
Embedded Networking and Hardware-Accelerated
Graphics with Satellite CCRMA

Edgar Berdahl
CCRMA

Stanford University
Stanford, CA, USA

eberdahl@ccrma.stanford.edu

Spencer Salazar
CCRMA

Stanford University
Stanford, CA, USA

spencer@ccrma.stanford.edu

Myles Borins
CCRMA

Stanford University
Stanford, CA, USA

mborins@ccrma.stanford.edu

ABSTRACT

Satellite CCRMA is a platform for making embedded mu-
sical instruments and embedded installations. The project
aims to help prototypes live longer by providing a complete
prototyping platform in a single, small, and stand-alone em-
bedded form factor. A set of scripts makes it easier for
artists and beginning technical students to access powerful
features, while advanced users enjoy the flexibility of the
open-source software and open-source hardware platform.

This paper focuses primarily on networking capabilities of
Satellite CCRMA and new software for enabling interactive
control of the hardware-accelerated graphical output. In ad-
dition, new results are presented showing that the Satellite
CCRMA distribution allows the lifespan of the flash mem-
ory to be greatly increased in comparison with other em-
bedded Linux distributions. Consequently, we believe that
embedded instrument and installation designers will prefer
using Satellite CCRMA for enhanced long-term reliability.

Keywords

Satellite CCRMA, embedded musical instruments, embed-
ded installations, Node.js, Interface.js, hardware-accelerated
graphics, OpenGLES, SimpleGraphicsOSC, union file sys-
tem, write endurance

1. INTRODUCTION
Many recent NIME projects have been constructed around
sensor circuits interconnected with a more powerful com-
puter using an Arduino or other microcontroller. This strat-
egy combines the flexibility of programmable hardware with
the computational power provided by a laptop or desktop
computer [3]. However, projects built using this kind of
platform have the tendency to “die” with time. Some fac-
tors leading to the death of projects include forced software
updates, changes in future iterations of hardware interfaces
and/or cables (e.g. RS-232 serial to USB), etc. These fac-
tors are of course avoidable but may require maintenance
resources that might not be readily available in the future
when needed.

The aim of the Satellite CCRMA project is to enable
makers to use a convenient, compact, and“embedded” com-
puter in place of a laptop. Satellite CCRMA has been made

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

feasible by the recent availability of relatively inexpensive
embedded Linux computers. The Satellite CCRMA distri-

bution is a distribution of Linux that is specially configured
for interactive media. It contains an optimized Linux kernel,
pre-installed audio and video software, a series of scripts to
make it easier to use for beginners (see Section 4), and a
special feature to preserve the life of the memory (see Sec-
tion B). The Satellite CCRMA distribution is released in
the form of the Satellite CCRMA image, which is an image
of a flash memory card that can be used to boot specific
embedded Linux boards. Currently the Beagle Board xM
and the Raspberry Pi Model B (512MB) are supported.
The Satellite CCRMA kit is used for teaching workshops

and courses. It consists of a sandwich holding an embed-
ded Linux board, an Arduino, and a breadboard. Figure 1
shows how the kit could be employed during a three-hour
workshop setting: a user squeezes a force-sensing resistor
(FSR) that is installed into the breadboard, and sound is
synthesized in headphones (or small portable loudspeakers
[3], not shown here).

2. EMBEDDED PROJECTS
Embedded projects offer several advantages [3]. For exam-
ple, they are self-contained, which makes them more conve-
nient to use [2]. All required cables can be left connected,
so they can be demonstrated at a moment’s notice simply
by taking them off of the shelf and powering them up. In
a limited sense, the embedded projects could be considered
to be “living” since they are self-sufficient [4]. If appropri-
ate, projects can be kept disconnected from the Internet,
so their software will never require updating in order to
continue functioning. We believe that this feature is partic-
ularly important for instrument makers, who may require
years of practice in order to become virtuosos on the new
instruments that they design.
The Satellite CCRMA kit can be similarly employed for

making installations. The kit can be left in installation
spaces without fear of theft, as would often be the case if
leaving a laptop or smartphone instead [3]. Also, because
the kit components are becoming less and less expensive,
significant numbers of kits can be connected together in a
network installation without the cost becoming prohibitive.

