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The paper is a tutorial intended to serve as a reference in the field of digital audio effects 
in the electronic music industry for those who are new to this specialization of digital signal 
processing. The effects presented are those that are demanded most often, hence they will 
serve as a good toolbox. The algorithms chosen are of such a fundamental nature that they 
will find application ubiquitously and often. 

4 LINEAR INTERPOLATION 

4.1 Audio Applications of Interpolation: 
Chorus, Flange, and Vibrato Effects 

The technique of delay-line interpolation is used when 
it is desired to delay a signal by some number of samples 
expressible as a whole plus some fractional part of a 
sample. This way, the effective delay is not discretized, 
thus avoiding signal discontinuities when the desired 
delay time is continuously swept or modulated. Delay 
modulation is indigenous to pitch change and pitch shift 
algorithms,S2 which are themselves integral to numerous 
other effects, such as chorus, flange, doppler, detune, 
harmonizer, Leslie rotating speaker emulation, or dou- 
bling. The chorus and flange effects come about when 
the output signal is made to be a linear sum (mix) of 
the original (dry) input and the dynamically delayed 
(wet) input signal. The chorus and flange effects are 
distinguished primarily by the minimum delay in their 
respective delay ranges. 53 Delay modulation alone (with 
no mix) yields vibrato when the modulation is sinusoidal. 

In this section we present the topic of delay-line inter- 
polation from the intuitive point of view of the required 
fractional sample delay, that is, from a time-domain 
viewpoint. The formal derivation, called sample rate 
conversion [32], [29], is traditionally a frequency- 
domain formulation. In a musical context, the sample- 
rate conversion ratio inverse (M/L in Section 6.2.3, Ap- 

* Manuscript received 1996 March 14; revised 1996 Sep- 
tember 14 and 1997 June 28. 

52 Pitch change and pitch shift will be distinguished later 
(see Figs. 51 and 52). 

The minimum is less for the flange effect (Section 6). 
Any use of delay modulation typically entails a nominal signal 
delay because the modulation spans some desired range. 
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pendix 4) corresponds to the pitch change (or pitch shift) 
ratio. We synopsize the formal derivation in Section 
6.2, Appendix 4, where a schematic translation of the 
fundamental algorithms discussed here, to the classical 
digital signal processing (DSP) nomenclature will be 
found. This should serve to bridge the two viewpoints. 

The interpolation methods we seek are computation- 
ally simple and inexpensive by necessity. The interpola- 
tion algorithm may be executed many times in one sample- 
synchronous audio processing program. We typically 
cannot afford interpolation routines that consume a large 
percentage of the allotted execution time, since they play 
only a subsidiary role. 

4.2 Interpolation of a Delay Line 
The DSP block diagram for delay-line interpolation 

is shown in Fig. 22, where we find a delay line named 
VoiceL of length 2048 samples. At every sample time 
n the newest input sample is accepted into the left-hand 
side of the delay line (sample 0), while the oldest sample 
is discarded off the right-hand side. That action defines 
the delay line. The delay-line output is rarely the last 
sample, so the output is shown above the block as an 
arbitrary tap, somewhere within the body of the delay 
line. Because the arbitrary delay tap is moving smoothly 
about the tap center, it becomes necessary to interpolate 

vibra~_T_ ~ 
I tap center 

x[n] ~ I 

-I 
Fig. 22. Delay line VoiceL[2048]. NOMINALDELAY cor- 
responds to delay tap center. 
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in real t ime in between the discrete samples  of  the delay 
line. The  audible effect  of  the tap movemen t  is vibrato.  

The process  called vibrato 54 is shown microscopical ly  
in Fig. 23. The desired output (vibrato) dynamica l ly  
points ( i .frac) to a place between two discrete samples .  
The  index i, an integer,  is defined as the current com-  
puted whole  relative index into our delay line, relative 
to the beginning of  the delay line. The integer i requires 
computa t ion  because we want  it modulated by the low- 
f requency oscil lator (LFO) y In], oscillating as a function 
of  discrete time n. The integer range of i, ---CHORUS_ 
W I D T H ,  is centered about  the nominal  tap point  into 
the delay line, N O M I N A L D E L A Y  the fixed posi t ive 
integer tap center. 

Note f rom Fig. 23 that because the t ime-vary ing  
pointer  i . frac is a lways a nonnegat ive real relat ive index 
into the delay line, the elemental  coefficient frac is al- 
ways  a nonnegat ive fraction. 

i . frac = i + frac 

The  t ime-vary ing  nonnegat ive coefficients frac and 
(1 - frac) can have 23-bit  resolution within a 24-bit  
processor  chip because C H O R U S _ W I D T H  (a fixed posi-  
t ive whole  number  of  samples)  is scaled by an LFO y In], 
a unity-level  bipolar  control  signal that is typical ly t w o ' s  
complement  q23 format .  55 (Sinusoidal oscil lators as 
LFOs  are discussed in Section 7.) 

4.3 Linear Interpolation as Polyphase Digital 
Filter 

Linear  interpolation as applied in the chorus,  flange, 
and vibrato effects  makes  small undulating changes in 
pitch. I f  we listen closely to all these effects,  we will also 
d iscover  a significant perceived loss of  h igh-f requency 

I delaylino; VoiceL[2048] 

0 

content. For the chorus and flanger the loss we perceive 
is not  attributable to the comb filtering that  is constituent 
to those effects.  56 It is this observat ion which compels  
a f requency-domain  analysis of  linear interpolation.  

We are not accustomed to think of  l inear interpolation 
as a f requency-domain  filtering process.  This is because 
it is such an intuitively simple t ime-domain  algori thm 
that performs fractional sample delay. Yet  l inear interpo- 
lation is routinely used to perform sample  rate conver-  
sion in contemporary  sampler- type music  synthesizers,57 
and we know there is a vast  amount  of  literature that 
poses the sample rate conversion p rob lem in the fre- 
quency domain.  

Fig. 24 shows the actual dual- input  linear t ime- 
varying digital filter that implements  l inear interpola- 
tion. The t ime index n steps through discrete t ime in a 

54 Vibrato is most often implemented by undulating the ef- 
fect we call pitch change, although it can certainly be accom- 
plished by other means (see Figs. 51 and 52). 

55 See Part 3, Section 9.1, Appendix 7. 
56 When a signal is added to a delayed replica of itself, 

comb filtering results. 
57 There it most often manifests itself as a constant pitch 

change at playback, dependent on the key struck. (We distin- 
guish pitch change from pitch "shift"; see Figs. 51 and 52.) The 
technique used to accomplish pitch change by fixed amounts is 
called the phase-accumulating oscillator [33]. The Ensoniq 
Mirage, introduced in 1984, used zeroth-order interpolation 
(choosing the nearest sample in time) in conjunction with eight 
phase-accumulating oscillators. The Mirage, one of the earliest 
sampler-type music synthesizers, is still in commercial use 
because of its characteristic sound quality due primarily to its 
digital encoding scheme. Its hybrid floating-point design was 
based on an 8-bit mantissa and an 8-bit exponent. Recorded 
sound samples used only the mantissa. Subsequent enveloping 
applied the 8-bit exponent to the analog reference on a digital- 
to-analog (D/A) converter. That way the signal-to-noise ratio 
of the original sample was not compromised when the signal 
was dynamically scaled. Robert Yannes. 

2 * CHORUS_WIDTH ~-- 

NOMINAL 

The tapcen ." vibrato[ 

." ' ~ ' -  [ ' -~"  

i . f r a c  i.frac = NOMINAL_DELAY + CHORUS_WIDTH * y[n] �9 

i = floor(i.frac) 

-~ frac -~:~--- 1 - ffac I I ,  

= i . f r a c  - i 

i + 1  

vibr 

i.frac 
For linear interpolation: v[n] = frac * VoiceL[i + 1] + (1 - frac) �9 VoiceL[i] 

) 
2047 

For all-pass interpolation: v[n] = VoiceL[i + 1] + (1 - frac) �9 VoiceL[i] - (1 - frac) �9 v[n - 1] 

Fig. 23. v[n] = vibrato. 
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sequential fashion, 0 <~ n < oo. The index n always 
refers to the current sample. We have drawn the linear 
interpolation circuit in a strange way to emphasize the 
nonsequential access o f  the input samples demanded by 
the computed index i. The unit delay z-~ is not termi- 
nated because the index i is time varying (it changes at 
each time step n), which is to say that it can take on 
any value within bounds.  58 From Fig. 23 we have estab- 
lished the parameters:  0 ~< i < 2048. The consequence 
o f  these considerations is that x[n - i - 1] is not neces- 
sarily the old  value of  x[n - i]. 

To make the connection from the circuit in Fig. 24 to 
the delay line in Fig. 23, we make the analytical 
identification 

function of  i .frac, as outlined in Fig. 23. The linear 
interpolation circuit is polyphase because whenever  an 
output sample v[n] is computed,  a new pair o f  coeffi- 
cients is fetched, yielding a different phase response 
from one of  the filters in an ordinal set 6~ [29, ch. 4 .6 .5 ,  
p. 166]. 

4.4 M o v e m e n t  of  the  i . frac P o i n t e r  

It is interesting to know how the pointer i .frac moves 
under certain conditions. 61 

4.4.1 Constant Delay 
i.frac is a real constant, that is, it is not dynamic in 

this circumstance. 

x[n  - i] = VoiceL[i]  . 

This identification locates the requested sample in our  
delay line. It is clear that x[n] always refers to 
VoiceL[0] ,  as this is the current sample; positive i in- 
dexes older samples in our delay line. 

Ideally what we want is for the actual output v[n] in 
Fig. 24 to approximate the value of  the continuous signal 
x(t)  at points in time between sample instants; that is, 

4.4.2 U n d u l a t i n g  P i t c h  Change, Vibrato 
It is given that i.frac varies sinusoidally. Without  loss 

o f  generality we may consider vibrato as applied to an 
arbitrary sinusoid of  constant amplitude A, phase dp, and 
radian frequency 12 = 2rrf .  Using the nomenclature 
from Eq. (39), we write 

x( (n  - i.frac)T) = A cos[12(n - Lfrac)T + ~b] 

where 

i.frac = NOMINAL_DELAY + C H O R U S W I D T H  y[n] 

y[n] = sin(12EnT). 

we would like 

v[nT] ~ x ( (n  - i .frac)T) (39) 

where T is the sample period. The linear interpolation 
circuit of  Fig. 24 makes this approximation Eq. (39). It 
is a t ime-varying circuit 59 because its coefficients are a 

Here y[n] is the LFO, for I~ E the radian rate of  modula- 
tion (27rf~), and for the sample period T. N O M I N A L  

D E L A Y  and CHORUS W I D T H  are constants ex- 
pressed in whole units of  samples representing, respec- 
tively, the offset and the amplitude of  the LFO. So at 
time n = 0, i.frac points to N O M I N A L D E L A Y .  The 
instantaneous radian frequency of  x ( (n  - i .frac)T) is 
then 

O{~[n - N O M I N A L _ D E L A Y  - C H O R U S _ W I D T H  sin(12~nT)]T + ~b} 

121 = T On 

= 1211 - C H O R U S _ W I D T H  ~ETcos(12EnT)]  

and so 

pitch change ratio = 1 2 t / ~  

= 1 - C H O R U S _ W I D T H  12~T cos(12~nT) , 

pitch change ratio extrema = 1 - C H O R U S _ W I D T H  12~T. 

