
Chapter 1

Overview

Convex Optimization
Euclidean Distance Geometry 2ε

People are so afraid of convex analysis.

−Claude Lemaréchal, 2003

In layman’s terms, the mathematical science of Optimization is a study of how to make
good choices when confronted with conflicting requirements and demands. Optimization
is a relatively new wisdom, historically, that can represent balance of real things. The
qualifier convex means: when an optimal solution is found, then it is guaranteed to be a
best solution; there is no better choice.

Any convex optimization problem has geometric interpretation. If a given optimization
problem can be transformed to a convex equivalent, then this interpretive benefit is
acquired. That is a powerful attraction: the ability to visualize geometry of an
optimization problem. Conversely, recent advances in geometry and in graph theory hold
convex optimization within their proofs’ core. [465] [362]

This book is about convex optimization, convex geometry (with particular attention
to distance geometry), and nonconvex, combinatorial, and geometrical problems that can
be relaxed or transformed into convexity. A virtual flood of new applications follows
by epiphany that many problems, presumed nonconvex, can be so transformed: [11] [12]
[36, §4.3, p.316-322] [64] [103] [173] [176] [315] [340] [348] [408] [409] [461] [465] e.g, sigma
delta analog-to-digital audio converter (A/D) antialiasing (Figure 1).

Euclidean distance geometry is, fundamentally, a determination of point conformation
(configuration, relative position or location) by inference from interpoint distance
information. By inference we mean: e.g, given only distance information, determine
whether there corresponds a realizable conformation of points; a list of points in some
dimension that attains the given interpoint distances. Each point may represent simply
location or, abstractly, any entity expressible as a vector in finite-dimensional Euclidean
space; e.g, distance geometry of music [121].

It is a common misconception to presume that some desired point conformation cannot
be recovered in absence of complete interpoint distance information. We might, for
example, want to realize a constellation given only interstellar distance (or, equivalently,
parsecs from our Sun and relative angular measurement; the Sun as vertex to two distant
stars); called stellar cartography, an application evoked by Figure 3. At first it may seem
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Figure 1: Multibit sigma delta quantization is predominant technology for analog to digital
audio signal conversion. [2, p.6] Input signal u(t) is continuous. Delay z−1 here is analog,
perhaps implemented by sample/hold circuit at MHz rate of ŷi samples. Observing vector
ŷ , signal u can be reconstructed by finding a point feasible to the set of linear inequalities
representing this coarse quantizer recursion. R is a lower triangular matrix of ones. [111]
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Figure 2: [133] [328] [130] Dokmanić & Parhizkar et alii discover an audio signal processing
application of Euclidean distance matrices to room geometry estimation by discerning
first acoustic reflections of stationary sound source s . Locations of source and phantom
⋆ sources s̃i and s̃j are ascertained by measuring arrival times of first echoes (blue) at
multiple microphone receivers. (Only one receiver r is illustrated. Second reflection (red)
phantom s̃ij ignored.) Phantom location is invariant to receiver position. All interpoint
distances among receivers are known. Once source and phantoms are localized, normals nj

and ni respectively identify truncated hyperplanes (walls) a and b bisecting perpendicular
line segment connecting source s to a phantom.
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Figure 3: Orion nebula. (Astrophotography by Massimo Robberto.)

that O(N 2) data is required, yet there are many circumstances where this can be reduced
to O(N ).

If we agree that a set of points may have a shape (three points can form a triangle
and its interior, for example, four points a tetrahedron), then we can ascribe shape of a
set of points to their convex hull. It should be apparent: from distance, these shapes can
be determined only to within a rigid transformation (rotation, reflection, translation).

Absolute position information is generally lost, given only distance information, but
we can determine the smallest possible dimension in which an unknown list of points can
exist; that attribute is their affine dimension (a triangle in any ambient space has affine
dimension 2 , for example). In circumstances where stationary reference points are also
provided, it becomes possible to determine absolute position or location; e.g, Figure 4.

