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Prelude

The constant demands of my department and university and the
ever increasing work needed to obtain funding have stolen much of
my precious thinking time, and I sometimes yearn for the halcyon
days of Bell Labs.

−Steven Chu, Nobel laureate [57]

Convex Analysis is the calculus of inequalities while Convex Optimization
is its application. Analysis is inherently the domain of the mathematician
while Optimization belongs to the engineer.

© 2005 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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There is a great race under way to determine which important problems
can be posed in a convex setting. Yet, that skill acquired by understanding
the geometry and application of Convex Optimization will remain more an
art for some time to come; the reason being, there is generally no unique
transformation of a given problem to its convex equivalent. This means, two
researchers pondering the same problem are likely to formulate the convex
equivalent differently; hence, one solution is likely different from the other
for the same problem. Any presumption of only one right or correct solution
becomes nebulous. Study of equivalence, sameness, and uniqueness therefore
pervade study of Optimization.

Tremendous benefit accrues when an optimization problem can be
transformed to its convex equivalent, primarily because any locally optimal
solution is then guaranteed globally optimal. Solving a nonlinear system,
for example, by instead solving an equivalent convex optimization problem
is therefore highly preferable.0.1 Yet it can be difficult for the engineer to
apply theory without an understanding of Analysis.

These pages comprise my journal over a seven year period bridging
gaps between engineer and mathematician; they constitute a translation,
unification, and cohering of about two hundred papers, books, and reports
from several different fields of mathematics and engineering. Beacons of
historical accomplishment are cited throughout. Much of what is written here
will not be found elsewhere. Care to detail, clarity, accuracy, consistency,
and typography accompanies removal of ambiguity and verbosity out of
respect for the reader. Consequently there is much cross-referencing and
background material provided in the text, footnotes, and appendices so as
to be self-contained and to provide understanding of fundamental concepts.

−Jon Dattorro

Stanford, California

2007

0.1That is what motivates a convex optimization known as geometric programming

[46, p.188] [45] which has driven great advances in the electronic circuit design industry.
[27, §4.7] [181] [291] [294] [67] [130] [138] [139] [140] [141] [142] [143] [193] [194] [202]
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Chapter 1

Overview

Convex Optimization

Euclidean Distance Geometry

People are so afraid of convex analysis.

−Claude Lemaréchal, 2003

In layman’s terms, the mathematical science of Optimization is the study
of how to make a good choice when confronted with conflicting requirements.
The qualifier convex means: when an optimal solution is found, then it is
guaranteed to be a best solution; there is no better choice.

Any convex optimization problem has geometric interpretation. If a given
optimization problem can be transformed to a convex equivalent, then this
interpretive benefit is acquired. That is a powerful attraction: the ability to
visualize geometry of an optimization problem. Conversely, recent advances
in geometry and in graph theory hold convex optimization within their proofs’
core. [302] [240]

This book is about convex optimization, convex geometry (with
particular attention to distance geometry), and nonconvex, combinatorial,
and geometrical problems that can be relaxed or transformed into convex
problems. A virtual flood of new applications follow by epiphany that many
problems, presumed nonconvex, can be so transformed. [8] [9] [44] [63] [100]
[102] [204] [221] [229] [271] [272] [299] [302] [27, §4.3, p.316-322]© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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Figure 1: Orion nebula. (astrophotography by Massimo Robberto)

Euclidean distance geometry is, fundamentally, a determination of point
conformation (configuration, relative position or location) by inference from
interpoint distance information. By inference we mean: e.g., given only
distance information, determine whether there corresponds a realizable
conformation of points; a list of points in some dimension that attains the
given interpoint distances. Each point may represent simply location or,
abstractly, any entity expressible as a vector in finite-dimensional Euclidean
space; e.g., distance geometry of music [72].

It is a common misconception to presume that some desired point
conformation cannot be recovered in the absence of complete interpoint
distance information. We might, for example, want to realize a constellation
given only interstellar distance (or, equivalently, distance from Earth and
relative angular measurement; the Earth as vertex to two stars). At first it
may seem O(N 2) data is required, yet there are many circumstances where
this can be reduced to O(N).

If we agree that a set of points can have a shape (three points can form
a triangle and its interior, for example, four points a tetrahedron), then



x̌2

x̌4

x̌3

Figure 2: Application of trilateration (§5.4.2.2.4) is localization (determining
position) of a radio signal source in 2 dimensions; more commonly known by
radio engineers as the process “triangulation”. In this scenario, anchors
x̌2 , x̌3 , x̌4 are illustrated as fixed antennae. [154] The radio signal source
(a sensor • x1) anywhere in affine hull of three antenna bases can be
uniquely localized by measuring distance to each (dashed white arrowed line
segments). Ambiguity of lone distance measurement to sensor is represented
by circle about each antenna. So & Ye proved trilateration is expressible as
a semidefinite program; hence, a convex optimization problem. [239]

we can ascribe shape of a set of points to their convex hull. It should be
apparent: from distance, these shapes can be determined only to within a
rigid transformation (rotation, reflection, translation).

Absolute position information is generally lost, given only distance
information, but we can determine the smallest possible dimension in which
an unknown list of points can exist; that attribute is their affine dimension
(a triangle in any ambient space has affine dimension 2, for example). In
circumstances where fixed points of reference are also provided, it becomes
possible to determine absolute position or location; e.g., Figure 2.

