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Digital Audio Effects That Emulate
Analog Equipment Are Popular

“Modeling” amplifiers — Line 6, Yamaha, Roland,
Korg, Digidesign, etc.

CAPS open source LADSPA suite
— http://quitte.de/dsp/caps.html

Emulate guitar amplifier in software
For portability and flexibility
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Loudspeaker Modeling Work

* Linear response is primary contributor
 Convolutional impulse response libraries
e.g., http://noisevault.com/nv/
— CAPS Audio Suite, http://quitte.de/dsp/caps.html
— Virtual Air Guitar (Karjalainen et al. JAES 2006)
 Nonlinear studies and simulations
— Franken et al. (IEEE 2001): nonlinear WDF
— Klippel (AES 2001, etc): nonlinear state space
— Quaegebeur and Chaigne (JAES 2008):
nonlinear state space
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-/ Guitar Loudspeakers and Cabinets

« Electro-dynamic driver, closed- or open-back box

— Classical driver models with relatively soft cone and
stiff suspension have complicated behavior

- Linearity only at low power levels
- High directivity at high frequencies
- Limited bandwidth, e.g. 100 — 6000Hz
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Figure 1 Open-hack cabinet and electrodynamic drive  Figure 2: Equivalent circuit of a loudspeaker driver
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Nonlinearities in Loudspeakers

« Many types of nonlinearities (.7 ), especially:
— Nonlinear compliance (C,,)), stiffer for large excursion
— Inhomogeneous magnetic field (BI)
— Variation of voice coil inductance (L)
— Nonlinearity of cone stiffness in guitar loudspeakers
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Nonlinearities in lumped element speaker model
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S Measurement Setups (1)

/- Sound pressure response (anechoic chamber)
— Near field, far field in azimuth and elevation angles

 Cone vibration (laser vibrometer)
« Voltage/current relationship

Engl 12 inch cabinet with
Celestion G12 Vintage 30 driver




Measurement Setups (2)

/ < Linear response measured by logarithmic sweep
— FuzzMeasure (Macintosh)

» Nonlinearity measured at single frequencies by
linearly growing sine-wave ramps

— Harmonic distortion analyzed from sine responses
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Example of fundamental (1)
and harmonics level (dB)
growth for sine-wave ramp
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) Nonlinear Measurements, 70 Hz
Edge of dustcap Half radius
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 \elocity measurements
indicate higher distortion
with increasing radius
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&) Nonlinear Measurements, 200 Hz
Edge of dustcap Half radius
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« Distortion falls rapidly
with frequency

+ Distortion further away
from driving point of cone
IS higher
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Pressure - Velocity

Edge of dustcap

Complicated Nonlinear Behavior at

1kHz

Half radius

Time (s)

Plotted are harmonics of
500Hz

Loudspeaker was excited
with 1kHz

Time (sec)

Pressure signal shown.
Pitch halving effectat 1 s.

Complicated Nonlinear Behavior
at 1kHz - Spectrogram



Linear modeling (1)

« Common pole modeling with parallel
second-order filters

« Logarithmic frequency resolution as a
result of estimating the poles by warped
IR filter design
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Linear modeling (2)

« Common pole modeling results:
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Nonlinear modeling

« Distortion modeling only at low
frequencies where it is most significant

« Distortion at low frequencies depends
on cone displacement
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Nonlinearity modeling Radiation modeling

Nonlinear modeling (1)
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Nonliearity modeling

Radiation Wodeling

econd-order IR filter Second-order FIR filt

8

Amplitude |dB re vV |
LooLL L
5 8 8 &

2

%
3
o
3

2 3 4 ’3 ’4
10 10 10 10 10 10
Frequency [Hz] Frequency [Hz]



Nonlinear modeling (2)
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Nonlinear modeling (3)

« Perfect fit only at a single frequency:
Polynomial coefficient fit for 70Hz
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Nonlinear modeling (4)
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Nonlinearity modeling Radiation modeling

+ Qualitatively correct behavior at higher
frequencies (140 Hz displayed)
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”Nonlinear modeling sound examples
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Summary

Measured linear and nonlinear behavior of a
Celestion G12 guitar loudspeaker.

 Proposed linear model based upon parallel filter
bank design.

 Proposed simple/efficient model with static
nonlinearity.

» Most salient effects are linear.
Nonlinear effects are subtle.

« Nonlinear behavior is complicated and requires
further investigation.

Thank you for your
attention!
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