency-
domain linear prediction [7]. We instead estimate modulator
signals as solutions to a constrained product-model synthesis
equation. In convex demodulation this takes the form of an
optimization problem, while coherent demodulation is based
on signal-adaptive carrier estimation. In this paper we present
new extensions on convex and coherent demodulation algo-
rithms for the purpose of speech recognition.

We begin by framing the speech classification problem in
Section 2 and then define the speech modulation signal model
in Section 3. We describe two novel demodulation methods,
compared to the Hilbert envelope, in Section 4 as the first step
toward the template-based multiphone classification system
outlined in Section 5. Finally, we discuss experimental results
in Section 6 and conclude in Section 7.

2. CLASSIFICATION BACKGROUND

In automatic speech recognition the task is to identify a
linguistic utterance - a word, syllable, or phoneme - using



slowly-varying local features of the acoustic data. Let x[n]
be a time-domain speech signal sampled at rate fs. For K
features we compute the vector expansion M [k, i] in the
neighborhood around n = Ri,

M [k, i] = F{h[Ri− n]x[n]} (1)

where h[n] is a finite window function and R is an integer
downsampling factor. Given a K × I matrix of concatenated
feature vectors M , a direct classifier chooses a label w ac-
cording to the maximum a posteriori criterion

ŵ = argmax
w∈W

p(w|M) (2)

where W is a lexicon of possible utterances and the probabil-
ity model p(w|M) is parametrically fitted to training data.

The success of the classifier in (2) depends principally
on two things: a) correct characterization of the probabil-
ity models for all w ∈ W , and b) the design of F{·} such
that the K-dimensional distributions p(M |wi)p(wi) and
p(M |wj)p(wj) are disjoint in feature-space for all i 6= j.
Clearly both a) and b) are important, but in this paper our
focus is the design of informative features M [k, i] using the
principles of bandwidth-constrained demodulation.

If F{·} is the discrete Fourier transform followed by the
magnitude operation, then (1) yields the conventional Hilbert
envelope representation. In the next section, we generalize
demodulation in terms of a signal-product model for speech.

3. SPEECH MODULATION SIGNAL MODEL

The first main contribution of this paper is to propose a frame-
work for estimating features M [k, i] based on the vector ex-
pansion mk[n] satisfying the sum-of-products model [2][3]:

x[n] =
K−1∑

k=0

mk[n] · ck[n] (3)

where the dot indicates sample-wise multiplication and K is
a finite integer. In this model, the modulators mk[n] each
vary slowly with n while the quickly-oscillating carriers ck[n]
serve primarily to frequency-shift baseband modulations into
the acoustic range of hearing. We assume that the modulators
contain necessary cues for understanding speech, at frequen-
cies around the syllabic and phonetic rates.

Further assuming that the signal products sk[n] = mk[n] ·
ck[n] are bandpass and spectrally non-overlapping, we define
sk[n] as the output of a bandpass, possibly time-varying, filter
operation [8]

sk[n] =
∑

τ

x[τ ]hk[n, n− τ ]. (4)

The problem of estimating mk[n] from sk[n] is called demod-
ulation and is treated in more detail in the next section. For
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Fig. 1. Example modulator waveforms corresponding to the
0-500 Hz subband from male speech “The thing about bird
populations”). From top to bottom: convex, coherent, and
Hilbert envelopes.

now we emphasize that there is no unique solution for mk[n]
without further constraints, for the same reason that any num-
ber a has no unique factorization (b, c) such that a = b · c.

Convex and coherent demodulation each make explicit
assumptions on (3) as a means toward emphasizing low-
frequency modulations without harmonic pitch interference.
One type of constraint is the definition of ck[n], whose inclu-
sion in (3) may appear superfluous except for the fact that the
characteristics of ck[n] exactly complement those of mk[n].
In bandwidth-constrained demodulation, carrier constraints
absorb non-syllabic fine structure, such as pitch oscillations,
so as to leave linguistic cues undisturbed in the modulators.
This is equivalent to enforcing smoothness across frame time-
locations i in the feature array M [k, i], as discussed next.