21
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Figure 3: [137] [80] Distance data collected via nuclear magnetic resonance
(NMR) helped render this 3-dimensional depiction of a protein molecule.
At the beginning of the 1980s, Kurt Wüthrich [Nobel laureate], developed
an idea about how NMR could be extended to cover biological molecules
such as proteins. He invented a systematic method of pairing each NMR
signal with the right hydrogen nucleus (proton) in the macromolecule. The
method is called sequential assignment and is today a cornerstone of all NMR
structural investigations. He also showed how it was subsequently possible to
determine pairwise distances between a large number of hydrogen nuclei and
use this information with a mathematical method based on distance-geometry
to calculate a three-dimensional structure for the molecule. [207] [286] [132]

Geometric problems involving distance between points can sometimes be
reduced to convex optimization problems. Mathematics of this combined
study of geometry and optimization is rich and deep. Its application has
already proven invaluable discerning organic molecular conformation by
measuring interatomic distance along covalent bonds; e.g., Figure 3. [60]
[265] [132] [286] [95] Many disciplines have already benefitted and simplified
consequent to this theory; e.g., distance-based pattern recognition (Figure 4),
localization in wireless sensor networks by measurement of intersensor
distance along channels of communication, [35, §5] [297] [33] wireless location
of a radio-signal source such as a cell phone by multiple measurements of
signal strength, the global positioning system (GPS), and multidimensional
scaling which is a numerical representation of qualitative data by finding a
low-dimensional scale.
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Figure 4: This coarsely discretized triangulated algorithmically flattened
human face (made by Kimmel & the Bronsteins [165]) represents a stage
in machine recognition of human identity; called face recognition. Distance
geometry is applied to determine discriminating-features.

Euclidean distance geometry together with convex optimization have also
found application in artificial intelligence:� to machine learning by discerning naturally occurring manifolds in:

– Euclidean bodies (Figure 5, §6.4.0.0.1),

– Fourier spectra of kindred utterances [156],

– and image sequences [281],� to robotics ; e.g., automatic control of vehicles maneuvering in
formation. (Figure 8)

by chapter

We study the pervasive convex Euclidean bodies and their various
representations. In particular, we make convex polyhedra, cones, and dual
cones more visceral through illustration in chapter 2, Convex geometry,
and we study the geometric relation of polyhedral cones to nonorthogonal
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Figure 5: Swiss roll from Weinberger & Saul [281]. The problem of manifold
learning, illustrated for N= 800 data points sampled from a “Swiss roll” 1O.
A discretized manifold is revealed by connecting each data point and its k=6
nearest neighbors 2O. An unsupervised learning algorithm unfolds the Swiss
roll while preserving the local geometry of nearby data points 3O. Finally, the
data points are projected onto the two dimensional subspace that maximizes
their variance, yielding a faithful embedding of the original manifold 4O.
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bases (biorthogonal expansion). We explain conversion between halfspace-
and vertex-description of a convex cone, we motivate the dual cone and
provide formulae for finding it, and we show how first-order optimality
conditions or alternative systems of linear inequality or linear matrix
inequality [44] can be explained by generalized inequalities with respect to
convex cones and their duals. The conic analogue to linear independence,
called conic independence, is introduced as a new tool in the study of cones;
the logical next step in the progression: linear, affine, conic.

Any convex optimization problem can be visualized geometrically.
Desire to visualize in high dimension is deeply embedded in the
mathematical psyche. Chapter 2 provides tools to make visualization easier,
and we teach how to visualize in high dimension. The concepts of face,
extreme point, and extreme direction of a convex Euclidean body are
explained here; crucial to understanding convex optimization. The convex
cone of positive semidefinite matrices, in particular, is studied in depth:� We interpret, for example, inverse image of the positive semidefinite

cone under affine transformation. (Example 2.9.1.0.2)� Subsets of the positive semidefinite cone, discriminated by rank
exceeding some lower bound, are convex. In other words, high-rank
subsets of the positive semidefinite cone boundary united with its
interior are convex. (Theorem 2.9.2.6.3) There is a closed form for
projection on those convex subsets.� The positive semidefinite cone is a circular cone in low dimension,
while Geršgorin discs specify inscription of a polyhedral cone into that
positive semidefinite cone. (Figure 36)

Chapter 3, Geometry of convex functions, observes analogies
between convex sets and functions: We explain, for example, how the
real affine function relates to convex functions as the hyperplane relates
to convex sets. Partly a cookbook for the most useful of convex functions
and optimization problems, methods are drawn from matrix calculus for
determining convexity and discerning geometry.

Semidefinite programming is reviewed in chapter 4 with particular
attention to optimality conditions of prototypical primal and dual conic
programs, their interplay, and the perturbation method of rank reduction
of optimal solutions (extant but not well-known). Positive definite Farkas’

http://www.science.psu.edu/alert/math10-2005.htm
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original reconstruction

Figure 6: About five thousand points along the borders constituting the
United States were used to create an exhaustive matrix of interpoint distance
for each and every pair of points in the ordered set (a list); called a
Euclidean distance matrix. From that noiseless distance information, it is
easy to reconstruct the map exactly via the Schoenberg criterion (728).
(§5.13.1.0.1, confer Figure 91) Map reconstruction is exact (to within a rigid
transformation) given any number of interpoint distances; the greater the
number of distances, the greater the detail (just as it is for all conventional
map preparation).

lemma is derived, and we also show how to determine if a feasible set belongs
exclusively to a positive semidefinite cone boundary. A three-dimensional
polyhedral analogue for the positive semidefinite cone of 3×3 symmetric
matrices is introduced. This analogue is a new tool for visualizing coexistence
of low- and high-rank optimal solutions in 6 dimensions. We find a
minimum-cardinality Boolean solution to an instance of Ax= b :

minimize
x

‖x‖0
subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(576)

The sensor-network localization problem is solved in any dimension in this
chapter. We introduce the method of convex iteration for constraining rank
in the form rankG≤ ρ for some semidefinite programs in G .
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Figure 7: These bees construct a honeycomb by solving a convex optimization
problem. (§5.4.2.2.3) The most dense packing of identical spheres about a
central sphere in two dimensions is 6. Packed sphere centers describe a
regular lattice.

The EDM is studied in chapter 5, Euclidean distance matrix, its
properties and relationship to both positive semidefinite and Gram matrices.
We relate the EDM to the four classical properties of the Euclidean metric;
thereby, observing existence of an infinity of properties of the Euclidean
metric beyond the triangle inequality. We proceed by deriving the fifth
Euclidean metric property and then explain why furthering this endeavor is
inefficient because the ensuing criteria (while describing polyhedra in angle
or area, volume, content, and so on ad infinitum) grow linearly in complexity
and number with problem size.