3. REDUCED COST
3.1 Raspberry Pi
In order to reduce the cost of the kit, the Raspberry Pi
Model B (512MB) embedded Linux board is now supported.
Table 1 gives the current cost of the essential parts that can
be obtained by shopping around. Prices will fluctuate over
time, but currently the kit parts can be purchased for as
little as $68 USD before taxes.
It is important to point out one drawback from the Rasp-

Figure 1: Simple demo of the Satellite CCRMA kit

with a single force-sensing resistor (FSR) installed
onto the breadboard in a workshop setting.

Table 1: Minimum cost of the essential parts in kit

Part Price
Raspberry Pi $35
Memory card $5
Power supply $6
Ethernet cable $2
Breadboard $5

Arduino Nano clone $12
USB cable $3

Subtotal (without Arduino-related parts) $48
Total (with Arduino-related parts) $68

berry Pi Model B (512MB) board, which is that the audio
quality is not CD quality. Some users will prefer to use
the Beagle Board xM board instead or to employ an in-
expensive external USB audio interface such as the Guitar
Link UCG102 (2 channels), which can be convenient be-
cause it incorporates 1/4” audio connectors, or the SIIG
USB SoundWave 7.1 or equivalent Linux-compatible 7.1 in-
terface with mini 1/8” connectors (2 inputs, 8 outputs).

3.2 Living Prototypes
Due to the low-cost of creating self-sufficient projects, it
becomes more feasible for designers to create libraries of
“living prototypes.” In other words, designers can keep all
older prototypes operational. This can be particularly help-
ful in the process of iterative design or evaluation by exter-
nal people. Even years after its creation, a prototype can
be demonstrated at a moment’s notice, simply by taking it
off of the shelf and powering it up.

3.3 International Workshops

Furthermore, due to the newly reduced cost of the Satellite
CCRMA kit, it is more feasible to teach workshops at inter-
national conferences. For instance, we are teaching a work-
shop at NIME 2013 on building embedded musical instru-
ments and embedded installations with Satellite CCRMA.

4. USABILITY
Most users program Satellite CCRMA by logging in over
an Ethernet connection from a laptop [3]. For instance, to
program in the Pure Data (pd) language, a user forwards
the graphical user interface (GUI) window over the Ethernet
connection. In other words, the embedded application runs
on the Satellite CCRMA kit, but the user programs it from
the laptop (see Figure 2).

Laptop
Arduino/

Input
Device

USB

Embedded
Linux Board

forwarding
internet connect.

Ethernet with

192.168.105.106 192.168.105.105

Feedback to User

Figure 2: Standard configuration of the Satellite
CCRMA kit—the laptop is only needed during pro-
gramming.

Various human computer interfaces can be employed to
link a human user with Satellite CCRMA, including loud-
speakers, monitors, HDMI projectors, many input devices
as supported by Ubuntu Linux drivers, and/or custom input
devices constructed using the Arduino [6].
A new series of scripts makes it easier for artists and be-

ginning technical students to access powerful features with-
out needing to understand how to use Linux. Power users
can drill down further into the platform by reading the
scripts to learn how they work and to extend them.

4.1 Default Network Configuration
In an instructional setting where students may have a com-
bination of OS X, Linux, and Windows laptops, the most
reliable configuration involves directly connecting each stu-
dent’s kit with each student’s laptop. By default, the Satel-
lite CCRMA kit’s Ethernet device will be automatically set
to the static IP address 192.168.105.106. Then, each stu-
dent should set his or her laptop’s Ethernet device to the
address 192.168.105.105 (see the IP addresses listed at the
bottom of Figure 2). After installing an x11 server with ssh
support, each student can login using the following com-
mand:
ssh -XY ccrma@192.168.105.106

where the default password is temppwd.