Geometric problems involving distance between points can sometimes be reduced to
convex optimization problems. Mathematics of this combined study of geometry and
optimization is rich and deep. Its application has already proven invaluable discerning
organic molecular conformation by measuring interatomic distance along covalent bonds;
e.g, Figure 5. [97] [398] [160] [50] Many disciplines have already benefitted and simplified
consequent to this theory; e.g, distance based pattern recognition (Figure 6), localization
in wireless sensor networks [51] [459] [49] by measurement of intersensor distance along
channels of communication, wireless location of a radio-signal source such as cell phone
by multiple measurements of signal strength, the global positioning system (GPS),
multidimensional scaling (§5.12) which is a numerical representation of qualitative data by
finding a low-dimensional scale, and audio signal processing: ultrasound tomography, room
geometry estimation (Figure 2), and perhaps dereverberation by localization of phantom
sound sources [131] [130] [133]. [132]

Euclidean distance geometry provides some foundation for artificial intelligence.
Together with convex optimization, distance geometry has found application to:

� machine learning by discerning naturally occurring manifolds in:

– Euclidean bodies (Figure 7, §6.7.0.0.1)
– Fourier spectra of kindred utterances [244]
– photographic image sequences [443]

https://www.youtube.com/watch?v=wnb20chqbxM
http://www.stsci.edu/~robberto
https://www.convexoptimization.com/wikimization/index.php/Chromosome_structure_via_Euclidean_Distance_Matrices
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Figure 4: Application of trilateration (§5.4.2.2.8) is localization (determining position)
of a radio signal source in 2 dimensions; more commonly known by radio engineers as
the process “triangulation”. In this scenario, anchors x̌2 , x̌3 , x̌4 are illustrated as fixed
antennae. [240] The radio signal source (a sensor • x1) anywhere in affine hull of three
antenna bases can be uniquely localized by measuring distance to each (dashed white
arrowed line segments). Ambiguity of lone distance measurement to sensor is represented
by circle about each antenna. Trilateration is expressible as a semidefinite program; hence,
a convex optimization problem. [363]

� robotics; e.g, automated manufacturing, and autonomous navigation of vehicles
maneuvering in formation (Figure 10).

by chapter

We study the many manifestations and representations of pervasive convex Euclidean
bodies. In particular, we make convex polyhedra, cones, and dual cones visceral through
illustration in chapter 2 Convex geometry where geometric relation of polyhedral cones
to nonorthogonal bases (biorthogonal expansion) is examined. It is shown that coordinates
are unique in any conic system whose basis cardinality equals or exceeds spatial dimension;
for high cardinality, a new definition of conic coordinate is provided in Theorem 2.13.13.0.1.
The conic analogue to linear independence, called conic independence, is introduced as a
tool for study, analysis, and manipulation of cones; a natural extension and next logical
step in progression: linear, affine, conic. We explain conversion between halfspace- and
vertex-description of a convex cone, we motivate the dual cone and provide formulae for
finding it, and we show how first-order optimality conditions or alternative systems of linear
inequality or linear matrix inequality can be explained by dual generalized inequalities with
respect to convex cones. Arcane theorems of alternative generalized inequality are, in fact,
simply derived from cone membership relations; generalizations of algebraic Farkas’ lemma
translated to geometry of convex cones.
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Figure 5: [219] [135] Distance data collected via nuclear magnetic resonance (NMR) helped
render this three-dimensional depiction of a protein molecule. At the beginning of the
1980s, Kurt Wüthrich [Nobel laureate] developed an idea about how NMR could be extended
to cover biological molecules such as proteins. He invented a systematic method of pairing
each NMR signal with the right hydrogen nucleus (proton) in the macromolecule. The
method is called sequential assignment and is today a cornerstone of all NMR structural
investigations. He also showed how it was subsequently possible to determine pairwise
distances between a large number of hydrogen nuclei and use this information with a
mathematical method based on distance-geometry to calculate a three-dimensional structure
for the molecule. [448] [214] −[319]

