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ABSTRACT 

Acoustic feedback is capable of driving an electroacoustic ampli-
fication system unstable. Inserting a frequency shifter into the 
feedback loop can increase the maximum stable gain before in-
stability. In this paper, we explain how frequency shifting can 
effectively smooth out the feedback loop magnitude response, 
and how this relates to the system stability. Then we describe 
measurements on real acoustic systems that we employ to study 
the practical performance. Although frequency shifting is useful 
for stabilizing systems in reverberant environments, we show that 
reasonably small amounts of frequency shifting do not provide 
significant benefit for hearing aids. It can be helpful to employ a 
microphone with a focused directivity pattern, and we describe 
how the directivity pattern may affect the efficacy of frequency 
shifting. 

1. INTRODUCTION 

1.1. Motivation 

 
The reader is probably familiar with a situation when someone 
placed a microphone too closely to a loudspeaker, causing the 
system to begin “howling” unpleasantly. Figure 1 illustrates the 
signal flow for acoustic feedback. 

 
Figure 1: Person singing into a microphone, whose sig-
nal is processed by an amplifier with transfer function 
K(z) and fed to a loudspeaker; acoustic path from loud-
speaker to microphone represented by G(z) 

1.2. Linear Time-Invariant System Stability Criterion 

To help provide the reader with some intuition into how 
feedback can affect the stability of a system, we review some 
concepts from feedback control.  Figure 2 shows a simple single-
input single-output configuration.  A person speaks into a micro-
phone, which sends an electrical signal to a controller with z-
domain transfer function K(z), which drives a loudspeaker ac-
cordingly (see Figure 2).  For convenience, we also lump the mi-
crophone and loudspeaker transducer dynamic responses into 
K(z).  G(z) represents the acoustic feedback path from the loud-
speaker back to the microphone. Let the open-loop transfer func-

tion L(z)=K(z)G(z). Then, if L(z) is stable, then the feedback sys-
tem is stable if [1] 
 

€ 

L(z0) <1 (1) 

for all z0 such that |z0|=1 and  
 

  

€ 

∠L(z0) =180 + n360 . (2) 
Hence, a sufficient condition for the stability is for |L(z)| to be 
less than unity at all frequencies. 

1.3. Time-Varying Block For Frequency Mapping 

One way to skirt the linear time-invariant system stability crite-
rion is to make the system time-varying. The simplest way to do 
so is to insert a time-varying block into the amplifier, as shown in 
Figure 2. 

 
Figure 2: Configuration, where the amplifier incorpo-
rates a time-varying block as well as a filter K(z) 

1.4. Frequency Shifting Example For Time-Varying Block 

We now introduce an example to demonstrate how the time-
varying block can stabilize the system. Let us assume for now 
that the time-varying block implements a frequency shifter that 
shifts any input sinusoid up in frequency by Δf.  We assume also 
that it can do the same for any sum of sinusoids. The left-hand 
column of Figure 3 shows |L(f)|, |L(f)|2, |L(f)|3, and |L(f)|4 from 
top to bottom, respectively. Consider an input sinusoid at a given 
frequency f. As it travels around the loop, its magnitude is scaled 
each time by |L(f)|, so if |L(f)| is greater than 0dB, for instance in 
this case for f≈5.4kHz, then the sinusoid will increase in magni-
tude each trip around the loop (see Figure 3, left), destabilizing 
the system. 
 
Right right-hand column of Figure 3 shows |L(f)|, 
|L(f)|•|L(f+Δf)|, |L(f)|•|L(f+Δf)|•|L(f+2Δf)|, and 
|L(f)|•|L(f+Δf)|•|L(f+2Δf)|•|L(f+3Δf)| from top to bottom, respec-
tively. With each trip around the loop, a sinusoid with frequency 
f is shifted upward by Δf, in this case 12Hz. |L(f)| contains many 
notches and peaks because G(z) is reverberant, so frequency 
shifting has the effect of smoothing out the peaks and notches, 
allowing the energy to decay. Hence, frequency shifting stabi-
lizes the system in this example, as indicated by the fact that the 
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magnitude response in the lower right-hand corner is less than 
0dB at all frequencies (see Figure 3). 
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Figure 3: Change in magnitude of an input sinusoid at 

frequency f as it travels around the loop 

1.5. Analysis 

We now analyze the more general case where the time-varying 
block implements any arbitrary frequency mapping F(f). The suf-
ficient condition for stability becomes more complicated: 
     

