Appendix D

Matrix Calculus

From too much study, and from extreme passion, cometh madnesse.

—Isaac Newton [205, §5]

D.1 Gradient, Directional derivative, Taylor series

D.1.1 Gradients

Gradient of a differentiable real function f(z): R¥—R with respect to its vector

argument is defined uniquely in terms of partial derivatives

Vf(x)2 | 022 | eRF

(2053)

while the second-order gradient of the twice differentiable real function with respect to its

vector argument is traditionally called the Hessian;

°f () 9°f (x) 9*f (x)
ax% O0x10x2 T Bzidzk
°f () Pf(x) .. f(x)
V2f(x) A 825011 9z3 Bz20TK c S¥
0%f(x) 0% (x) &*f(2)
drydz1  Oxxdza dx
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The gradient of vector-valued function v(z) : R—RY on real domain is a row vector

Vv(x) A |: avéia:) avgiw) avgr(w) :| c RN (2056)

while the second-order gradient is

Vi) 2 [ ZuE Pum . fu | e (2057)

Ox2 oz? oz?

Gradient of vector-valued function h(z) : R —R" on vector domain is

Ohy(x) Oha(z) . Ohn(z)
Oz Oz w1
Ohi(z)  Oha(z) . . Ohn(x)
Vh(l') é Oxo Oxo Oxo
: : : (2058)
Ohi(z)  Ohg(x) = Ohn(z)

= [Vhi(z) Vhy(z) --- Vhy(z)] € REXN

while the second-order gradient has a three-dimensional written representation dubbed

cubiz ;P-1
Ohy (x) Oha(x) Ohn (x)
V alxl V aZIl e V 31\;1
Ohy (x) Oha(x) Ohn (x)
Vzh(fﬂ) L v 8;2 v 822 eV Oxa
: : : (2059)
Ohy (x) Oha(x) Ohn (x)
v a;}( a;}( e V BJZK
= [V2hi(z) V2ha(z) - VZhy(z)] € RFNK
where the gradient of each real entry is with respect to vector x as in (2053).
The gradient of real function g(X): R¥*Y SR on matrix domain is
99(X) 99(X) . 99(X)
8X11 6X12 aXlL
99(X) 9g9(X) .. 99(X)
Vg(X) 2 0X21 0X22 0Xor c REXL
39(.X) 89(.X) . 8g('X)
0XKk1  O0Xk2 OX kL (2060)

[VX(:,l) g(X)
Vx(:,2) 9(X) c REXIXL
V() 9(X) |

where gradient V. ;) is with respect to the i*™® column of X . The strange appearance of
(2060) in RE*1XL ig meant to suggest a third dimension perpendicular to the page (not

D.1The word matriz comes from the Latin for womb; related to the prefix matri- derived from mater
meaning mother.
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a diagonal matrix). The second-order gradient has representation

vaX) gilX) .. v

Vzg(X) £ vaag)(();l) v%g)(()z(z) Vaag)((i) c RKxLxKxL
09(X) g oa(X) 9g()
Voxe Voxe  Voxe

(2061)
[VVX(:,I) g(X)

VVx(.,2) 9(X) € REXIXLXKXL

VVi(.r)9(X) ]

where the gradient V is with respect to matrix X .
Gradient of vector-valued function g(X): RE**SRY on matrix domain is a cubix

[V, g1(X) Ve g2(X) - Ve gn(X)
Vg(X) 2 VX(:,2)91(X') VX(:,2)92('X) VX(:,Q)QN(-'X)

' ' - 2062
V(0 91(X) Vixion)92(X) -+ V) gn(X) ] ( )
= [Vgi(X) Vga(X) -+ Vgn(X)] e RFXNXE
while the second-order gradient has a five-dimensional representation;
[VVx(1)91(X) VVx(ng2(X) -+ VVx(1)gn(X)
VVx(,,2) 91(X) VVix(.2)92(X) - VVx( 2 9n(X)

(1>

Vig(X)

‘ - - 2063
V¥V, 91(X) VVx(.r)92(X) -+ V¥V ) gn(X)] ( )

= [V291(X) VQgQ(X) V2gN(X)] c RKXNxLxKxL

The gradient of matrix-valued function g(X): R¥** S RM*N on matrix domain has
a four-dimensional representation called quartiz (fourth-order tensor)

Vg (X) Vgi(X) - Van(X)
Vg(X) 2 Vg (X)  Vgaa(X) - Vean(X) |  pMxNxKxL (2064)
Vgui(X) Van(X) -+ Voun(X)
while the second-order gradient has a six-dimensional representation
Vign(X) Viga(X) - Vign(X)
V2g(X) & V3go1(X)  Vgee(X) -+ VZgan(X) € RMXNXKXLXKXL (9065)
V2gui(X) Vigua(X) - VZgun(X)

and so on.
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D.1.2 Product rules for matrix-functions
Given dimensionally compatible matrix-valued functions of matrix variable f(X) and g(X)

Vx (F(X)'9(X)) = Vx(f) g + Vx(9) f (2066)
while [65, §8.3] [420]

Vx tr(F(X)Tg(X)) = Vx (0 (F(X)9(2)) + tr(9(X) £(2)))| (2067)

These expressions implicitly apply as well to scalar-, vector-, or matrix-valued functions
of scalar, vector, or matrix arguments.