4.2 DHCP-Based Network Configuration
Power users may prefer a Dynamic Host Configuration Pro-
tocol (DHCP)-based network configuration in which the kit
and the laptop are connected directly to the same Internet
router. To change the kit to run in this configuration, sim-
ply run the ethernet-use-dhcp script, halt and shut down
the kit, connect it directly to the router (typically via Eth-
ernet), and power the kit back on.1 As the kit boots up
again, it will assign itself an IP address using DHCP and
should have access to the Internet (see Figure 3). The kit
also runs the Avahi zeroconf daemon, which enables any
users with compatible systems on the same router to con-
nect to the kit directly using the kit’s hostname:

1The script ethernet-use-staticIP sets the kit back to
the original, default network configuration.

ssh -XY ccrma@satellite.local

The user’s laptop must also support zeroconf. OS X cur-
rently ships with zeroconf support, most Linux package
managers allow easy installation of avahi-daemon, and Win-
dows users can obtain support by installing “Bonjour Print
Services,” a no cost application available from Apple.

With the DHCP-based network configuration, it is easier
for multiple people to log into the same kit and also to
control multiple kits simultaneously (see Section 5.2). In the
case of multiple kits connected to the same router, the set-
hostname script is useful for changing the kit’s hostname
from the default satellite to something distinctive. It
is also advisable to change each kit’s password using the
passwd command — otherwise, students will start hacking
into each other’s kits, which luckily so far has only been
observed at CCRMA in playful contexts.

Feedback to user

Arduino/
Input

Device
USB

Embedded
Linux Board

Router

satellite.local

Laptop

DHCP−assigned IP

Figure 3: DHCP-based network configuration—
during programming, it is necessary to connect the
laptop and router.

5. THE INTERNET OF THINGS
5.1 Introduction
The “Internet of Things” vision predicts that in the future,
most everyday objects will be connected to the Internet,
which could have a transformative effect on how humans
interact with these objects [1]. While current applications
include smart/programmable control of devices’ energy us-
age, automatic inventory control or checkout at supermar-
kets, etc., artistic applications will also arise, for instance in
the area of social media. Due to physical constraints, only
a limited number of people can interact physically with an
object, but via the Internet a large number of people can
interact with an object, including people at remote loca-
tions. Because Satellite CCRMA is compact, highly recon-
figurable, and can be easily connected to networks and the
Internet, it becomes one of the currently most ideal plat-
forms for prototyping musical objects for the Internet of
Things. In this section, the new SatelliteCCRMA.Node col-
lection of tools is described, which can be used to this end.

Figure 4: Users can connect to Satellite CCRMA
from a variety of networked devices.

5.2 SatelliteCCRMA.Node
The latest distribution of Satellite CCRMA comes bundled
with Node.js, a JavaScript environment for developing scal-
able Internet applications [11]. Node.js is based on Google’s
V8 engine and offers a unique approach to rapid prototyp-
ing of web-driven interactions. These web technologies and
standards allow users to extend control to a wide array of
external devices (see Figure 4) without requiring users to
write platform-specific code.

5.2.1 The Power of Sockets

The WebSocket standard allows data to be piped directly
from a web server to a client and vice versa over a full-duplex
channel. This enables the server to easily display the current
state of the system to the client as well as monitor client
inputs, even on multiple external devices in real time. This
technology is ideal for creating social media interactions in
which users can interact with each other in the real world
and also with Satellite CCRMA.

5.2.2 Controlling Sound From Network Clients

Communication between Node.js and many sound synthe-
sis environments is simplified by node-osc, a library for
sending and receiving Open Sound Control (OSC) messages
within a Node.js program. Example code is included on the
Satellite CCRMA image showing users how to encapsulate
client interactions such as touches, clicks, and device ori-
entation into OSC messages for parsing by sound synthesis
environments, such as Pure Data, ChucK, SuperCollider,
and many more.
For instance, Interface.js is a fully functional web ap-

plication offering a simple OSC interface to parse the state
of five multi-touch fingers and three separate axes of ac-
celerometer data. The application works on any device
that conforms to w3c standards, and it been tested with
both Android and iOS. Figure 5 shows a user causing OSC
messages to be sent on SatelliteCCRMA.Node by interact-
ing with a Nexus tablet running a web browser. A video
demonstation can be found at
https://secure.vimeo.com/59331713

Figure 5: Multi-touch interaction with a Nexus
tablet controlling sound synthesis on Satellite
CCRMA via Interface.js.

