
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 1

Automated Physical Modeling of Nonlinear Audio
Circuits For Real-Time Audio Effects – Part I:

Theoretical Development
David T. Yeh, Member, IEEE, Jonathan S. Abel, Member, IEEE, and Julius O. Smith, III, Member, IEEE

Abstract—This paper presents a procedural approach to derive
nonlinear filters from schematics of audio circuits for the purpose
of digitally emulating analog musical effects circuits in real time.
This work, the first in a two-part series, extends a well-known
efficient nonlinear continuous-time state-space formulation for
physical modeling of musical acoustics to real-time modeling
of nonlinear circuits. Rules for applying the formulation are
given, as well as a procedure to derive simulation parameters
automatically from circuit netlists. Furthermore, a related non-
linear discrete-time state-space algorithm is proposed to alleviate
problems in solving particular circuit configurations. These
methods were devised to solve non-convergence problems in the
simulation of strongly saturated, nonparametric guitar distortion
circuits such as the saturating diode clipper, which which is
presented as an example derivation. Experimental considerations
and sonic performance on various other circuits will be presented
in a subsequent paper.

Index Terms—Virtual analog, physical modeling synthesis, gui-
tar distortion, amplifier modeling, circuit simulation, nonlinear
filters, K-Method, EDICS: AUD-SYST

I. INTRODUCTION

THIS research attempts to model and simulate digitally
highly nonlinear circuits used primarily for electric guitar

effects. Such efforts aim to preserve the heritage of circuits
whose components, such as vacuum tubes, or particular vin-
tage transistors, are becoming increasingly rare. Although a
plethora commercial products purport to replicate the non-
linear processing of these circuits using simplified filters
and memoryless nonlinearities, many are unsatisfied with the
perceptual quality of such digital models [1].

This work takes a more accurate, physical modeling ap-
proach. Circuit schematics and accurate device model equa-
tions can sufficiently model circuit behavior. Analyzing these
schematics using physical principles such as Kirchhoff’s Cur-
rent Law (KCL) and Kirchhoff’s Voltage Law (KVL), one
can derive a system of nonlinear equations that accurately
replicates a circuit’s input-to-output relationship over time.
By exploiting the progress of contemporary digital computing
power, modeling vintage circuits based on archives of their
circuit schematics and device characteristics can ensure that
the unique sound of these circuits will be available for future
generations of musicians.

The authors are with the Center for Computer Research in Music and
Acoustics (CCRMA), Department of Music, Stanford University, Stanford,
CA 94305-8180, USA. This work was partially supported by a National
Science Foundation Graduate Fellowship.

This work describes an efficient and robust method to
simulate circuits in real time, solving the nonlinear system
of ordinary differential equations that characterize circuit dy-
namics. The system accepts circuits described in netlist form,
and produces parameters for a nonlinear system solver that can
generate code for real-time simulation. This system facilitates
physically-based real-time emulation of nonlinear circuits used
for musical effects.

Here, after surveying the literature, we present in detail the
K-method, originally developed to model nonlinear lumped
systems in musical acoustics. We then present the Nodal K-
method, a procedure for applying the K-method to nonlinear
circuits as found in musical distortion circuits. This develop-
ment is important because it gives insight into the well-known
K-method and suggests how it could be automated for musical
acoustics. It also provides a theoretical link to the Discrete
K-method, presented last, which we recommend for general
nonlinear circuits. Finally we give an example of the methods
as applied to a simple nonlinear musical circuit, the diode
clipper.

This work describes software that can be
downloaded as Python and C++ code at
http://ccrma.stanford.edu/~dtyeh/nkmethod10.

II. PREVIOUS WORK

Many existing commercial products simulate the effect of
classic analog circuits and give users access to a wide variety
of sounds while replacing cumbersome physical gear, but
often musicians find these emulations deficient [1]. Computer
models of the circuits can be either perceptually or physically
based, or a mixture of both. This work considers the physically
based approach, which encompasses circuit simulation, or
deriving a model by hand and solving it using an ordinary
differential equation solver package. Often researchers develop
custom solver software employing numerical integration tech-
niques.

Circuit simulation is a mature field whose methods are well-
documented in [2], [3]. Circuits can be specified as netlists –
lists of circuit components specifying their model parameters
and connectivity. The simulator automatically sets up and
solves the nonlinear circuit equations to produce transient,
or time-domain, responses to specified inputs. Popular circuit
simulators such as SPICE (Simulation Program with Integrated
Circuit Emphasis) cannot be used as real-time audio effects
processors because they were designed for generality and

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 2

offline use. SPICE simulation requires manual supervision
because the solution to nonlinear equations often do not con-
verge given a particular set of solver parameters. Furthermore,
for highly saturating distortion circuits, the convergence and
error control mechanism in SPICE tends to select a very
small sampling period to achieve accuracy that far exceeds
audible perceptibility. A simplified yet perceptually accurate
simulation designed for audio effects processing would suffice
with greatly relaxed computational requirements.

Alternatively one can use numerical integration to solve
nonlinear systems of ordinary differential equations (ODEs)
[4]. This requires the derivation of model equations that
describe the behavior of the system, which is tedious and
challenging for those without experience in musical acoustics
or circuit analysis. There can be many different models that
simulate the same system, depending on the choice of state
variables and unknowns to represent the quantities in the
system. This work presents one method of assigning these vari-
ables. Using off-the-shelf ODE packages also incurs some of
the same problems of computational cost as circuit simulators
because they are based upon the same principles of numerical
integration and solving nonlinear systems iteratively.

Custom numerical simulation of lumped nonlinear systems
in audio or musical acoustics based upon numerical integration
has been studied extensively in the literature [5]–[11]. The
computational musical acoustics / digital audio effects com-
munity has developed two prevailing methods for simulating
ordinary differential equations with nonlinearities based on
Wave Digital Filtering (WDF) principles (nonlinear WDFs
[5]) or directly solving a nonlinear state-space system using
Kirchhoff variables (K-Method [7]). Both methods have been
applied to the same types of problems in nonlinear musical
acoustics and are also applicable to certain classes of nonlinear
circuits used for musical effects. Again, the typical practitioner
would experience difficulty applying these techniques to a
circuit or system under consideration because they require the
formulation of a model, and various formulations may exist.