D.1.2.0.1 Example. Cubiz.
Suppose f(X):R*?-R? = XTg and g(X): R**?>-R? = Xb. We wish to find

Vx (f(X)'g(X)) = Vx a"X?b (2068)
using the product rule. Formula (2066) calls for
Vx a™X?b = Vx (XTa) Xb + Vx(Xb) X (2069)

Consider the first of the two terms:

Vx(f)g = Vx(X'a) Xb

= [V(X"a), V(XTa)y] Xb (2070)
The gradient of XTa forms a cubix in R2*2%2: a k.a, third-order tensor.
[ axTa) (X Ta) T
E3en L X 2 (2071)
(X "a ‘ (X "a
((9)(12)1 (6X12)2 (Xb)l
Vx(XTa) Xb = ‘ € R2x1x2
X% | (X "a)
0X21 : 0X21 * (Xb)2
B(XTG.)l “““““““““““““““““ 6(XTG)2
0X22 0Xa2

Because gradient of the product (2068) requires total change with respect to change in
each entry of matrix X, the Xb vector must make an inner product with each vector in
that second dimension of the cubix indicated by dotted line segments;

i al 0
0 a b1 X11 + b X
XTa) Xb — 1X11 2412 R2X1x2
VX( a) ag 0 b1 Xo1 + b2 Xoo <
0 ao (2072)
[ a1 (b1 X114+ b2X12) a1 (b1 Xa1 + baXao) c R2¥2
| a2(b1 X711 + b2 Xi2)  ag(b1 Xa1 + b2 Xo2)

= abTXT

where the cubix appears as a complete 2x 2 x 2 matrix. In like manner for the second
term Vx(g) f
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b1 0
bo 0 Xiia1 + Xo1a
Vs (Xb) XTa — 1101 2102 | _ p2x1x2
x(Xb) X a 0 by X201 + Xozao (2073)
0 by
= XTapT € R?*?
The solution
Vx a™X?b = ab™X "+ X Tab” (2074)
can be found from Table D.2.1 or verified using (2067). O

D.1.2.1 Kronecker product

A partial remedy for venturing into hyperdimensional matrix representations, such as
the cubix or quartix, is to first vectorize matrices as in (39). This device gives rise
to the Kronecker product of matrices ® ; a.k.a, tensor product (kron() in Matlab).
Although its definition sees reversal in the literature, [434, §2.1] Kronecker product is not
commutative (B® A # A ® B). We adopt the definition: for A€ R™*" and BeRP*?

B11A BlgA cee quA
N BglA 32214 s BQqA «
Bo AL , , , € RPXan (2075)
BpA BpA -+ By A

for which A®1=1® A = A (real unity acts like Identity).

One advantage to vectorization is existence of the traditional two-dimensional matrix
representation (second-order tensor) for the second-order gradient of a real function with
respect to a vectorized matrix. From §A.1.1 n0.36 (§D.2.1) for square A, BER"*", for
example [220, §5.2] [15, §3]

V2 tr(AXBXT) = V2 vec(X)'(BT®A)vec X = BRAT+ BT0A € R %™ (2076)
To disadvantage is a large new but known set of algebraic rules (§A.1.1) and the fact
that its mere use does not generally guarantee two-dimensional matrix representation of
gradients.
Another application of the Kronecker product is to reverse order of appearance in
a matrix product: Suppose we wish to weight the columns of a matrix SeRM*YN  for
example, by respective entries w; from the main diagonal in
w1 0
w2 esV (2077)
0 WN
A conventional means for accomplishing column weighting is to multiply S by diagonal
matrix W on the right side:
w1 0
SW=S =[S¢, Dwy -+ S, Nwy | € RV (2078)
0 WN

To reverse product order such that diagonal matrix W instead appears to the left of S:
for Te SM (Law)

sw=@wirern| ° S(_z.’ 2) e RM*N (2079)
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To instead weight the rows of S via diagonal matrix We SM, for Ie SV

S(1,:) 0 0
ws=| O 5C (5(W) ® I) € RM*N (2080)
0 ' O' S(M, )

D.1.2.2 Hadamard product

For any matrices of like size, S,Y € RM*N - Hadamard’s product o denotes simple
multiplication of corresponding entries (.* in Matlab). It is possible to convert Hadamard
product into a standard product of matrices:

S(:, 1) 0 0

Sov=[6Y(. 1) o(v:.N)]| ° 56, 2) 0 € RN (2081)

0 . O. S(:, N)

In the special case that S=s and Y=y are vectors in R

soy=4(s)y (2082)
sT@y = ysT
O (2083)

D.1.3 Chain rules for composite matrix-functions

Given dimensionally compatible matrix-valued functions of matrix variable f(X) and
g(X) [462, §15.7]

Vx g(f(X)") =Vx [T Vyg (2084)
Vig(F(X)") = Vx(VxfTVig) = VifVig + Vx T Vig Vxf (2085)
D.1.3.1 Two arguments
Vx g(f(X), W(X)T) = Vx [T Vpg + Vxh' Vig (2086)
D.1.3.1.1 Example. Chain rule for two arguments. [51, §1.1]
g(f@)", b)) = (f(2) + h(@)"A(f (@) + h(z)) (2087)
flz) = { . } . h(z)= { . } (2088)
T ™n_ |10 T e 0 T

Veg(F@ h@) = | o DA ANG | 5] (AT 4R (2089)
Ve g(f(2), h2)T) = { tee 0L ](A+AT)<[ o } + [ . D (2090)
lim Ve g(f(@)T, h(z)T) = (A+AT)z (2091)

from Table D.2.1. O

These foregoing formulae remain correct when gradient produces hyperdimensional
representation:
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D.1.4 First directional derivative

Assume that a differentiable function g¢(X): R¥*F—SRM*Y has continuous first- and
second-order gradients Vg and V?2g over domg which is an open set. We seek
simple expressions for the first and second directional derivatives in direction Y& REXL