Reconstruction methods are explained and applied to a map of the
United States; e.g., Figure 6. We also generate a distorted but recognizable
isotonic map using only comparative distance information (only ordinal
distance data). We demonstrate an elegant method for including dihedral
(or torsion) angle constraints into a molecular conformation problem. More
geometrical problems solvable via EDMs are presented with the best methods
for posing them, EDM problems are posed as convex optimizations, and
we show how to recover exact relative position given incomplete noiseless
interpoint distance information.

The set of all Euclidean distance matrices forms a pointed closed convex
cone called the EDM cone, EDMN . We offer a new proof of Schoenberg’s
seminal characterization of EDMs:

D ∈ EDMN ⇔
{

−V T
NDVN � 0

D ∈ SN
h

(728)

Our proof relies on fundamental geometry; assuming, any EDM must
correspond to a list of points contained in some polyhedron (possibly at

http://www.pims.math.ca/education/2000/bus00/bees/
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Figure 8: Robotic vehicles in concert can move larger objects, guard a
perimeter, perform surveillance, find land mines, or localize a plume of gas,
liquid, or radio waves. [94]

its vertices) and vice versa. It is known, but not obvious, this Schoenberg
criterion implies nonnegativity of the EDM entries; proved here.

We characterize the eigenvalue spectrum of an EDM, and then devise
a polyhedral spectral cone for determining membership of a given matrix
(in Cayley-Menger form) to the convex cone of Euclidean distance matrices;
id est, a matrix is an EDM if and only if its nonincreasingly ordered vector
of eigenvalues belongs to a polyhedral spectral cone for EDMN ;

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(932)

We will see: spectral cones are not unique.
In chapter 6, EDM cone, we explain the geometric relationship

between the cone of Euclidean distance matrices, two positive semidefinite
cones, and the elliptope. We illustrate geometric requirements, in particular,
for projection of a given matrix on a positive semidefinite cone that establish
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its membership to the EDM cone. The faces of the EDM cone are described,
but still open is the question whether all its faces are exposed as they
are for the positive semidefinite cone. The Schoenberg criterion (728),
relating the EDM cone and a positive semidefinite cone, is revealed to
be a discretized membership relation (dual generalized inequalities, a new

Farkas’-like lemma) between the EDM cone and its ordinary dual, EDMN∗ .
A matrix criterion for membership to the dual EDM cone is derived that is
simpler than the Schoenberg criterion:

D∗∈ EDMN∗ ⇔ δ(D∗1)−D∗ � 0 (1080)

We derive a new concise equality of the EDM cone to two subspaces and a
positive semidefinite cone;

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

(1074)

In chapter 7, Proximity problems, we explore methods of solution
to a few fundamental and prevalent Euclidean distance matrix proximity
problems; the problem of finding that distance matrix closest, in some sense,
to a given matrix H :

minimize
D

‖−V (D −H)V ‖2F
subject to rankV DV ≤ ρ

D ∈ EDMN

minimize
◦
√

D
‖ ◦
√
D −H‖2F

subject to rankV DV ≤ ρ
◦
√
D ∈

√

EDMN

minimize
D

‖D −H‖2F
subject to rankV DV ≤ ρ

D ∈ EDMN

minimize
◦
√

D
‖−V ( ◦

√
D −H)V ‖2F

subject to rankV DV ≤ ρ
◦
√
D ∈

√

EDMN

(1116)

We apply the new convex iteration method for constraining rank. Known
heuristics for solving the problems when compounded with rank minimization
are also explained. We offer a new geometrical proof of a famous result
discovered by Eckart & Young in 1936 [85] regarding Euclidean projection
of a point on that generally nonconvex subset of the positive semidefinite
cone boundary comprising all positive semidefinite matrices having rank
not exceeding a prescribed bound ρ . We explain how this problem is
transformed to a convex optimization for any rank ρ .
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novelty

p.120 Conic independence is introduced as a natural extension to linear and
affine independence; a new tool in convex analysis most useful for
manipulation of cones.

p.148 Arcane theorems of alternative generalized inequality are simply derived
from cone membership relations ; generalizations of Farkas’ lemma
translated to the geometry of convex cones.

p.229 We present an arguably good 3-dimensional polyhedral analogue, to
the isomorphically 6-dimensional positive semidefinite cone, as an aid
to understand semidefinite programming.

p.256 We show how to constrain rank in the form rankG≤ ρ for some
semidefinite programs.

p.307, p.311 Kissing-number of sphere packing (first solved by Isaac Newton)
and trilateration or localization are shown to be convex optimization
problems.

p.322 We show how to elegantly include torsion or dihedral angle constraints
into the molecular conformation problem.

p.353 Geometrical proof: Schoenberg criterion for a Euclidean distance
matrix.

p.371 We experimentally demonstrate a conjecture of Borg & Groenen by
reconstructing a map of the USA using only ordinal (comparative)
distance information.

p.6, p.389 There is an equality, relating the convex cone of Euclidean distance
matrices to the positive semidefinite cone, apparently overlooked in
the literature; an equality between two large convex Euclidean bodies.

p.433 The Schoenberg criterion for a Euclidean distance matrix is revealed to
be a discretized membership relation (or dual generalized inequalities)
between the EDM cone and its dual.
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appendices

Provided so as to be more self-contained:� linear algebra (appendix A is primarily concerned with proper
statements of semidefiniteness for square matrices),� simple matrices (dyad, doublet, elementary, Householder, Schoenberg,
orthogonal, etcetera, in appendix B),� a collection of known analytical solutions to some important
optimization problems (appendix C),� matrix calculus remains somewhat unsystematized when compared
to ordinary calculus (appendix D concerns matrix-valued functions,
matrix differentiation and directional derivatives, Taylor series, and
tables of first- and second-order gradients and matrix derivatives),� an elaborate exposition offering insight into orthogonal and
nonorthogonal projection on convex sets (the connection between
projection and positive semidefiniteness, for example, or between
projection and a linear objective function in appendix E).
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Chapter 2

Convex geometry

Convexity has an immensely rich structure and numerous
applications. On the other hand, almost every “convex” idea can
be explained by a two-dimensional picture.