This work extends attempts to simulate musical circuits
using custom code based upon solving ordinary differential
equations with numerical integration [10]–[14]. Previous work
demonstrated the applicability of the K-method to audio
distortion circuits [15]. While the results are promising in
terms of accuracy and efficiency, these approaches all require
intensive effort and problem-domain expertise to derive a
model. Fusing the generality of circuit simulation techniques
with the robust real-time efficiency of the K-method, this work
increases the accessibility of custom modeling of musical
circuits by automatically generating simulation code from a
netlist description.

III. K-METHOD

Originally developed to model nonlinear systems in musical
instruments, such as collision or reed dynamics, the K-Method
derives a nonlinear filter that solves nonlinear state-space
ODEs. The K-Method requires that an ODE modeling the
system under consideration be derived in a particular form.
The K-Method provides a general algorithm in matrix notation

to solve a nonlinear ODE in this form. It does so by first
discretizing the time derivative, then solving for the unknowns
at the current time in terms of prior system state and inputs,
which involves a nonlinear solver. If possible, solving the non-
linear function beforehand eliminates convergence problems
during runtime. This results in an explicit and robust signal
processing structure suitable for physical modeling of circuits
in real time.

A. Form of system equations required by the K-Method

The K-Method solves ODEs of the form

ẋ = Ax + Bu + Ci, (1)

i = f (v) , (2)

v = Dx + Eu + Fi, (3)

where x ∈ RN is a vector representing the N state variables
of the system, u ∈ RM represents the M inputs, and i ∈
RK incorporates the influence on the system dynamics by a
nonlinear vector function f (v) : RL → RK with v ∈ RL.

In most audio circuits, the vector x usually consists of the
voltages across the capacitors in the circuit; vector u is usually
voltage source signals and power supplies coming into the
circuit. The symbol i is chosen for the nonlinear variable
because nonlinear devices in a circuit, such as diodes, and
transistor-like devices, are voltage-controlled current sources,
giving a nonlinear mapping from the L controlling voltages v
to the K nonlinear device currents.

The nonlinear dynamical system is partitioned into a dy-
namical part (1), and a purely static functional relationship
that represents the overall nonlinearity of the circuit (2) and
(3). The latter expresses the nonlinear relationship between the
circuit variables often in implicit form, is often a transcenden-
tal equation, and must be solved by iterative methods.

In the dynamical portion of this formulation, coefficient
matrices A, B, C represent linear combinations of the state,
inputs, and nonlinear part that affect the evolution of the state.
The nonlinear contribution is defined implicitly with respect
to i and in general also depends on a linear combination of x,
u and i through coefficient matrices D, E, F.

Finally, coefficient matrices L, M, and N are needed to
relate the system variables to the desired output variables of
interest, vector y,

y = Lx + Mu + Ni. (4)

B. Discretization and solution

The K-Method solves the system of (1)–(3) with a nonlinear,
recursive, discrete-time filter. Discretizing (1) by a stiffly stable
numerical integration method [10] such as Backward Euler or
the implicit trapezoidal rule we can derive the state update
procedure for this filter.

For example, using Backward Euler

ẋn = α (xn − xn−1) , (5)

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 3

where α = 1/T and T is the sampling period and using
subscripts to denote the time sample, we can use (1) to
substitute for ẋ[n] in (5) and solve for

xn = αHxn−1 + H (Bun + Cin) , (6)

where
H = (αI−A)−1

, (7)

which serves as a state update formula if the matrix is
invertible. This can be used with (2) and (3) to find in,
the nonlinear device currents at sample n, using a nonlinear
equation solver such as Newton’s method. The following
subsections demonstrate that one can solve for either in or
vn, which give slightly different convergence properties.

1) Classical K-method: The only unknown in the state
update (6) is in, the outputs of the nonlinear function (2),
or, for circuits, the nonlinear device currents, at the current
time step. Combining (2) and (3) to eliminate vn,

in = f (Dxn + Eun + Fin) . (8)

Using (6) in (8) results in a nonlinear equation with one
unknown,

in = f (αDHxn−1 + (DHB + E) un + (DHC + F) in) .
(9)

The K-method defines

K = DHC + F, (10)

pn = αDHxn−1 + (DHB + E) un (11)

so (9) can be written

0 = f (pn + Kin)− in. (12)

This is a nonlinear equation with one parameter pn, which
can be solved for unknown in using a nonlinear solver such
as Newton’s method.

If the mapping from pn and in is functional, (12) is an
implicitly defined nonlinearity with parameter pn,

in = g (pn) , (13)

a function representing the memoryless nonlinearity of the
system. This condition can be rigorously described using the
implicit mapping theorem (see [7] for details) as

det
(
∂f
∂v

K− I
)
6= 0. (14)

This happens to be the condition under which the linearized
system in Newton’s method can be solved. If the solution
exists, then, locally, Newton’s method will find the solution.
It may be possible that there are more than one local solution.
However, most audio amplification circuits will have a single
stable operating point. Multiple operating points are often the
result of regenerative, or positive, feedback, which is typically
not found in audio amplification circuits.

This memoryless nonlinearity depends on the method of
discretization because K depends on H, which encapsulates
the discretization parameters. Furthermore, (13) takes a linear
transformation of states and inputs to generate an effective

z−1

N−D lookup table

C
om

pute param
eter

p i x
S

tate update

u

Figure 1. Nonlinear state-space filter corresponding to the K-method solution.

input to the original nonlinear function. Borin, et al. [7] noted
that this can be done prior to runtime to generate the explicit
function g(pn). In the case of highly saturating nonlinearities,
convergence is difficult and offline computation allows manual
tuning of the solver parameters to achieve an accurate solu-
tion. This method is designed to solve such nonparametric,
highly saturating nonlinearities that would otherwise present
convergence problems.

