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Active electroacoustic systems are commonly employed to transmit sound from one 
location to another. For example, consider the following configuration: a person talks into 
a microphone, which produces an electrically amplified signal for driving a loudspeaker, 
and the loudspeaker induces an output acoustic signal allowing someone else at a more 
distant location to hear the person talking. Unfortunately, such system designs typically do 
not consider acoustic feedback, which can destabilize the system and result in “howling.” 
In contrast, a feedback control system can transmit sound from one location to another 
without the risk of howling using sound portholes, which are collocated 
microphone/loudspeaker transducers. We design feedback controllers to transmit sound 
between sound portholes.  These controllers model physical analog systems, such as a 
spring or a gyrator. The spring controller essentially binds the diaphragms of the two 
sound portholes together. We relate the spring controller to the string connecting two tin 
cans in the classical tin can telephone. Measurements are performed on a real feedback 
control system with two sound portholes. Because the feedback controller models a passive 
system, it is theoretically stable in any (dissipative) acoustic environment. 
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1 INTRODUCTION 
1.1 Overview 
 
 Electroacoustic systems are commonly employed to transmit sound from one location to 
another and/or to amplify sound.  We show an example bidirectional sound transmission system 
in Figure 1.  The person on the left speaks into a microphone, which sends an electrical signal to 
the amplifier with Laplace domain transfer function K2(s), which drives the loudspeaker 
accordingly (see Figure 1).  The loudspeaker produces an output acoustic signal, typically to 
allow the person on the right to hear the speech.  Similarly, the person on the right may speak 
through a microphone and the amplifier K1(s) to the person on the right.  For convenience, we 
lump the frequency responses of the microphones and loudspeakers into K1(s) and K2(s). Since 
the amplifiers generate acoustical energy, there is the danger any acoustic feedback paths could 
employ this energy to drive the system unstable.  
 
 Nevertheless, during the initial design stages, engineers have usually ignored the acoustic 
feedback paths from the loudspeakers to the microphones.  Figure 1 reveals that there are four 
different acoustic feedback paths.  The local feedback paths G12(s) and G21(s) are the largest in 
magnitude; however, the feedback paths G11(s) and G22(s) are also capable of affecting the 
stability of the electroacoustic system.  In many cases, the transducers can be placed and the 
magnitudes of K1(s) and K2(s) limited such that the acoustic feedback is indeed negligible and 
does not adversely affect the electroacoustic system.  However, in other cases, the acoustic 
feedback can destabilize the system.  For example, the reader is probably familiar with instances 
when someone on a stage placed a microphone too closely to a loudspeaker, causing the system 
to begin “howling” unpleasantly. 
 
 Researchers have provided some signal processing techniques for reducing such systems’ 
tendency to howl9,10, but these techniques cause some distortion of the amplified signal.  Instead, 
the premise of this work is that we should study how to design electroacoustic feedback systems 
so that they are always guaranteed to be stable, regardless of transducer placement. 
 
1.2 Overview 
 

Consider the tin can telephone sound transmission system represented in Figure 2.  When 
one of the persons speaks, the acoustic speech signal causes primarily the nearest disk to move.  
Then a string, modeled as a spring with stiffness kC, connected to the disk causes the other disk 
to move in response.  This disk actuates an acoustic wave for second person (see Figure 2) so 
that he or she can hear the speech.  The system is bidirectional—each person can listen and talk 
at the same time. 
 
 The tin can telephone, also known as the lover's telephone, was invented as early as 1665.  It 
can be constructed using two tin cans or paper cups connected together by a tensioned wire or 
string7. The wire behaves like a spring at sufficiently low frequencies, while the response 
becomes more complicated at higher frequencies due to longitudinal resonances of the string.  
Other similar prior devices include speaking tubes, which are air conduits employed for 
transmitting speech.  Although superseded by telephones to a large degree, they can still be 
found on some ships. 



 The system shown in Figure 2 has some drawbacks.  The sound transmission is especially 
limited in magnitude at low frequencies because disks radiate sound like dipoles at low 
frequencies.  In addition, it is often physically inconvenient to run tensioned strings about a 
room, building, or city.  However, the tin can system does not generate any energy, so it cannot 
become unstable.  A system equivalent to the one shown in Figure 2 can be implemented, where 
a motor is attached to each disk, and the effect of the string is emulated using feedback control.  
In a more practical implementation, each disk is a collocated microphone/loudspeaker 
transducer, which we call a sound porthole.  The sound portholes are bound together by a 
feedback control law emulating a spring with constant kC.  The controller is passive because of 
the existence of the mechanical analog shown in Figure 2—it is stable no matter where the sound 
portholes are placed or what the control system gain spring constant kC≥0 is. 