−Alexander Barvinok [20, p.vii]

There is relatively less published pertaining to matrix-valued convex sets and
functions. [158] [151, §6.6] [218] As convex geometry and linear algebra are
inextricably bonded, we provide much background material on linear algebra
(especially in the appendices) although a reader is assumed comfortable
with [249], [251], [150], or any other intermediate-level text. The essential
references to convex analysis are [148] [230]. The reader is referred to [247]
[20] [280] [30] [46] [227] [268] for a comprehensive treatment of convexity.

© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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2.1 Convex set

A set C is convex iff for all Y , Z∈ C and 0≤µ≤1

µY + (1− µ)Z ∈ C (1)

Under that defining condition on µ , the linear sum in (1) is called a convex
combination of Y and Z . If Y and Z are points in Euclidean real vector
space Rn or Rm×n (matrices), then (1) represents the closed line segment
joining them. All line segments are thereby convex sets. Apparent from the
definition, a convex set is a connected set. [189, §3.4, §3.5] [30, p.2]

An ellipsoid centered at x= a (Figure 10, p.38), given matrix C∈Rm×n

{x∈Rn | ‖C(x− a)‖2 = (x− a)TCTC(x− a) ≤ 1} (2)

is a good icon for a convex set.

2.1.1 subspace

A nonempty subset of Euclidean real vector space Rn is called a subspace
(formally defined in §2.5) if every vector2.1 of the form αx+ βy , for
α, β∈R , is in the subset whenever vectors x and y are. [182, §2.3] A
subspace is a convex set containing the origin 0, by definition. [230, p.4]
Any subspace is therefore open in the sense that it contains no boundary,
but closed in the sense [189, §2]

Rn + Rn = Rn (3)

It is not difficult to show
Rn = −Rn (4)

as is true for any subspace R , because x∈Rn ⇔ −x∈Rn.
The intersection of an arbitrary collection of subspaces remains a

subspace. Any subspace not constituting the entire ambient vector space Rn

is a proper subspace; e.g.,2.2 any line through the origin in two-dimensional
Euclidean space R2. The vector space Rn is itself a conventional subspace,
inclusively, [166, §2.1] although not proper.

2.1A vector is assumed, throughout, to be a column vector.
2.2We substitute the abbreviation e.g. in place of the Latin exempli gratia.
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Figure 9: A slab is a convex Euclidean body infinite in extent but
not affine. Illustrated in R2, it may be constructed by intersecting
two opposing halfspaces whose bounding hyperplanes are parallel but not
coincident. Because number of halfspaces used in its construction is finite,
slab is a polyhedron. (Cartesian axes and vector inward-normal to each
halfspace-boundary are drawn for reference.)

2.1.2 linear independence

Arbitrary given vectors in Euclidean space {Γi∈Rn, i=1 . . . N} are linearly
independent (l.i.) if and only if, for all ζ∈RN

Γ1 ζ1 + · · ·+ ΓN−1 ζN−1 + ΓN ζN = 0 (5)

has only the trivial solution ζ = 0 ; in other words, iff no vector from the
given set can be expressed as a linear combination of those remaining.

2.1.2.1 preservation

Linear independence can be preserved under linear transformation. Given

matrix Y
∆
= [ y1 y2 · · · yN ]∈RN×N , consider the mapping

T (Γ) : Rn×N→ Rn×N ∆
= ΓY (6)

whose domain is the set of all matrices Γ∈Rn×N holding a linearly
independent set columnar. Linear independence of {Γyi∈Rn, i=1 . . . N}
demands, by definition, there exists no nontrivial solution ζ∈RN to

Γy1 ζi + · · ·+ ΓyN−1 ζN−1 + ΓyN ζN = 0 (7)

By factoring Γ , we see that is ensured by linear independence of {yi∈RN}.
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2.1.3 Orthant:

name given to a closed convex set that is the higher-dimensional
generalization of quadrant from the classical Cartesian partition of R2.
The most common is the nonnegative orthant Rn

+ or Rn×n
+ (analogue

to quadrant I) to which membership denotes nonnegative vector- or
matrix-entries respectively; e.g.,

Rn
+

∆
= {x∈Rn | xi≥ 0 ∀ i} (8)

The nonpositive orthant Rn
− or Rn×n

− (analogue to quadrant III) denotes
negative and 0 entries. Orthant convexity2.3 is easily verified by
definition (1).

2.1.4 affine set

A nonempty affine set (from the word affinity) is any subset of Rn that is a
translation of some subspace. An affine set is convex and open so contains no
boundary: e.g., ∅ , point, line, plane, hyperplane (§2.4.2), subspace, etcetera.
For some parallel 2.4 subspaceM and any point x∈A

A is affine ⇔ A = x+M
= {y | y − x∈M}

(9)

The intersection of an arbitrary collection of affine sets remains affine. The
affine hull of a set C⊆Rn (§2.3.1) is the smallest affine set containing it.

2.1.5 dimension

Dimension of an arbitrary set S is the dimension of its affine hull; [280, p.14]

dimS ∆
= dim aff S = dim aff(S − s) , s∈S (10)

the same as dimension of the subspace parallel to that affine set aff S when
nonempty. Hence dimension (of a set) is synonymous with affine dimension.
[148, A.2.1]

2.3All orthants are self-dual simplicial cones. (§2.13.5.1, §2.12.3.1.1)
2.4Two affine sets are said to be parallel when one is a translation of the other. [230, p.4]



2.1. CONVEX SET 37

2.1.6 empty set versus empty interior

Emptiness ∅ of a set is handled differently than interior in the classical
literature. It is common for a nonempty convex set to have empty interior;
e.g., paper in the real world. Thus the term relative is the conventional fix
to this ambiguous terminology:2.5� An ordinary flat sheet of paper is an example of a nonempty convex

set in R3 having empty interior but relatively nonempty interior.

