
Towards Machine Learning of Expressive
Microtiming in Brazilian Drumming

Matthew Wright* and Edgar Berdahl†

*CCRMA (Stanford) and CNMAT (UC Berkeley), matt@{ccrma.Stanford,cnmat.Berkeley}.edu
†Department of Electrical Engineering, Stanford University, eberdahl@Stanford.edu

Abstract
We have used supervised machine learning to apply
microtiming to music specified only in terms of quantized
note times for a variety of percussion instruments. The
output of the regression schemes we tried is simply the
microtiming deviation to apply to each note. In particular,
we trained Locally Weighted Linear Regression / K-
Nearest-Neighbors (LWLR/KNN), Kernel Ridge Regression
(KRR), and Gaussian Process Regression (GPR) on data
from skilled human performance of a variety of Brazilian
rhythms. Although our results are still far from the dream
of inputting an arbitrary score and having the result sound
as if expert human performers played it in the appropriate
musical style, we believe we are on the right track.
Evaluating our results with cross-validation, we found that
the three methods are quite comparable, and in all cases the
mean squared error is substantially less than the mean
squared microtiming of the original data. Subjectively, our
results are satisfactory; the applied microtiming captures
some element of musical style and sounds much more
expressive than the quantized input.

1 Introduction and Related Work
Most music is based on a theoretical model of rhythm in

which the timing of notes is specified in terms of exact
integer divisions of the beat. In real performance by skilled
musicians, a large part of the expression comes from
microtiming, small but meaningful variations in the exact
timing of notes to produce “feel,” “groove,” or “swing”
(Bilmes, 1993; Clarke, 1999; Iyer, 2002). Computer-
generated realizations using “perfectly” timed (i.e.
quantized) notes lack microtiming and are generally
characterized as “mechanical,” “dry,” “inhuman,” etc. Most
researchers in music perception and production seem to
agree that microtiming is systematic, in other words, that
deviations from strict metronomicity are not just random
“motor noise” caused by human imperfection (though that is
clearly one component), but instead relate to musical
structure.

For example, expressive timing of Western classical
music has been studied extensively, particularly concert
piano music (Sundberg, Askenfelt, & Frydén, 1983), and it
is well known that performers in this style utilize local
tempo variations to highlight (multiple levels of) phrase

structure. The present work, however, deals with dance-
oriented musical styles in which tempo remains essentially
constant, so models of rubato, ritard, tempo curves, time
maps, etc. (Honing, 2001; Jaffe, 1986) are of little use.

Another thrust of rhythm research centers around models
in which each note’s microtiming is determined by its
metrical position. This concept is variously known as “per-
measure tatum deviations” (Bilmes, 1993), jazz “swing
ratios” (Friberg & Sundström, 2002; Waadeland, 2001), the
“composer’s pulse” (Clynes, 1983), or, in the commercial
world, “groove templates” (Busse, 2002), which are a
musically powerful first approximation to stylistically
appropriate microtiming. They have the advantage of being
easy to implement: to make a groove template from some
set of training notes, simply find the mean deviation for all
of the notes at each metrical position in the bar. To apply the
groove template to a set of quantized test notes, simply
offset each test note’s timing as a function of its position in
the bar. A major disadvantage of groove templates is that
they do not capture any effect of context.

Many researchers have applied machine learning (ML)
to questions of rhythm and microtiming. In the music
information retrieval community, the application is usually
musical genre classification. We are aware of far fewer
applications of ML for our goal, synthesizing expressive-
sounding performance. Again, most research relates to
rubato in Western classical styles, particularly concert piano
(Widmer, 2000). Bilmes’ work (Bilmes, 1993), which is
described below in section 3.2, and Grachten’s work
(Grachten, 2006) are notable exceptions.

2 Our Data
We have purchased collections of MIDI sequences of drum
parts for Brazilian music genres from KEYFAX
NewMedia.1 An expert percussionist in these genres
recorded the sequences in real-time via MIDI-equipped
acoustic drum sets and similar input devices. Each
sequence consists of about 16 bars of a basic rhythm with
minor variations, played on the full battery of instruments,
with totally constant tempo (presumably played to a click
track). Subjectively, these sequences “sound authentic”:
their microtiming variations give a sense of each musical

1 http://www.keyfax.com/keyfax/prdct.html

style. We manually selected sequences that were at least 8
bars in duration and had interesting microtiming, resulting
in the moderately sized training set summarized in Table 1.
Since the input to our ML algorithm is a rhythm with no
microtiming, we quantized each sequence and then
calculated the variance of microtiming (the average squared
microtiming per note).