58 Strictly speaking, i.frac is a function of n, that is i.frac[n] 
would be proper. The nonsequential nature of i demands ran- 
dom access of delay-line samples. So for now the unit delay 
in Fig. 24 is not being utilized. 

s9 It is possible for a polyphase network to be time-invariant 
even when the constituting circuits are time varying. This 
happens when the output signal is a replica of the input signal 
to within a constant and/or a delay term [29]. 

60 The number of possible coefficients is related to their 
resolution. There are L = 223 possible pairs of nonnegative 
coefficients in 24-bit two's complement, hence that many fil- 
ters [34, ch. 4.3.11]. Notice that when frac = 0, which is not 
unusual, the linear interpolation circuit performs no filtering 
action. The "filter" corresponding to frac = 0 is the zeroth 
filter in an ordinal set consisting of L filters. 

61 One may skip to the next section without loss of 
continuity. 
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The pitch change ratio is the ratio of  the new pitch 13 I 
to the original pitch I~. 62 In the present case, the pitch 
change is time varying,  sinusoidal like the LFO, and 
proportional to the modulat ion frequency and the sample 
period. Note that if the LFO waveform were triangular, 
then the instantaneous frequency would be piecewise 
constant,  which is unnatural. 

Solving for i. frac in terms of  the pitch change ratio, 
we determine that, in general 

i .frac = n - f pitch change ratio an 

where - N O M I N A L  D E L A Y  becomes the constant o f  
integration. 

4.4.3 Constant Pitch Change 
It is given that i .frac varies linearly, that is, constant 

pitch change does not imply constant delay nor constant 
i.frac pointer. 

As before,  we consider an arbitrary sinusoid of  con- 
stant amplitude,  phase, and frequency. So using Eq. 
(39), we again write 

x ( ( n  - i.frac)T) = A cos [~(n  - i .frac)T + ~b] 

but where 

eventually pass one or the other delay-line boundary,  so 
this technique cannot be used indefinitely. 

4.5 High-Frequency Loss of Linear Interpolator 
We need to delve further into the connection between 

linear interpolation as a t ime-domain process and the 
filtering anomaly mentioned, which we perceive in the 
chorus, flange, and vibrato effects. To facilitate the ana- 
lytical portion of  the investigation, we will approximate 
the actual circuit used (Fig. 24), substituting instead the 
polyphase filter circuit of  Fig. 25 into the analysis. 63 
The unit delay z -  1 of  Fig. 24 is now terminated in Fig. 
25. We thereby ignore the second input in the circuit 
of  Fig. 24 when making the analytical approximation 
because the two inputs there are separated by one sample 
in the delay line. To justify that for the analysis, we 
need not assume constant i because we will view the 
instantaneous transfer function 64 of  this nonrecursive 
circuit in Fig. 25. 

Because of  the constant interrelationship o f  the time- 
varying coefficients, the analytical approximation has an 
instantaneous frequency response that traverses a range 
from an all-pass transfer function [1, z - ] )  at either ex- 
treme of  the coefficients, to an averaging transfer func- 
tion (1 + z-1)/2 in the middle. This large set of  transfers 
represent the frequency responses of  the polyphase ill- 

i .frac = N O M I N A L _ D E L A Y  + (1 - pitch change r a t i o ) n .  

N O M I N A L D E L A Y  is constant,  expressed in whole 
units o f  samples, representing the pointer offset. At  time 
n = 0, i .frac points to N O M I N A L  DELAY.  The pitch 
change ratio is also assumed constant. The instantaneous 
radian frequency of  x ( ( n  - i.frac)T) is then 

ters. Fig. 26 shows several of these magnitude re- 
sponses, corresponding to 20 equispaced values of  frac, 
that is, frac = 0-+0.95  spaced by 0.05. 

= 13 �9 pitch change ra t io .  

This verifies that the pitch change is indeed constant 
when i.frac varies linearly. Unfortunately i.frac will 

a[l~(-- N O M I N A L  DELAY + pitch change ratio * n ) T  + ~b] 

T On 

It is this set of  magnitude responses (Fig. 26) that we 
hear in our effects. 65 In some musical applications, flut- 
ter is clearly audible and objectionable. In other applica- 
tions, a veil seems to have been placed over the sound 
source. 66 

62 The pitch change ratio is defined as a ratio of strictly 
positive integers M / L  in Section 6.2.3, Appendix 4. Where 
the pitch change ratio becomes a function of time, M becomes 
a function of n. In the present circumstance, were the pitch 
change ratio to go negative, that would mean that samples 
were being read from the delay line backward in time. 

x[n- i -1]  
frac 

Fig. 24. Linear interpolation circuit. 

v[n] 

vibrato 

63 The time-varying approximation to linear interpolation 
(Fig. 25) is only used for analysis; it is not used in the actual 
implementation. 

64 We freeze time and then determine the transfer function 
at that moment. This analytical device is justifiable if i.frac 
changes slowly in time. 

65 Each curve except for the extreme curves is duplicated since 
there are two sets of coefficients corresponding to each curve in 
the case of linear interpolation. For example, (0.25 + 0.75z -1) 
and (0.75 + 0.25z-1). 

66 For many of the audio effects in which linear interpolation 
is used, i.frac changes slowly enough that the concomitant 
dynamic filtering is objectionably audible. For example, near- 
unity pitch change ratio for sounds having much high- 
frequency content produces audible flutter. When i.frac 
changes faster than our ability to perceive the flutter, our hear- 
ing system integrates the response of many of these polyphase 
filters, each operating at a subsample rate (~<Fs). In this cir- 
cumstance one must use the more rigorous mathematical de- 
scription [see Eq. (54)] to explain the filtering anomaly that 
remains audible, like the veil, but is no longer dynamic. 
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4.6 Fractional Sample Delay of Linear Interpolator 
Fig. 27 shows the delay response as a function of 

frequency introduced by the polyphase filters corres- 
ponding to Fig. 26. We may rightfully deduce that the 
polyphase filters are responsible for only the fractional 
portion of the desired sample delay determined by i. frac. 
This fractional sample delay is figured as the negative 
of  the phase response divided by the normalized radian 
frequency, namely, the phase delay, 

= - arg[V'(eJ~)/X(eJ~)] 
05 

frar 

v'[n] . . _  

Fig. 25. Analytical approximation of linear interpolation. 

V'(eJ c~ 
1 ~ [1, Z -1) 

o ,  

0 6 

0 4 

0 2 

0 1 0.2 0 3 0.4 0 5 

o)/2~ 

Fig. 26. Magnitude responses of linear interpolation polyphase 
filters; L = 20. 

This actual signal delay is with reference to a steady- 
state sinusoid input. From Fig. 23 we can see that the 
desired fractional sample delay "r is frac, which is con- 
stant when time is frozen and independent of frequency. 

The delay responses of the polyphase filters are as 
important as their magnitude responses. When the coef- 
ficient frac calls, say, for a quarter-sample delay, we 
would like a constant quarter-sample delay for all fre- 
quencies. The only transfer function of linear interpola- 
tion that meets this criterion perfectly is the one in the 
middle, (1 + z - 1 ) / 2 ;  that is, it is the only transfer, aside 
from the trivial case of frac = 0, which we will see 
having linear phase, hence a constant delay (half-sample 
in this case). Ironically, it is observed from Figs. 26 
and 27 that when the filtering is at its worst, the delay 
is ideal. 

Fig. 28 shows the average delay (over frequency) of 
each individual polyphase filter for the linear inter- 
polator, 

- 1 f :  arg[V'(eJ~)/X(eJ=)] d o .  ~ =  - 
"rr (1) 

This average actual delay is calculated for every point 
on the curve in the graph, corresponding to a different 
value of the coefficient frac, the desired fractional sam- 
ple delay. There are L = 223 different polyphase filters 
because that is how many different nonnegative coeffi- 
cients there are in 24-bit two's complement [34, ch. 
4.3.11], q23 format. The straight line is the desired 
average. 

4 .6 .1  I n t e r p o l a t i o n  D i s t o r t i o n  

Notice that in general the fractional sample delay for 
each individual polyphase filter in Fig. 27 is fairly con- 
stant in the low-frequency region. If  we regard only dc 
in Fig. 27, we make the further observation that the 
actual fractional sample delay perfectly tracks the poly- 
phase filter coefficient sample frac, as desired (see Fig. 
23). This property is a major determinant in the success- 
ful performance of the linear interpolator from the stand- 
point of total harmonic distortion + noise (THD + N )  

% 
1 

0 8 

0 , 6  

samples 

0.4  

0 .2  

ir z.l 

(1+z-1)/2 

i . . . . .  

0 0.i 0.2 0.3 0 4 0.5 

~o/2~ 

Fig. 27. Delays of linear interpolation polyphase filters. Extreme polyphase filter z-1 is not used. 
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of low-frequency signals subject to pitch change. 67 
To understand why, recall from Section 4.4 that con- 

stant or undulating pitch change requires a time-varying 
delay of the input signal. I f  the time-varying filter pro- 
vides a succession of delays that are in error, phase 
distortion will be introduced into the pitch-changed out- 
put signal. From Fig. 27 we learn that the only frequency 
for which there is no delay error is dc. This means in 
general that phase distortion will be introduced into the 
linear interpolation of any sinusoid having nonzero fre- 
quency. The distortion worsens as the frequency be- 
comes higher. 

Nearly the same observations can be made regarding 
amplitude distortion, as revealed by Fig. 26, where we 
learn that the only frequency for which there is no ampli- 
tude error is dc. In summary, there are at least two 
components constituting the distortion introduced by lin- 
ear in terpolat ion--phase  and amplitude. In what fol- 
lows, we will attempt to eliminate the amplitude dis- 
tortion. 

5 A L L - P A S S  I N T E R P O L A T I O N  

The implementation cost versus performance of linear 
interpolation is difficult to beat, especially as the sample 
rate is increased. It does have significant drawbacks, 
however, which motivate us to look for better methods. 

The following are drawbacks to the use of  linear 
interpolation: 

la) Amplitude Distortion: Linear interpolation is a 
low-pass process having a dynamic zero at the Nyquist 

67 TItD +N is inherent to any interpolation process. It is a 
measure of signal purity~ which aggregates everything that is 
not signal, and then relates that to some purified reference, 
which is ideally the signal itself--more apt, S/(THD +N). 

68 This last problem comes about because the linear interpo- 
lation prototype filter has one-sided bandwidth 7r/L. The same 
is true for all-pass interpolation (see Figs. 47-49). The band- 
width is not a design parameter, but falls out as a result of 
these techniques. When the downsampling factor M exceeds 
the upsampling factor L, rather upon decimation, aliasing is 
traditionally tolerated for these two techniques (see Section 
6.2.4, Appendix 4), because it is unavoidable unless the input 
signal is pre-filtered. 

frequency (Fig. 26), creating muffled (veil-like) sounds 
and unaccounted damping in signal paths employing it. 

lb) Amplitude Modulation: The dynamic zero of the 
polyphase digital filters of linear interpolation introduces 
audible flutter, which is quite objectionable near unity 
pitch change ratio (M/L) for sounds having much high- 
frequency content. 

2) Phase Distortion: This arises due to the noncon- 
stant delay response of each polyphase filter (Fig. 27). 

3) Aliasing: An exceptional amount of  it occurs and 
is worst for large pitch change upward, corresponding 
to the case of  sample-rate reduction (decimation). 68 In 
the other direction we can link aliasing to phase distor- 
tion (see Section 5.3). 