2.1.6.1 relative interior

We distinguish interior from relative interior throughout. [247] [280] [268]
The relative interior rel int C of a convex set C ⊆ Rn is its interior relative
to its affine hull.2.6 Thus defined, it is common (though confusing) for int C
the interior of C to be empty while its relative interior is not: this happens
whenever dimension of its affine hull is less than dimension of the ambient
space (dim aff C < n , e.g., were C a flat piece of paper in R3) or in the
exception when C is a single point; [189, §2.2.1]

rel int{x} ∆
= aff{x} = {x} , int{x} = ∅ , x∈Rn (11)

In any case, closure of the relative interior of a convex set C always yields
the closure of the set itself;

rel int C = C (12)

If C is convex then rel int C and C are convex, [148, p.24] and it is always
possible to pass to a smaller ambient Euclidean space where a nonempty set
acquires an interior. [20, §II.2.3].

Given the intersection of convex set C with an affine set A

rel int(C ∩ A) = rel int(C) ∩ A (13)

If C has nonempty interior, then rel int C= int C .

2.5Superfluous mingling of terms as in relatively nonempty set would be an unfortunate
consequence. From the opposite perspective, some authors use the term full or
full-dimensional to describe a set having nonempty interior.
2.6Likewise for relative boundary (§2.6.1.3), although relative closure is superfluous.

[148, §A.2.1]
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(a)

(b)

(c)

R

R2

R3

Figure 10: (a) Ellipsoid in R is a line segment whose boundary comprises two
points. Intersection of line with ellipsoid in R , (b) in R2, (c) in R3. Each
ellipsoid illustrated has entire boundary constituted by zero-dimensional
faces; in fact, by vertices (§2.6.1.0.1). Intersection of line with boundary
is a point at entry to interior. These same facts hold in higher dimension.

2.1.7 classical boundary

(confer §2.6.1.3) Boundary of a set C is the closure of C less its interior
presumed nonempty; [41, §1.1]

∂ C = C \ int C (14)

which follows from the fact

int C = C (15)

assuming nonempty interior.2.7 One implication is: an open set has a
boundary defined although not contained in the set.

2.7Otherwise, for x∈Rn as in (11), [189, §2.1, §2.3]

int{x} = ∅ = ∅

the empty set is both open and closed.
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2.1.7.1 Line intersection with boundary

A line can intersect the boundary of a convex set in any dimension at a
point demarcating the line’s entry to the set interior. On one side of that
entry-point along the line is the exterior of the set, on the other side is the
set interior. In other words,� starting from any point of a convex set, a move toward the interior is

an immediate entry into the interior. [20, §II.2]

When a line intersects the interior of a convex body in any dimension, the
boundary appears to the line to be as thin as a point. This is intuitively
plausible because, for example, a line intersects the boundary of the ellipsoids
in Figure 10 at a point in R , R2, and R3. Such thinness is a remarkable
fact when pondering visualization of convex polyhedra (§2.12, §5.14.3) in
four dimensions, for example, having boundaries constructed from other
three-dimensional convex polyhedra called faces.

We formally define face in (§2.6). For now, we observe the boundary
of a convex body to be entirely constituted by all its faces of dimension
lower than the body itself. For example: The ellipsoids in Figure 10 have
boundaries composed only of zero-dimensional faces. The two-dimensional
slab in Figure 9 is a polyhedron having one-dimensional faces making its
boundary. The three-dimensional bounded polyhedron in Figure 12 has
zero-, one-, and two-dimensional polygonal faces constituting its boundary.

2.1.7.1.1 Example. Intersection of line with boundary in R6.
The convex cone of positive semidefinite matrices S3

+ (§2.9) in the ambient
subspace of symmetric matrices S3 (§2.2.2.0.1) is a six-dimensional Euclidean
body in isometrically isomorphic R6 (§2.2.1). The boundary of the
positive semidefinite cone in this dimension comprises faces having only the
dimensions 0, 1, and 3 ; id est, {ρ(ρ+1)/2, ρ=0, 1, 2}.

Unique minimum-distance projection PX (§E.9) of any point X∈ S3 on
that cone is known in closed form (§7.1.2). Given, for example, λ∈ int R3

+

and diagonalization (§A.5.2) of exterior point

X = QΛQT ∈ S3, Λ
∆
=





λ1 0
λ2

0 −λ3



 (16)
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where Q∈R3×3 is an orthogonal matrix, then the projection on S3

+ in R6 is

PX = Q





λ1 0
λ2

0 0



QT ∈ S3

+ (17)

This positive semidefinite matrix PX nearest X thus has rank 2, found by
discarding all negative eigenvalues. The line connecting these two points is
{X + (PX−X)t | t∈R} where t=0 ⇔ X and t=1 ⇔ PX . Because
this line intersects the boundary of the positive semidefinite cone S3

+ at
point PX and passes through its interior (by assumption), then the matrix
corresponding to an infinitesimally positive perturbation of t there should
reside interior to the cone (rank 3). Indeed, for ε an arbitrarily small positive
constant,

X + (PX−X)t|t=1+ε = Q(Λ+(PΛ−Λ)(1+ε))QT = Q





λ1 0
λ2

0 ελ3



QT ∈ int S3

+

(18)
2

2.1.7.2 Tangential line intersection with boundary

A higher-dimensional boundary ∂C of a convex Euclidean body C is simply
a dimensionally larger set through which a line can pass when it does not
intersect the body’s interior. Still, for example, a line existing in five or
more dimensions may pass tangentially (intersecting no point interior to C
[161, §15.3]) through a single point relatively interior to a three-dimensional
face on ∂C . Let’s understand why by inductive reasoning.

Figure 11(a) shows a vertical line-segment whose boundary comprises
its two endpoints. For a line to pass through the boundary tangentially
(intersecting no point relatively interior to the line-segment), it must exist
in an ambient space of at least two dimensions. Otherwise, the line is confined
to the same one-dimensional space as the line-segment and must pass along
the segment to reach the end points.