—Y —Y
respectively, dg € RM*Y and dg? e RM*V,

Assuming that the limit exists, we may state the partial derivative of the mn'" entry
of g with respect to kI*" entry of X ;

8gmn (X) . Imn (X + At eke;[‘) — 9mn (X)
——— =1 R 2092
anl Airilo At < ( )

where e, is the k™ standard basis vector in RE while e; is the " standard basis vector in

RE. Total number of partial derivatives equals K LM N while the gradient is defined in
their terms; mn'" entry of the gradient is

99mn(X)  Ogmn(X) . Ogmn(X)
6X11 8X12 8AleL
9gmn (X) 9gmn(X) . 9gmn (X)
Vgmn(X) = | Xz X2z 0Xar € RF*E (2093)
9gmn (X) 9gmn(X) . 9gmn (X)
0X K1 0X k2 OX KL

while the gradient is a quartix

Vgu(X) Vgi2 (X) VglN(X)
V() = ng:}(X) ng?(X) ngz\.f(X) c RMXNXKXL (2094)
Vo (X) Vora(X) - Voun(X)

By simply rotating our perspective of a four-dimensional representation of gradient matrix,
we find one of three useful transpositions of this quartix (connoted T1):

o9(X) 9g9(X) .. 99(X)
8X11 6X12 8)(IL
o9(X) 9g9(X) ... 99(X)
Vg(X)Tl — 3)'(21 a)fm 3)%'% c RKXLXMXN (2095)
aLLJ(.X) 39(.X) . 39(.X)
0X K1 0X ko OX kI

When a limit for At€R exists, it is easy to show by substitution of variables in (2092)

agmn (X) . gmn(X + At Yy €L e'lr) — Jmn (X)
————Y = 1 eR 2096
anl Kl A%I—IEO At ( )
which may be interpreted as the change in ¢, at X when the change in Xp; is equal
to Yy the kIt entry of any Ye RE*L " Because the total change in g, (X) due to Y is
the sum of change with respect to each and every Xj;, the mn' entry of the directional
derivative is the corresponding total differential [462, §15.8]



606 APPENDIX D. MATRIX CALCULUS

OGmn (X
dgmn(X)ldXHY = ZgaT]il)Ykl = tI‘(ngn(X)TY) (2097)
kL
mn(X + AtY) T — grmn (X
_ Z lim Grmn ki €5, ) = Gmn (X) (2008)
At—0 At
X+ AtY) — X
_ g JmnX ALY = gnn(X) (2099)
At—0 At
d
= | gan(X+1tY) (2100)
dt|,_;

where t€R. Assuming finite Y, equation (2099) is called the Gdteaux differential
[50, App.A.5] [265, §D.2.1] [474, §5.28] whose existence is implied by existence of the
Fréchet differential (the sum in (2097)). [337, §7.2] Each may be understood as the change
in ¢gmn at X when the change in X is equal in magnitude and direction to ¥ .P+2 Hence
the directional derivative,

dgi(X) dgia(X) -+ dgin(X)
ZgY(X) s dgz1.(X) d922'(X) deJ\T(X) c RM*N
dgmi(X)  dgm2(X) - dgun(X) 11,5 .y
[ tr(Vgun (X)TY)  tr(Vee(X)'Y) - tr(Van(X)'Y)
|t (Vgr (X)TY)  tr(Vgn(X)Y) -+ tr(Vgan(X)TY)
: : : (2101)
L tr(Vng(X)TY) tr(VgMg(X)TY) e tr(VgMN(X)TY)
r dg11 (X dg12(X) 991~ (X) T
%I)I((kz )Y gal)zf(m o (g;v(kl Y
k1 il k1
9g21 (X 9g22(X) dgan (X)
_ %2)1(11 )Ykl 2)2((kz o 321)\](1@1 Ve
= | ki ki k1
> 69{1;;)55() Yi 8g§§?kf()ykl . 393%)1;}50 Yy
L k1 1 k1 i
from which it follows . 99(X)
- g
dg(X) = Y, 2102
9(X) ; ox, M (2102)
Yet for all X €domg, any YeRX*L and some open interval of teR
—Y
g(X+tY)=g(X) + tdg(X) + Ot (2103)

which is the first-order multidimensional Taylor series expansion about X . [462, §18.4]
[203, §2.3.4] Differentiation with respect to ¢ and subsequent t-zeroing isolates the second
term of expansion. Thus differentiating and zeroing g(X+tY) in ¢ is an operation
equivalent to individually differentiating and zeroing every entry gm,(X+tY) as in
(2100). So the directional derivative of g(X) : RE*FRM*N in any direction ¥ e RF*F
evaluated at X € dom g becomes
Y d
dg(X)= —| g(X+1tY) € RM*N (2104)

t=0

D-2 Although Y is a matrix, we may regard it as a vector in R¥E.
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Vi f (@)

3df(cv)

(>

Figure 216: Strictly convex quadratic bowl in RZxR; f(z)=2"2:R*—>R versus =
on some open disc in R%. Plane slice H is perpendicular to function domain. Slice
intersection with domain connotes bidirectional vector y. Slope of tangent line 7 at
point (o, f(«)) is value of directional derivative V, f(a)ty (2129) at « in slice direction ¥ .
Negative gradient —V, f(z)€ R? is direction of steepest descent. [74, §9.4.1] [462, §15.6]
[203] [519] When vector v € R? entry wvs is half directional derivative in gradient direction

at «a and when Zl =V, f(a), then —v points directly toward bowl bottom.
2

[371, §2.1, §5.4.5] [43, §6.3.1] which is simplest. In case of a real function g(X) : REXE LR

dg (X) = tr(Vg(XT'Y) (2126)
In case g(X): RF—=R
dg (X) = Vg(X 'Y (2129)

Unlike gradient, directional derivative does not expand dimension; directional
derivative (2104) retains the dimensions of g. The derivative with respect to ¢ makes

the directional derivative resemble ordinary calculus (§D.2); e.g, when g(X) is linear,
—Y
dg (X) = g(Y). [337, §7.2]

D.1.4.1 Interpretation of directional derivative

In the case of any differentiable real function g(X): R¥*L =R, the directional derivative

of g(X) at X in any direction Y yields the slope of g along the line {X+tY | t€ R}
through its domain evaluated at ¢t =0. For higher-dimensional functions, by (2101), this
slope interpretation can be applied to each entry of the directional derivative.