We could eliminate the amplitude artifacts la) and 
lb) if the polyphase filters were all pass. So we need to 
know whether it is possible to make all the individual 
(frozen) polyphase filters have all-pass transfers while 
still performing interpolation. The answer is in the af- 
firmative [29, ch. 4.6.5, p. 166], [35], and we explore 
nearly all-pass polyphase filters in this section. 69 

Engineers within the audio industry [36] ,70 [37] report 
alternative interpolation strategies. 71 We recommend 

0.6 

samples 

0.4 

69 The reason that the polyphase filters can each have an 
ideal all-pass transfer function is discussed in Section 6.2.4, 
Appendix 4. The formal frequency-domain formulation of in- 
terpolation derives the polyphase filters from what is called 
the prototype interpolation filter. The prototype filter (Section 
6.2.4) must not be all pass, by definition, but no such restric- 
tion is placed on the individual polyphase filter. In fact, for 
the idealized formulation of interpolation by a rational factor, 
each time-invariant polyphase filter is exactly all pass and 
linear phase [29, ch. 4, pp. 168, 109, 124], [34, ch. 4 2.2]. 
But the polyphase filters of linear interpolation are clearly not 
all pass, as illustrated in Fig. 26. The corresponding prototype 
filter in Fig. 47 has a discrete triangular finite impulse re- 
sponse, illustrated in Fig. 44 [14, ch. 3.6.2, p. 109]. 

70 Pitch change algorithms are actually the topic despite 
the title. 

71 The E-mu Proteus sampling music synthesizer (1989) and 
its relatives all employ seventh-order interpolation polynomials. 
They are not exactly "Lagrange" though. They use a technique 
in which a Remez exchange is applied to an "ideal" filter response 
similar to that of Lagrange, but having lower maxima in the 
stopband. This gives the deep notches advantageous in the La- 
grange approach, but also the superior stopband rejection of a 
sinc-based design. For more information, see the U.S. patent 
on the fundamental E-mu G-chip interpolator; no. 5,111,727. 
David Rossum. 

1 I ;  

0.8 

0.2 

0.2  0 .4  0 . 6  0 .8  1 

frac = filter no. / 223 -= I I  L 

Fig. 28. Average delay of each linear interpolation polyphase filter. 
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Lagrange interpolation when higher order finite impulse 
response (FIR) filters are a viable option [32], [34], [38], 
[39]. Lagrange interpolation is an analytical extension 
to linear interpolation. 72 But nonrecursive techniques 
such as these have high computational cost. Nonethe- 
less, FIR filters dominate contemporary sample-rate con- 
version practice because from the point of view of inter- 
nal truncation noise, it is difficult to mess up an FIR 
implementation [40]-[42] .  Also, FIR filters offer lin- 
ear phase. 73 

Recursive polyphase filters have not been popular be- 
cause they are not linear phase, in general .74 The practice 
of  recursive digital filtering requires an understanding 
of fixed-point arithmetic, truncation error recirculation 
[12], and transient phenomena. 

5.1 All-Pass Interpolation as Polyphase Digital 
Filter 

We present here the simple recursive technique of  all- 
pass interpolation, which is useful primarily for micro- 
tonal changes in pitch (less than plus or minus one semi- 
tone). Linear interpolation will outperform it from the 
standpoint of T H D  + N (Section 5.4). Otherwise all-pass 
interpolation minimizes the drawbacks of linear interpo- 
lation in this microtonal region and makes the interpola- 
tion sound analog. 

Fig. 29, a modification of Fig. 24, shows the actual 
circuit used to implement all-pass interpolation [43]. 
Our application of Fig. 29 uses time-varying filter coef- 
ficients. The formal derivation of the classical polyphase 
all-pass interpolation network [29], [35] requires as 

72 That is, a higher order polynomial curve fit using more 
signal values, and which is maximally fiat in the frequency 
domain while suppressing ripple in the time domain. The two- 
point Lagrange interpolator is equivalent to linear 
interpolation. 

73 Generally speaking, a linear-phase prototype interpola- 
tion filter does not guarantee linear-phase polyphase filters, 
and vice versa. Linear interpolation, for example, is an emi- 
nent case of an FIR prototype that is linear phase (having a 
symmetrical triangular impulse response of length 2L spanning 
two original samples by design [14, ch. 3.6.2, p. 109], [34]) 
but whose polyphase filters are not. Yet if a linear-phase proto- 
type is ideally band-limited to ~r/L, for L a rate conversion 
factor, then all its L polyphase filters will remain exactly linear 
phase [37, p. 545], [29, ch. 4.6.5, p. 168], [14, ch. 5.7]. 
(See Section 6.2, Appendix 4.) Crochiere and Rabiner [34, 
ch. 4.3.6-4.3.10] give explicit general design procedures for 
simultaneously linear-phase FIR polyphase and prototype in- 
terpolation filters. 

74 Renfors and Saram~iki's infinite impulse response (IIR) 
design offers nearly linear-phase recursive polyphase and pro- 
totype interpolation filters [35]. 

many recursive memory elements as there are coeffi- 
cients (L = 223 in 24-bit two's  complement). 7s This is 
one reason why this simpler circuit in Fig. 29, employing 
only one recursive element with a time-varying coeffi- 
cient, only performs well (in terms of T H D  + N )  for 
small pitch changes. Making the same analytical approx- 
imation as before, we can see that connection of the 
node at x[n - i - 1] instead to the unit delay would 
make the instantaneous transfer function of the resulting 
polyphase filter all pass. This means that the interpola- 
tion circuit in Fig. 29 has a frequency response that is 
approximately all pass; IV(eJ~o)/X(eJ~)l ~ 1. 

5.2 Fractional Sample Delay of All-Pass 
Interpolator 

The time-varying coefficient (1 - frac) in Fig. 29 is 
easily derived from i.frac, as in Fig. 23. We find that, 
subjectively, the circuit of Fig. 29 sounds quite smooth 
in musical applications. But analytically speaking, the 
actual signal delay introduced by the analytical approxi- 
mation does not track frac as well as it does for linear 
interpolation. 

Fig. 30 corresponds to Fig. 27. Each curve in Fig. 30 
corresponds to one of 20 equispaced values of frac, that 
is, frac = 0---*0.95, spaced by 0.05, as before. Notice 
how the delay between filters is spaced unevenly, how- 
ever, which is especially noticeable at de. But for each 
individual filter the delay is still fairly constant in the 
low-frequency region. Evidently, the average delay 
(over frequency) of each polyphase filter, shown in Fig. 
31, is better than that for linear interpolation (compare 
to Fig. 28). 

5.2.1 All-Pass Interpolator Coefficient Warping 
It might be reasonable to expect, mathematically 

speaking, that we could force the delay of each poly- 
phase filter to be equal to any desired value at one partic- 

75 In the classical polyphase network, all the polyphase filter 
coefficients are fixed. Each recursive memory element resides 
in a structure like that in Fig. 29, having the feedforward 
delay element connected. Our simulations have shown that to 
implement the classical polyphase all-pass interpolation net- 
work, as few as L = 28 recursive elements work quite well 
to make constant or sweeping pitch change over a large range 
(see Section 6.2.10, Appendix 4). On the other hand, even 
the most typical implementation of linear interpolation corres- 
ponds perfectly to its classical polyphase counterpart simply 
because of the lack of required long-term memory [34, ch. 
3.3.2, p. 81; ch. 4.3 I1]. Hence the size of L is constrained 
for linear interpolation only by the coefficient resolution. The 
higher the resolution, the higher becomes L. 

x [ n - i ]  

x [ n - i - 1 ]  

v[n] 

~ ibrato 

1 - frac 

Fig. 29. All-pass interpolation circuit. 
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ular frequency by appropriately altering the formula for 
the polyphase filter coefficients. This would be benefi- 
cial if we were concerned with T H D + N  performance 
in a particular frequency region. Indeed, the alteration 
that precisely warps the all-pass circuit coefficients in 
Fig. 29 is the substitution [44, p. 178] 

1 - frac.__,sinL,to/2,,lr( ~( T)] 

sin[((o/2)(1 + "r)] 

where ,r is the desired fractional sample delay (in units of 
samples) at the desired normalized radian frequency (o. 

We can eliminate the dependence of the warp equation 
on the signal frequency (o when we are primarily con- 
cerned with T I t D + N  performance at low frequencies 
((~ near 0). For then the coefficient warp equation simpli- 
fies to [24] 

1 - frac---~ 
1 - - ' r  1 

l + ' r  3 p = l  3 p + I  T --  . 

(40) 

This simplified warp equation is a reasonable substitu- 
tion for audio signals that consist predominantly of low 
frequencies with respect to the sample rate. 76 From Fig. 
23 we can see that the desired fractional sample delay 

is frac; we recall the identification 

"r = frac (41) 

where frac is the elemental polyphase filter coefficient. 
Thus we arrive at Fig. 32, which shows the actual time- 
varying circuit used to implement warped all-pass inter- 
polation using the simplified warp equation Eq. (40) in 
place of the all-pass coefficients in Fig. 29. 

Fig. 33, like Fig. 30, also corresponds to Fig. 27 
and is plotted with the same set of values for frac. It 
demonstrates the even distribution of delay across the 
polyphase filters at low frequency using the simplified 
warp equation Eq. (40) as in Fig. 32. This closer tracking 
between frac and actual signal delay will help improve 
somewhat the T H D  -t- N performance at low frequencies 
by diminishing phase distortion there. 

But the improvement in the delay distribution in the 
low-frequency region causes the average delay, shown 
in Fig. 34, to suffer (compare to Fig. 31). We find, 
analytically, that for all-pass interpolation of low- 
frequency sinusoids up to a few kilohertz, use of the simpli- 
fied coefficient-warp equation Eq. (40) is desirable from 

76 The series form of the substitution from the simplified 
warp equation [Eq. (40)] will become handy when we imple- 
ment this new polyphase filter coefficient. 

~ , , , ,  z.1 
1 

0 . 6  
samples 

~ I 

95 z -1 
0 . 2  

0 ' 0'.i 0.2 0.3 0.4 0 5 

c0/2n 

Fig. 30. Delays of all-pass interpolation polyphase filters Extreme polyphase filter z-' is not used. 

samples 

m 
A 

1 I ;  

o B 

o 6 

s 

o 4 

o 2 

, , , , 012  ' , , , 014  ' , , , 016  ' , , , = , , , , = 0 8 1 

frac = filter no. / 223 ~- l / [, 

Fig. 31. Average delay of each all-pass interpolation polyphase filter. 
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a THD + N standpoint. Within an actual implementation, 
several computed terms from the Taylor series expansion 
Eq. (40) of the simplified warp equation (or a table lookup 
routine) would easily map frac to the warped coefficients 
of Fig. 32. So it is worth doing (Section 5.4). 

Notwithstanding the foregoing, for some of our musi- 
cal applications we have not found it absolutely neces- 
sary to implement the all-pass interpolation circuit using 
coefficients different from those shown in Fig. 29. In 
other words, we have not found coefficient warping as 
illustrated in Fig. 32 absolutely necessary for all musical 
purposes, because in some musical contexts the induced 
phase distortion is not subjectively objectionable. That 
is not to say that the distortion is never objectionable. 
The effect designer must make the decision to incur the 

extra computational expense based upon the intended 
audience. 