Sequence # notes # insts Variance
Escola 1189 10 0.001197
Olodum 1079 13 0.000615
Sambareg 904 10 0.000552
Rokbahia 522 5 0.000471
Maracana 1043 8 0.001429
Partalto 739 10 0.000650
Sambafnk 960 11 0.000992
Afoxe 556 7 0.000524
Baiao 1020 9 0.000942

Table 1: Number of notes and instruments, and variance
of microtiming (measured in beats2) per rhythm

3 What Structures Microtiming?
Machine learning seems to promise that it will

automatically find the structure in the training data. In fact,
ML works much better if the researcher already understands
the structure of the problem enough to preprocess the input
to the ML algorithm into a form that exposes the relevant
information in the data that one might have hoped the
algorithm would learn for itself. For example, Widmer’s
best results in synthesizing expressive piano performances
rely on manual marking of musical phrase structure
(Widmer, 2002). Another challenge is the lack of a general
way of proving that a given set of data does not contain
useful, learnable information. One may only prove the
opposite by human inspection in specific cases or by
successfully applying a particular learning algorithm.

3.1 How Much of the Microtiming can be
Explained by Metrical Position?

We constructed groove templates for each rhythm in our
dataset to see how well they explain the data from a mean
squared error (MSE) point of view. The mean squared
microtiming for all of the notes in our database is 0.00087
beats2, while the mean squared error between each note’s
true microtiming and the microtiming predicted by the
appropriate groove template is 0.00062 beats2. This means
that groove templates correctly predict just under 30% of the
microtiming variance. With an individual groove template
for each instrument, the result was just under 39%. Clearly
groove templates do not tell the whole story.

3.2 What Else Structures Microtiming?
Little prior work analyzes the musical parameters that
correlate to or explain microtiming in the constant-tempo
case. (Bilmes, 1993) uses an ML approach to segment

improvised drum rhythms into phrases and cluster them by
similarity so as to apply microtiming from a similar learned
phrase to a new example. Because our data does not seem
to be composed of phrases in the same way, we did not try
this approach. Instead we embodied our intuitions about
what structures microtiming into a distance function.

3.3 Our Distance Function
All of the learning algorithms we tried, except for GPR,

are based directly on a notion of distance between an input
note and each note in the training data. Our goal in devising
the distance function was to account for the factors that we
believe determine notes’ microtiming: timbre, position in
the rhythmic cycle, and the presence of other notes nearby
in time. Our distance function has three components:
• Timbral distance is a subjective measure of the

degree to which two instruments sound similar
and/or have similar rhythmic functions.

• Metric position distance is a subjective measure of
the degree to which notes at two metric positions
have the same rhythmic effect; e.g., the 8th note
after beat two is closest to 8th note after beat four.

• Rhythmic context difference captures the effect on
microtiming of notes played shortly before or after
the given note on the same or different timbres.
Our current implementation looks at the timbres
and relative temporal position of all notes within
one beat of the input notes.

The relative importance of these components was also
chosen subjectively. This function is nonnegative and
symmetric, but the triangle equality does not necessarily
hold, so it is not a true distance metric in the mathematical
sense.

4 Machine Learning Algorithms
Our algorithms’ input is the MIDI score of a series of

quantized drum notes, and the output is an estimate of the
microtiming to apply to each note. Since the output is a
continuous-valued estimate rather than a discrete-valued
decision, we applied regression algorithms rather than
classification algorithms. Standard practice for evaluating
the performance of regression algorithms is to calculate the
mean squared error between the estimate and the actual
value. In our case we used five-fold cross validation.

4.1 K–Nearest–Neighbors / Locally Weighted
Linear Regression

K-Nearest-Neighbors (KNN) (Mitchell, 1997) was the
simplest algorithm we applied; it outputs a linear
combination of the microtimings for the k training notes
“nearest” to the given test note. KNN is especially
attractive because the running time for estimating the
microtiming of m test notes is only O(mn), when there are n
training samples, and so KNN would be feasible in live

settings with the training set even being generated on-the-
fly. We used the following standard function to compute the
similarity w(i,j) given the distance between the notes i and j.