6. ACCELERATED GRAPHICS
Several current embedded prototyping platforms incorpo-
rate advanced graphics processing units (GPUs) into their
designs for rendering hardware-accelerated graphics. For
instance, both the Beagle Board xM and Raspberry Pi fea-
ture such hardware, which is interfaced with an HDMI out-
put port that can drive a monitor, projector, etc. Popular

graphics programming environments for artists and design-
ers such as Processing [10] and GEM for Pd [5] are not
presently designed to take advantage of the GPUs on Satel-
lite CCRMA’s target hardware. Such environments fall
back to software rendering, all but forbidding real-time us-
age on these devices since it tends to use practically all of
the computational power of the main processing unit while
running at a substandard frame rate.

Alternatively, programming OpenGL ES code directly is
straightforward and shifts the majority of the graphics com-
putations to the GPU hardware, achieving real-time per-
formance [8]. However, programming in OpenGL ES re-
quires competence with C++, GLSL, and numerous details
of low-level graphics rendering, which are skills that artists
and musicians may not possess. For this reason, we have
developed SimpleGraphicsOSC, a small program exposing
hardware-accelerated graphics on embedded platforms via
Open Sound Control (OSC) messages [12].

6.1 SimpleGraphicsOSC
The goal of SimpleGraphicsOSC is to provide an OSC in-
terface to a set of primitive graphical shapes, which may
be combined and transformed to display intricate visual-
izations. The set of primitives offered is modeled loosely
after similar environments, such as Processing and open-
Frameworks. However, unlike those environments, Simple-
GraphicsOSC runs as a separate background process. To
use it, a programmer runs the SimpleGraphicsOSC binary
in the background and sends instructions via Open Sound
Control to UDP port 7000 from the desired programming
environment such as Pd, SuperCollider, or ChucK.

Commands sent to SimpleGraphicsOSC indicate primi-
tives that are to be created, destroyed or modified. Table 2
lists currently available primitives and commands. Simple-
GraphicsOSC maintains a list of active objects and their
visual properties, and renders these using OpenGL ES [8]
at an appropriate frame rate, typically 30 frames per sec-
ond. See Figure 6 for an overall outline of this system.

SimpleGraphicsOSC is provided as part of the Satellite
CCRMA distribution and is also available as a standalone
open-source application at:
http://github.com/spencersalazar/SimpleGraphicsOSC

Figure 6: Components for implementing audio-
visual interactions using Satellite CCRMA with
SimpleGraphicsOSC.

6.2 Spectrum Overdrive
Spectrum Overdrive is a small project designed to demon-
strate the unique capabilities of the Satellite CCRMA plat-
form in tandem with SimpleGraphicsOSC. Spectrum Over-

Command Description

line Create/modify a straight line between two
points.

triangle Create/modify triangle with three independent
vertices.

rect Create/modify rectangle or square.

ellipse Create/modify an ellipse or circle.

image Create/modify an arbitrary PNG, JPEG, BMP,
or TIFF image; the image file is loaded from the
filesystem from a provided filepath.

remove Remove a shape from the list of active objects.

Table 2: Available graphics commands in Sim-
pleGraphicsOSC. In addition to shape geometry,
each command accepts red, green, blue, and al-
pha/transparency (RGBA) color parameters.

drive is a basic overdrive distortion guitar effects pedal with
one twist — it displays a real-time spectrum of the over-
driven signal via a small pico-projector.
Spectrum Overdrive consists of Satellite CCRMA (Bea-

gleBoard xM and Arduino) housed within a generic project
box. The configuration is further outfitted with a USB au-
dio interface specialized for guitar input and a wallet-sized
pico-projector. Two knobs mounted to the box control over-
drive level and system gain, and a switch toggles the effect
bypass. These controls are polled by the Arduino, which
sends their instantaneous values to a Pd patch running on
the BeagleBoard xM. This patch applies overdrive and gain
to the input signal and computes the FFT of the result.
The FFT values are transformed into SimpleGraphicsOSC
commands to render each bin as a line. The height of each
line is proportional to amplitude, and horizontal position
is proportional to bin number, i.e. frequency, resulting in
a conventional amplitude spectrum. The graphics are dis-
played by the pico-projector, which the user can freely move
and point at various surfaces to create a light show. A video
demonstration is available at the following link:
http://youtu.be/pTgP0aL48wo