5.3 Distortion Analysis 
Fig. 35 shows estimates of T H D + N  of a 16-bit 401 

Hz sinusoid, sampled at 44.1 kHz, for various constant 
pitch changes spanning plus or minus one semitone. 
The C program simulation that produced the TItD + N 
estimates emulates fixed-point arithmetic such as would 
be found within a contemporary 24/48-bit DSP chip [1]. 
Thus the signal paths are 24 bit in width and the accumu- 
lations are double precision. Truncation is post- 
accumulation; memory is presumed 24 bit wide. The 
sinusoid x[n] is passed through the interpolation circuits 
of Fig. 24 (linear) and Fig. 32 (warped all pass). Then 

'x[n-i] 

• 

~%~ v i [n] 
brato 

Q 
1 - frac 

1 + frac 

Fig. 32. Warped all-pass interpolation circuit 

f~-zl 

0 . I  

0.1 

samples 

0 . ,  

0 . :  

5/1.05) + z -1 

D.95/1.05) z -1 

0 0.i 0.2 0.3 0.4 0.5 

co/2~ 
Fig. 33. Delays of warped all-pass interpolation polyphase filters. Extreme polyphase filter z-1 is not used. 
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Fig. 34. Average delay of each warped all-pass interpolation polyphase filter. 
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a mean-square error is calculated between the actual 
circuit output and the ideal (floating-point) desired out- 
put. The desired output is calculated, that is, an ideal 
input is not passed through an ideal circuit. That is why 
the plots in Fig. 35 bottom out at about - 9 6  dB, the 
presumed distortion of the 16-bit sinusoid input. The 
mean-square error forms a ratio with the desired output 
signal power to calculate decibels. 

The estimates for all-pass interpolation in Fig. 35(b) 
were made using the simplified warp equation Eq. (40) 
and 16-bit polyphase filter coefficients, two's comple- 
ment. Without Eq. (40), the T H D + N  curve in Fig. 
35(b) would be relatively flat [like that in Fig. 35(a)] 
and average about - 4 4  dB, dominated by harmonic 
distortion. The polyphase filter coefficients used in mak- 
ing the THD + N  estimates for linear interpolation in 
Fig. 35(a) are also 16 bit in width, two's complement. 77 

The predominant artifact exposed in Fig. 35(a) is har- 
monic distortion due to two facts: 1) the two-tap FIR 
(Fig. 24) magnitude response is modulated by the time- 
varying filter coefficients (Fig. 26), and 2) the actual 
time-varying delay (Fig. 27) of the two-tap FIR deviates 
from that desired. Thus we have amplitude and phase 
distortion, as discussed previously. 

The use of (warped) all-pass interpolation (Fig. 32) now 
warrants the consideration of transient phenomena as well 
as truncation error recirculation. Through experimentation 
via the C program simulation, we discover that the predom- 
inant artifact exposed in Fig. 35(b) is distortion due to 

77 We recommend a minimum of 9 bit, two's complement, 
for linear interpolation. 

transients arising from the time-varying filter coeffi- 
cients. Although the filter coefficients are updated at the 
sample rate, the nature of the pitch change algorithm 
(as outlined in Fig. 23) demands a disjunct sequence of 
desired fractional-sample delay. Because the filter states 
(memory elements) are ignored when the coefficients 
change, the recursive filter responds to the abrupt change 
in coefficient just as it would to an abrupt change in 
the input signal; that is, the filter's natural response 
is elicited. 

Now that we have graduated to a recursive interpola- 
tion filter topology, signal truncation errors will recircu- 
late and become amplified by the single pole at Nyquist; 
that is, we have significant truncation noise. The simula- 
tion reveals that this particular distortion, in the form of 
deterministic additive noise [12], is swamped by the 
transient distortion. (See Section 6.2.10, Appendix 4.) 

In summary, all-pass interpolation has minimized ampli- 
tude distortion while phase distortion (Fig. 33) persists. 7s 
The predominant distortion introduced by all-pass interpo- 
lation, however, is due to the transient response induced 

78 We learn from Appendix 4 (Section 6.2) that when the 
polyphase filters are all pass and the fractional sample delay 
for each is ideally and appropriately constant over frequency, 
then aliasing of signals that are confined to some low-frequency 
region ~r < ~r becomes impossible for tr/~r less than the pitch 
change ratio inverse. That is because the prototype interpola- 
tion filter becomes ideal and perfectly band-limited to the Ny- 
quist(L) frequency [Eq. (47)]. Hence it is unlikely for a replica- 
tion of it to leak into the baseband. We only mention this here 
because it establishes a direct tie between aliasing and phase 
distortion. When phase distortion exists, the prototype filter 
cannot be ideal, that is, aliasing of low-frequency signals is 
a consequence of phase distortion. That is why we have not 
considered aliasing in this analysis. 

(a) 

(b) 

dB 
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Fig. 35. Estimated TItD + N  of pitch-changed sinusoid. (a) Due to linear interpolation. (b) Due to warped all-pass interpolation. 
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by the time-varying filter coefficients in the recursive 
interpolation circuit. This type of distortion is not pres- 
ent for the linear interpolator. It is that transient distor- 
tion which bottlenecks the useful transposition range 
of the all-pass interpolator to about plus or minus one 
semitone. There is a way to overcome this particular 
problem (which is discussed in Section 6.2.10, Appen- 
dix 4), but the solution adds more computational 
expense. 

5.4 Implementations of All-Pass Interpolation 
Now we leave the realm of simulation and estimation 

to visit the reality of actual implementation and measure- 
ment. Establishing the sinusoidal LFO frequency = 
0.1 Hz in a real-time 24/48-bit DSP hardware develop- 
ment system, we put a 24-bit 400-Hz sinusoid through 
a delay line, perform delay modulation, then send the 
16-bit vibrato output (as in Fig. 22) to an Audio Preci- 
sion signal analyzer. All polyphase filter coefficients are 
now 24 bit, the sample rate is 44.1 kHz to within 0.001% 
accuracy, and truncation is post-accumulation. 

We require that the implementation of the interpola- 
tion circuit (in Fig. 29) prevent prolonged Nyquist 
(Fs/2) oscillation that comes about when frac = 0. We 
can accomplish this by forcing that circuit to interpolate 
by a constant fraction of a sample at all times, say, 1/256 
sample. This technique introduces a constant fractional 
offset into the equation for i.frac in Fig. 23 (not shown 
there) and has little deleterious audible consequence, 

5.5 Conclusions 
Having reached parity between the two processes in 

terms of T H D + N ,  we would preferentially choose 
warped all-pass interpolation because it minimizes the 
drawbacks of  linear interpolation, stated at the outset of 
this section, when used in a microtonal region. If the 
added computation to warp the coefficients is not af- 
fordable, then (nonwarped) all-pass interpolation is a 
viable alternative because it sounds better than linear 
interpolation in some musical contexts. Its computa- 
tional complexity is only slightly greater than that of 
linear interpolation, and it minimizes amplitude distortion. 

In Appendix 4 (Section 6.2) we present the classical 
polyphase warped all-pass interpolator as a means of 
pitch change over a much larger range and to a higher 
degree of accuracy in terms of THD + N. It is primarily 
of theoretical interest, being computationally expensive 
by today's standards. 

Are we on the right track? This idea of using all-pass 
filters to perform interpolation is somewhat foreign. But 
as we discover in Appendix 4, the linear-phase all-pass 
filter is the ideal polyphase filter in the classical formula- 
tion of interpolation [Eq. (39)] by a rational factor. So 
the answer is, yes indeed. 

5.6 Theoretical Extensions 
Laakso et al. [39] broaden the scope of this warped 

all-pass approach to interpolation. They provide formu- 

Measured distortion of linear interpolation: - 78 ~ - 88 dB 

Measured distortion of all-pass interpolation: - 53 ~ - 59 dB.  

These THD + N measurements are time varying because 
the sinusoid frequency is slowly undulating due to the 
vibrato effect. That is why they are indicated as a range. 

Next we observe the impact of coefficient warping, as 
shown in Fig. 32, to improve the processing THD +N. 
Practical all-pass interpolator code uses only the first five 
terms of the Taylor series expansion [Eq. (40)] to map 
frac into (1 - frac)/(1 + frac). The code would compute 
the warped coefficient via the numerical approximation, 79 

las for all-pass polyphase filters of higher order that 
possess a more constant delay versus frequency, thereby 
providing a prototype interpolation filter (see Sections 
6.2.4 and 6.2.7, Appendix 4) that has higher stopband 
rejection. This progressive linearization of the phase 
response as filter order is increased, however, does not 
proceed as quickly as we might like. V~ilim~iki et al. 
[45] deal with transient phenomena. 

1 - f r a c  1 ( 1 ) [  8 ( 1]~16 
1 + f r a Y = 3  + f r a c -  - ~ +  f r a c - 2 J L ~  + ( f r a c - 1 ) [ - ~ +  ( f r a c - 1 ) ( 2 ~ 3 ) ] }  ] -  

Since this map is only approximate, it is no longer neces- 
sary to prevent prolonged Nyquist oscillation as before. 
We measure an improvement of 26 dB in TtID -I- N for 
all-pass interpolation, attributable to the coefficient 
warp. Linear interpolation exceeds this particular 
THD + N  performance, but by only a few decibels, 

6 WHITE CHORUS EFFECT 

Any complete discussion of the chorus effect must 
consider its relative, the flanger. The intended goal of 

Measured distortion of linear interpolation: - 78 ~ - 88 dB 

Measured distortion of warped all-pass interpolation: - 77 ~ - 85 dB.  

These measurements apparently lay in the groove of the 
estimates of Fig. 35. 

79 Beware of intermediate overflow in the calculation of 
this mapping. 
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chorusing is to emulate the independence of multiple 
like-voices playing in unison. But the goal of flanging 
is to jolt the ear 's  time-correlation mechanism by juxta- 
position of the input signal with a replica dynamically 
delayed by an amount that is within the integration time 
constant of the hearing system. 8~ We must first note that 
there is a very strong bond between the design of the 
chorus effect and of the sonically radical flange effect. 
What has gestated into the industry standard for both 
members of  this species condenses simply to a sum of 
the original input signal with a dynamically delayed 
replica, namely, two voices. In either effect, the replica 
delay is modulating and never static. So the consequence 
of summing the two signals is to introduce a comb of 
moving troughs into the input signal spectrum [46]. In 
the case of  flanging, that is the desired result. The deeper 
and more selective the troughs are, the better, s~ In the 
case of  chorusing, the troughs are undesirable and an 
effort is made to globally limit their depth by summing 
unequal amounts of original signal and delayed replica. 
But the primary distinguishing design feature of  the 
chorus is that the minimum of its modulating delay time 
is greater than that for the flange effect. This is to avoid 
flanging by the chorus, which becomes subjectively 
more pronounced for small delays. Indeed, the best 

s0 The familiar thunder of a jet aircraft often reaches our 
ears by combination in air of the direct and the reflected engine 
backwash. As the aircraft changes position, the reflection time 
changes, and Doppler pitch change due to the aircraft's reces- 
sion is introduced into both paths. The roar is more interesting 
as the reflection time is swept. That introduces more Doppler 
into the reflected path. 

Sl The flange effect gets its name from a studio technique 
that sums two synchronous magnetic-tape-recorder signals 
playing identical material. The recording engineer places the 
thumb on one tape flange to bring the two recorders slightly 
out of synchronization, thus creating the effect. In the 1970s 
the flange effect was emulated by analog phase-shifting net- 
works consisting of a cascade of all-pass filters having time- 
varying elements. Implemented in this manner, the problem 
of delaying a signal by brute force was overcome. These de- 
vices were called phasers and remain popular because the spec- 
tral troughs are not harmonically spaced, in general. While 
second-order all-pass filter sections in the cascade offer more 
control over trough frequency and selectivity [46], the phaser 
is well emulated in DSP using only first-order sections [47], 
[48] (which may be quieter in terms of truncation noise per- 
formance). The spectral trough frequencies are harmonically 
stretched in the first-order case. In any case, global feedback 
enhances the effect, affecting the perceived trough depth. 

flangers can sweep the delay all the way to absolute 
zero, that is, to no delay. 