2 SOUND PORTHOLES 
 

A sound porthole is a collocated microphone/loudspeaker device that can be constructed 
using a dual voice coil loudspeaker where the voice coils are wound over one another on the 
same bobbin3-4.  It serves as a passive and bidirectional port connection between the acoustical 
and electrical domains.  Beneath a certain impedance crossover frequency, the voltage across one 
coil is proportional to the velocity U of the bobbin, and the electrical current through the second 
coil is proportional to the force F exerted on the bobbin.  In Figure 3, a person is shown 
interacting with a sound porthole, which is represented by a combination of the schematic 
symbols for a microphone and a loudspeaker. 
 

We typically employ 8” (20.32cm) Quam 8C10DVPAXB dual voice coil loudspeaker 
drivers.  The impedance crossover frequency is approximately 325Hz, and the mechanical 
resonance frequency is about 100Hz.  Although we do not know the transducer’s datasheet, we 
have estimated possible mechanical parameters given the mechanical resonance frequency of 
about 100Hz.  The mechanical impedance due to the roughly estimated mass m, damping R, and 
stiffness k of the driver is shown in the dash-dotted red line in Figure 4.  For comparison, the 
magnitude of the air loading |Zal(jω)| on the driver is plotted for comparison (see Figure 4, solid 
blue line).  To estimate Zal(jω), we assume that each driver has a circular diaphragm with area A 
and is baffled by a rigid wall of infinite extent (see Figure 3.431). 
 

The Quam 8C10DVPAXB is a loudspeaker transducer, so as we expect, the magnitude of 
the transducer impedance is larger than the air load at most frequencies.  However, near the 
100Hz resonance frequency of the driver, we observe a dip in the transducer impedance beneath 
the air load.  Near this region the impedances are well enough matched that the Quam 
8C10DVPAXB responds well also as a microphone, so we expect the control system to operate 
well near and slightly above the resonance frequency. 

3 MODEL 
3.1 Without Control 
 
 In this section, we replace each disk shown in Figure 2 with an infinite array of sound 
portholes, and we calculate the transmission coefficient T(s).  For simplicity, we assume that an 
incoming sound pressure plane wave Pexc(s) is impinging upon an infinite array of identical 
square sound portholes (see Figure 5, left).  We assume that the sound portholes in the array 



behave identically, meaning that the reflected sound pressure wave P1
-(s) is planar, and the sound 

pressure wave transmitted directly through the sound porthole P1
+(s) is also planar.  One pair of 

portholes is highlighted, and the mechanical schematic for them is shown illustrating the mass m, 
damping R, and stiffness k.  The velocity of the sound porthole highlighted on the left is U1(s) 
and on the right is U2(s) (see Figure 5). 
 
 The force due to the acoustic air pressure on each sound porthole is represented by the 
pressures multiplied by the surface area A of each sound porthole.  Without control, the 
following two force balance equations would describe the dynamics of the two sound portholes: 

              

 

(1) 
and 

                      

 
 

(2) 
where Zal(s) represents the mechanical load placed on each sound porthole due to the air on one 
side of the infinite array.  Since each sound porthole is acoustically loaded on both sides, the 
Zal(s) term is multiplied by two in (1) and (2).  Because the air in contact with each sound 
porthole must have the same velocity as the sound porthole itself, we can also write: 

           
 

 and 
 

 

(3) 

 
Since we will calculate the transmission, we assume that the two infinite arrays of sound 

portholes are spaced infinitely far apart.  Since there are no sound sources in between the infinite 
arrays, no waves impinge upon the sound portholes from the inside (see Figure 5).  P2

-(s) and 
P2

+(s) are the sound pressure plane waves departing from the array of sound portholes on the 
right.  Because the person shown on the right is not speaking, there is no wave traveling toward 
the array on the right from the right. 
                                           (4) 
Finally, Pout(s) is the portion of P2

+(s) that is radiated away from the sound portholes into the 
space to the right of the array on the right.  Consequently, only the real part of the impedance 
Zal(s) is employed1: 

  (5) 
 