τ is called the bandwidth parameter and controls the
degree to which distance affects weight. When k equals the
size of the training set, K-Nearest-Neighbors is equivalent to
Locally Weighted Linear Regression (LWLR) (Mitchell,
1997); this was never the optimal value of k. For KNN, we
selected k and τ to minimize the MSE over all our data,
resulting in k=26 and τ=24. Note that KNN considers only
the distances between each test set element and the training
set elements, not distances between training set elements;
therefore, a given test note can be close to two test set
elements that are far from each other, resulting in a
weighted average of microtimings from two distant and thus
likely unrelated notes.

4.2 Kernel Ridge Regression
In contrast with KNN, Kernel Ridge Regression (KRR)
considers the distances between pairs of elements in the
training set when deciding how heavily to weight the
influence of relevant training examples (Welling, Accessed
2006). To this end, KRR solves a set of linear equations
involving a matrix W consisting of w(i,j) for 1≤i, j≤n, which
represent the similarity between pairs of notes in the training
set. The computational cost of the algorithm depends on the
expense of factoring W, but it is quite reasonable. However,
for online applications, the training set would need to be
prepared beforehand so that W would only need to be
factored once.

Figure 1: Comparison of the true microtimings versus those
predicted by KRR for an excerpt of the Escola rhythm.

Figure 1 shows an excerpt of about 11 beats’ duration of
the results from cross-validation for the rhythm Escola.
Positive microtiming indicates a delay relative to the beat.
Despite the difficult nature of the regression problem, KRR
is able to make reasonable estimates of many of the

microtimings. For example, the sign of the estimate is very
frequently correct. Note how the microtimings tend to
oscillate; this could be due to small local tempo fluctuations
about the fixed tempo.

KRR sometimes performed slightly better than KNN and
sometimes slightly worse (see Fig. 2). Perhaps the
suboptimal performance of KRR was related to the fact that
we needed to add a small, scaled version of the identity
matrix to W in order to make the matrix invertible.

However, we could certainly improve the performance
of both KNN and KRR by refining our distance function.
On the other hand, searching the space of possible distance
functions, or even just of relative weightings of components
of a distance function, would be exceedingly time-
consuming because we would have to use cross validation to
verify the effects of each parameter change, and we would
probably not gain as much insight into the problem as from
applying other ML algorithms that can automatically fine-
tune the distance function.

4.3 Gaussian Processes Regression
The typical formulation of Gaussian Process Regression
(GPR) allows automatic fine-tuning2 of the distance
function’s weights (Rasmussen, 1996). However, the
weights can only be easily optimized for a few particular
structures, such as a Euclidean distance. As a result, we
needed to reformulate our notion of distance as the weighted
Euclidean distance between two feature vectors rather than
as an arbitrary function of two input notes. Since our
distance function incorporated so many aspects, we required
feature vectors containing a few hundred elements. We
included features such as the note’s onset time within the
measure, the note’s MIDI velocity, and a representation of
the local score surrounding the note, which consisted of the
cross product between the various timbres in the sequence
and the note locations within a symmetric two beat window.
However, given our moderately sized amount of training
data (see Table 1), we could estimate on the order of only 10
to 20 weights robustly, so we reduced the dimensionality of
the score information using Principal Components Analysis
(PCA). A paper by Ellis and Arroyo outlines a similar
method for popular music using what they term
“eigenrhythms” and “indirhythms” (Ellis & Arroyo, 2004).

Estimating microtimings of test data with GPR takes
roughly as long as with KRR assuming that the weights
have already been fine-tuned; however, fine-tuning the
weights is computationally expensive: each iteration of the
optimization requires O(n3) time. Consequentially, we
required 30 minutes to fine-tune the thirteen weights for
each rhythm using Matlab on a 2.2GHz dual-processor
workstation.

2 Matlab code released by Carl Rasmussen (2005),
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/

5 Results and Future Work
The performance of all four methods, measured by the

MSE on 5-fold cross-validation, is strikingly similar (see
Fig. 2) even though GPR relied on a very different distance
function. This may indicate that our notion of distance needs
to consider other features, e.g., a larger window of musical
context, or that we simply need more training data. On the
other hand, we believe that our results3 sound much better
than the MSE results would indicate. This is because the
microtiming output by each ML algorithm is nonzero (so
things don’t sound quantized), systematic (because the
algorithms are not random), and somewhat different for
each bar (unlike groove templates, which can still sound
artificial for that reason).