Figure 216, for example, shows a plane slice of a real convex bowl-shaped function
f(z) along a line {« + ty | t € R} through its domain. The slice reveals a one-dimensional
real function of ¢; f(a+ ty). The directional derivative at x =« in direction y is the
slope of f(a+ty) with respect to ¢ at t=0. In the case of a real function having
vector argument h(X): R =R, its directional derivative in the normalized direction of
its gradient is the gradient magnitude. (2129) For a real function of real variable, the
directional derivative evaluated at any point in the function domain is just the slope of
that function there scaled by the real direction. (confer §3.6)
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Directional derivative generalizes our one-dimensional notion of derivative to a
multidimensional domain. When direction Y coincides with a member of the standard
Cartesian basis ee;l (63), then a single partial derivative dg(X)/0X}, is obtained from
directional derivative (2102); such is each entry of gradient Vg(X) in equalities (2126)
and (2129), for example.

D.1.4.1.1 Theorem. Directional derivative optimality condition. [337, §7.4]
Suppose f(X): R¥*F SR is minimized on convex set CCRX*L by X* and the
directional derivative of f exists there. Then for all X € C

—X-X*
df(X) = 0 (2105)
o
D.1.4.1.2 Example. Simple bowl.
Bowl function (Figure 216)
f):RESR 2 (z—a)f(z—a)—b (2106)

has function offset —b€ R, axis of revolution at z=a, and positive definite Hessian
(2054) everywhere in its domain (an open hyperdisc in RE ); id est, strictly convex
quadratic f(x) has unique global minimum equal to —b at z=a. A vector —v based
anywhere in dom f x R pointing toward the unique bowl-bottom is specified:

v [ fz’x)_fb ] e RExR (2107)
Such a vector is
Vi f(2)
T —vs@ (2108)
Ldf(z)
since the gradient is
Vef(x) =2(z—a) (2109)

and the directional derivative in direction of the gradient is (2129)

—Vaf(2)
df(z) = % f(2)' Vuf(2) = 4z — a)' (x — a) = 4(f(z) + D) (2110)

D.1.5 Second directional derivative

By similar argument, it so happens: the second directional derivative is equally simple.
Given g(X): RF*FSRM*N on open domain,

O%gmn(X)  O%gmn(X) 9°gmn (X)
0Xp10X11 0X 10X 12 T 0X 10X
829mn(X) 829mn(X) 829mn(X)
8gmn(X) _ anmn(X) _ 0X110X21 90X 110X22 00X e10Xar c RKXL (2111)
00X 00X . . .
azgm,.n (X) 8297)'1,.71 (X) 82gm,.n (X)

OXp0XK1 OXpOXrgz  OXpOXgkrL
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[ 7 99mn (X) 0gmn (X) 0gmn (X)
\ gaxu \ g5X12 eV g3X1L
9gmn(X) 9gmn (X) 9gmn (X)
V2Gmn (X) = v gaX21 v gaX22 eV gé)XzL € REXLXKXL
09mn(X) & 09mn(X) 091mn (X)
\ %Xxl \ %sz o V%Xﬁ
(2112)
[ OVgmn(X) OVgmn(X) . 9OVgmn(X)
6X11 8X12 aXlL
OVgmn(X)  OVgmn(X) . 9IVgmn(X)
— 0Xo21 0Xoo 0Xor
OVomn(X)  0Vgmn(X) . OVgmn(X)
aXKl 8XK2 8A)(I<L,
Rotating our perspective, we get several views of the second-order gradient:
v2911(X) v2912(X) v2911\7(X)
v? X \v& X) - V? X
V2gui(X) Viga(X) -+ VZgun(X)
99(X) 99(X) 99(X)
v aan v 6%(12 o V a!iXIL
99(X) 09(X) 8g(X)
V2g(X)T1 _ \% a(:;(21 \Y 6('])(22 cee va‘?(ZL €]:&I(XLX]\JXZ\[XI(XL (2114)
a'(x) a'(x) 8.(X)
\ 8g(K1 \ 3%(1(2 eV 3g(KL
OVg(X) OVg(X) . IVg(X)
0X11 0X12 0X1r
oVg(X) 9dVy(X) .. 9Vg(X)
VQQ(X)TQ _ 3)-(21 52?22 a)sz ERKXLXKXLXMXN (2115)
OVg(X) OVe(X) o OV g(X)
6XK1 8XK2 SXKL

Assuming the limits to exist, we may state the partial derivative of the mn' entry of g
with respect to kI*" and 5" entries of X ;

azgnln (x) _ Ie) Ogmn (X)) _ lim Ogmn (X+Atey SLT)*agmn(X)
00X BX”- - BXU 00X k1 - At—0 8X” At
. . . - (2116)

— llm (g'm,n (X+At €€ +AT €;€; )_g7n,n(X+At €€ ))_ (gmrn(x"!‘AT €;€; )_gm,n (X))
AT, At—0 AT At