In Fig. 36 we present a modification to the industry 
standard chorus effect, which attempts to compensate 
for the spectral aberration caused by the many troughs 
in the feedforward sum. The modification is the intro- 
duction of a negative feedback path into the delay line, 
whose tap point is separate from that of  the feedforward 
path but fixed at the center of the modulating delay in 
the feedforward path. Hence, the chorus circuit approxi- 
mates an all-pass filter when the interrelationship of the 
coefficients is correct, and when the changing delay in 
the feedforward path is proximal with the fixed delay in 
the feedback path. We prefer not to feed back a modulat- 
ing signal because the modulation induces pitch change. 
Feeding back a pitch changed signal produces more pitch 
change and becomes objectionable quickly for either the 
chorus or the flanger. Feedback is used by the flanger 
in an inverse sense to enhance the perceived depth of 
the troughs by heightening the crests in between, that 
is, the same circuit can be used for both flange and 
chorus effects. 

The knob (coefficient) settings in Table 6 are given 
as typical parameter values for the circuit in Fig. 36. 
All the listed effects can be implemented using the same 
circuit by setting the knobs as indicated, and by choosing 
an appropriate tap center in accordance with Table 7. 
The particular knob settings given for the white chorus 
optimize the circuit 's approximation to an all-pass re- 
sponse when the feedforward and feedback delays are 

Table 6. Knob settings. 

Effect Blend Feedforward Feedback 

Vibrato 0.0 1.0 0.0 
Flanger 0.7071 0.7071 - 0  7071 
Industry standard 

chorus 1.0 0.7071 0.0 
White chorus 0.7071 1.0 0.7071 
Doubling 0.7071 0.7071 0.0 
Echo s2 1.0 ~< 1.0 < 1.0 

82 Echo is accomplished with either the feedforward or the 
feedback knob set to zero. First-order low-pass filters are 
placed in those paths to simulate acoustical absorption. The 
filter cutoff frequency becomes another knob. The delay modu- 
lation is turned off. 

blend 
feedforward ~ % ~  

vibrato [ - - - - - - @  
I ~ modulating tap 

F tap center 
x[n] 

- -  Z N 

I same tap center 
l a fixed tap feedback 

Q 
Fig. 36. Industry standard chorus effect circuit with feedback. Strong flange zone is indicated; leftmost (first) 1 ms of delay line. 
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proximal. To maintain that optimization, the feedfor- 
ward coefficient must remain 1.0 while the blend and 
feedback coefficients remain equal, 

ncho~ , ( z )  = 
blend + feedforward z - i  

I + feedback Z-same tapc~,~, �9 

Under the stated conditions on the coefficients, 
[Hcho,~s(eJ~)[ = I when i = same tap center. When the 
circuit in Fig. 36 performs flanging, the blend and feedf- 
orward coefficients must be equal for maximum trough 
depth. The maximum magnitude of feedback is 
0.9999999 (q23) for stability of all the effects. 

For the white chorus effect introduced here, an inter- 
esting delay tap center ( N O M I N A L D E L A Y ;  Fig. 23) 
would be 400 samples at F s = 44.1 kHz, whereas a 
musically useful peak delay excursion ( C H O R U S  
WIDTH) of the modulation about the tap center would be 
approximately 350 samples. A typical rate of modulation 
would be about 0.15 Hz. 

Table 7. Approximate effect delay range in milliseconds. 

Effect Onset Nominal Range End 

Vibrato 83 0 Minimal 5 
Flange 0 1 10 
Chorus 1 5 30 
Doubling 10 20 100 
Echo 50 80 

6.1 Chorus Effect Design 
The circuit in Fig. 36 produces a brilliant tone quality, 

having pleasing movement  with a little spatial ambience. 
Used singly and without feedback, this circuit 's effect 
is called doubl ing  84 when the delay tap center reaches 
about 20 ms. 85 

The circuit in Fig. 36 is so simple that it is economical 
to use two of them. Each would process a separate chan- 
nel of  a stereo input signal. In that design configuration, 
a quadrature LFO typically provides the delay modulator 
so that each chorus circuit operates having 90 ~ relative 
phase displacement of its modulation .86 Each circuit out- 
put would be routed to a separate channel in a stereo pair. 
This quadrature strategy dynamically alters the stereo 
placement of the output signal in a pleasing way. Were 
the input signal monophonic, a dynamic stereo field 
would be created. The stereo field occurs because a time- 
delay difference between two output channels carrying 
coherent signals elicits a localization cue. This is known 

83 NOMINALDELAY is usually made to track the depth 
of vibrato (CHORUS_WIDTH; Fig. 23) in the best vibrato 
algorithms, that is, the smaller the better. 

84 Previously known as double tracking, a singer would at- 
tempt to record the same performance onto a second track 
while listening to the first. When machines became available 
to emulate this effect in real time, thereby saving a track, 
it became known as doubling. The delay modulation is best 
randomized for the doubling effect 

85 Fixed at about 80 ms, we discovered that you get the 
Elvis Presley echo effect. George Martin. 

86 Section 7 on sinusoidal oscillators discloses highly effi- 
cient quadrature designs. 

776 

as the Haas effect. While musically interesting, Haas is 
a persistent source of irritation for recording engineers 
attempting to place a musical instrument accurately into 
a stereo mix. For this reason it is prudent to place a 
stereo field control (or a panning circuit) at the output 
of  any chorus algorithm. It is also useful to have a user 
switch for disabling the quadrature modulation, that is, 
for in-phase modulation. (Antiphase is also an option.) 

I f  the flange effect utilizes the same two circuits for 
stereo processing as did the stereo chorus, then the 
flanger would normally incorporate delay modulation of  
the same phase in each channel. Otherwise the comb 
filtering is diminished due to acoustic mixing in air at 
the loudspeaker output. The strong flange zone occupies 
approximately the first 1 ms of the delay line. The viable 
regions of delay excursion for the chorus and flange 
effects overlap, however, and can be determined easily 
by ear. Table 7 gives the approximate delay range and 
the nominal setting of tap center for the various effects 
achievable by the circuit of Fig. 36. From the range end 
one can determine a suitable estimate of the delay-line 
size N. 

It is important to keep the chorus circuit free of nonlin- 
earity for those many guitarists who want the chorus 
effect as clean and clear as possible. For them, simplicity 
of the chorus design is a virtue as they use this effect 
almost all the time. Hence all-pass interpolation 87 for 
delay modulation becomes critical to the transparency 
of any chorus. Recall that linear interpolation is a time- 
varying low-pass filtering process. Indeed, a multivoice 
(more than two) chorus design using linear interpolation 
subjects the signal to significantly audible amounts of 
low-pass filtering attributable to the interpolation. We 
term the chorus whi te  when both negative feedback and 
all-pass interpolation are used to minimize the spectral 
aberration that would occur in the absence of these two 
signal-processing techniques. 

Flangers, on the other hand, can benefit from a mild 
memoryless nonlinearity introduced into the input signal 
path which resides in front of the entire effect, so that 
the flange-induced troughs see a richer signal source. 
But all-pass interpolation is also critical to successful 
flanger design so as to ensure that the dynamically de- 
layed signal remains unfiltered. The low-pass filtering 
of the delayed signal, introduced as an artifact of linear 
interpolation, will reduce the depth of the high- 
frequency troughs. This is undesirable for a good 
flanger. 

6.2 Appendix 4: Multirate Audio Processes  
The purpose of this appendix is to make a rigorous 

connection between the formal DSP approach to interpo- 
lation and decimation, and the time-domain formulation 
by fractional sample delay as presented in the interpola- 
tion sections. The reading of this material is optional 
and suggested only for those who are already familiar 
with the viewpoint of Vaidyanathan or Crochiere [29], 

87 As discussed in Section 5. 
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[34], [14, ch. 3.6] and who are comfortable with the 
z transform. 

6.2.1 Upsampling and Downsampling 
Fig. 37 shows a real time-domain signal x[n] having 

the given fictitious spectrum X(e j=) composed only of a 
real part. We make this simplifying assumption to im- 
prove the clarity of Figs. 38 and 39. 

Both upsampling and downsampling are linear time- 
varying operators. Upsampling [Fig. 38(a)] inserts 
L - 1 zeros between every pair of original samples; no 
information is lost. Downsampling [Fig. 39(a), l = 0] 
discards M - 1 out of every M original samples. In 
both cases, the original sample presented at time n = 
0 is passed. L, M, and 1 are integers; L and M are 
strictly positive. 

Fig. 38 shows the result of subjecting the signal in 
Fig. 37 to the process of upsampling, whereas Fig. 39 
shows the corresponding result due to generalized (l # 
0) downsampling. Notice in both cases that the sample 
grid is maintained. Thus the associated spectra basically 
contract and expand, respectively. That is the essence 
of the method of  Vaidyanathan [29]. 

We now derive the upsampling equation, which has 
the upsampling factor, L 

Yi(z) = ~ yi[n]z -n 
n =  -co 

= [p]g[n - pL z-"  
n =  - - ~  p 

= ~ x[p]z -pL 
p 

= X(zL). (42) 

Eq. (42) is the result of upsampling, expressed in terms 
of the z transform of the original signal X(z). 

We call the downsampler in Fig. 39(a) generalized 
because of the preceding advance operator [29, ch. 4.3, 
p. 122]. The integer advance l finds use when either 
positive or negative. 

For the example given (l = 1, M = 2) we have chosen 
to ignore the (complex) linear-phase term e j~ in the 
plot of  Fig. 39(c) to make more clear the overlaying of 
the expanded spectrum. The spectral overlay (more 

apropos, replication) is demanded by the generalized 
downsampling equation [Eq. (44)] copied in Fig. 39(a). 
The linear-phase term corresponds to the half-sample 
advance in the result, as can be seen by comparing Figs. 
39(b) and 37. 

The frequency-domain downsampling equation [Eq. 
(44)] in Fig. 39(a) is a true z transform that is derived 
from the time-domain expression for downsampling in 
Fig. 39(b), once we make the substitution 

IM-I 
~[nM - p] = ~ k~=o W~t kp , 

p =  - o o  = 

-oo<n<oo. 

(43) 

Here $[n] is the Kronecker delta function. The identity 
Eq. (43) is the bridge between the two domains. 

We now derive the downsampling equation Eq. (44), 
which has the downsampling factor M, the equation be- 
ing generalized by l an arbitrary integer advance as in 
Fig. 39(a). Taking the z transform, 

YD(Z) = ~ yD[n]z - n =  ~ x[nM + l]z -n .  
It= -oo n= -oo 

First we substitute the equivalent form of the signal 
x[nM + l], whose time index remains n. Then we apply 
Eq. (43), 

YD(Z) = [p + I]a[nM - p  z-"  
n =  - - o o  p 

+( 1=,} : + 

= __1 ~k ~oo x[p + I]z-P/M W~tkP 
M p=_ 

Since the sum over k only has value when p = n M  by 
Eq. (43), there is no complex root of z taken. Hence that 
exponentiation is unambiguous. Now we let p + l--+r, 

~__ L Z r ~oo X[F]Z-(r-I)/M WMk(r-l> YD(Z) M k =-  

1M-1 
= (z ,,M (44) 

Eq. (44) is the desired result, which appears in Fig. 
39(a), expressed in terms of the z transform of the origi- 
nal signal X(z). 