Any convex optimization problem can be visualized geometrically. Desire to visualize
in high dimension [Sagan, Cosmos−The Edge of Forever, 22:55′] is deeply embedded in
the mathematical psyche. [1] Chapter 2 provides tools to make visualization easier, and we
teach how to visualize in high dimension. The concepts of face, extreme point, and extreme
direction of a convex Euclidean body are explained here; crucial to understanding convex
optimization. How to find the smallest face of any closed convex cone, containing convex
set C , is divulged; later shown to have practical application to presolving convex programs.
The convex cone of positive semidefinite matrices, in particular, is studied in depth:

� We interpret, for example, inverse image of the positive semidefinite cone under
affine transformation. (Example 2.9.1.0.2)

� Subsets of the positive semidefinite cone, discriminated by rank exceeding some lower
bound, are convex. In other words, high-rank subsets of the positive semidefinite
cone boundary united with its interior are convex. (Theorem 2.9.2.9.3) There is a
closed form for projection on those convex subsets.

� The positive semidefinite cone is a circular cone in low dimension; Geršgorin discs
specify inscription of a polyhedral cone into it. (Figure 51)

Chapter 3 Geometry of convex functions observes Fenchel’s analogy between
convex sets and functions: We explain, for example, how the real affine function relates
to convex functions as the hyperplane relates to convex sets. Partly a toolbox of practical
useful convex functions and a cookbook for optimization problems, methods are drawn
from the appendices about matrix calculus for determining convexity and discerning
geometry.

Chapter 4. Semidefinite programming has recently emerged to prominence because
it admits a new problem type previously unsolvable by convex optimization techniques

http://www.cs.duke.edu/brd/Teaching/Previous/Bio
https://www.youtube.com/watch?v=YbgZWNW8ClU
http://www.science.psu.edu/news-and-events/2005-news/math10-2005.htm
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Figure 6: This coarsely discretized triangulated algorithmically flattened human face
(made by Kimmel & the Bronsteins [258]) represents a stage in machine recognition of
human identity; called facial recognition. Distance geometry is applied to determine
discriminating-features.

and because it theoretically subsumes other convex types: linear programming, quadratic
programming, second-order cone programming . −p.225 Semidefinite programming is
reviewed with particular attention to optimality conditions for prototypical primal and
dual problems, their interplay, and a perturbation method for rank reduction of optimal
solutions (extant but not well known). Positive definite Farkas’ lemma is derived, and we
also show how to determine if a feasible set belongs exclusively to a positive semidefinite
cone boundary. An arguably good three-dimensional polyhedral analogue to the positive
semidefinite cone of 3×3 symmetric matrices is introduced: a new tool for visualizing
coexistence of low- and high-rank optimal solutions in six isomorphic dimensions and a
mnemonic aid for understanding semidefinite programs. We find a minimal cardinality
Boolean solution to an instance of Ax = b :

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(740)

The sensor-network localization problem is solved in any dimension in this chapter. We
introduce a method of convex iteration for constraining rank in the form rankG≤ ρ and
cardinality in the form cardx≤ k . Cardinality minimization is applied to a discrete
image-gradient of the Shepp-Logan phantom, from Magnetic Resonance Imaging (MRI)
in the field of medical imaging, for which we find a new lower bound of 1.9% cardinality.
We show how to handle polynomial constraints, and how to transform a rank-constrained
problem to a rank-1 problem.