3.2 With Control 
 

 We test the effect of binding each pair of sound portholes together using a virtual spring 
with stiffness kC≥0, a virtual damper with parameter RC≥0, and a virtual gyrator with parameter 
lC.  The mechanical analogs of the controllers are shown for the highlighted sound portholes in 
Figure 6.  Just like the spring, the damper and the gyrator are also passive (see Section 3.3).  As 
long as either kC, RC or lC is nonzero, an output plane wave Pout(s) is transduced which depends 
on the input plane wave Pexc(s). With control, the force balance equations (1) and (2) for each 
sound porthole change to the following: 

 

  

(6) 
and 

     

  

(7) 

 



Finally, by substituting (3) and (7) into one another, we can find the transmission coefficient: 

 

  
(8) 

 
3.3 Transmission Limit 
 

 Large |T(jω)| are desirable in this application.  Since we are designing passive controllers, 
we cannot have |T(jω)|>1, which would correspond to amplification.  The magnitude of the 
maximum achievable transmission coefficient is further reduced by the presence of the waves 
P1

+(s) and P2
-(s), which are unnecessary for this application.  Hence, at best the array shown on 

the left in Figure 6 can completely absorb the incoming wave Pexc(s), using it to induce the waves 
Pout(s) and P2

-(s).  However, for our application, we only require Pout(s).  Intuitively, the 
transmission magnitude 
                                                                (9) 
for the current model.  Clearly it would be preferable to achieve a larger |T(jω)|. We could 
achieve a bound of 1 instead of 1/2 by eliminating the air between the drivers shown in Figure 6.   
This measure would force P1

+(s)=P2
-(s)=0. However, it is difficult in practice to place a vacuum 

on one side of a sound porthole.  Nevertheless, it might be possible to approximate this condition 
at some frequencies by baffling each sound porthole individually with a small, sealed box.  The 
stiffness of the air would increase the sound porthole natural stiffness k, increasing the resonance 
frequency and thus the range over which the sound portholes operate well. 

4 EXPERIMENT 
4.1 Hardware 
 

 To demonstrate the feasibility of employing passive feedback control using mechanical 
analogs for constructing electroacoustic transmission systems, we employed a prototype 
consisting of two sound portholes, two current-drive power amplifiers, and a low-latency digital 
feedback controller.  The controller was implemented using the Sennheiser “ZAMP” digital 
signal processing (DSP) research platform, which incorporates an Analog Devices SHARC 
floating point DSP.  The controller was programmed to emulate the spring kC, gyrator lC, and 
damper RC shown in Figure 6.  The sampling rate fS=48kHz, and the total system delay was 
about 30µs, which included 1/(2fS)≈10µs due to the nature in which a zero-order hold delays a 
control signal5. 

 
4.2 Increasing Feedback Level Can Inhibit Howling 
 

 We present an example with the gyrator to demonstrate the advantage of collocated, passive 
feedback control.  Figure 7 shows the signal flow diagram of two sound portholes coupled 
together by a gyrator with coefficient lC. The sound portholes are also coupled by the transfer 
function G12(s) through the air.  Due to the reciprocity theorem1, the transfer function must be the 
same in each direction, so it is drawn only once but with double-ended arrows (see the dash-
dotted red lines in Figure 7).  The people depicted do not take part in this experiment, but they 
are drawn to emphasize the relation to the system shown in Figure 1.  Each of the blocks labeled 
Pwr is a current-controlled power amplifier that converts a commanded force signal into a 



current for driving a sound porthole.  The gyrator with parameter lC implements the following 
control law: 

                                                  and 
  

(10) 
The gyrator is passive because the sum of the power flowing into the portholes is equal to zero, 
regardless of the value of lC: 

 

  
(11) 

Because the gyrator does not generate any energy, it cannot drive the sound portholes and 
coupled acoustic system unstable.  Hence, given an ideal implementation of the system shown in 
Figure 7, the control gain lC could be made arbitrarily large without affecting the stability of the 
control system.  We added a switch to the signal flow diagram in Figure 7, which made it 
possible to mute the control force acting on the first sound porthole.  We placed two sound 
portholes in the laboratory near one another as shown in Figure 8. 
 
• In the muted condition, the system began to howl as the control system became nonpassive 
violating (11) since F1=0.  Figure 7 depicts the only remaining feedback loop in dashed lines. 
 
• In the unmuted condition, the control system operated passively as designed, and any howling 
oscillations quickly died out. 
 