2) Modified K-method: It was found experimentally that
iteration on the nonlinear terminal voltages converges faster
than iteration on the device currents; therefore, we solve for
vn instead. This is likely due to the compressive nature of
the voltages across device terminals as a function of current.
Substitute (2) in (3) and eliminate xn to derive a nonlinear
equation for vn

0 = pn + Kf(vn)− vn, (15)

where the parameter pn and matrix coefficient K are defined
as previously for the classical K-method.

The existence of an explicit function relating the parameter
to the nonlinear variable

vn = Γ (pn) (16)

is given by the condition

det
(

K
∂f
∂v
− I
)
6= 0, (17)

which differs from (14) in the sequence of multiplication by
K.

C. Signal processing algorithm

Given the matrix coefficients as in Sec. III-A, the K-method
can generate the following explicit state update procedure:

1) Compute pn using (11),
2) Compute in = f(Γ(pn)) by lookup into transformed

nonlinear function (16) and (2),
3) Perform state update using (6),
4) Compute outputs using (4).

This is essentially a recursive nonlinear state space filter with
a nonlinearity in the loop as shown in Fig. 1.

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 4

IV. NODAL K-METHOD

It is tedious to derive the ODE for each modeled circuit
to use with the K-method. The Nodal K-method employs the
Modified Nodal Analysis technique to automate this process,
prescribing a procedure for deriving the ODE in the form
required by the K-method; i.e., the NK-method automates the
derivation of the K-method parameters described in Sec. III-A.
The NK-method splits the process of modeling a circuit into
an automated offline analysis phase, and a runtime nonlinear
filter.

A. Modified Nodal Analysis

Contemporary circuit simulators set up nodal equations for
circuits in a matrix formulation known as Modified Nodal
Analysis (MNA) [2], [3]. MNA can be adapted to solve for
the nonlinear state-space form required for the K-method.

MNA sets up a matrix system of equations for the nodal
equations of a circuit

Gν = c, (18)

where G is the conductance matrix, ν ∈ RP represents the
voltages of the P nodes in the circuits, c ∈ RP is a vector of
any current sources into each of the nodes. Each row in the
system corresponds to KCL for a node. Solving the matrix
system yields the solution for the unknowns vector ν.

Each component type (resistor, capacitor, inductor, mutual
inductance/transformer, diode, bipolar junction transistor) con-
tributes to rows of ν and c and also to rows and columns
of G corresponding to the component’s terminal nodes. This
allows straightforward programmatic construction of G, ν and
c by applying rules to a list of circuit components and their
connectivity.

MNA augments the system with additional unknowns added
as rows to the system to solve for, e.g., current into a voltage
source. In this case, the source voltage is placed in a new
row in source vector c and its unknown current augmented to
the unknowns vector ν. Solving for these additional unknowns
requires auxiliary equations, in this case, relating the source
voltage to the node voltages.

B. Application to K-Method

To apply the K-Method to circuits, one chooses the state
variables x to be the voltages across the terminals of capacitors
and the currents through inductors. The inputs u represent
the input current and voltage sources to the circuit. Nonlinear
devices contribute nonlinear currents i computed by vector
function f , which maps control voltages v across the sense
terminals to the terminal currents of the devices. Because
voltages in ν correspond to nodes in the circuit, the controlling
voltages are specified by the difference in node voltages of the
two sense terminals, which are termed controlling pairs.

One can modify the MNA system to solve for parameters
in the form of (1). Namely, decompose c into contributions
from the right hand side of (1) and augment the unknowns
vector with the state derivatives:

Gν = M1x + M2u + M3i. (19)

One then solves for the unknowns ν by inverting G. This
solves for all the node voltages, voltage source currents and
state derivatives ẋ in terms of x, u, and i, which gives
expressions for K-method coefficients A, B, and C. Each
controlling voltage in v can be found by subtracting the node
voltages in ν that correspond to its controlling pair to find D,
E, and F. The outputs y are usually voltages between certain
nodes, so L, M, and N can be found in a similar way.

In the NK-method, each element contributes to a particular
row or column of the MNA matrix system. Arrays keep track
of these index for states, sources, nonlinearities, controlling
pairs, and equation row. The number of rows in the MNA
system corresponds to the number of nodes in the circuit
plus the number of auxiliary equations. Each row in the
linear system corresponds to a linearly independent equation
that helps find the unknowns, which are node voltages and
additional quantities such as voltage source terminal currents,
and state derivatives.

Upon scanning the netlist, the parser counts the number of
nodes, state elements, sources, controlling pairs and nonlin-
earities in the circuit, allocates space for the MNA system,
and assigns indices to those elements. A second pass through
the elements fills in the matrices at the indices assigned in the
first pass with the value specified by the element.

Templates can be derived for each component type to fill
in G and M1, M2, M3. Templates also assign contributions
from the nonlinear elements to f and its Jacobian, Jf (v). An
example of the process is given in Sec. VII-A.

Table I shows the templates to build the Nodal K-method
system in (19). An entry in the table like G [i, j]← x indicates
that the element adds x to the value at the ith row and jth
column of matrix G. The symbols n+, n− refer to the entries
in unknowns vector ν that correspond to the circuit nodes of
the + and − terminals of two terminal elements. The indices
eqi, statei, or srci denotes the entry in unknowns vector ν,
state vector x, or source vector u of the ith auxiliary equation,
state element, or source element respectively. Index nli denotes
the entry of the output of vector function f(v) corresponding
to the ith nonlinear current equation, and cpj, the entry of
the vector of controlling voltages v corresponding to the jth
controlling pair. A definition in the table such as u [srci] , I
indicates for example that the output current of current source
I is assigned to the srci-th entry of source vector u. As another
example, v [cpj] , ν [n+]−ν [n−] says that the cpj-th entry of
v is assigned to be the difference between the node voltages of
the + and − terminals of the nonlinear element. These rules
and others have been implemented in Python to automatically
derive K-method parameters from a netlist.