The EDM is studied in chapter 5 Euclidean Distance Matrix; its properties and
relationship to both positive semidefinite and Gram matrices. We relate the EDM to the
four classical properties of Euclidean metric; thereby, observing existence of an infinity of
properties of the Euclidean metric beyond triangle inequality. We proceed by deriving the
fifth Euclidean metric property and then explain why furthering this endeavor is inefficient
because the ensuing criteria (while describing polyhedra in angle or area, volume, content,
and so on ad infinitum) grow linearly in complexity and number with problem size.
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Figure 7: Swiss roll, Weinberger & Saul [443]. The problem of manifold learning, illustrated
for N = 800 data points sampled from a “Swiss roll” 1

O. A discretized manifold is
revealed by connecting each data point and its k=6 nearest neighbors 2

O. An unsupervised
learning algorithm unfolds the Swiss roll while preserving the local geometry of nearby data
points 3

O. Finally, the data points are projected onto the two-dimensional subspace that
maximizes their variance, yielding a faithful embedding of the original manifold 4

O.

Reconstruction methods are explained and applied to a map of the United States; e.g,
Figure 8. We also experimentally test a conjecture of Borg & Groenen by reconstructing
a distorted but recognizable isotonic map of the USA using only ordinal (comparative)
distance data: Figure 161e-f. We demonstrate an elegant method for including dihedral
(or torsion) angle constraints into a molecular conformation problem. We explain why
trilateration (a.k.a localization) is a convex optimization problem. We show how to
recover relative position given incomplete interpoint distance information, and how to pose
EDM problems or transform geometrical problems to convex optimizations; e.g, kissing
number of packed spheres about a central sphere (solved in R3 by Isaac Newton).

The set of all Euclidean distance matrices forms a pointed closed convex cone called
the EDM cone: EDMN . We offer a new proof of Schoenberg’s seminal characterization
of EDMs:

D ∈ EDMN ⇔
{

−V T
NDVN º 0

D ∈ SN
h

(1068)

Our proof relies on fundamental geometry; assuming, any EDM must correspond to a
list of points contained in some polyhedron (possibly at its vertices) and vice versa. It
is known, but not obvious, this Schoenberg criterion implies nonnegativity of the EDM
entries; proved herein.

https://www.convexoptimization.com/wikimization/index.php/Isaac_Newton
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original reconstruction

Figure 8: (confer Figure 161) About five thousand points along borders constituting
United States were used to create an exhaustive matrix of interpoint distance for each
and every pair of points in an ordered set (a list); called Euclidean distance matrix. From
that noiseless distance information, it is easy to reconstruct this nonconvex map exactly
via Schoenberg criterion (1068). (§5.13.1.0.1) Map reconstruction is exact (to within a
rigid transformation) given any number of interpoint distances; the greater the number of
distances, the greater the detail (as it is for all conventional map preparation).

We characterize eigenvalue spectrum of an EDM, then devise a polyhedral spectral cone
for determining membership of a given matrix (in Cayley-Menger form) to the convex cone
of Euclidean distance matrices; id est, a matrix is an EDM if and only if its nonincreasingly
ordered vector of eigenvalues belongs to a polyhedral spectral cone for EDMN

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(1286)

We will see: spectral cones are not unique.
In chapter 6 Cone of distance matrices we explain a geometric relationship

between the cone of Euclidean distance matrices, two positive semidefinite cones, and
the elliptope. We illustrate geometric requirements, in particular, for projection of a given
matrix on a positive semidefinite cone that establish its membership to the EDM cone.
The faces of the EDM cone are described, but still open is the question whether all its
faces are exposed as they are for the positive semidefinite cone.

The Schoenberg criterion,

D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(1068)

for identifying a Euclidean distance matrix, is revealed to be a discretized membership
relation (dual generalized inequalities, a new Farkas’-like lemma) between the EDM cone

and its ordinary dual: EDMN∗
. A matrix criterion for membership to the dual EDM cone

is derived that is simpler than the Schoenberg criterion:

D∗∈ EDMN∗ ⇔ δ(D∗ 1) − D∗ º 0 (1436)

There is a concise equality, relating the convex cone of Euclidean distance matrices to the
positive semidefinite cone, apparently overlooked in the literature; an equality between
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(a) (b)