? 

-3 
i 

x[n]  

TIIT  < ' >  

-2-1  0 1 2 3 n --~ 7~ 0.) 
Fig. 37. Time-limited input signal and its fictitious real spectrum. 
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6.2.2 Conversion: Vaidyanathan to Crochiere 
The Vaidyanathan method of analysis is simpler be- 

cause it ignores changes in sample rate, whereas the 
method of  Crochiere [34] does not, that is, the Vaidyana- 
than method treats any sampled signal as an indexed 
sequence [29, ch. 4.1.1, p. 111 ]. But note that in terms 
of the insertion or deletion of samples, the action of the 
upsampler block [Fig. 38(a) and (b)] or the downsampler 
block [Fig. 39(a) and (b)] is respectively the same using 
either method. 

While the two methods of analysis are equally valu- 

able, it is prudent to have a means of  converting between 
the two. Given the Vaidyanathan analysis, one simply 
substitutes every occurrence of  z with z' (Crochiere's 
notation) which is defined equal to z M/L. One would also 
relabel any frequency-domain graphs by substituting to' 
(which equals toM/L = ~ T  M/L)  for to. 

The conversion becomes exceedingly simple when 
either L or M equals 1. For example, we wish to convert 
Fig. 38 (M = 1, L = 3) to the Crochiere-style upsampler 
analysis. Then we must relabel the abscissa, using to' 
in place of  to, and we relabel the ordinate as X(e j'~'L) = 
X(e j~ in place of X(eJ'~L). This result is correct because 

(a) 
X(z) Yi(z) = X(z L) 

(b) 

�9 Yi[n] = x[n / L] _A E x[p] 6[n - pL] 

3 
2 
1 
0 

n 
-11 -10 -9 -8 -7 -6 -S -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 

< = >  

(c) 

�9 X ( e J  OL)  t - - -  

/ V I V \  
rc 

Fig. 38. Upsampler (Vaidyanathan) [291. 

03 

(a) 

(b) 

(c) 

1 M - 1  1 I 

v (z) -- S'. (z W k) x(z W ) 

4 . l=l, M = 2  

I I <=> eJO/2 { X(eJ(~ + e-jrc X(eJ(C~ } / 2  
17 ?_ / -2 -1 0 1 n 

Fig. 39. Generalized downsampler (Vaidyanathan) [29]. 
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Crochiere always maintains the absolute time period be- 
tween the original samples. This is true for both upsam- 
piing and downsampling. 

6.2.3 Interpolation and Decimation 
Upsampling and downsampling, each combined with 

the appropriate digital filter, describe the processes of 
interpolation and decimation, respectively. It is possible 
to combine the two processes by sharing the same digital 
filter, as illustrated in Fig. 40. The two equivalent figures 
(Figs. 40 and 41) tie together the formal analysis in 
terms of the sample rate conversion ratio L/M and our 
preferred interpretation of the interpolation and decima- 
tion processes in terms of the required fractional sample 
delay [34, pp. 40, 81]. The role of the upsampler is 
played by the commutator in Fig. 41 [29, pp. 131,124]. 
Theoretically, each polyphase filter El(Z) in Fig. 41 of- 
fers a different but fixed fractional sample delay to an 
incoming signal, that is, each is ideally all pass. 

We often refer to the complete process depicted in 
Fig. 40 or in Fig. 41 simply as interpolation. That is 
an abuse of terminology, strictly speaking, as both the 
process of  interpolation and that of decimation are car- 
ried out in those figures, having H(z) simultaneously 
serve both purposes. 

Let us eliminate a possible point of confusion. When 
we introduced the polyphase filter in Sections 4 and 5, it 
was presented as a time-varying circuit having two inputs 
(see Figs. 24, 29, and 32). We have made an analytical 
connection, or perhaps a leap, to the classical network of 
Fig. 41. When we insert one of those polyphase filter 
topologies into the many branches of the commutator cir- 
cuit in Fig. 41, they curiously become time invariant, and 
the second input goes away by connecting the dangling 
unit delay. The justification for these modifications is sim- 
ply this. The original polyphase filter circuits were time 

varying and dual input because we were trying to find a 
simpler way to implement the entire complicated commu- 
tator network that is Fig. 41. 

Nonetheless, we can justifiably say that the most effi- 
cient technique for performing interpolation is through 
polyphase filtering. Fig. 41 is then the classical circuital 
definition of polyphase filtering because it shows how 
time-invariant single-input polyphase filters comprise 
the general linear time-varying frequency-domain model 
of interpolation represented in Fig. 40. 

6.2.4 Polyphase Filter sa 
In this section we first determine the polyphase filters, 

then from them we find what Vaidyanathan and Cro- 
chiere refer to as the prototype interpolation filter H(z). 
This approach is backward with respect to the traditional 
design method 89 because that is how the time-domain 
formulation by fractional sample delay proceeds. In Sec- 
tions 4 and 5, only the polyphase filters are considered. 
We are forced to accept whatever prototype is tacit. In 
Fig. 40, however, H(z) prescribes the formal prototype 
interpolation filter as an antialiasing filter when L < M 
or as a replication filter when L > M. 9~ 

Each time-invariant polyphase filter, represented by 
E~(z) in Fig. 41, presents a different fractional sample 
delay to a signal. More accurately, for the idealized 
formulation of interpolation by a rational factor, each 
polyphase filter is exactly all pass, noncausal, and lin- 
ear phase, 

El(ej~o) = ej(o~-2~n)t/L, 2~rm -- ~r < to < 2axm + ~r 

= eJZarctan[sin ~o/(1 + cos ~)]VL, 0 ~< 1 < L (45) 

where l is the polyphase filter number, L is the upsam- 
piing factor, and m is an integer. The desired phase of 

Input Output 
Rate Rate Rate 

Fig. 40. General model of interpolation by a rational factor. 

ss Our definition is from [34, ch. 3.3.2, p. 80]. 
89 The required low-pass specifications in the traditional 

method of prototype design are stated at the end of this 
appendix. 

90 Note that no filtering is necessary when L = M. 

X(z) . Eo(Z ) 

E,(z) 

- - ~  E2(Z) 

\ 
, a te  

w 

o 

I �9 

�9 1 

-] EL.I(Z) 

Fig. 41. Commutator model of classical polyphase interpolation showing numerous polyphase filters. 
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all the ideal polyphase filters [Eq. (45)] is linear [29, 
ch. 4, pp. 168, 109, 124], [34, ch. 4.2.2], [35], [37]. 
Eq. (45) defines linear phase in a discrete-time system. 
Hence the /th ideal polyphase filter represents a time 
advance of l/L fractional samples that is independent of 
frequency. Refer to Fig. 42, where the nonwrapped lin- 
ear phase is represented. 9~ 

This idealization presumes that the prototype interpo- 
lation filter is perfectly band-limited to w/L (on one side). 
To construct the prototype from these ideal polyphase 
filters [Eq. (45)] we use the important relation, 92 

L - 1  

n(z) = E Z-IEI(zL)" (46) 
/ = 0  

Now for every modulo 2~r/L of co, m increments. So 
we have 

may seem antithetical, but we must remember that the 
idealized formulation of interpolation simply finds the 
requested point between two original samples of the 
analog signal, as in Eq. (39). It does not purposely alter 
the bandwidth of the original signal before finding that 
new point. Analogously, if we were to sample an analog 
signal at too slow a rate, its spectrum would alias. 

The zero-phase prototype interpolation filter [Eq. 
(47)] has a noncausal impulse response in the form of 
the classical analog sinc( ) as L--->oo. Hence this idealized 
formulation of interpolation employing noncausal linear- 
phase all-pass polyphase filters corresponds to a resam- 
piing of the classical reconstruction [14, ch. 3.3], 

sin('rrn/L ) 
h[n] - 

,rrn/L 

L - I  
H(O '~) = ~ e-J=le j(~ 

l = 0  

L - 1  
~--" Z e-J2"mn//L ' 

l=0  
2~rm - "tr < coL < 2~m + -rr. 

From Eq. (43), this only has value, in the baseband, for 
m = 0. Hence, 

'17 

H(eJ•)  = ' ~ < IcoI < ~ .  

L 

(47) 

This zero-phase prototype H(e j'~ is known as an ideal 
Lth-band [Nyquist(L)] filter. 93 Its bandwidth, as indi- 
cated in Eq. (47), will admit aliasing when L < M. This 

91 Fig. 42 depicts, in fact, the classical discrete-time defini- 
tion of linear phase, which is given within Eq. (45). The phase 
periodicity is not made explicit in many textbooks on DSP. 

92 It may seem that we have pulled Eq. (46) out of a hat. It 
is because we will accept Eq. (46) as the definition of all 
polyphase filters. Rather, Eq. (46) states how the polyphase 
filters are expected to be combined to form the prototype inter- 
polation filter [29, ch. 4.3]. 

Fig. 43 shows this h[n] corresponding to Eq. (47). The 
polyphase filters Ej(e j~ [Eq. (45)] can be visualized in 
the time domain via Eq. (53). Each is a subsampled 
likeness of h[n]. These El(e J~ then, are the ideal poly- 
phase filters of classical polyphase all-pass interpola- 
tion, which is implemented as illustrated in Fig. 41. We 
will devise a warped and a nonwarped all-pass polyphase 
filter realization, which are somewhat close to the ideal. 

6.2.5 Theoretical Values of L and M 
When the interpolation process is discussed as in Sec- 

tions 4 and 5 in terms of the required fractional sample 
delay, the upsampling factor L is implicit in the sheer 
resolution of the filter coefficients (frac and 1 - frac), 
that is, the delay resolution is determined by the coeffi- 
cient resolution (quantization) and vice versa. Hence the 
implicit value of L is 223 because we require no less than 
a 24-bit processor for audio [1], [12], [49]. 

When we ponder the interrelationship of the respective 
frequency-domain and time-domain analyses of Figs. 40 
and 41, it becomes clear that L determines the upsam- 
piing factor as well as the number of polyphase filters, 

93 If L were 2 it would be known as an ideal half-band 
filter [29]. 

-9  

/ l=9 l=1 
<~ E/(eJco) 

3 

2 

2 

- 3  

m = O  

1 
1 

m=-4 m--4 

.~L 

Fig. 42. Phase response of ideal polyphase filters El(eJ~'); L = 10. 
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hence the delay resolution. This fact is self-evident in 
the ideal case [Eqs. (47) and (45)]. Recalling Eq. (41) 
we may now make the connection between the ideal and 
the realizable polyphase filters, 

l 
"r = frac = ~, (48) 

where �9 is the desired fractional sample delay, frac is 
the elemental polyphase filter coefficient, l is the com- 
mutator branch number, and L is the upsampling factor. 

For the particular applications of  delay modulation 
that were discussed at length, the pitch change ratio 
M/L is neither large nor small. Hence M is about the 
same order of  magnitude as L. When M and L have 
common factors, it is valid to reduce the fraction M/L 
until M and L are mutually prime. The interpolation that 
results is identical. 