€ 

lim
N→∞

L(e j2πF ( f ) / fS ) ⋅ L(e j 2πF 2 ( f ) / fS ) ⋅ ...⋅ L(e j2F N ( f ) / fS ) = 0, (3)

where FN(f) denotes the function F(f) composed with itself N 
times and fS is the sampling rate. In other words, the time-varying 
block can smooth out the frequency response employed by the 
stability criterion. However, the energy has to go somewhere—
the time-varying block does not eliminate it. For this reason, the 
time-varying block can provide no benefit for a system with a flat 
open-loop magnitude response |L(f)|. 
 
The time-varying block could be an m-semitone pitch shifter (PS) 
implementing the frequency mapping 
 

€ 

FPS ( f ) = f ⋅ 2m /12 , (4) 
resulting in the stability criterion 
 

€ 

lim
N→∞

L(e j2πf ⋅2m/12 / fS ) ⋅ L(e j2πf ⋅22m/12 / fS ) ⋅ ...⋅ L(e j 2πf ⋅2Nm/12 / fS ) = 0 . (5)  

However, researchers report that pitch shifting may not provide 
adequate shifting at low frequencies, effectively limiting the per-
formance of the howling suppression [2]. In contrast, a frequency 
shifter (FS) with frequency mapping 
 

€ 

FFS ( f ) = f + Δf  (6) 
induces a constant frequency shift across the audio band. For fre-
quency shifting, the stability criterion is 
            

€ 

lim
N→∞

L(e j2π ( f +Δf ) / fS ) ⋅ ...⋅ L(e j2π ( f +NΔf ) / fS ) = 0 . (7) 

 
Other frequency mappings are of course possible and lead to 
other stability criteria. Other time-varying elements can also in-
crease the maximum stable gain, such as delay modulation and 

phase modulation. However, these techniques lead to frequency 
mappings that do not push the energy in the system monotoni-
cally away from input frequency components [3]. As a conse-
quence, some of the energy can be mapped back onto the original 
frequency, causing signal distortion without directly leading to an 
increase in stable gain. 

1.6. Other Methods For Inhibiting Howling 

Several other methods can be employed to inhibit howling; how-
ever, they either require a priori knowledge about G(z), much 
more computational power, or arrays of transducers [4], or they 
require unusual transducers [5]. Nevertheless, frequency shifting 
is the simplest known approach, so we focus on it in this paper. 
Frequency shifting can be implemented with a two-step modula-
tion approach [6], approximate Hilbert transformers [2], or a 
phase-vocoder [7], which allows for more complex frequency 
mappings F(f). 
 
To facilitate further study of the performance of frequency shift-
ing, we constructed a model that simulated the signal flow dia-
gram shown in Figure 2. In Section 2, we describe the measure-
ments we made for calibrating the model to real acoustic envi-
ronments. In Section 3 we describe the simulation results, and 
finally in Section 4 we provide links to sound examples to help 
the reader gain more intuition into the perceptual artifacts caused 
by frequency shifting for public address system stabilization. 
 

2. MEASUREMENTS 

2.1. Room 

Consider an application where a vocalist sings into a micro-
phone, and a loudspeaker “monitor” sends an amplified acoustic 
wave back at the singer so that he or she can hear himself or her-
self. There is a serious danger of acoustic howling setting in be-
cause the microphone can also pick up the signal from the moni-
tor. In response, microphone manufacturers have produced mi-
crophones with directional directivity patterns. For instance, a 
cardiod microphone has a null in the directivity pattern that can 
be aimed at a monitor. In an anechoic chamber and in the ab-
sence of reflections off of other objects, the acoustic feedback 
from the monitor could be completely suppressed. However, in 
real configurations reflections will cause some feedback signal to 
be transmitted from the loudspeaker back to the microphone. We 
decided to make some measurements to help us quantify this ef-
fect. We employed the Sennheiser MKH 800 Twin microphone 
because its directivity pattern is adjustable. Its two output signals 
correspond to cardiod directivity patterns pointing in opposite 
directions: one toward the front of the microphone and one to-
ward the back. 
 