6.3 Playback of Video Files
The omxplayer application on the Raspberry Pi has the
ability to play video files using hardware acceleration. Cur-
rently, only H.264 and MPEG2 file formats are supported,
and each user is required to buy a license for hardware ac-
celerated playback for a small fee:
http://www.raspberrypi.com/mpeg-2-license-key/

For example, one can use the shell object in pd to call
omxplayer from within a pd patch. In this fashion, one can
build interactive installations that play video clips based
on inputs from Arduino. The Satellite CCRMA image for
Raspberry Pi contains a demo patch that can be modified
by users.

7. STAND-ALONE MODE
7.1 Defaults
By default, stand-alone mode is enabled. That means when-
ever the kit is powered on, it boots up and automatically
starts the default patch ~/on-startup/default.pd. The
default patch simply outputs a sinusoid if it does not find
an Arduino connected to the embedded Linux board. On
the other hand, if an Arduino is connected and has the
sketch StandardFirmata loaded on it, then the kit will syn-
thesize “wind” sounds, where the sound intensity depeonds
on the analog input pin A0. Even if a sensor circuit is not
attached to A0, the user can “play” the demo patch simply
by touching the pin A0.

If the user desires to edit the default patch, the user must
first login via ssh and stop the default patch from running
using the stop-default command. Then the user can edit
the default patch by loading pd with pd & and then opening
the default patch.

7.2 Configuration
To exit stand-alone mode for future boots, the user can sim-
ply run the command exit-stand-alone.2 Alternatively, to
use stand-alone mode with other software, the user merely
needs to edit the file ~/on-startup/load_default_patch,
so that the desired alternate software is loaded instead.

8. CONCLUSIONS
While preparing these enhancements, we have recompiled
the Linux kernel many times and experimented with various
compiler switches to improve the performance and incorpo-
rate bug fixes. We are happy to report that the platform
operates at high quality standards for practical use in creat-
ing embedded musical instruments and embedded installa-
tions. In summary, while the Satellite CCRMA distribution
is not the only way to prototype embedded instruments and
installations, it currently has the following advantages over
other embedded Linux distributions:

• it comes preloaded with applications for working with
audio,

• audio is processed reliably even with CPU loads as
high as 80% or more,

• a set of scripts makes it easier for artists and beginning
technical students to reconfigure the kit,

• hardware-accelerated graphics can be easily controlled
via OSC messages,

• it comes with software examples for prototyping new
interactions, such as starter code for allowing users to
login via http to control sound, and

• the memory card should generally last an order of
magnitude longer if flash writes are disabled (see Sec-
tion B).

Interested users may wish to visit a link3 to a list of useful
commands.

9. ACKNOWLEDGMENTS
We would like to graciously thank Wendy Ju, Paul DeMari-
nis, Chris Chafe, Cathy Wicks, Fernando Lopez-Lezcano,
Carr Wilkerson, Robert Nelson, Gerald Coley, T.I., Chris
Jubien, the Alexander von Humboldt Foundation, and the
Satellite CCRMA user base.

10. REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito. The Internet of

Things: A survey. Computer Networks, 54(15):2787 –
2805, 2010.

[2] E. Berdahl and C. Chafe. Autonomous New Media
Artefacts (AutoNMA). In Proceedings of the

International Conference on New Interfaces for

Musical Expression, pages 322–323, Oslo, Norway,
May 30-June 1 2011.