Differentiating (2096) and then scaling by Y;;

9%gmn(X) i Ogmn(X+At Y epe] )—Ogmn(X)

% o YeYig = lim o%, At Y; (2117)
— lim (gmn(X+At Yii epef +AT Y e, eJT)—gmn(X—!—At Yy ep, elT))— (gmn(X+A‘r Yije; e})—gmn(X))
A7, At—0 AT At

th

which can be proved by substitution of variables in (2116). The mn® second-order total

differential due to any YeR¥*F ig
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0% T
2 _ mn - T
A2 (X)|ax—y = ZZ X Px, g X) vy = tr(Vx tr(Vgmn(XJTY)'Y) (2118)
OGmn (X + AtY) — 0gmn(X)
= Y 211
i A%—)O 8XU At J ( 9)
— lim gmn(X + ZAtY) - 2gmn(X + AtY) + gmn(X) (2120)
At—0 At2
d2
= | gam(X+tY 2121
iz _gnn (X4 0) (2121)
Hence the second directional derivative,
d*gn(X)  dgi1a(X) d*gin(X)
Zg};(X) s d292.1(X) d292'2(X) d2921?/(X) c RMXN
dQQMl(X) d2gM2(X) dQQMN(X) dX =Y

tr(Vtr(Vgu(X)TY)TY) tr(Vtr(ng(X)TY)T )
tr(vtr(V921(X)TY)TY> tr(Vtr(Vggz(X)TY)T )

tr(Vtr(VgM.l(X)TY)TY) tr(thng;(X)TY)T )

i (X) 12(X)
Z E axilllax YiYij E Z 8Xi126X
1,5 k,l 4,5 k,l
1(X) 22(X)
_ Zzai}jax YiYi Zzailax
92 ) X
2 Z a;?,fféx YiYij > E a;?ﬁ,%(x LY,
L @4 k1 i,5 k1

from which it follows

—>Y

Z Z 8sz 5‘X X0, Y = 2

YiuYi

YiYi

Y,

(2122)

Y,

—Y
(X) Y

2123
X, (2123)

Yet for all X edomyg, any YeRX*L and some open interval of teR

g(X+1tY) =

—

g(X) + tdg(X) + %tﬁgé()() + O(t%)

Y

(2124)

which is the second-order multidimensional Taylor series expansion about X . [462, §18.4]
[203, §2.3.4] Differentiating twice with respect to ¢ and subsequent t-zeroing isolates the
Thus differentiating and zeroing g(X+¢Y) in ¢ is an
operation equivalent to individually differentiating and zeroing every entry ¢, (X+¢Y)

third term of t

as in (2121).

he expansion.

371, §2.1, §5.4.5] [43, §6.3.1]

So the second directional derivative of g(X):R¥**—RM>*N becomes
—Y 2
dg*(X) = o3| 9 +tY) € RM*N (2125)
t=0

which is again simplest. (confer (2104)) Directional derivative retains the dimensions of ¢.
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D.1.6 directional derivative expressions

In the case of a real function g(X): RE*ELR, all its directional derivatives are in R:

—Y
dg (X) = tr(Vg(X)'Y) (2126)
—Y T —=Y
dg*(X) = tr(VX tr(Vg(X)TY) Y) = tr (vX dg (X)TY> (2127)
—Y T NT —Y
dg*(X) = tr <VX tr(VX tr(Vg(X)"Y) Y) Y) = tr| Vxdg*(X)'Y (2128)
In the case g(X): R —R has vector argument, they further simplify:
—Y
dg(X) =Vg(X)'Y (2129)
—Y
dg*(X) =YTV3(X)Y (2130)
—Y T
dg*(X) =Vx (YTV(X)Y) Y (2131)

and so on.

D.1.7 higher-order multidimensional Taylor series

Series expansions of the differentiable matrix-valued function g(X), of matrix argument,
were given earlier in (2103) and (2124). Assume that g(X) has continuous first-, second-,
and third-order gradients over open set dom g. Then, for X € domg and any Y € REXL
the Taylor series is expressed on some open interval of peR

Y —Y —Y

GX+pY) = g(X) + pdg(X) + qdg(X) + gt dg’(X) + O)  (2132)

or on some open interval of [|Y]|2

LY -X 1 —Y-X 1 —Y-X
g(Y) =g(X) + dg(X) + ngQ(X) + gdg"’(X) + O[] (2133)

which are third-order expansions about X . The mean value theorem from calculus is what
insures finite order of the series. [462] [51, §1.1] [50, App.A.5] [265, §0.4] These somewhat
unbelievable formulaeP-? imply that a function can be determined over the whole of its
domain by knowing its value and all its directional derivatives at a single point X .

D.1.7.0.1 Example. Inverse-matriz function.
Say g(Y)=Y . From the table on page 616,

dg(X) = o g(X+tY) = -X"tyx! (2134)
t=0
—Y 2
dg*(X) = 7 g(X+tY) =2Xyxlyx! (2135)
t=0

D.3 —1/z?

e.g, real continuous and differentiable function of real variable f(z)=e
expansion about £ =0, of any practical use, because each derivative equals 0 there.

has no Taylor series
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—Y 3

dg*(X) = 3| 9(X+tY) = —-6X 'YX 'lvyXlyx! (2136)

t=0

Let’s find the Taylor series expansion of g about X=1: Since g(/)=1, for [|[Y]2<1
(p=11n (2132))

gI+Y)=(I+Y) ' =T-Y+Y?*-V34 ... (2137)
If Yissmall, (I+Y) !~I-—Y.P* Now we find Taylor series expansion about X :
gX+Y)= (X+V) =X xlyx ! pox-lyxlyx—! — ... (21398)
If Vissmall, (X+Y) X1 X-lyx-1 O
D.1.7.0.2 Exercise. log det. (confer [74, p.644])