V. DISCRETE K-METHOD

It was found that in certain circuits containing reactive
elements in series, G in the Nodal K-method was singular.
This is due to the nature of differential algebraic equations.
Circuit simulators are able to handle a wide variety of circuits
because they discretize circuit elements first and then apply
MNA. Using the same approach with a nonlinear discrete time
system, termed the DK-method, improves the robustness of the
automated parameter derivation.

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 5

Table I
MNA TEMPLATES FOR NODAL K-METHOD

Resistor R = 1/G

G [n+,n+] G
G [n+, n−] −G
G [n−,n+] −G
G [n−,n−] G

Capacitor C
G [n+, eqi] C
G [n−, eqi] −C
G [eqi, n+] 1
G [eqi, n−] −1

M1 [eqi, statei] 1

ν [eqi] , dVC
dt

x [statei] , VC

VSource V
G [n+, eqi] 1
G [n−, eqi] −1
G [eqi, n+] 1
G [eqi, n−] −1

M2 [eqi, srci] 1

u [srci] , V

ν [eqi] , IV , voltage source current
ISource I

M2 [n+, srci] −1
M2 [n−, srci] 1

u [srci] , I

Diode Id
(
v

[
cpj

])
M3 [n+, nli] −1
M3 [n−, nli] 1

Jf

[
nli, cpj

] ∂Id
∂Vd

∣∣∣
v[cpj]

v
[
cpj

]
, ν [n+]− ν [n−]

f [nli] , Id
(
v

[
cpj

])

The DK-method starts with a new set of templates for
discretized reactive elements, and performs a different form
of MNA to find state transition coefficient matrices and
the nonlinear relationships between system variables. First
we present a derivation of the discretized reactive element
templates, known as companion circuits. Then we re-derive the
coefficient matrices using these discretized reactive elements.
This produces a new form of nonlinear filter similar to that of
the K-method.

Like the NK-method, the DK-method splits the process of
modeling a circuit into an automated analysis phase to derive
runtime parameters from a netlist, and a robust runtime filter
to simulate the circuit in real time.

A. Companion circuit

Component-wise discretization of circuit state elements
results in companion circuits, which replace the original
component in simulation with equivalent discrete-time compo-
nents. This means that a different set of templates (shown in
Tab. II)is used for these discretized reactive elements during
construction of the MNA matrix equation. Figure 2 depicts
a companion circuit for capacitors using trapezoidal rule
discretization,

x[n] = x[n− 1] +
T

2
(ẋ[n] + ẋ[n− 1]) . (20)

trapz Gc
C ic[n-1]

+

-

v[n]
i[n]

+

-

Figure 2. Companion circuit from discretization of capacitor.

B. Derivation of the state update

Trapezoidal rule discretization results in a state update that
can be written in general as

x[n] = g v[n] + s x[n− 1]. (21)

For capacitors, g = 2GC(T), where GC(T) is the discrete
conductance of the capacitor, a function of the sampling rate
T , x[n] is the capacitor equivalent source current at time n, and
s = −1. For inductors g = 2, x[n] is the inductor equivalent
voltage at time n, and s = 1. For both types of elements, v[n]
is the voltage across the device at time step n.

For systems with multiple state elements, we can write the
state update (21) in vector form

x[n] = Geve[n] + Sx[n− 1], (22)

where Ge is a diagonal matrix comprising the scalars g
relating the voltages across the elements ve to their simulation
state variables x, which depend on the discretization method.
Diagonal matrix S multiplies each state by the appropriate
sign s for state update.

These state elements can then be incorporated in MNA as
conductances in matrix G and sources c, with ν the vector of
node voltages and unknown terminal currents. Table II shows
the modified templates for building the MNA system (24)
using companion circuits.

C. Solution of the discrete K-method

We seek an expression for the element variables in the form

ve[n] = Aex[n− 1] + Beu[n] + Cei[n], (23)

where vector ve comprises the voltages across the state
elements as computed by the coefficient matrices Ae, Be, Ce,
vector u comprises the sources in the circuit, and vector i
comprises the terminal currents of the nonlinear elements.

By decomposing the source vector c in MNA into contribu-
tions from the states (companion circuit sources), inputs, and
nonlinear elements, we can write a system in the form

Gν[n] = M1x[n− 1] + M2u[n] + M3i[n]. (24)

Owing to the conductances of the discretized state elements,
G will be nonsingular and the system can be solved to
find the node voltages/solution currents ν[n] as in classical
MNA. Unlike MNA, which solves the sparse system by LU
decomposition, we must invert G to solve for ν in terms of
x, u, and i.

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 6

Table II
MODIFIED TEMPLATES FOR REACTIVE ELEMENTS IN DISCRETE

K-METHOD

Capacitor C
G [n+, n+] GC

G [n+, n−] −GC

G [n−, n+] −GC

G [n−, n−] GC

M1 [n+, statei] 1
M1 [n−, statei] −1

x
[
statej

]
,= iC

GC = T / 2C for trapezoidal integration
Inductor L
G [n+, eqi] 1
G [n−, eqi] −1
G [eqi,n+] −1
G [eqi,n−] 1
G [eqi, eqi] ZL

x
[
statej

]
, vL

va [eqi] , IL
ZL = 2L/T for trapezoidal integration
Mutual Inductance K
G [eqL1, eqL2] M12

G [eqL2, eqL1] M12

M12 = K
√
L1 L2

eqL1, eqL2 is row # of IL1, IL2 in va

Subtracting node voltages in the solution ν corresponding
to terminals of the state elements finds the element voltages ve

(23). Combining (23) with (22) gives a state update equation

x[n] = Ax[n− 1] + Bu[n] + Ci[n], (25)

where coefficient matrices A = GeAe + S, B = GeBe, C =
GeCe.

The terminal voltages, v[n], for the nonlinear devices can
also be expressed implicitly as in the K-method as

0 =p[n] + Ff(v[n])− v[n], (26)

p[n] = Dx[n− 1] + Eu[n], (27)

by subtracting rows of ν corresponding to the controlling pairs
to find coefficient matrices D, E, F. As in the K-method (26)
can often be solved for an explicit mapping

v[n] = Γ(p[n]). (28)

Output coefficients L, M, and N are also derived in the
same manner.