 Figure 9 shows an example recording of the current i2(t) powering the second sound 
porthole.  At the beginning of the sample, the control power to the first sound porthole is muted, 
so the system howls.  At time t=3.5s, the control power to the first sound porthole is unmuted, 
causing the howling oscillation to quickly die out.  At time t=6.5s, the control power to the first 
sound porthole is again muted, causing the electroacoustic transmission system to again become 
unstable and start howling.  Note that this is an example where INCREASING the feedback level 
can INHIBIT howling.  Thus, we argue that in some applications, a bidirectional passive 
connection inspired by analog mechanical systems is better than one or two nonpassive 
unidirectional systems, which can howl. 
 

4.3 Transmission 
 

 We measured the transmission coefficient of the system we implemented.  An ADAM A7 
loudspeaker was placed 3” (7.6cm) away from the first sound porthole to simulate Pexc(s).  
Similarly, an AKG C 460B microphone body with CK62-ULS capsule (roll-off switch disabled) 
was placed 3” (7.6cm) away from the second sound porthole.  The transfer function from the 
ADAM A7 to the microphone was measured for the spring, gyrator, and damper.  These transfer 
functions were normalized by the direct transfer function measured with the microphone alone 
placed 6” (15.2cm) directly in front of the ADAM A7 on axis.  The thusly normalized 
transmission magnitudes |T(jω)| for the three different kinds of controllers are shown in Figure 
10.  As expected, each controller induced significant transmission in a region above the sound 
porthole resonance frequency of 100Hz.  This was the region where the impedance match 
between the transducer parts and the acoustical air load was best (see Figure 4).   
 

 The transmission of all of the passive controllers was limited by the 1/2 (-6dB) limit derived 
in Section 3.3.  This limit is shown in large, magenta circles in Figure 10.  The transmission 
coefficient magnitude appears to have exceeded -6dB slightly at some frequencies, but we 



believe that this was an artifact of not performing the measurement in an anechoic chamber.  In 
other words, acoustic reflections made the measurement-based estimation of T(jω) non-ideal.  
 

 The spring controller due to kC caused the resonance frequency mode of the sound porthole 
to split into two modes; one remained near 100Hz, and the other increased to somewhere near 
300Hz.  Increasing the value of kC increased the amount of splitting.  The transmission for the 
spring ranged over a fairly large band; and its magnitude was relatively large (see blue, thin solid 
line in Figure 10).  The damper controller RC performed similarly; however, since it dissipated 
energy, the transmission was reduced slightly (see the black, thin dashed line in Figure 10).  The 
“gyrator” measurement was performed using lC with a slight amount of damper characteristic RC.  
This controller induced transmission up to the -6dB limit but was especially bandlimited to a 
region near 180Hz (see the red, thick dash-dotted line in Figure 10).  Increasing lC caused the 
frequency of this region to increase, while the level remained approximately constant for 
moderate values of lC. 
 

5 CONCLUSIONS 
 

In some applications, a bidirectional electroacoustic system, such as the one shown in Figure 
7, which is inspired by a mechanical analog system, is better than one or two unidirectional 
systems, such as the systems shown in Figure 1, which can howl.  Further research in this area is 
warranted for learning how to fully leverage the advantages of feedback control using 
mechanical analog controllers. 
 

The spring, gyrator, and damper controllers can be used to induce sound transmission 
between sound portholes.  However, the transmission is bandlimited as shown by the gyrator, 
spring, and damper transmission coefficient magnitudes in Figure 10.  More complex mechanical 
analog controllers are needed to optimize the bandwidth and magnitude of the transmission 
coefficient level |T(jω)|.  Such controllers would consist of multiple springs, dampers, masses, 
and gyrators2. 
 

Since the control system naturally performs best in a frequency region above the sound 
porthole resonance frequency, any practical implementation would need to incorporate separate 
transducers for controlling separate frequency regions.  The 1/2 (-6dB) transmission described in 
Section 3.3 could be at least partially overcome with acoustical transducer designs that limit the 
acoustical loading on the transducer. 
 