2To put Satellite CCRMA back into stand-alone mode for
pd patches, the user can run the command stand-alone-pd
3https://ccrma.stanford.edu/wiki/Useful_Commands_
for_Satellite_CCRMA

[3] E. Berdahl and W. Ju. Satellite CCRMA: A musical
interaction and sound synthesis platform. In
Proceedings of the International Conference on New

Interfaces for Musical Expression, pages 173–178,
Oslo, Norway, May 30-June 1 2011.

[4] E. Berdahl and Q. Llimona. Tangible embedded linux.
In Proc. Conference on Tangible, Embedded and

Embodied Interaction, Barcelona, Spain, February
10-13 2013.

[5] M. Danks. Real-time image and video processing in
gem. In Proceedings of the International Computer

Music Conference, pages 220–223, 1997.

[6] D. Mellis, M. Banzi, D. Cuartielles, and T. Igoe.
Arduino: An open electronic prototyping platform. In
Proc. CHI, 2007, 2007.

[7] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. Sta.
How I learned to stop worrying and love flash
endurance. In Proceedings of the 2nd HotStorage

Workshop with the USENIX Annual Technical

Conference, Boston, MA, June 2010.

[8] A. Munshi. OpenGL ES common profile specification
2.0. Khronos group September, 2007.

[9] D. Quigley, J. Sipek, C. Wright, and E. Zado.
Unionfs: User- and community-oriented development
of a unification file system. In Proceedings of the

Linux Symposium, volume 2, Ottawa, Ontario,
Canada, July 2006.

[10] C. Reas and B. Fry. Processing: a programming

handbook for visual designers and artists. Mit Press,
2007.

[11] S. Tilkov and S. Vinoski. Node.js: Using javascript to
build high-performance network programs. Internet
Computing, IEEE, 14(6):80–83, Nov.-Dec. 2010.

[12] M. Wright and A. Freed. Open Sound Control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the International Computer Music

Conference, pages 101–104, Thessaloniki, Hellas,
September 1997.

APPENDIX

A. RELIABILITY TESTING WITH POWER

CYCLING
In order to provide the musician with a convenient vehicle
for developing virtuosity, a high-quality embedded musical
instrument should work for many years without requiring
maintainance. One important way to assess the reliability
of an embedded musical instrument is to check whether it
works properly each time it boots up when being repeatedly
power cycled.
Power cycling is also a particular concern for art instal-

lation designers. To save power, museums and exhibition
halls typically turn off the power without warning when no
visitors are there. As soon as visitors arrive, they turn the
lights and installations back on. The authors were inter-
ested in verifying that Satellite CCRMA would repeatedly
boot up despite unprotected power downs as well as verify-
ing that the sound drivers started properly. At the sugges-
tion of Paul DeMarinis, we employed the circuit shown in
Figure 7, in which an Arduino board automatically turns
the Satellite CCRMA kit on and off.
To equivalently turn on and off the 220V power input,

the electromechanical relay MKP2-I from Rayex Electron-
ics was employed. However, a 5V digital output from the
Arduino board was not powerful enough to switch the re-
lay, so a TIP122 was used to switch the relay on and off
using a 12V DC power supply (see Figure 7). Finally, the

VIN

C

1

B
D5

1kohm

MKP2−I

TIP122

automatically

12VDC

Power
supply

220V

50Hz

5V DC, 2A
Satellite

CCRMA

Arduino for

on & off
switching

Output signals
for analysis

E 3

2

7

2

1

3

4

Figure 7: Power cycling circuit with relay for relia-
bility testing.

output audio from the Satellite CCRMA kit was monitored.
Even before performing the final tests with the power cy-
cling circuit, it was easy to learn what default settings to
use, for instance so that audio started properly for every
single boot. For this reason, the circuit is enthusiastically
recommended to others who are testing the reliability of
hardware projects.

B. RELIABILITY OF FLASH MEMORY
Wear and tear of the flash memory over time is a more
complex issue. Most notably, blocks on a flash memory
device are reported to endure only a limited number of
writes. This effect is known as “write endurance,” and
manufacturers are reported to provide ratings of 10,000 to
100,000 writes/block for their flash memory products. In
fact, blocks may well survive more writes depending on his-
tory of the writes [7].