D. Summary of the DK-method

As with the NK-method, the DK-method scans the netlist
describing the circuit and builds the MNA system (24) accord-
ing to the relevant rules in Tabs. I and II. It then solves for the
DK-method parameters as derived above, which can be used
to generate a recursive nonlinear filter for use in a runtime
loop.

The runtime loop for this discrete-time K-method can be
summarized as

1) Change of variable to parameter using (27),
2) Nonlinear function lookup i[n] = f(Γ(p[n])) using

solved nonlinearity (28), (2),

3) State update using (25),
4) Compute outputs using (4).

VI. NONLINEAR SOLVERS

The K-method and its variants require the use of a nonlinear
root finder to solve the implicit nonlinear equations (12), (15),
or (26) for the unknown nonlinear variable at time n. There
are several methods to do this as described in [16]. These
include fixed point iteration, and Newton’s method, which is
a particular form of fixed point iteration. We opt for Newton’s
method because it converges at a second-order rate, and is
guaranteed to converge if initialized close to the solution [16].
Furthermore, circuits tend to be classified as “stiff” ODEs and
fixed point iteration is known to perform poorly for this class
of problems [4].

A. Newton’s method parameters

Newton’s method solves a systems of equations in the form

0 = R(x). (29)

Newton’s method finds values for x that cause the residual
function, the right hand side of (29) R(x), to evaluate to 0.
It does so by iterating through the process of taking a guess
for x, evaluating how far it is from the solution, and moving
towards that solution. This measure of distance from the final
solution requires the Jacobian, denoted JR(x), of the residual
function R(x) with respect to x and evaluated at x.

Newton’s method is in general given by

∆x = −JR
−1 (x) R(x) (30)

x := x + ∆x

and iterating until the L∞ norm is below some acceptable
parameter value RELTOL

‖∆x‖∞ < RELTOL.

It converges rapidly if the iteration is started with an initial
guess for x that is close to the final solution.

Newton’s method requires the Jacobian to be invertible at
every point in the desired solution space,

det (JR(x)) 6= 0.

To verify convergence to a valid solution, the residual at
convergence is computed as R(x). The solution x is accepted
if

‖R(∆x)‖∞ < MAXRES.

These two parameters RELTOL and MAXRES govern
the accuracy of the Newton’s method solver. In the Nodal
K-method, the variable to be solved for is a voltage and
RELTOL can be viewed as an noisy voltage error, which can
be masked beneath other noise sources in a realistic system.

To make this explicit, we derive the equations corresponding
to (30) for each proposed method. Because the K-method is
a transient simulation, the following is solved at each time
step, so the subscript n is dropped for notational simplicity.
Furthermore, the residual function is parametric with respect
to p and is thus denoted Rp.

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 7

1) Classical K-method: Defining the residual function (29)
to be the right hand side of (12),

Rp(i) = f(p + Ki)− i, (31)

we find, by the matrix chain rule for differentiation,

JR(i) = Jf (p + Ki)K− I, (32)

where Jf is the Jacobian of the device nonlinearities (2).
Using this in (30) we arrive at the linearized system to be

solved repeatedly until i, the outputs of the device nonlinear-
ities at time n, converge:

(Jf (Ki + p)K− I) ∆i = − (f(Ki + p)− i) . (33)

2) Modified K-method: Defining the residual function to be
the right hand side of (15),

Rp(v) = p + Kf(v)− v, (34)

The Jacobian of this residual function is

JR(v) = KJf (v)− I, (35)

where Jf is again the Jacobian of the device nonlinearities
(2). The following equation is then solved repeated until v,
the device terminal voltages at time n, converge:

(KJf (v)− I) ∆v = − (p− v + K f (v)) . (36)

3) Discrete K-method: Defining the residual function to be
the right hand side of (26),

R(v) = p + Ff(v)− v, (37)

The Jacobian of this residual function is

JR(v) = FJf (v)− I, (38)

where Jf is again the Jacobian of the device nonlinearities (2).
The following equation is then solved repeated until vn, the
device terminal voltages at time n, converge:

(F Jf (v)− I) ∆v = − (p + F f(v)− v) . (39)

4) Discussion: Note that the functions needed for each of
the proposed methods depend only on the K-method coeffi-
cient matrices, which can be derived using MNA as described
above. The only other information needed is the Jacobian
of the nonlinear device outputs, which is typically included
in the specification for the device model. The same device
model equations can be used for each of the proposed methods
to build up f(v) and Jf (v) programmatically. This allows
automation of the K-method given a netlist description of the
circuit.

B. Convergence aids – Homotopy

For circuits with saturating nonlinearities, convergence at
extremely large signal levels is difficult. One must provide
initial conditions that are very close to the final solution
for convergence to happen. It is difficult to know a priori
when starting a simulation what initial conditions would be
sufficient for the solver to converge. When precomputing the
nonlinearity as done in the K-method, one needs to come
up with a scheme for finding good initial conditions for
every value of pn. Alternatively modifications to the Newton’s
method can improve convergence. One method that works
well as implemented in this work is that of Newton homotopy
[17], a globally convergent method, which is used in advanced
circuit simulators to find dc solutions of nonlinear circuits. It
parametrizes the residual function (29) and repeatedly solves
a new residual function

RH(xi, ρi) = R(xi)− (1− ρi) R(x0) = 0. (40)

Parameter ρi ∈ [0, 1] is monotonically stepped for i ∈ [1, N]
until ρN = 1. At the ith step, homotopy applies Newton’s
method to find xi, solving RH(xi, ρi), using the solution to
the i−1th step xn−1 as the initial condition. For a sufficiently
small increment, ∆ = ρi − ρi−1, this initializes Newton’s
method for each homotopy step with valid solutions until
ρ = 1 and the final solution is found. An appropriate increment
for ∆ can be found adaptively by choosing a value for ∆ = ∆∗

and if convergence fails for ρi, then halving ∆ = ∆∗/2
repeatedly until a sufficiently small ∆ is found that produces
convergence. This adaptive search for a good ∆ has been
implemented and found to be sufficient in practice for the
various K-methods in this work.