Figure 9: (a) These bees construct a honeycomb by solving a convex optimization problem
(§5.4.2.2.6). The most dense packing of identical spheres about a central sphere in 2
dimensions is 6. Sphere centers describe a regular lattice. (b) A hexabenzocoronene
molecule (diameter : 1.4nm) imaged by noncontact atomic force microscopy using a
microscope tip terminated with a single carbon monoxide molecule. The carbon-carbon
bonds in the imaged molecule appear with different contrast and apparent lengths. Based on
these disparities, the bond orders and lengths of the individual bonds can be distinguished.
(Image by Leo Gross.)

two large convex Euclidean bodies:

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

(1430)

Seemingly innocuous problems in terms of point position xi∈ Rn like

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖ − hij)

2
(1470)

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖2 − hij)

2
(1471)

are difficult to solve. So, in chapter 7 Proximity problems, we instead explore methods
of their solution by transformation to a few fundamental and prevalent Euclidean distance
matrix proximity problems; the problem of finding that distance matrix closest, in some
sense, to a given matrix H = [hij ] :

minimize
D

‖−V (D − H)V ‖2
F

subject to rankV D V ≤ ρ

D ∈ EDMN

minimize
◦√

D
‖ ◦
√

D − H‖2
F

subject to rankV D V ≤ ρ
◦
√

D ∈
√

EDMN

minimize
D

‖D − H‖2
F

subject to rankV D V ≤ ρ

D ∈ EDMN

minimize
◦√

D
‖−V ( ◦

√
D − H)V ‖2

F

subject to rankV D V ≤ ρ
◦
√

D ∈
√

EDMN

(1472)

We apply a convex iteration method for constraining rank. Known heuristics for rank
minimization are also explained. We offer new geometrical proof, in §7.1.4.0.1, of a
famous discovery by Eckart & Young in 1936 [149]: Euclidean projection on that generally
nonconvex subset of the positive semidefinite cone boundary comprising all semidefinite
matrices having rank not exceeding a prescribed bound ρ . We explain how this problem
is transformed to a convex optimization for any rank ρ .

http://www.sciencemag.org/content/337/6100/1326.short
http://www.sciencemag.org/content/337/6100/1326.short
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Figure 10: Nanocopter swarm. Robotic vehicles in concert can move larger objects or
localize a plume of gas, liquid, or radio waves. [159]

appendices

We presume a reader already comfortable with elementary vector operations; [15, §3]
formally known as analytic geometry . [450] Toolboxes are provided, in the form of
appendices and code, so as to be more self-contained:

� linear algebra (appendix A is primarily concerned with proper statements of
semidefiniteness for square matrices),

� simple matrices (dyad, doublet, elementary, Householder, Schoenberg, orthogonal,
etcetera, in appendix B),

� collection of known analytical solutions to some important optimization problems
(appendix C),

� matrix calculus remains somewhat unsystematized when compared to ordinary
calculus (appendix D concerns matrix-valued functions, matrix differentiation and
directional derivatives, Taylor series, and tables of first- and second-order gradients
and matrix derivatives),

� an elaborate exposition offering insight into orthogonal and nonorthogonal projection
on convex sets (the connection between projection and positive semidefiniteness, for
example, or between projection and a linear objective function in appendix E),

� Matlab code on Wıκımization [431] to discriminate EDMs, to determine conic
independence, to reduce or constrain rank of an optimal solution to a semidefinite
program, compressed sensing (compressive sampling) for digital image and audio
signal processing, and two distinct methods of reconstructing a map of the United
States: one given only distance data, the other given only comparative distance.

http://www.youtube.com/watch?v=YQIMGV5vtd4
https://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry
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Figure 11: Three-dimensional reconstruction of David from distance data.

Figure 12: Digital Michelangelo Project , Stanford University. Measuring distance to David
by laser rangefinder. (Spatial resolution: 0.29mm.) Crystalix commercialized a 3D image
rendering laser by refining a stunning technique for interior engraving of cubic photocrystal .

https://graphics.stanford.edu/projects/mich
http://www.crystalix.com/index.php/en
https://vimeo.com/23623638