Find the first three terms of a Taylor series expansion for logdetY . Specify an open
interval over which the expansion holds in vicinity of X . v

D.1.8 Correspondence of gradient to derivative

From the foregoing expressions for directional derivative, we derive a relationship between
gradient with respect to matrix X and derivative with respect to real variable ¢:

D.1.8.1 first-order

Removing evaluation at t=0 from (2104),P-® we find an expression for the directional
derivative of ¢(X) in direction Y evaluated anywhere along a line {X+tY |t€R}
intersecting dom g

*}Y
dg(X+1tY) = %g(X—i— LY) (2139)

In the general case g(X): RE*ERM*N ' from (2097) and (2100) we find
d
tr(Vx gmn(X+tY)'Y) = %gmn(XJr tY) (2140)

which is valid at t=0, of course, when X €domg. In the important case of a real
function g(X) : RE*E LR, from (2126) we have simply

d
tr(Vx g(X+tY)'Y) = ZIX+1Y) (2141)
When ¢(X): RE R has vector argument,

Vx g(X+tY)'Y = %g(X—i— tY) (2142)

D-4Had we instead set g(Y)=(I + Y )~!, then the equivalent expansion would have been about X = 0.
D5 Justified by replacing X with X4 tY in (2097)-(2099); beginning,

Ogmn (X+1tY)

Y,
Een kit

dgmn(X+tY)|yx_y = Z
k,l
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D.1.8.1.1 Example. Gradient.
g(X) = w"™X"Xw, XeR¥*F weR¥. Using the tables in §D.2,

tr(Vx g(X+tY)'Y) = truwuw(XT+tY")Y) (2143)
= 20T XTY+tY 'Y )w (2144)

Applying equivalence (2141),

d d
TIX+tY) = awT(X+W)T(XHY)w (2145)
= w' (XY +YTX +2t YY) w (2146)
= 20T (XTY +tY™Y)w (2147)

which is the same as (2144). Hence, the equivalence is demonstrated.
It is easy to extract Vg(X) from (2147) knowing only (2141):

tr(Vx g(X+tY)'Y) = 20N(XTY+tYTY)w
= 2tr(ww(XT+tYT)Y)
tr(Vx g(X)TY) = 2tr(ww™™XTY) (2148)
54
Vxg(X) = 2Xuww?
O
D.1.8.2 second-order
Likewise removing the evaluation at ¢ =0 from (2125),
—Y 2
d*(X+tY) = Eg(XJr tY) (2149)

we can find a similar relationship between second-order gradient and second derivative: In
the general case g(X): RE*LSRM*N from (2118) and (2121),

d2
tr(VX tr(Vyx gmn(X+tY)TY)TY> = T gmn(X+1Y) (2150)
In the case of a real function g(X): R¥*F* SR we have, of course,
T d?
tr(VXtr(VXg(X+tY)TY) Y) = H9(X 1Y) (2151)

From (2130), the simpler case, where real function g(X): R —R has vector argument,

2

YIVZg(X+tY)Y (X+tY) (2152)

= e

D.1.8.2.1 Example. Second-order gradient.
We want to find V2g(X)e RF*FXEXK given real function ¢(X)=logdet X having
domain intr Sf . From the tables in §D.2

hMX) & Vg(X) = X 'eintrS§ (2153)
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so V2g(X)=Vh(X). By (2140) and (2103), for Y € S¥

tr (Vimn (X)'Y) = jtgzmn(X+tY) (2154)
_ (it_?(X—&-tY))mn (2155)
— (jtt_éXHY)l)mn (2156)
= —(x'yxh (2157)

Setting Y to a member of {e; e € RE*K | k. 1=1... K}, and employing a property (41)
of the trace function we find

V29X )mnkt = tr(Vhmn(X)Tepel) = Vhpn (X = —(X e ef X71)  (2158)
V2g(X)m = VRA(X)w = — (X tepgef X71) e RFXK (2159)
O

From all these first- and second-order expressions, we may generate new ones by evaluating
both sides at arbitrary ¢ (in some open interval) but only after differentiation.

D.2 Tables of gradients and derivatives

e Results may be validated numerically via Richardson extrapolation. [332, §5.4] [146]
When algebraically proving results for symmetric matrices, it is critical to take
gradients ignoring symmetry and to then substitute symmetric entries afterward.
[220] [78]

e i,j,k,{,K,L,m,n,M,N areintegers, unless otherwise noted, a,beR", x,yeRk,
A, BeR™" X YeRE*L t ueR.

e o/ means 6(d0(x)*) for peR; id est, entrywise vector exponentiation. ¢ is the
main-diagonal linear operator (1681). 2z°21, X°2£ [ if square.

d
dwy —y -y
o L £ © |, dg(z), dg¥x) (directional derivatives §D.1), logx, e*, |z|, x/y
d
duy,

(Hadamard quotient), sgnz, +/z (entrywise square root), etcetera, are maps
f:R¥ = R* that maintain dimension; e.g, (§A.1.1)

%x*l 2 v, 1%5(x)" 11 (2160)

e For A a scalar or square matrix, we have the Taylor series [98, §3.6]

|
AL k
et 2 A (2161)
k=0
Further, [440, §5.4]
er=0 VvAes™ (2162)

e For all square A and integer k

det? A = det A* (2163)
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D.2.1 algebraic