Fig. 41 is primarily of theoretical interest then, since 
2 z3 fixed coefficient sets are not easily stored. What we 
found in Sections 4 and 5 were easy ways to compute 
the required coefficients in real time, and how to apply 
them to one dual-input time-varying filter (see Figs. 24, 
29, and 32). But then we discovered that transient distor- 
tion was generated when the filter is recursive (see Figs. 
29 and 32) because we had no way to keep track of 
2 z3 states (the required number of  recursive memory 
elements). We will show how to draw that lone dual- 

pl(Z)~_. ~l_]__'--(f/t) -]-z-l.] 
El(z) ZpL_t(Z)-- I/L)z-1 1 

pier. Only L/GCD(L, M) of them will be seen. Of  those 
that do appear, each will be accessed with a frequency of 

FsL 
<~ F s 

LCM(L, M) 

where LCM is the least common multiple and GCD is the 
greatest common divisor. Reversing the brush direction 
would simply change one sign of the z exponent in Eq. 
(49), namely, to z l-t0. 

The individual Et(z ) in Fig. 41 are noncausal, 95 linear 
time invariant, and correspond to one of the causal cir- 
cuits shown in Fig. 25, and in Fig. 29 or Fig. 32 (both 
having the delay element connected) for the cases of 
linear 96 and classical polyphase all-pass interpolation, 
respectively. Recalling the nomenclature we previously 
devised for those circuits in Eq. (39), we fix the coeffi- 
cients of the/ th  polyphase filter by making the identifi- 
cation in Eq. ( 4 8 ) .  97 

In the case of linear interpolation, El(Z ) is a first-order 
(two-tap) noncausal FIR filter by design, 

Pl(Z) = (1 - l/L) + (l/Z)z-l~ 
El(Z ) = ZPL_I(Z ) J 

linear interpolation 

while in the case of  classical polyphase all-pass interpo- 
lation we realize a circuit close to the ideal polyphase 
filter [Eq. (45)] using a first-order all-pass filter made 
noncausal, 

classical polyphase all-pass interpolation 

( 1  - l/L)/(1 + I/L) + z-~ .~ 
Pt(z) = 1 + [(1 - l/L)/(1 + l/L)]z-~[ 

Et(z) zPL- t(z) J 
classical polyphase all-pass interpolation 
with coefficient warping [Eq. (40)]. 

input recursive filter circuit as an equivalent network 
resembling that of Fig. 41 (see Fig. 50). 

6.2.6 Commutator Circuit 
The transfer function of the linear time-varying com- 

mutator filter circuit in Fig. 41 (not including the down- 
sampler) can be described using a generalization of 
Eq. (46), 

L-I 
H(z) = ~ z -(t-t~ Et(z L) (49) 

1=o 

where l 0 is the starting phase of the commutator, that 
is, the initial position of the brush when the input sample 
x[n] arrives. The action of the downsampler 94 is synchro- 
nized to l 0 such that the very first sample found at posi- 
tion 10 is passed to the output. Depending on the particu- 
lar values of  L and M, not necessarily all of the polyphase 
filters El(Z) will be seen at the output of the downsam- 

These three Pt(z) are the causal transfer functions of the 
circuits in Figs. 25, 29, and 32 (the latter two having 

94 Taking the view of Crochiere and Rabiner, for the mo- 
ment, the downsampler would operate at the step rate LF s [34]. 

95 Considering the noncausal polyphase filter Ej(z) simplifies 
the exposition and keeps us in agreement with Vaidyanathan's 
development of the subject. We will let Pt(z) denote the causal 
polyphase filter. 

96 Because the many polyphase filters of linear interpolation 
require no long-term memory, we were able to cheat the classi- 
cal implementation by using the equivalent time-varying cir- 
cuit shown in Fig. 24 instead of the aggregate network in Fig. 
41. Hence we perfectly implement classical polyphase linear 
interpolation with ease. (We drop the term "classical poly- 
phase" in the discussion.) 

97 The number of polyphase filters L is determined by the 
numerical resolution of the registers holding the polyphase 
filter coefficients; that is, there are as many polyphase filters 
as there are different possible quantized values of coefficients. 
Note that because of the method of implementation (refer to 
Fig. 23, for example) in all the polyphase applications dis- 
cussed, there is no division required in the capture of the 
elemental coefficient l/L. 
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the delay element connected) [44, p. 178], [39, p. 50]. 
All three transfers are time invariant when the corres- 
ponding circuits are inserted into the / th  branch of the 
commutator circuit in Fig. 41. 

We reverse the order of the index in Pz(z) via the 
substitution l--*L - l because the polyphase filters El(z) 
in Fig. 41 are ordered by increasing time advance, 
whereas the Pl(z) are ordered by increasing delay. 

The ideal Et(z) are noncausal [Eq. (45)]. This warrants 
multiplication of the various first-order causal PL_I(Z) 
by z so that the impulse response of each corresponding 
prototype filter Eq. (46) is time aligned with the others 
(see Figs. 43-46) .  But this analytical z factor is unneces- 
sary when realizing an implementation. 

6.2.7 Tacit Prototypes H(z) 
For the prototype interpolation filter of linear interpo- 

lation, the length of its triangular impulse response is 
2L, as illustrated in Fig. 44. That finite length, by de- 
sign, spans only two of the original input sample periods 
[14, ch. 3.6.2, p. 109], whereas in the case of classical 
polyphase all-pass interpolation, the impulse response 
is of infinite length, as implied in Figs. 45, 46, and 43. 
All the impulse responses in the figures were determined 
using the signal processing package of Evans et al. [25] 
for Mathematica to invert Eq. (46) directly. 

All the impulse responses we show have every Lth 
sample equal to zero (except the central sample), thus 
identifying Lth-band [Nyquist(L)] prototype filters [29, 
ch. 4.6], [35]. Hence the original input samples x[n] 
appear unscathed 98 at the input to the downsampler in 
Fig. 41, regardless of l 0. 

The initial linear slope of the impulse response for 
the all-pass interpolation prototype in Fig. 45 is identical 
to that for the linear interpolation prototype in Fig. 44. 
This can be explained best by observing Fig. 41 for the 
case M = 1, L = I0. The commutator brush visits all 
the polyphase filters within the same time period of one 
input sample. If the input signal x[n] = ~[n] and l 0 = 

h[n] 
Sequence Plot 

i = =  w n m  

n 

Fig. 43. Ideal prototype interpolation filter impulse response; 
L = 1 0 .  

98 If we set M = 1 just for convenience, then we can use 
the y nomenclature to make this point. In that case, 
y[nL + (L - l o) mod L] = x[n]. When l 0 = 0, we have the 
simpler result y[nL] = x[n]. 

0, then what we shall see at the brush is the impulse 
processed by each of the all-pass polyphase filters suc- 
cessively. But on this first sweep of the brush, none of 
the all-pass filters has anything stored in its memory, 99 
so the filters are effectively scalar multipliers increasing 
linearly with I. 

Another salient characteristic of Lth-band filters is 
that the frequency-shifted filter sums to a constant level 
in the frequency domain, 

L-1 
H(zW~) = t, Eo(Z L) 

k=O 

= L (50) 

which is true since we have Eo(z) = 1 for all our poly- 
phase filters, m0 

Next we show these Lth-band prototype filters in the 
frequency domain via Eq. (46). Figs. 47, 48, and 49 
give the prototype filter magnitude responses for linear, 
all-pass, and warped all-pass interpolation, respectively, 
for the case L = 10. For 2L-length linear interpolation 
we expect a positive real frequency response of the form 

H(e j=) = sinZ(~ 
L sin2(to/2) " (51) 

The expressions for the all-pass interpolation prototypes 
are not so simple, neither are their nonzero phases [35]. 

As we have already seen, there is a mathematical 
description of a prototype interpolation filter in terms of 
its polyphase filters, 

L- I  
H(z) = ~ z-tEt(zL). (46) 

l=0 

The converse is also true, 

1 L - I  
EI('Z. L) = L ~ (zWk) 1 H(zWkL) 

~ = o  

(52) 

= ~ h[nL + l]z -"L. (53) 
n =  - - c o  

Without significant loss of the generality of Eq. (49), Eq. 
(46) describes well the filtering action of the commutator 
circuit presuming l 0 --- 0. Eq. (52), a generalization of 
Eq. (50), is an application of the generalized downsam- 
piing equation (44) to H(z) for advance I. Eq. (52) ap- 
plies directly to the polyphase decomposition of either 
IIR or FIR prototypes. The time-domain impulse re- 
sponse h[n] in Eq. (53) of course corresponds to H(z) 
while h[nL + l]<--~El(z). 

99Refer to Fig. 29, having the delay element connected. 
100 A proof of Eq. (50) is suggested by expressing H(z) as 

in Eq. (46). We will generalize Eq. (50) in Eq. (52). 
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6.2.8 Complete Commutator Network Transfer 
Function 

Having established the definitions o f  Eqs. (52) and 
(46), we can write the equation for the commutator  
model  o f  Fig. 41 in the manner o f  Vaidyanathan, 

Y(z) = [X(z L) H(z)] ,~ M 

M - 1  L - I  

1 Z X(zL/M WMb") s (zllM W~)-I El(zL/M WMbn)" 
M m=o /=o 

(54) 

h[n] 
Discrete-Time Domain Analysis 

i, 

 r011 Iillr , 
oT] T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  n 

-i0 i0 20 30 40 

Fig. 44. Impulse response of linear interpolation prototype 
filter; L = 10. 

h[n] 
Discrete-Time Domain Analysis ,,,tl] IIlo 

m=a  

_, _ _.,,TTTTTT__ 

- 0 . 4  

Fig. 45. Classical polyphase all-pass interpolation prototype 
filter impulse response; L -- 10. 

h[n] 
Discrete-Time Domain Analysis ,11 llIIIll[~ 

R i B  

_,TII __..,Till] . . . .  

- 0 . 4  

Fig. 46. Classical polyphase warped all-pass interpolation pro- 
totype filter impulse response; L = 10. 

This formidable equation reduces nicely for special cases 
of  interest, 

Y(z)  = X ( z ) E o ( z  ) , M = L 

= X ( z )  

recalling that Eo(z)  = 1. 

1 2 Y(z)  = X(z2 ) [Eo( z  2) Jr z -  EL/2(Z )] , M = L / 2  

---- X(a2 ) [1  + z-IEL/2(Z2)] . 

In this case the two polyphase filters are attempting to 
form the half-band filter required of  an effective interpo- 
lation by the factor 2 = L / M  (pretending that M = 1). 

The resulting expressions are not as simple when 

H(eJ m) 
10  

8 

i m l  6 mlm 

4 

2 

0 0 . 1  0 2 0 3 0 . 4  0 . 5  
m/2r~ 

Fig. 47. Linear interpolation prototype filter frequency re- 
sponse; L = 10. 

IH(eJm)l 
10 ------~ 

8 -  

6 

0.i 02 03 04 05 
m/2n 

Fig. 48. Classical polyphase all-pass interpolation prototype 
filter magnitude response; L = 10. 
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Fig. 49. Classical polyphase warped all-pass interpolation pro- 
totype filter magnitude response; L = 10. 
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L/M is irreducible. The fascinating aspect of Eq. (54), 
however, is that it gives us a closed-form representation 
of the linear time-varying network, namely, Fig. 41. 
The reader is encouraged to explore that further ~~ and 
thereby get a better feel for the relationship of Eq. (54) 
to the commutator model in Fig. 41. 

6.2.9 Engineering Approximation to Classical 
Polyphase All-Pass Interpolation 

The polyphase filter circuits as first presented in the 
sections on interpolation (Sections 4 and 5) were time 
varying and dual input because we were trying to cheat 
and to find a simple way to implement the complicated 
but desirable commutator network that is Fig. 41. We 
were only partially successful because in the case of all- 
pass interpolation we could only implement Fig. 50, 

29 is d rawn-- t ime varying and dual input. Everything 
to the left of the commutator in Fig. 50 is time invariant. 
Note that because of insufficient memory, the lone time- 
varying recursive circuit on the right-hand side of the 
commutator can only approximate the L different time- 
invariant recursive circuits that are supposed to be asso- 
ciated with the E l ( Z  ) o n  the left-hand side, as in Fig. 41. 
This is the nature of the circuital approximation. 