One intuitive form of applying homotopy is slowly turning
on the sources in the system so that the initial values for x
during each intermediate application of Newton’s method are
always close to the actual intermediate solutions.

To make homotopy more concrete, the residual function for
the DK-method would be

RH(vi, ρi) = p+Ff(vi)−vi−(1− ρi) (p + Ff(v0)− v0) ,
(41)

where v0 = 0 is the zero vector.
It is obvious that homotopy takes much more computational

effort than Newton’s method. Because there is no guaranteed
time bound for homotopy to converge, and because typically
it requires far more total iterations than Newton’s method, it is
not appropriate for use as a real-time solver. However, because
homotopy usually converges to a solution, it is ideal for use
as an offline solver with the K-method.

C. Representation of the solved nonlinearity

In order to circumvent convergence problems at runtime, the
nonlinearity (13), (16) or (28) was precomputed and stored as
a table for real-time implementations of the nodal K-method.
Several options exist for looking up this function at runtime.

The simplest option would be to do nearest neighbor ap-
proximation – that is, to use the value in the table that is

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 8

1 2Rs

Cl
2.2k

0.01u
+
−Vs

D1 D2

+

-

V2

+

-
V1

Figure 3. Schematic of the diode clipper with low-pass capacitors.

Vs 1 0 0V
Rs 1 2 2 . 2 k
Cl 2 0 0 . 0 1 u
D1 2 0 n914
D2 0 2 n914
. model n914 D (Vt =0.045 I s =2 .52 e−9 N= 1 . 0)

Figure 4. Netlist for Fig. 3

closest to the lookup parameter. Alternatively, a more accurate
and smooth function would result from multidimensional
linear interpolation, which is the multidimensional extension
of linear and bilinear interpolation as done in this work. The
table was implemented using a uniform grid for constant-time
accesses. Interpolation of grid points was performed using
multidimensional interpolation, drawing upon the C++ code
implementing interpn from the open-source project Octave
[18].

The nonlinear multidimensional function (13) can also be
implemented using one of many function approximation or
nonlinear regression techniques [19]. These include multivari-
ate splines [20], [21], neural networks [19], and support vector
regression [19]. In particular, many have tried to model guitar
distortion using neural networks, but the complexity of the
memory in the nonlinearity makes this technique unreliable.
With the K-method, one can instead perform nonlinear system
identification [22] on a multidimensional, memoryless nonlin-
earity, which is a simpler problem for neural networks to solve.

Because Newton’s method has guaranteed quadratic con-
vergence if initialized with a guess close to the final solution,
another possibility is to use a rough function approximation to
initialize Newton’s method, which then refines the result for
greater accuracy.

Finally, note that many audio circuits are highly parametric.
The nonlinearity (13) can be solved sweeping the parameter
settings and including the parameter as another dimension in
the function approximation. Function approximation allows
for interpolation between settings and readily incorporates
parametric changes while eliminating the risk of convergence
failures during runtime.

VII. APPLICATION EXAMPLE

This section demonstrates the nodal and discrete K-methods
applied to the simple single state problem of the one-capacitor
diode clipper using trapezoidal rule integration. The behavior
of various numerical methods applied to the single-capacitor
diode clipper has been studied extensively [10]. Figures 3 and
4 show the corresponding schematic and netlist.

The nonlinearities are due to the two diodes, which are
nonlinear voltage-controlled current sources given by

Id(Vd) = Is

(
exp

Vd

Vt
− 1
)
, (42)

where Id is the diode current controlled by voltage Vd across
the two terminals of the diode, Is and Vt are physical param-
eters of the diode.

A. NK-method

This section demonstrates the derivation of the K-method
coefficients from the netlist of the diode clipper.

Scanning the netlist determines that the diode clipper has
three nodes, including ground. In general, the ground node
and associated rows and columns are trimmed from the sys-
tem, because otherwise the system would be overdetermined.
Trimming is done as a postprocess step because it eliminates
having to treat ground as a special case during parsing. The
unknowns vector is then ν =

[
V1 V2 IV V̇Cl

]T
. The

last two unknowns require auxiliary equations to nodal anal-
ysis, which solve for the current through the voltage source,
and the derivative of the capacitor voltage. These unknowns
are indexed by the equation index eqi.

The following describes how each element contributes to the
MNA system, ignoring connections to ground for brevity. The
voltage source adds an element to the source vector u = Vs,
and source current IV to the unknowns vector. It contributes
G[3, 1] = 1 and M2[3] = 1, relating the input source voltage
to the nodal voltages, and G[1, 3] = 1, adding its current to
KCL at node 1.

The resistor has two terminals, the n+ terminal is node 1 and
the n- terminal is node 2. According to the template, Rs adds to
G[1, 1] = G[2, 2] = G = 1/Rs and G[1, 2] = G[2, 1] = −G,
which expresses Ohm’s law in matrix form.

The capacitor adds a state variable x = VCl to the system.
It contributes G[2, 4] = Cl, adding the capacitor current I =
ClV̇Cl to KCL at node 2, and M1[4] = 1, G[4, 2] = 1, relating
the capacitor voltage to the nodal voltages.

The diodes contribute nonlinearities to the system i =[
iD1 iD2

]T
, and contribute M3[2, 1] = −1, M3[2, 2] = 1

respectively. The diode currents are a function of the con-
trolling pair (2,0) between node 2 and ground. Duplicate
controlling pairs can be detected and eliminated so that both
diodes are controlled by the same controlling pair voltage
v =

[
(V2 − 0)

]
. They contribute to the global nonlinear

current vector function i(v) =
[
iD1(V2) iD2(−V2)

]T
.

The Jacobian can also be derived automatically, assigning
the partial derivatives of the diode current to indices of the
Jacobian matrix

Jf =

 ∂Id

∂Vd

∣∣∣
V2

∂Id

∂Vd

∣∣∣
−V2

 . (43)

The resulting MNA corresponding to (19) can be solved for
the unknowns and manipulated as derived above to find the

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 9

Vs
V2

Rs

+
+
− GC

iC

21

+

-

i2D

Figure 5. Companion circuit of single capacitor diode clipper.