In addition, collocated dual voice coil transducers are needed that have lower transducer part 
impedances, and hence are better matched to the air.  To some extent, feedback control can be 
employed to reduce the transducer part impedances, for instance reducing the mass m or stiffness 
k, but the best solution is to alter the mechanical properties of the transducers themselves.  Horns 
could likely also be employed advantageously1.  We look forward to constructing new drivers in 
order to satisfy these requirements. 
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7 APPENDIX: RELATION TO FEEDBACK CONTROL THEORY 
 

We introduce some concepts from the field of feedback control and relate them to the theme 
of the paper.  It is easiest to introduce these concepts using a single-input single-output system, 
such as the traditional electroacoustic amplification system shown in Figure 11.  K(s) 
incorporates the microphone and loudspeaker transducer responses as well as the amplifier 
transfer function.  G(s) represents the acoustic feedback path.  The Revised Bode Stability 
Criterion states the following: 
 

A linear and time-invariant single-input single-output closed-loop system is 
stable if the open-loop transfer function G(s)K(s) is stable and the frequency 
response of the open-loop transfer function has an amplitude ratio of less than 
unity at all frequencies corresponding to an angle of −π−n(2π), where 
n=0,1,2,...,∞.6 

 
The criterion implies that if the phase lag introduced by K(s) and G(s) is small enough, then 

the system shown in Figure 11 will be stable no matter how large the loop gain is. Expressed 
mathematically, the system is stable if K(s) is positive real and G(s) is strictly positive real.  
However, G(s) cannot be strictly positive real if it includes any delay.  In other words, in order 
for G(s) to be strictly positive real, and similarly to keep the phase lag bounded at high 
frequencies, the microphone and loudspeaker need to be placed at the same position in 
space, i.e., they need to be collocated2,8.  The configuration shown in Figure 11 prevents G(s) 
from being strictly positive real because of the acoustic delay between the loudspeaker and the 
microphone.   
 

We now assume that all microphones and loudspeakers are collocated and matched.  Then it 
follows that K(s) is positive real if and only if K(s) corresponds to a passive mechanical analog 
system, and G(s) is strictly positive real if and only if it corresponds to a dissipative mechanical 
analog system.  In summary, the control system is guaranteed to be stable if the controller 
transfer function K(s) is passive and the plant transfer function G(s) is dissipative.  In other 
words, K(s) may not add any energy to the control system, and G(s) must remove energy from 
the control system at all frequencies.  This important property explains why researchers in the 
active control of structural vibrations often use passive controllers K(s)8.  In theory, the loop gain 
may be then made arbitrarily large implying that a large amount of control power can be exerted.  
In practical implementations, other limits come into play, but nonetheless, passive controllers 
tend to be especially useful in practice. 
 

The restrictions shown in boldface above prevent us from implementing many 
electroacoustic systems, such as the one shown in Figure 11.  Nevertheless, it is possible to 
implement some useful electroacoustic systems adhering to the restrictions such as the system 
shown in Figure 6.  To satisfy these restrictions in the course of this paper, we have chosen 



controllers K(s) that correspond to mechanical analogs, and we have connected the controllers to 
the air using collocated sound portholes to form dissipative G(s). 
 

21

G  (s)

G  (s)

22

+

G  (s)12

G  (s)11

+

1K (s) K (s)2

 
Fig. 1 - Bidirectional sound transmission system with power amplifiers K1(s) and K2(s) and 

acoustic feedback transfer function paths shown in dashed red lines. 
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Fig. 2 - Simplified model of the tin can telephone sound transmission system. 
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Fig. 3 - Person interacting with a sound porthole with velocity U and control force F. 
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Fig. 4 - Sound porthole impedance magnitude due to the air load |Zal(jω)| (solid blue) and due 

to the transducer parts |m(jω) + R + k/(jω)| (dash-dotted red). 
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Fig. 5 - Plane wave model describing two infinite walls of sound portholes without feedback 

control. 
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Fig. 6 - Plane wave model describing two infinite walls of sound portholes with feedback 

control mechanical analogs shown in green for transmitting sound pressure waves. 
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Fig. 7 - Signal flow diagram for gyrator with mute switch for one channel. 
 

 
Fig. 8 - Two sound portholes placed near one another. 
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Fig. 9 - Current i2(t) powering the second sound porthole for demonstrating that increasing the 

level of feedback can inhibit howling in some situations. 
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Fig. 10 - Transmission coefficient magnitude |T(jω)| for the gyrator (red, thick dashed line), the 

spring (blue, thin line), and the damper (green, thin dashed line). 
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Fig. 11 - Person speaking into a microphone, whose signal is processed by an amplifier with 

transfer function K(s) and fed to a loudspeaker; acoustic path from loudspeaker to 
microphone represented by G(s). 
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