Figure 11(b) illustrates a two-dimensional ellipsoid whose boundary is
constituted entirely by zero-dimensional faces. Again, a line must exist in
at least two dimensions to tangentially pass through any single arbitrarily
chosen point on the boundary (without intersecting the ellipsoid interior).
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R2

(a) (b)

(c) (d)

R3

Figure 11: Line tangential (a) (b) to relative interior of a zero-dimensional
face in R2, (c) (d) to relative interior of a one-dimensional face in R3.
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Now let’s move to an ambient space of three dimensions. Figure 11(c)
shows a polygon rotated into three dimensions. For a line to pass through its
zero-dimensional boundary (one of its vertices) tangentially, it must exist
in at least the two dimensions of the polygon. But for a line to pass
tangentially through a single arbitrarily chosen point in the relative interior
of a one-dimensional face on the boundary as illustrated, it must exist in at
least three dimensions.

Figure 11(d) illustrates a solid circular pyramid (upside-down) whose
one-dimensional faces are line-segments emanating from its pointed end
(its vertex ). This pyramid’s boundary is constituted solely by these
one-dimensional line-segments. A line may pass through the boundary
tangentially, striking only one arbitrarily chosen point relatively interior to
a one-dimensional face, if it exists in at least the three-dimensional ambient
space of the pyramid.

From these few examples, way deduce a general rule (without proof):� A line may pass tangentially through a single arbitrarily chosen point
relatively interior to a k-dimensional face on the boundary of a convex
Euclidean body if the line exists in dimension at least equal to k+2.

Now the interesting part, with regard to Figure 12 showing a bounded
polyhedron in R3 ; call it P : A line existing in at least four dimensions is
required in order to pass tangentially (without hitting intP) through a single
arbitrary point in the relative interior of any two-dimensional polygonal face
on the boundary of polyhedron P . Now imagine that polyhedron P is itself
a three-dimensional face of some other polyhedron in R4. To pass a line
tangentially through polyhedron P itself, striking only one point from its
relative interior rel intP as claimed, requires a line existing in at least five
dimensions.

This rule can help determine whether there exists unique solution to a
convex optimization problem whose feasible set is an intersecting line; e.g.,
the trilateration problem (§5.4.2.2.4).

2.1.8 intersection, sum, difference, product

2.1.8.0.1 Theorem. Intersection. [46, §2.3.1] [230, §2]
The intersection of an arbitrary collection of convex sets is convex. ⋄
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This theorem in converse is implicitly false in so far as a convex set can
be formed by the intersection of sets that are not.

Vector sum of two convex sets C1 and C2

C1+ C2 = {x+ y | x ∈ C1 , y ∈ C2} (19)

is convex.

By additive inverse, we can similarly define vector difference of two convex
sets

C1− C2 = {x− y | x ∈ C1 , y ∈ C2} (20)

which is convex. Applying this definition to nonempty convex set C1 , its
self-difference C1− C1 is generally nonempty, nontrivial, and convex; e.g.,
for any convex cone K , (§2.7.2) the set K − K constitutes its affine hull.
[230, p.15]

Cartesian product of convex sets

C1× C2 =

{[

x
y

]

| x ∈ C1 , y ∈ C2
}

=

[

C1
C2

]

(21)

remains convex. The converse also holds; id est, a Cartesian product is
convex iff each set is. [148, p.23]

Convex results are also obtained for scaling κ C of a convex set C ,
rotation/reflection Q C , or translation C+ α ; all similarly defined.

Given any operator T and convex set C , we are prone to write T (C)
meaning

T (C) ∆
= {T (x) | x∈ C} (22)

Given linear operator T , it therefore follows from (19),

T (C1 + C2) = {T (x+ y) | x∈ C1 , y∈ C2}
= {T (x) + T (y) | x∈ C1 , y∈ C2}
= T (C1) + T (C2)

(23)
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2.1.9 inverse image

While epigraph and sublevel sets (§3.1.7) of a convex function must be convex,
it generally holds that image and inverse image of a convex function are not.
Although there are many examples to the contrary, the most prominent are
the affine functions:

2.1.9.0.1 Theorem. Image, Inverse image. [230, §3] [46, §2.3.2]
Let f be a mapping from Rp×k to Rm×n.� The image of a convex set C under any affine function (§3.1.6)

f(C) = {f(X) | X∈ C} ⊆ Rm×n (24)

is convex.� The inverse image2.8 of a convex set F ,

f−1(F) = {X | f(X)∈F} ⊆ Rp×k (25)

a single or many-valued mapping, under any affine function f is convex.

⋄

In particular, any affine transformation of an affine set remains affine.
[230, p.8] Ellipsoids are invariant to any [sic] affine transformation.

Each converse of this two-part theorem is generally false; id est, given
f affine, a convex image f(C) does not imply that set C is convex, and
neither does a convex inverse image f−1(F) imply set F is convex. A
counter-example is easy to visualize when the affine function is an orthogonal
projector [249] [182]:

2.1.9.0.2 Corollary. Projection on subspace. [230, §3]2.9

Orthogonal projection of a convex set on a subspace is another convex set.
⋄

Again, the converse is false. Shadows, for example, are umbral projections
that can be convex when the body providing the shade is not.

2.8See §2.9.1.0.2 for an example.
2.9The corollary holds more generally for projection on hyperplanes (§2.4.2); [280, §6.6]

hence, for projection on affine subsets (§2.3.1, nonempty intersections of hyperplanes).
Orthogonal projection on affine subsets is reviewed in §E.4.0.0.1.
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2.2 Vectorized-matrix inner product

Euclidean space Rn comes equipped with a linear vector inner-product

〈y , z〉 ∆
= yTz (26)

We prefer those angle brackets to connote a geometric rather than algebraic
perspective. Two vectors are orthogonal (perpendicular) to one another if
and only if their inner product vanishes;

y ⊥ z ⇔ 〈y, z〉 = 0 (27)

A vector inner-product defines a norm

‖y‖2 ∆
=
√

yTy , ‖y‖2 = 0 ⇔ y = 0 (28)

When orthogonal vectors each have unit norm, then they are orthonormal.
For linear operation A on a vector, represented by a real matrix, the adjoint
operation AT is transposition and defined for matrix A by [166, §3.10]

〈y ,ATz〉 ∆
= 〈Ay, z〉 (29)