K-method parameters:
G −G 1 0
−G G 0 Cl

1 0 0 0
0 1 0 0




V1

V2

IV
V̇Cl

 =


0
0
0
1

 [VCl] +


0
0
1
0

 [Vs] +


0 0
−1 1
0 0
0 0

[iD1

iD2

]
. (44)

Solving (44) for V̇Cl finds the A, B, and C coefficients

V̇Cl = − G
Cl︸︷︷︸
A

VCl +
G

Cl︸︷︷︸
B

Vs +
[
− 1

C
1
C

]︸ ︷︷ ︸
C

[
iD1

iD2

]
, (45)

which is the ODE studied in [10]. Likewise, solving for V2

finds the controlling voltages as well as the output variable,
and gives the D, E, F and L, M, N coefficients,

V2 = VCl︸︷︷︸
D,L

+ 0︸︷︷︸
E,M

Vs +
[

0 0
]︸ ︷︷ ︸

F,N

[
iD1

iD2

]
.

B. DK-method

Alternatively, DK-method avoids having to solve for state
derivatives because it first discretizes the state elements, con-
verting them into equivalent companion circuits that contain
memory, and results in simpler matrix equations. Figure 5
depicts the companion model for the diode clipper with the low
pass capacitor replaced by its companion circuit. The parallel
diodes connected with opposite polarities can be combined
and written as

I2D(V) = 2Is sinh (V/Vt) . (46)

Let the state be x = iC , the input u = Vs, and the nonlinear
currents i = i2D. Define G = 1/Rs, GC = T / 2C. All
circuit variables correspond to time n unless otherwise noted.
Following similar parsing procedures to the NK-method and
ignoring the ground node for notational simplicity, the nodal
DK-method setup corresponding to (24) for this circuit is G −G 1

−G G+GC 0
1 0 0

 V1

V2

IV

 =

 0
1
0

 iC [n− 1] +

 0
0
1

Vs +

 0
1
0

 i2D. (47)

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

p

V
o=

g(
p)

Figure 6. Explicit nonlinearity for single capacitor diode clipper.

Next we solve (47) for V2 to find the voltage across capacitor,
the state element, which corresponds to (23),

V2 =
1

GC +G
iC [n− 1] +

G

GC +G
Vs +

1
GC +G

i2D. (48)

Because this is also the controlling voltage and the output
variable, this expression also gives D, E, F and L, M, N.
Using (48) in (22) to solve for iC derives a state update
equation corresponding to (25) and gives A, B, C:

iC =
GC −G
GC +G

iC [n− 1] +
2GCG

GC +G
Vs +

2GC

GC +G
i2D. (49)

Solving for the controlling variable V2 requires solving the
implicit equation (48), which corresponds to (26) and can be
rewritten

0 = p+
1

GC +G
i2D(Vo)− Vo, (50)

where Vo is an implicitly defined function

Vo = g(p) (51)

of parameter

p =
1

GC +G
iC [n− 1] +

G

GC +G
Vs. (52)

To compute the output given the input, first compute p
by (52), then compute the nonlinear currents iD using (51)
and (46). Update the state using (49) and compute the output
voltage using (48).

To illustrate the explicit nature of this computation despite
the use of an implicit integration method, the explicit nonlinear
function (51) is shown in Fig. 6.

VIII. CONCLUSIONS

We have derived first an extension to the K-method of
simulating nonlinear musical acoustics to derive simulations
of circuits for audio amplification, and second, a more robust,
discrete-time version of the K-method for circuits. This work
also introduces the use of homotopy, a globally convergent
method, to aid Newton-Raphson solution of the nonlinear
systems in the K-method. The method allows automatic gen-
eration of real-time filters that simulate the desirable nonlin-
earities of circuits for musical effects applications and greatly
facilitates the process of implementing K-method models of
nonlinear systems. This approach is general and can easily

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 18, NO. 3, MARCH 2010 10

incorporate device models for a variety of exotic audio fre-
quency devices including germanium transistors and vacuum
tubes.

A recursive nonlinear filter in state-space form is the con-
sequence of discretizing the system equations using standard
implicit numerical integration formulas used in stiff ODE
solvers. Although the nonlinearities require the use of iterative
solvers, these can be computed offline, resulting in a runtime
algorithm that is explicit. Such an efficient recursive nonlinear
filter potentially offers an attractive alternative to computa-
tionally complex approximations of nonlinear systems such as
Volterra series for applications outside of musical effects, e.g.,
linearization of communications circuits.

Given this model structure, future extensions to this work
may include automatic nonlinear system identification of
model parameters from measurements of real circuits using
various excitation signals. Furthermore, the parametric nature
of musical circuits demands research into the implementation
of real-time parameter changes in this nonlinear filter structure.
Further work can implement standard mechanical components
and integrate waveguides into the netlist specification, thus en-
abling the automatic generation of musical synthesis routines
from equivalent circuit descriptions.

REFERENCES

[1] J. Pakarinen and D. T. Yeh, “A Review of Digital Techniques for
Modeling Vacuum-Tube Guitar Amplifiers,” Comput. Music J., vol. 33,
no. 2, pp. 85–100, 2009.

[2] A. Vladimirescu, The Spice Book. New York: Wiley, 1994.
[3] W. J. McCalla, Fundamentals of Computer-Aided Circuit Simulation.

Boston: Kluwer Academic Publishers, 1987.
[4] J. C. Butcher, Numerical Methods for Ordinary Differential Equations.

Hoboken, NJ: Wiley, 2003.
[5] A. Sarti and G. De Poli, “Toward nonlinear wave digital filters,” vol. 47,

pp. 1654–1668, June 1999.
[6] A. Sarti and G. De Sanctis, “Systematic methods for the implementation

of nonlinear wave-digital structures,” vol. 56, no. 2, pp. 460–472, Feb.
2009.