615

Vez=V,2T=1¢c R
V,1T2 =V, 271 =1 e R

Ve(Az —b) =
V, (zTA-bT) = A

Ve(Az — b)Y (Az — b) = 2AT(Az — b)
V2(Az — b)T(Ax — b) = 24TA
Ve/(Az — b (Az — b)= AT(Az — b) /|| Az — b||2 =V, || Az — b]|2

Vo2t Az — b = AT6(2) sgn(Ax —b), z,#0= (Azx —b); #0
V1% Az — b| = ATsgn(Az — b) = V,||Az — b||;
V1T f(JAz — b)) :AT(S(dfd(y) )sgn(Ax—b)

Y ly=|Az—b|
Ve (2TAz +22"By +y'Cy) = (A+A")z + 2By

Ve(z+y)TA(z +y) = (A+AT)(z +y)
V2(2TAz + 22 By + yTCy) = A+ AT

x

V, aTzTeb = 22aTh

V, atezTv = (abT + ba™)x
V, ez za = 22aTa

V, aTzxTa = 2aaTx
V. a*yzth = baly
Ve a%yTzb = ybTa
V. azyTh = abTy

Ve a'z™yb = ya™b

VXX:VXXTé IeRKxLxKxL
Vyx1TX1 = Vyx1TXT1 = 11Te RE*E

Vyx atXb = Vx bTXTa = abT
Vyx atX?b = XTabT+ abTXT
— X TapTx-T
= X =
Vx a™X'Xb = X (abT + ba™)

Vx aTX~1b =

Vx (X Y

Vx a™X XTh = (ab™ + baT) X
Vyx a*XT™Xa = 2Xaa®

Vx aTXXTa =2aa™X

Vx a'YXTh=baTY

Vyx a'YTXb = Yab®

Vx a™XYTh = abTY

Vyx a’XTYb=Yba"

(Identity)

confer

—X~le eT X1 (2095)

(2159)
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algebraic continued

L(X+tY)=Y

ABT(X+tY)'A=-BY"(X+tY) 'Y(X+tY) 4
ABT(X+tY) TA=-BY(X+tY) TYT(X+tY) TA
ABT(X+tY)FA=..., -1<p<1, X,YesY

dtzBT(X+tY) 1A= 2BT(X+tY) 'Y (X+tY) 'Y (X+tY) 1A
T L BT(X+tY) 'A=—6BT(X+tY) LY(X+tY) Y (X+tY) lY(X+tY) 14

&.

di((X+ tYTAX+1tY)) = YTAX + XTAY + 2t YAY
C((X+tYFAX+1tY)) = 2YAY
X+ tYVAX+tY))
—((x+ tY)TA(X+tY))_1(YTAX+XTAY+ 2tYTAY ) (X 4+t Y PA(X 4+ tY))
L(X+tY)A(X+1Y)) = YAX + XAY + 2t YAY
L (X+tY)AX+1tY)) = 2YAY

-1

D.2.2 trace Kronecker

Viee xtT(AXBXT) = Viee x vec(X)T(BT® A)vec X = (B AT + BT® A)vec X

V2 xtr(AXBXT) = V2 vec(X)'(BT® A)vecX = B A" + BT®A (2076)
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D.2.3 trace
Vepzr=pul VxtruX =Vxptr X =pl
Vo1T5(z) 11 = Lol = —g2 Vxtr X1 =-x—27T
Ve 1Y5(2) "ty = —6(z) 2y Vxtr(X71Y)=Vxtr(Y X 1) = X TyTx-T
Lyl = pgr=1 Vyx tr X* = pXr1, XesM

Vy tr X7 = jX0@-1T

Ve(b—a%)t = (b—a")2a | Vxtr((B—AX)) = ((B— AX)24)"

Ve(b—aTz)t = —pu(b — aTz)*~1a
V, 2Ty = V, % = y Vy tr(XTY) = Vy tr(Y XT) = Vy tr(YTX) = Vy tr(XYT) = V
Ve zTe =2z Vx tr(XTX) = Vx tr( X XT) = 2X

Vx tr(AXBXT) = Vy tr(XBXTA) = ATXBT + AXB
Vx tr(AXBX) = Vxtr(XBXA) = ATXTBT + BTXTAT

Vx tr(AXAXAXAX) = Vy tr(XAXAXAXA) = 4(AXAXAXA)T
Vx tr(AXAXAX) = Vxtr(XAXAXA) = 3(AXAXA)T
Vy tr(AXAX) = Vy tr(XAXA) = 2(AXA &

VX tI‘(AX) = VX tr(XA) = A

k—1
Vx tr(Y X*) = Vy tr(XFY) = 3 (XY xh-1-i)T
=0
Vx tr(XTYYIX XTYYTX) = 4V Y TX XTYYTX
Vx tr(XYYTXTXYYTXT) = 4XYYTIXTXYYT
Vx tr(YTXXTY) = Vy tr(XTYYTX) = 2V YTX
Vx tr(YTXTXY) = Vy tr(XYYTXT) = 2XVYT

Vxtr(X +Y)I(X +Y)) = 2(X +Y) = Vx| X + Y2
Vxtr(X +Y)(X +Y)) =2(X+Y)"

Vx tl“(ATXB) = Vx tr(XTABT) = ABT
Vx tl"(ATX_lB) = Vx tI‘(X_TABT) =—X"TABTXx-T

Vx atXb = Vxtr(ba™X) = Vxtr(XbaT) =ab?
Vx bTXTa = Vy tr(XTabT) = Vx tr(abTXT) = ab”T
Vx aTX71h = Vx tr( X Tab?) = —X"Tapt X~ T
Vx a™X"b = ...
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trace continued

4 trg(X+tY)=tr £ g(X+1tY) [273, p.491]
4 i (X4+tY)=trY

4t X4+tY)=jtr (X +tY)trY

4t (X+tY) =jtr((X+tY) 1Y) (V)
4t (X+tY)Y) = try?