To prolong the lifespan of the flash memory cards, it was
necessary to implement a method for disabling all writes to
the flash memory. To enter this mode, the user can execute
the following command:

disable-flash-writes

and reboot. Then for subsequent boots, the system starts
up using the aufs union filesystem, allowing the flash mem-
ory to be mounted as read-only [9]. Any apparent writes are
written instead to a RAM disk. The file system presented to
the user consists of the union between the read-only flash
memory and the RAM disk (see Figure 8), allowing the
file system to apparently change with time. However, since
these changes are written only to RAM, none of the changes
persist following a reboot. This means that users should
disable flash writes only after they have completely finished
preparing and calibrating a project.

file B

read/write
RAM disk

read−only
flash memory

virtual file
system aufs

tmpfs

ext4file 1 file 2 file 8

file A file B

file 1 file 2 file A file 8

U

Figure 8: When flash writes are disabled, any ap-
parent changes to the file system take place only in
the RAM disk.

One further important advantage of disabling flash writes
is that then it is safe to disconnect the power to the kit
at any moment. Since no changes are made to the flash
memory, the file system cannot become inconsistent due
to unprotected power downs. This is a nice feature because
then users do not need to implement a method for “shutting
down” their embedded musical instruments or installations.
If users change their minds later and wish to make further

Table 3: Power cycling the Satellite CCRMA image
(except the PdPi image for the last, starred entry)

Card type Board Flash writes # boots
Sandisk 4GB Beagle xM disabled >6900
Sandisk 4GB Beagle xM enabled 143
Samsung 4GB Beagle xM disabled >3900
Samsung 4GB Beagle xM enabled 147
Kingston 8GB Rasb. Pi disabled >10000
Kingston 8GB Rasb. Pi enabled 432
Kingston 8GB∗ Rasb. Pi enabled 143

changes to a project, they can run the following script to
enable flash writes once again:

enable-flash-writes

When flash writes are disabled, it is theoretically possi-
ble for the user to write a program that will run out of
RAM because there is no virtual memory. The authors have
not experienced this situation yet, as the supported boards
all have 512MB of RAM. Nonetheless, concerned users can
watch the ~/.memory_log file, to which the currently occu-
pied RAM in megabytes is appended every 15 minutes. For
instance, a user could follow the memory log in real time by
opening a terminal, connecting to the kit, and then running
the following command:
tail -f ~/.memory_log

C. POWER CYCLING TEST RESULTS
Table 3 demonstrates that disabling flash writes is essential
for making robust projects using Satellite CCRMA. These
tests were performed using class 4 flash memory cards on
both the Beagle Board xM and Raspberry Pi boards using
unprotected power downs. When flash writes are enabled
(the default configuration), the kits only boot up success-
fully to run a sound synthesis pd patch for a few hundred
times. Presumably during the boot process, one or more
sectors are written to many times, meaning that the mem-
ory cards can fail after a relatively small number of boot
cycles. In contrast, when flash writes are disabled, the kits
boot up an order of magnitude more times. So far, kits
for which flash writes were disabled have always booted up
thousands of times. Due to limited resources for perform-
ing these tests, none of the flash-write-disabled cards have
failed yet.
Clearly the feature for disabling flash writes is very useful,

but to the authors’ knowledge, no other embedded Linux
distributions for inexpensive boards incorporate an equiva-
lent feature in a switchable fashion. The authors would like
to take this opportunity to note that the last card listed in
Table 3 was loaded with the PdPi image found on the In-
ternet for running Pure Data on the Raspberry Pi instead
of Satellite CCRMA. Thus, the results in Table 3 indicate
that Satellite CCRMA performs much more reliably than
PdPi. The authors also verified that the PdPi image was
subject to an audio dropout approximately every five min-
utes, whereas the Satellite CCRMA image did not drop any
audio vectors when run for eight hours continuously, both
when using the internal sound output and an external sound
interface.
One could conceive of projects for which it is necessary

to keep flash writes enabled. Satellite CCRMA handles this
border case by allowing monitoring of the number of times
a memory card has been booted with flash writes enabled.
This record is stored in the file ~/.number_boots.