[7] G. Borin, G. De Poli, and D. Rocchesso, “Elimination of delay-free
loops in discrete-time models of nonlinear acoustic systems,” vol. 8,
no. 5, pp. 597–605, Sep. 2000.

[8] F. Avanzini and D. Rocchesso, “Efficiency, accuracy, and stability issues
in discrete time simulations of single reed instruments,” J. Acoust. Soc.
Am., vol. 111, no. 5, pp. 2293–2301, May 2002.

[9] F. Fontana and F. Avanzini, “Computation of delay-free nonlinear digital
filter networks: Application to chaotic circuits and intracellular signal
transduction,” vol. 56, no. 10, pp. 4703–4715, Oct. 2008.

[10] D. T. Yeh, J. S. Abel, A. Vladimirescu, and J. O. Smith, “Numerical
Methods for Simulation of Guitar Distortion Circuits,” Comput. Music
J., vol. 32, no. 2, pp. 23–42, 2008.

[11] A. Huovilainen, “Enhanced digital models for analog modulation ef-
fects,” in Proc. 8th Int. Conf. Digital Audio Effects (DAFx-05), Madrid,
Spain, Sept. 20-22 2005, pp. 155–160.

[12] ——, “Nonlinear digital implementation of the Moog ladder filter,” in
Proc. 7th Int. Conf. Digital Audio Effects (DAFx-04), Naples, Italy, Oct.
5–8, 2004, pp. 61–64.

[13] M. Karjalainen and J. Pakarinen, “Wave digital simulation of a vacuum-
tube amplifier,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cess., vol. 5, Toulouse, France, 2006, pp. 153–156.

[14] M. Civolani and F. Fontana, “A nonlinear digital model of the EMS
VCS3 voltage-controlled filter,” in Proc. 11th Int. Conf. Digital Audio
Effects (DAFx-08), Espoo, Finland, Sept. 1–4, 2008, pp. 35–42.

[15] D. T. Yeh and J. O. Smith, “Simulating guitar distortion circuits using
wave digital and nonlinear state-space formulations,” in Proc. 11th Int.
Conf. Digital Audio Effects (DAFx-08), Espoo, Finland, Sept. 1–4, 2008,
pp. 19–26.

[16] L. O. Chua, Computer-Aided Analysis of Electronic Circuits. Engle-
wood Cliffs: Prentice Hall, 1975.

[17] A. Ushida, Y. Yamagami, Y. Nishio, I. Kinouchi, and Y. Inoue, “An
Efficient Algorithm for Finding Multiple DC Solutions Based on the
SPICE-Oriented Newton Homotopy Method,” vol. 21, no. 3, pp. 337 –
348, Mar. 2002.

[18] J. W. Eaton, GNU Octave Manual. Network Theory Limited, 2002.
[Online]. Available: http://www.octave.org/

[19] T. Hastie, R. Tibshirani, and J. Friedman, Nonlinear System Identifica-
tion. Berlin: Springer, 2008.

[20] J. H. Friedman, “Multivariate Adaptive Regression Splines,” The Annals
of Statistics, vol. 19, no. 1, pp. 1–67, 1991.

[21] T. Kavli, “ASMOD – An algorithm for adaptive spline modeling of
observation data,” Int. Journal of Control, vol. 58, no. 4, pp. 947–967,
1993.

[22] O. Nelles, Nonlinear System Identification. Berlin: Springer, 2001.

PLACE
PHOTO
HERE

David T. Yeh received the B.S. in Electrical En-
gineering and Computer Sciences at U.C. Berkeley,
and the M.S. and Ph.D. degrees in Electrical Engi-
neering from Stanford University in 2009. His thesis
topic concerned the modeling of musical distortion
circuits such as stompboxes and vacuum tube audio
amplifiers primarily used as guitar distortion ef-
fects. His research interests include acoustics, music
information retrieval, audio signal processing and
analog/digital system design. His graduate work has
been funded by the Stanford Graduate Fellowship,

the National Defense Science and Engineering Graduate Fellowship, and the
National Science Foundation Graduate Fellowship.

From 2003-2005 he developed ultrasound medical imaging systems based
on cMUTs as a student in the Khuri-Yakub Ultrasonics Lab at Stanford.
In 2003 and 2006 he was with National Semiconductor as an analog IC
design intern. In 2009 he consulted for Countryman Associates, designing
analog circuits and adaptive signal processing algorithms for pro audio
microphone applications. He is currently employed at a research lab to design
analog/digital system for array imaging systems such as radar and ultrasound.

PLACE
PHOTO
HERE

Jonathan S. Abel received the S.B. in electrical
engineering from MIT in 1982, where he studied
device physics and signal processing. He received
his M.S. and Ph.D. degrees in electrical engineer-
ing from Stanford University in 1984 and 1989,
respectively. He is presently a Consulting Professor
at the Center for Computer Research in Music
and Acoustics (CCRMA) in the Music Department
at Stanford University where his research interests
include audio and music applications of signal and
array processing, parameter estimation, and acous-

tics. From 1999 to 2007, he was a Co-Founder and Chief Technology Officer
of the Grammy Award-winning Universal Audio, Inc. He was also Chief
Scientist of Crystal River Engineering, Inc., and a Lecturer in the Department
of Electrical Engineering at Yale University. As an industry consultant, Abel
has worked with Apple, FDNY, L3, LSI Logic, NRL, SAIC, and Sennheiser,
on projects in professional audio, GPS, medical imaging, passive sonar and
fire department resource allocation.

PLACE
PHOTO
HERE

Julius O. Smith received the B.S.E.E. degree from
Rice University, Houston, TX, in 1975. He re-
ceived the M.S. and Ph.D. degrees in E.E. from
Stanford University, Stanford, CA, in 1978 and
1983, respectively. He is presently a Professor of
Music and Associate Professor of Electrical Engi-
neering (by courtesy) at the Center for Computer
Research in Music and Acoustics (CCRMA) at
Stanford, teaching courses and pursuing research
related to signal processing techniques applied to
music and audio systems. For more information, see

http://ccrma.stanford.edu/~jos/.