A ir(X+tY)HY) = Ltr(Y(X+tY)F) = ktr(X+tY)F1Y?), ke{0,1,2}

k—1

Lt (X+tY)'Y) = Ler(YV(X+tY)) =tr 3 (X+tY) V(X +tY)17iy
=0
X+tY)'Y) =—-tr((X+tY) 'Y (X+tY)'Y)

ar o
dt
4t (BT(X+tY)1A) = —tr(BT(X+tY) 1 Y(X+tY)LA)

4 (BT (X+tY) TA) = —tr(BT(X+tY) TYT(X+tY) TA)
4 (BT (X+tY)*A)=..., k>0
(BT (X+tY)HA) =..., -1<p<1l, X,YesV

< (BT (X+tY) T A) = 2tr (BTN (X+tY) ' Y(X+1Y) ' Y(X+1Y) L A)

4ir(X+tYPAX+1tY)) = (YTAX+XTAY+ 2t YTAY)
jt2 tr((X+tY)TA(X+tY)) = 2tr(YTAY)
dtr(( XY FAX+1Y)) )
—tr (((X+ Y FAX+ 1Y) H(YTAX + XTAY + 20 YY) (X + tY)TA(X+tY))_1>
4 tr((X—|— tY)A(X+1Y)) = tr(YAX + XAY + 2t YAY)
(X +tY)AX+1Y)) = 2tr(YAY)

dt2
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D.2.4 logarithmic determinant

>0, detX>0 on some neighborhood of X, and det(X+¢tY)>0 on some open
interval of ¢; otherwise, log( ) would be discontinuous. [107, p.75]

d |
Iz logx =

4 -1 _ _ -1
wlogr™ = —x

% log z# = px!

V, log(a™z + b) = aaTiH}

Vx logdet X = X~ 7T

-T
68))(( :—(XflekelTXfl)T, confer(2112)(2159)
kl

Vxlogdet X1 = —XxX—T

Vi logdet(X) =

Vx logdet! X = uX—7T

Vx logdet X" = px—T

Vx log det X* = Vx log det! X = kX7

Vy logdet! (X +tY) = pu(X+tY)"T

Vy logdet(AX+ B) = AT (AX+ B)~T

Vy logdet(I + ATXA) = £A(I + ATXA)~TAT

Vx logdet(X+tY)* = Vx logdet*(X+tY) = k(X +tY)~ T
4logdet(X+tY) =tr(X+tY)1Y)

L logdet(X+1Y) = —tr (X+1Y) L Y(X+tY)7Y)
4logdet(X+tY) = —tr (X+tY) 1Y)

L logdet(X+tY) " =tr (X+1Y) ' Y(X+tY)7Y)

4 logdet(5(A(z +ty) + a)® + pul)
= tr((3(Aw + ty) + @) + pl) "' 20(Alx + ty) + a)(Ay))
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D.2.5 determinant

Vxdet X = Vydet XT = det(X)X T

Vxdet X~' = —det(X )X~ T = —det(X)"'X T

Vx det' X = pdet” (X)X T

Vx det X' = pdet(X") X7

Vx det X¥ = k det* /(X)) (tr(X)I — XT) | X € R?*2
Vx det X* = Vy det? X = kdet(X*)X T = kdet* (X)X~ 7T

Vxdet"(X+tY) = pdet"( X+ tY)(X+tY) T

Vy det(X+tY)* = Vydet"(X+tY) = kdet"(X+tY)(X+tY)" T

4 det(X+tY) =det(X+tY)tr(X+tY)"'Y)

%det(X—th) =det(X+tY)(tr?(X+tY)'Y) —tr((X+tY) 'Y (X+tY)1Y))

4 det(X+tY) ' =—det(X+tY)  tr((X+tY)1Y)

%det(XHY)*l =det(X+tY) 1 (tr?2(X+tY) 1Y)+ tr(X+tY) 'Y (X+tY)"lY))

4 det!(X+tY) = pdet" (X +tY)tr(X+tY)71Y)

D.2.6 logarithmic
Matrix logarithm.

Llog(X+tY)F =pY(X+tY) P =pX+tY)"lY, XY=YX

Llog(I—tY )W = —pY(I—tY) ™' = —u(I—tY)"'Y  [273, p.493]
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D.2.7 exponential
Matrix exponential. [98, §3.6, §4.5] [440, §5.4]

Vxetr(YTX) = Vxdet V' X = (V' X)y (VX.Y)
Vxtre¥X = ¢V ' XTyT = yTeX'v" (VX,Y)
thr(AEYX) =...

vleeAa: — AT6A$

V,1Tel4%l = AT§(sgn(Ax))el 4! (Ax); #0

%GXthY — XHtYy _— YeXthY, XY =YX

2
g?eXthY _ eX+tYY2 _ Y6X+tYY _ Y2€X+ty, XY =YX

%etr(X-&-tY) _ etr(X+tY)trj(Y)

D.2.7.0.1 Exercise. Fzxpand these tables.

Provide four unfinished table entries indicated by ... in §D.2.1 & §D.2.3.

D.2.7.0.2 Exercise. log.

621

(§D.1.7, §3.5.4)

Find the first four terms of the Taylor series expansion for logx about z=1. Plot the

1

supporting hyperplane to the hypograph of logx at {loggcx} = {0

}. Prove logx <x—1.