We placed a monitor loudspeaker on a table, and measured the 
feedback transfer functions with the microphone placed at the 18 
positions shown in Figure 4. At each position, we measured the 
transfer function from the monitor loudspeaker to the 

• cardiod directivity pattern facing toward the monitor, 
• cardiod directivity pattern facing away from the monitor, 
• and an omnidirectional directivity pattern by summing the 
transfer functions for the two cardiod patterns. 
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Figure 4: Microphone positions for measuring feedback 
transfer functions in a typical room 

The cardiod directivity pattern pointing away from the loud-
speaker successfully decreased the level of the feedback transfer 
function, especially at low frequencies. In order to produce a 
viewable figure, it was necessary to greatly smooth out the feed-
back transfer functions, which averaged out the peaks and 
notches due to room reverberation. (Refer to Figure 3, top as a 
reminder of what these sort of feedback transfer functions look 
like without smoothing.) Figure 5 shows the significantly 
smoothed feedback transfer function magnitudes for the three 
directivities as measured at position 5 as pictured in Figure 4. 
Beneath 6kHz, the cardiod directivity pattern aiming away from 
the loudspeaker decreased the average level of the feedback 
transfer function by the order of 10dB plus or minus about 5dB 
(see the thick, solid line in Figure 5). In contrast, the cardiod di-
rectivity pattern aiming at the loudspeaker was responsible for 
higher levels (see the dash-dotted line in Figure 5). Similarly, the 
thin, solid line in Figure 5 indicates that the omnidirectional re-
sponse level was similar to the cardiod directivity pattern aiming 
at the loudspeaker. This was because the omnidirectional re-
sponse is the complex sum of the two directivity patterns [8]. 

These measurements explain why it is desirable to employ a 
directional microphone for suppressing acoustic feedback, al-
though for a cardiod directivity pattern, the increase in maximum 
stable gain will be 10dB in typical applications if the loudspeaker 
is placed in the null of the cardiod pattern. If the loudspeaker is 
not directly placed in the null, the increase in maximum stable 
gain will be less than 10dB in typical applications. 
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Figure 5: Smoothed feedback transfer function magni-

tudes |L(f)| for real room measurements 

2.2. Hearing Aids 

As far as we know, no prior papers in the literature studied the 
application of frequency shifting to stabilizing hearing aids, so 
we decided to include hearing aid feedback transfer functions in 
our simulations. We obtained 192 of these transfer functions 
from Johan Hellgren, who extensively studied how they change 
as a function of jaw movements, variations in acoustics outside 
the ear, and variations in the hearing aid vent size [9]. We plot 
some example measured feedback transfer function magnitudes 
in Figure 6 for the Oticon Personic 425 behind-the-ear hearing 
aid. The level depends on many factors, such as whether or not 
the hearing aid wearer is biting, wearing a knitted cap that ex-
tends over the ears, or whether he or she is hugging someone 
else. Because the microphone and loudspeaker of the hearing aid 
are so closely spaced, feedback transfer function contains little 
influence from reverberation, which explains why the feedback 
magnitude responses shown in see Figure 6 are not jagged in 
contrast with Figure 3. 
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Figure 6: Feedback magnitude responses for Oticon Per-

sonic 425 behind-the-ear hearing aid 

3. SIMULATIONS 

3.1. Results 

Using the measurements, we carried out a series of simulations in 
order to study the effect of the frequency shifting parameter Δf on 
the increase in maximum stable gain of the system described in 
Figure 2. The simulations employed noise an excitation source 
and gradually increased the loop gain K(z)=K until the envelope 
of the loudspeaker signal exceeded the envelope of the noise ex-
citation signal by a factor of 4, approximately indicating the 
maximum stable gain. Figure 7 shows the increase in the maxi-
mum stable gain for the simulations, as computed by subtracting 
the difference between the maximum stable gain for frequency 
shifting of Δf Hz and frequency shifting of 0 Hz. 
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Figure 7: Increase in maximum stable gain shown as a 