4. DEMODULATION METHODS

To reduce computational load during training and classifica-
tion, we require feature vectors that are low-dimensional and
decimated in time. This becomes somewhat of a problem with
respect to subband demodulation, because bandwidth is in-
versely proportional to K and broader bands can contain mul-
tiple interfering harmonics. In the following we describe how
bandwidth-constrained demodulation mitigates such interfer-
ence while maintaining a low-dimensional (small K) repre-
sentation, compared to the non-mitigated Hilbert envelope. A
visual comparison also appears in Figure 1.



4.1. Convex Demodulation

Here we pose the demodulation task as an optimization prob-
lem [3]. Defining hk[n, τ ] = hk[τ ] to be a time-invariant
filter, the optimal modulator for a given subband signal sk[n]
is one which minimizes high modulation frequencies subject
to signal-dependent amplitude constraints.

In this paper we present a new frequency-domain version
equivalent to, but faster to solve than, the linear method in [3].
Specifically, we find the real-valued modulator coefficients θl

which solve the following convex problem:

minimize θT
(
WBT BW + BT B

)
θ (5)

subject to mk[n] =
∑

l θlbl[n]
|sk[n]| −mk[n] ≤ 0, n ∈ P

where B is a basis matrix of cosine and sine functions bl[n],
W is a highpass diagonal matrix, and P is the set of indices
for which |sk[n]| has a local maximum. The implicit carrier
constraint here is ck[n] = 1 for n ∈ P , since (5) smoothly
interpolates the kth modulator between the local maxima of
|sk[n]|.

The resulting feature-vector time series is then

MCV X [k, i] = mk[Ri]. (6)

4.2. Pitch-Invariant Coherent Demodulation

Unlike its convex counterpart, coherent demodulation defines
adaptive subband signals centered on finite-bandwidth time-
varying sinusoids [2]. We assume harmonic carriers:

ck[n] = exp(jkφ0[n]), 0 ≤ k < K ′ (7)

mk[n] =
∑

τ

(x[τ ] · c∗k[τ ]) h[n− τ ]

where superscript * denotes complex conjugation, φ0[n] is
radian phase corresponding to the fundamental frequency
F0[n], and h[n] is a time-invariant lowpass filter that limits
the modulator bandwidth. Assuming F0[n] varies slowly, the
second line of (7) approximates a basebanded version of (4).
See [9] for details.

To eliminate pitch-dependent variation in mk[n], we in-
troduce a new, pitch-invariant extension to [2]. Specifically,
we treat mk[n] as K ′ samples of an underlying transfer func-
tion at time n, and resample the k-axis to a constant reference
“pitch” of Fref = fs/2K. For this application we choose
a large K ′ so that the carriers cover the spectrum, and then
resample by a factor of F0[n]/Fref .

With the vector resampling operator T{~m, F0, Fref}, the
feature-vector time series is

MCOH [k, i] = T{|mk[Ri]|, F0[Ri], fs/2K}. (8)

Although mk[n] is complex-valued, we use only the magni-
tudes because of the absence of consistent structure in the
modulator phase.

4.3. Hilbert Envelope Demodulation

To complete our comparison in the upcoming speech recog-
nition experiments, we also include the conventional Hilbert
envelope method. Hilbert modulators and carriers are typi-
cally defined with respect to fixed subband signals such that

ck[n] = exp{j arg(sk[n])}, 0 ≤ k < K (9)
mk[n] = |sk[n]|

where sk[n] is an analytic subband from a complex, time-
invariant filter hk[τ ]. The corresponding feature vectors are
then

MHIL[k, i] = mk[Ri]. (10)

Unlike convex demodulation the modulators are not
smoothed, and unlike coherent demodulation the subbands
are not signal adaptive. For broadband sk[n] this means
that the resulting mk[n] will contain harmonic cross-terms
in the form of high-frequency modulations, which alias after
downsampling by R in a signal-dependent way.