Figure 2: Mean Squared Error of each method. The top line
shows the variance of the true microtiming; it can be

interpreted as the error from applying no microtiming at all.

We believe that GPR has the most room for
improvement in future studies. Further preprocessing of the
local score data could be helpful, and there may be better
methods such as independent components analysis (ICA)
for reducing the dimensionality of the local score that result
in eigenvectors more relevant to the regression task. In
addition, although fine-tuning the weights for GPR is
computationally expensive, it is much faster than using the
distance function described in section 3.3 and tuning the
weights using cross-validation.

We created several examples using cross-synthesis,
where the microtiming deviations from one rhythm are
applied to another quantized score. We would like to
explore more such creative applications of this work.
Finally, although all of our training data comes from
Brazilian rhythms, very little of our work embodies specific
knowledge of that musical culture, so these methods should
be easily adaptable to other forms of music.

3 All our software and sound examples, including comparisons
against groove templates and other techniques, can be found at
http://ccrma.stanford.edu/~eberdahl/Projects/Microtiming/

6 Acknowledgments
John Lazarro, Andrew Ng, Yirong Shen, David Wessel.

References
Bilmes J. 1993. Timing is of the Essence: Perceptual and

Computational Techniques for Representing, Learning, and
Reproducing Timing in Percussive Rhythm, Media Lab.
Massachusetts Institute of Technology: Cambridge,
Massachusetts

Busse W. 2002. Toward Objective Measurement and Evaluation of
Jazz Piano Performance Via MIDI-Based Groove Quantize
Templates. Music Perception 19(3), 443-461

Clarke EF. 1999. Rhythm and Timing in Music. In D Deutsch
(Ed.), The Psychology of Music, 473-500. Academic Press:
San Diego

Clynes M. 1983. Expressive Microstructure in Music, Linked to
Living Qualities. In J Sundberg (Ed.), Studies of Music
Performance, 76-181. Royal Swedish Academy of Music:
Stockholm

Ellis DPW, Arroyo J. 2004. Eigenrhythms: Drum pattern basis sets
for classification and generation, Int. Symp. on Music Info.
Retr. ISMIR-04: Barcelona
(http://www.ee.columbia.edu/~dpwe/pubs/ismir04-
eigenrhythm.pdf)

Friberg A, Sundström A. 2002. Swing Ratios and Ensemble
Timing in Jazz Performance: Evidence for a Common
Rhythmic Pattern. Music Perception 19(3), 333-349

Grachten, J. Ll. Arcos, R. López de Mántaras. 2006. A Case Based
Approach to Expressivity-aware Tempo Transformation.
Machine Learning Journal. In press

Honing H. 2001. From Time to Time: The Representation of
Timing and Tempo. Computer Music Journal 25(3), 50 - 61

Iyer V. 2002. Embodied Mind, Situated Cognition, and Expressive
Microtiming in African-American Music Music Perception
19(3), 387–414

Jaffe D. 1986. Ensemble Timing in Computer Music. Computer
Music Journal 9(4), 38-48

Mitchell T. 1997. Machine Learning. McGraw Hill
Rasmussen CE. 1996. Evaluation of Gaussian Processes and Other

Methods for Non-Linear Regression, Graduate Dept. of Comp.
Sci. University of Toronto: Toronto, Canada

Sundberg J, Askenfelt A, Frydén L. 1983. Musical performance. A
synthesis-by-rule approach. Computer Music Journal 7, 37–43

Waadeland CH. 2001. It Don’t Mean a Thing If It Ain’t Got That
Swing – Simulating Expressive Timing by Modulated
Movements. Journal of New Music Research 30(1), 23-37

Welling M. Accessed 2006. Kernel ridge Regression,
(http://www.ics.uci.edu/~welling/classnotes/papers_class/Kern
el-Ridge.pdf)

Widmer G. 2000. Large-scale Induction of Expressive
Performance Rules: First Quantitative Results, International
Computer Music Conference: Berlin, Germany

Widmer G. 2002. Machine discoveries: A few simple, robust local
expression principles. J. New Music Res. 31(1), 37–50