As we saw in Section 5, this circuital approximation 
in Fig. 50 to the classical polyphase all-pass interpolator 
of Fig. 41 is only good, in terms of T H D  + N ,  for micro- 
tonal changes in pitch, that is, for M/L near 1. 

One further refinement is our warping of the all-pass 
polyphase filter coefficients, computed in real time ~~ 
and used in the circuital approximation (Fig. 50) to the 
classical polyphase network. The polyphase filter coef- 
ficients change slightly, 

pt(z ) _ 1 - l/L + z_l] 
1 + l/L 

E l ( Z )  = zPL-I(Z) 
all-pass interpolation approximation with coefficient warping [Eq. (40)].  

which is a circuital approximation to Fig. 41. But for 
linear interpolation we were able to implement Fig. 41 
exactly; that was our inspiration. 

The many branches of  the commutator network in Fig. 
41 contain time-invariant single-input polyphase filters. 
Rather than implement that intensive classical network 
for the case of all-pass interpolation, our "innovation" 
(as proposed and demonstrated in Section 5) is to imple- 
ment instead the simpler formal network in Fig. 50. Fig. 
50 is a circuital approximation to Fig. 41 via reduction 
in the amount of recursive memory required. By sharing 
the recursive memory of  all the all-pass polyphase filters 
in Fig. 41, we eliminate the recursive memory from the 
left-hand side of the commutator as we move it to the 
right-hand side as shown in Fig. 50. Consequently we 
are able to exactly implement the approximating network 
in Fig. 50 using only one equivalent time-varying dual- 
input all-pass filter, as shown in Fig. 29 or Fig. 32. 

The recursive circuit at the output in Fig. 50 is time 
varying. Its coefficient tracks the commutator brush. 
The recursive elements have been eliminated from the 
polyphase filters of Fig. 50.1~ Each El(Z) is single input 
and nonrecursive, having no long-term memory. Now 
their time-invariant transfer functions are 

With warping, Fig. 50 becomes equivalent to Fig. 32 
as is. Using this refinement, we measured an improve- 
ment of 26 dB in T H D  + N for microtonal pitch changes. 
(This has already been discussed in Section 5.) 

6.2.10 Distortion, Transients, and Large Pitch 
Change 

Distortion is inherent in any interpolation process. For 
large pitch change with little distortion, one's choice (in 
our context) is to revert to linear interpolation at a very 
high sample rate or to implement the formal network in 
Fig. 41 by brute force for classical polyphase warped 
all-pass interpolation. We have simulated Fig. 41 in the 
C programming language, where we use the warped all- 
pass polyphase filter of Fig. 32 having the delay element 
connected and time-invariant 16-bit coefficients. To 
achieve excellent results over a large range of  M/L for 
classical polyphase all-pass interpolation, we find that 
coefficient warping [Eq. (40)] is necessary and that 
about L = 28 recursive states must be stored. 

Since there are no time-varying coefficients in the 
classical polyphase network of Fig. 41, associated tran- 
sient phenomena are nonexistent components of the sig- 
nal distortion characteristics. Transients that do arise 
there are due to the zero-state response (ZSR) of re 

Pl(Z) = (1 - l/L) + z - l  ~ 

El(Z) ZPL-I(Z) J all-pass interpolation approximation. 

Fig. 50 is the equivalent of Fig. 29 as is, that is, as Fig. 

101 Keep in mind the identity Eq. (43). 
102 The idea of moving the recursive part of the polyphase 

network outside of the commutator is not new. Crochiere and 
Rabiner [34, ch. 3.4] proposed separating out such a polyphase 
filter denominator, but their denominator was time invariant 
and common to all polyphase filters. 

cursive polyphase filters. The ZSR transients will be 
short for polyphase filters having small feedback coeffi- 
cients, and longer for larger coefficients. 

When making T H D  + N estimates for classical poly- 

103 This step is optional; review Eq. (40). 
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phase warped all-pass interpolation, we ignore the first 
several samples output so as to avoid ZSR transients. 
The C program simulation averages about - 8 9  dB of 
TItD + N under the same signal conditions as those of 
Fig. 35(b). 

6.2.11 Polyphase Perspectives 
The sample rate conversion ratio L/M in Fig. 51(a) 

corresponds to the pitch change ratio inverse. We pre- 
sume that the pitch change process in Fig. 51(b) is per- 
formed on a stored sample record. Such would be the 
case in contemporary sampler-type synthesizers. Sam- 
ples effectively appear at the input to the pitch change 
effect at a rate different from which they were recorded. 
The original duration of the sample record is altered by 
the ratio L/M. 

The Vaidyanathan method of analysis is performed 
independent of the sample rate, as in Fig. 51(c). Rates 
of computation are determined as a post-operative step 
if necessary. (Refer to Section 6.2.2 in this appendix.) 
Since the sample record is considered to be an indexed 
sequence, any output rate can be ascribed. 

6.2.12 Application Schema 
Time compansion (compression and expansion) was 

accomplished before the days of DSP by physically 
splicing fragments of magnetic recording tape to alter 
the run time without the concomitant change in per- 
ceived pitch [50]. Contemporary compansion machines 
control the playback speed of the recording medium 
while performing the manually tedious algorithm deftly 
in real time. This process is shown in Fig. 52(a). The 
splicer algorithm regulates equestrian jumps by p pointer 
to compensate for the disparity in sample rate between 
the input to and the output p of a delay line.t~ 

The process called pitch shift is typically accom- 
plished as shown in Fig. 52(b), also using a splicer. The 
goal of the pitch shift algorithm is the converse to that 
of time compansion, that is, to alter the perceived pitch 
with no change in run time. 

The time compansion device may be used to perform 

pitch shift when the playback speed is left running a t  

normal. This fact has unfortunately obscured the distinc- 
tion between time compansion and pitch shift devices, 
which actually employ different means as Fig. 52(a) and 
(b) illustrates. For this reason, pitch shift effects are 
often found outside their intended arena, performing the 
task of a time compansion algori thm--a task for which 
they are not qualitatively optimized. 

In Fig. 52 both the pitch shift and the vibrato [(c)] 
processes are performed in real time, and, unlike the 
fixed pitch change algorithm shown in Fig. 51 (b), both 
maintain the macrotemporal features of the original sig- 
nal via propitious application of a delay line. The splicer 
is not required for vibrato since the mean sample rate 
across the delay line is F s by design, that is, the down- 
sampling factor M is sinusoidally time varying. 

All three processes shown in Fig. 52 require some 

104 Each jump target is determined by a very high-speed 
custom autocorrelator seeking periodicity within the delay-line 
contents. Cross fading is employed by the splicer using two 
quadrants of a raised cosine. While some time compansion 
algorithms employ delay-line interpolation, the Lexicon model 
2400 stereo audio time compressor/expander (designed in 1986 
and still in production [51 ]) sidestepped the need for interpola- 
tion by incorporating a variable-rate A/D conversion system. 
In that design, the D/A circuitry is fixed rate, the whole instru- 
ment operating in real time on prerecorded material. 

F s ~---~ LFs '  ' LFs ~---~ (L/M) F s 
(a) 

(M/L) F s ~  F s 
(h) 

Fs ~ Fs 

(c) 
Fig. 51. Contrasting presumed computation rates of various 
methods of analysis. (a) Sample-rate conversion; Crochiere 
analysis [34]. (b) Pitch change by fixed amount, M/L. 
(c) Sample-rate conversion; Vaidyanathan analysis [29]. 

X(z) �9 E~ t 

----~ El(Z) t 

- - - ~  E2(Z) [ 

�9 l 

EL-I(Z) } 

\ 
""•o• Step 

| 
�9 l/L 

�9 Or  

(2 - l/L) 
for coefficient warping 

Fig. 50. Commutator model of proposed all-pass interpolator. 
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significant amount of nominal (average) transport delay 
through the delay line. To perform well upon polyphonic 
music, the time compansion and pitch shift algorithms 
require as much as 60 ms. That much delay is easily 
perceptible, and a compromise is nearly always neces- 
sary. Vibrato, on the other hand, can be performed well 
using only about 1-ms nominal delay. 

When slow microtonal vibrato is mixed with the origi- 
nal signal, we get the chorus effect. When fixed micro- 
tonal pitch shift  is mixed with the original signal, we 
get the detune effect. The sonic impact of detune is so 
powerful that it deserves notoriety. The result is often 
described by musicians as subjectively "fattening" the 
sound. The chorus and detune effects are sonically quite 
distinct, the latter algorithm being more difficult to im- 
plement properly. The primary distinguishing feature of 
the two is that the pitch is necessarily undulating in the 
chorus effect because of the means of implementation. 
This detune effect occurs naturally and is built into in- 
struments such as the pianoforte, mandolin, and twelve- 
string guitar. It accounts for one salient character of 
each instrument's characteristic sound. The reader 
should also be aware that contemporary sampling music 

105 Rather sampler type, which we distinguish from 
wavetable-type synthesizers. 

106 When ~r/M < tr/L, this traditional prototype design fur- 
ther band-limits the signal, unlike the techniques we examined 
in Sections 4 and 5, which admit aliasing instead. 

synthesizers ms often emulate detuning through the use 
of fixed pitch change, which in many cases is undesirable 
because the temporal features fall out of alignment in 
the mix. 

6.2.13 Prototype Filter Design 
Fig. 53 gives the ideal specifications of the prototype 

interpolation filter when absolutely no aliasing of the 
input signal, having one-sided bandwidth tr, is toler- 
ated 1~ [29, ch. 4.1.1, p. 109], [34, ch. 2.3.4]. Implicit 
from the axis labeling is that the desired filter is real in 
the frequency domain. The filter amplitude L maintains 
absolute signal level. 

Note from Fig. 53 that 

M "rr <_~ 
tOp q- tos -- ' M L 

2 
I~L ' otherwise. 

The traditional approach to interpolation would begin 
with the design of the prototype as specified here, 
whereas the techniques of interpolation that we consid- 
ered in Sections 4 and 5 did not allow anywhere near 
this level of control. We simply accepted what those 
implementations offer because they are computationally 
attractive. What they offer is a prototype having a fixed 
radian cutoff frequency equal to w/L (see Figs. 47-49).  

CO splicer 
[ Recording ~ ~: . . . . .  ~ ~ ! ~ - ' )  

(a) Medium | -~  __A/D__ ,j (L/M) F s ~ F s 

delayline 

(b) 

Pitch Ratio output (p) rate 
input (m) rate 

splicer 

delayline 

CO 

(c) Fs ~ (M(n)/L)Fs ~ M(n) F ~ ] ~ H T ~  M(n) Fs  m(n)'s 
delayline 

Fig. 52. Applications of discrete-time interpolators. (a) Time companslon. A/D optional (b) Pitch shift. (c) Undulating pitch 
change; vibrato. 

. . . f  
HceJ~ (~ < n 

L COp - min { n/M, t~/L } 

{ COp ; ~ M  < ~/L 
�9 �9 �9 COS ---- 

03 ~ COp + 2(rc-~)/L ;otherwise 
03p COs 

Fig. 53. Prototype interpolation filter specifications for signal bandwidth tr. 
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