The vector inner-product for matrices is calculated just as it is for vectors;
by first transforming a matrix in Rp×k to a vector in Rpk by concatenating
its columns in the natural order. For lack of a better term, we shall call
that linear bijective (one-to-one and onto [166, App.A1.2]) transformation
vectorization. For example, the vectorization of Y = [ y1 y2 · · · yk ]∈Rp×k

[116] [245] is

vecY
∆
=









y1

y2
...
yk









∈ Rpk (30)

Then the vectorized-matrix inner-product is trace of matrix inner-product;
for Z ∈Rp×k, [46, §2.6.1] [148, §0.3.1] [290, §8] [275, §2.2]

〈Y , Z〉 ∆
= tr(Y TZ) = vec(Y )T vecZ (31)

where (§A.1.1)

tr(Y TZ) = tr(ZY T ) = tr(YZT ) = tr(ZTY ) = 1T(Y ◦ Z)1 (32)
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and where ◦ denotes the Hadamard product2.10 of matrices [150] [110, §1.1.4].
The adjoint operation AT on a matrix can therefore be defined in like manner:

〈Y , ATZ〉 ∆
= 〈AY , Z〉 (33)

For example, take any element C1 from a matrix-valued set in Rp×k,
and consider any particular dimensionally compatible real vectors v and
w . Then vector inner-product of C1 with vwT is

〈vwT , C1〉 = vTC1w = tr(wvTC1) = 1T
(

(vwT )◦ C1
)

1 (34)

2.2.0.0.1 Example. Application of the image theorem.
Suppose the set C ⊆ Rp×k is convex. Then for any particular vectors v∈Rp

and w∈Rk, the set of vector inner-products

Y ∆
= vTCw = 〈vwT , C〉 ⊆ R (35)

is convex. This result is a consequence of the image theorem. Yet it is easy
to show directly that convex combination of elements from Y remains an
element of Y .2.11

2

More generally, vwT in (35) may be replaced with any particular matrix
Z∈Rp×k while convexity of the set 〈Z , C〉⊆R persists. Further, by
replacing v and w with any particular respective matrices U and W of
dimension compatible with all elements of convex set C , then set UTCW
is convex by the image theorem because it is a linear mapping of C .

2.10The Hadamard product is a simple entrywise product of corresponding entries from
two matrices of like size; id est, not necessarily square.
2.11To verify that, take any two elements C1 and C2 from the convex matrix-valued set
C , and then form the vector inner-products (35) that are two elements of Y by definition.
Now make a convex combination of those inner products; videlicet, for 0≤µ≤1

µ 〈vwT , C1〉 + (1− µ) 〈vwT , C2〉 = 〈vwT , µ C1 + (1− µ)C2〉

The two sides are equivalent by linearity of inner product. The right-hand side remains
a vector inner-product of vwT with an element µ C1 + (1− µ)C2 from the convex set C ;
hence it belongs to Y . Since that holds true for any two elements from Y , then it must
be a convex set. �
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2.2.1 Frobenius’

2.2.1.0.1 Definition. Isomorphic.
An isomorphism of a vector space is a transformation equivalent to a linear
bijective mapping. The image and inverse image under the transformation
operator are then called isomorphic vector spaces. △

Isomorphic vector spaces are characterized by preservation of adjacency ;
id est, if v and w are points connected by a line segment in one vector space,
then their images will also be connected by a line segment. Two Euclidean
bodies may be considered isomorphic of there exists an isomorphism of their
corresponding ambient spaces. [276, §I.1]

When Z=Y ∈ Rp×k in (31), Frobenius’ norm is resultant from vector
inner-product; (confer (1467))

‖Y ‖2F = ‖ vecY ‖22 = 〈Y , Y 〉 = tr(Y TY )

=
∑

i, j

Y 2
ij =

∑

i

λ(Y TY )i =
∑

i

σ(Y )2
i

(36)

where λ(Y TY )i is the ith eigenvalue of Y TY , and σ(Y )i the ith singular
value of Y . Were Y a normal matrix (§A.5.2), then σ(Y )= |λ(Y )|
[301, §8.1] thus

‖Y ‖2F =
∑

i

λ(Y )2
i = ‖λ(Y )‖22 (37)

The converse (37) ⇒ normal matrix Y also holds. [150, §2.5.4]

Because the metrics are equivalent

‖ vecX−vecY ‖2 = ‖X−Y ‖F (38)

and because vectorization (30) is a linear bijective map, then vector space
Rp×k is isometrically isomorphic with vector space Rpk in the Euclidean sense
and vec is an isometric isomorphism on Rp×k .2.12 Because of this Euclidean
structure, all the known results from convex analysis in Euclidean space Rn

carry over directly to the space of real matrices Rp×k.

2.12Given matrix A , its range R(A) (§2.5) is isometrically isomorphic with its vectorized
range vecR(A) but not with R(vecA).
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2.2.1.0.2 Definition. Isometric isomorphism.
An isometric isomorphism of a vector space having a metric defined on it is a
linear bijective mapping T that preserves distance; id est, for all x, y∈domT

‖Tx− Ty‖ = ‖x− y‖ (39)

Then the isometric isomorphism T is a bijective isometry. △

Unitary linear operator Q : Rn→ Rn representing orthogonal matrix
Q∈Rn×n (§B.5), for example, is an isometric isomorphism. Yet isometric

operator T : R2→ R3 representing T =





1 0
0 1
0 0



 on R2 is injective but not

a surjective map [166, §1.6] to R3.
The Frobenius norm is orthogonally invariant ; meaning, for X,Y ∈ Rp×k

and dimensionally compatible orthonormal matrix 2.13 U and orthogonal
matrix Q

‖U(X−Y )Q‖F = ‖X−Y ‖F (40)

2.2.2 Symmetric matrices

2.2.2.0.1 Definition. Symmetric matrix subspace.
Define a subspace of RM×M : the convex set of all symmetric M×M matrices;

SM ∆
=
{

A∈RM×M | A=AT
}

⊆ RM×M (41)