function of the frequency shift amount Δf 
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Figure 8: Increase in maximum stable gain shown as a 

function of the frequency shift amount Δf 

3.2. Conclusions 

3.2.1. Larger Δf Means Larger Increase In Maximum Stable 
Gain On Average 

Choosing Δf larger increases the amount of smoothing of the 
feedback transfer function provides. Although it is possible to 
find an example where increasing Δf causes the maximum stable 
gain to decrease (not shown); this usually is not the case. As in-
dicated by the solid lines in Figure 7 and Figure 8 for all of the 
simulated environments, choosing Δf larger made the average 
increase in the maximum stable gain larger. One standard devi-
ation variation in the increase in the maximum stable gain is in-
dicated using error bars (see Figure 7 and Figure 8). 

3.2.2. Frequency Shifting Less Effective For Hearing Aids 

As indicated by the dash-dotted plot in Figure 8, frequency shift-
ing did not provide a significant improvement for small values of 
Δf. While it did provide up to 2dB of average increase in maxi-
mum stable gain, this was only for values of Δf on the order of 
30Hz, and above. This reason for this was that hearing aid feed-
back transfer functions contain little reverberation (compare the 
jaggedness of the magnitude responses shown in Figure 6, top 
with those in Figure 3), so much more significant frequency 
shifting is required to provide stabilization effects. However, our 
informal listening indicates that the perceptual artifacts from 
such large frequency shifts outweigh the increase in maximum 
stable gain for most applications.  Presumably this is the reason 
why the prior scientific literature does not provide any indication 
that frequency shifting is useful for stabilizing acoustic feedback 
in hearing aids. As indicated by the small standard deviation bars 
for the dash-dotted plot in Figure 7, the variation in the hearing 
aid increases in maximum stable gain was smaller than for the 
other simulations because the hearing aid feedback magnitude 
responses were relatively smooth (see Figure 6). 

3.2.3. Effect of Directivity Pattern 

As indicated in Section 2.1, employing a microphone with a fo-
cused directivity pattern, such as a cardiod pattern aimed away 
from the loudspeaker, can help reduce the magnitude of the feed-
back transfer function, effectively increasing the maximum stable 
gain. Changing the directivity pattern also affects the increase in 
maximum stable gain due to frequency shifting. The cardiod pat-
tern aimed away from the loudspeaker allowed larger average 
increases in maximum stable gain with lower variation (see the 
solid line in Figure 7) than the other two patterns as shown in 
Figure 8. This is presumably a consequence of the diffuseness of 
the reverberation with the loudspeaker placed in the null of the 
“cardiod away” pattern.  

4. SOUND EXAMPLES 

Members of the DAFx community are likely aware of the per-
ceptual impacts of many effects, including pitch shifting; how-
ever, the effect of frequency shifting is more esoteric. As a con-
sequence, we provide sample sounds of speech being frequency 
shifted by different amounts at the website: 
http://ccrma.stanford.edu/~eberdahl/Projects/FreqShift 

5. FINAL WORDS 

We have provided sound examples and simulation data to 
help convey to the reader why frequency shifting is effective, and 
in what instances it may be useful. Inserting a frequency shifter 
into the feedback loop of an amplification system is an effective 
method for stabilization of the acoustic feedback path, but only if 
the acoustic feedback path is significantly reverberant. Other-
wise, such large frequency shifting values Δf are required for sig-
nificant increase in the maximum stable gain that the loudspeaker 
signal contains excessive artifacts. We believe that this is why 
hearing aid manufacturers do not report employing frequency 
shifting for acoustic feedback stabilization. We look forward to 
future work in evaluating the perceptual tradeoffs between in-
creasing the degree of the impact of the time-varying block and 
the subjective sound of the loudspeaker signal. 
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