5. MULTIPHONE DISCRIMINATION WITH
MODULATION TEMPLATES

To take advantage of the temporal bandwidth constraints on
our demodulation features, we defined a classification lexi-
con of multi-phonetic sequences using the maximum mutual
information (MMI) technique in [10]. We avoided segmenta-
tion issues by restricting our lexicon W to the 607 MMI mul-
tiphones which are also full words. For each multiphone wi

we trained a discriminative template ~Λi to evaluate the likeli-
hood ratio `i(M) = p(wi|M)/p(wc

i |M), where wc
i denotes

the set of all multiphones except wi. Let ~M = M [iK +k] be
the vector version of a feature matrix M . Using maximum-
entropy models [11] we represented likelihoods of the form

`i(M) = exp
(
~Λ

T

i

[
~M

2
; ~M ; 1

])
(11)

where ~Λi is a vector template of length 2KI + 1, ~M
2

is
element-wise squared, and [; ] denotes vertical concatenation.

Figure 2 plots multiphone classification error rates ob-
tained from the Broadcast News corpus with this method.
Lines of regression demonstrate that, on average, convex
features perform better than Hilbert features (with a slope
of 0.88). The error-rate spread for coherent templates, on
the other hand, generally shows poorer classification perfor-
mance compared to Hilbert templates. Although informative,
these comparisons do not necessarily relate to how the fea-
tures will perform on a multi-word segment level as modeled
by an SCRF, which is what we explore in the next section.

6. SETUP AND RESULTS

Treating `i(M) as the score for the word hypothesis wi,
we annotated a baseline lattice generated by the IBM Attila
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Fig. 2. Multiphone classification error rates overlaid with
lines of regression (solid) and lines of equal error (dashed).
Note that chance is 50% since each multiphone classifier
makes a yes/no decision.

decoder [12] and fed the result into an SCRF-based speech
recognizer implemented by the SCARF toolkit. We trained
on about 430 hours of 16 kHz audio from the Broadcast
News corpus, and obtained recognition scores by decoding
the NIST dev04 set of about 22k words. See [13] for details
on the full setup.

For both convex and Hilbert envelope demodulation, we
chose a uniform subband width of 500 Hz, which [14] de-
termined to be the maximum bandwidth without sacrificing
speech information in the modulators. Likewise, we resam-
pled 30 harmonics in the coherent method to a reference pitch
of 500 Hz, so that all demodulation methods resulted in 16-
dimensional feature vectors. The modulation frequency cut-
offs were 30 Hz for convex demodulation and 50 Hz for co-
herent. The time-decimation factor R was 160 which resulted
in a modulation sampling rate of 100 Hz.

We trained SCRF models using four annotation methods:
1) non-annotated, 2) convex-modulation scores, 3) coherent-
modulation scores and 4) Hilbert envelope scores. In each
case, we incorporated the one-best HMM sequence from At-
tila as a baseline feature and used a trigram language model.
The resulting word-error rates (WER) changed by about
-0.2% for both convex and coherent annotations relative to
the non-annotated WER of 16.0%. Hilbert annotations, on
the other hand, resulted in a smaller change of -0.1%.

7. CONCLUSION

In a large scale speech recognition task, these early results
demonstrate the viability of recently-developed modulation-
based features for multiphone recognition. The modulation
features complemented a state-of-the-art baseline system
within an SCRF framework in order to reduce word-error rate
by an absolute 0.2%. Furthermore, the results indicate that
bandwidth-constrained demodulation can perform better than
the conventional Hilbert envelope which underlies most mod-

ern ASR features. Our bandwidth-constrained modulators
offer a starting point for further development in dimensional
reduction, discriminative transforms and speaker adaptation.
These results thus open the possibility for new representations
of low frequency envelope information in speech recognition
systems.
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