This subspace comprising symmetric matrices SM is isomorphic with the
vector space RM(M+1)/2 whose dimension is the number of free variables in a
symmetric M×M matrix. The orthogonal complement [249] [182] of SM is

SM⊥ ∆
=
{

A∈RM×M | A=−AT
}

⊂ RM×M (42)

the subspace of antisymmetric matrices in RM×M ; id est,

SM⊕ SM⊥= RM×M (43)

where unique vector sum ⊕ is defined on page 676. △

2.13Any matrix U whose columns are orthonormal with respect to each other (UTU= I );
these include the orthogonal matrices.
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All antisymmetric matrices are hollow by definition (have 0 main
diagonal). Any square matrix A ∈ RM×M can be written as the sum of
its symmetric and antisymmetric parts: respectively,

A =
1

2
(A+AT ) +

1

2
(A−AT ) (44)

The symmetric part is orthogonal in RM2

to the antisymmetric part; videlicet,

tr
(

(AT + A)(A−AT )
)

= 0 (45)

In the ambient space of real matrices, the antisymmetric matrix subspace
can be described

SM⊥ ∆
=

{

1

2
(A−AT ) | A∈RM×M

}

⊂ RM×M (46)

because any matrix in SM is orthogonal to any matrix in SM⊥. Further
confined to the ambient subspace of symmetric matrices, because of
antisymmetry, SM⊥ would become trivial.

2.2.2.1 Isomorphism on symmetric matrix subspace

When a matrix is symmetric in SM , we may still employ the vectorization
transformation (30) to RM2

; vec , an isometric isomorphism. We might
instead choose to realize in the lower-dimensional subspace RM(M+1)/2 by
ignoring redundant entries (below the main diagonal) during transformation.
Such a realization would remain isomorphic but not isometric. Lack of
isometry is a spatial distortion due now to disparity in metric between RM 2

and RM(M+1)/2. To realize isometrically in RM(M+1)/2, we must make a
correction: For Y = [Yij]∈ SM we introduce the symmetric vectorization

svecY
∆
=

























Y11√
2Y12

Y22√
2Y13√
2Y23

Y33...
YMM

























∈ RM(M+1)/2 (47)
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where all entries off the main diagonal have been scaled. Now for Z ∈ SM

〈Y , Z〉 ∆
= tr(Y TZ) = vec(Y )T vecZ = svec(Y )T svecZ (48)

Then because the metrics become equivalent, for X∈ SM

‖ svecX − svecY ‖2 = ‖X − Y ‖F (49)

and because symmetric vectorization (47) is a linear bijective mapping, then
svec is an isometric isomorphism on the symmetric matrix subspace. In other
words, SM is isometrically isomorphic with RM(M+1)/2 in the Euclidean sense
under transformation svec .

The set of all symmetric matrices SM forms a proper subspace in RM×M ,
so for it there exists a standard orthonormal basis in isometrically isomorphic
RM(M+1)/2

{Eij∈ SM} =







eie
T
i , i = j = 1. . .M

1√
2

(

eie
T
j + eje

T
i

)

, 1 ≤ i < j ≤M







(50)

where M(M+1)/2 standard basis matrices Eij are formed from the standard
basis vectors ei∈RM . Thus we have a basic orthogonal expansion for Y ∈ SM

Y =
M
∑

j=1

j
∑

i=1

〈Eij , Y 〉Eij (51)

whose coefficients

〈Eij , Y 〉 =

{

Yii , i = 1 . . . M

Yij

√
2 , 1 ≤ i < j ≤M

(52)

correspond to entries of the symmetric vectorization (47).
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2.2.3 Symmetric hollow subspace

2.2.3.0.1 Definition. Hollow subspaces. [266]
Define a subspace of RM×M : the convex set of all (real) symmetric M×M
matrices having 0 main diagonal;

RM×M
h

∆
=
{

A∈RM×M | A=AT , δ(A) = 0
}

⊂ RM×M (53)

where the main diagonal of A∈RM×M is denoted (§A.1)

δ(A) ∈ RM (1220)

Operating on a vector, linear operator δ naturally returns a diagonal matrix;
δ(δ(A)) is a diagonal matrix. Operating recursively on a vector Λ∈RN or
diagonal matrix Λ∈ SN , operator δ(δ(Λ)) returns Λ itself;

δ2(Λ) ≡ δ(δ(Λ))
∆
= Λ (1222)

The subspace RM×M
h (53) comprising (real) symmetric hollow matrices is

isomorphic with subspace RM(M−1)/2. The orthogonal complement of RM×M
h

is
RM×M⊥

h
∆
=
{

A∈RM×M | A=−AT + 2δ2(A)
}

⊆ RM×M (54)

the subspace of antisymmetric antihollow matrices in RM×M ; id est,

RM×M
h ⊕ RM×M⊥

h = RM×M (55)

Yet defined instead as a proper subspace of SM

SM
h

∆
=
{

A∈ SM | δ(A) = 0
}

⊂ SM (56)

the orthogonal complement SM⊥
h of SM

h in ambient SM

SM⊥
h

∆
=
{

A∈ SM | A=δ2(A)
}

⊆ SM (57)

is simply the subspace of diagonal matrices; id est,

SM
h ⊕ SM⊥

h = SM (58)

△
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Any matrix A∈RM×M can be written as the sum of its symmetric hollow
and antisymmetric antihollow parts: respectively,

A =

(

1

2
(A+AT )− δ2(A)

)

+

(

1

2
(A−AT ) + δ2(A)

)

(59)

The symmetric hollow part is orthogonal in RM2

to the antisymmetric
antihollow part; videlicet,

tr

((

1

2
(A+AT )− δ2(A)

)(

1

2
(A−AT ) + δ2(A)

))

= 0 (60)

In the ambient space of real matrices, the antisymmetric antihollow subspace
is described

SM⊥
h

∆
=

{

1

2
(A−AT ) + δ2(A) | A∈RM×M

}

⊆ RM×M (61)

because any matrix in SM
h is orthogonal to any matrix in SM⊥

h . Yet in
the ambient space of symmetric matrices SM , the antihollow subspace is
nontrivial;

SM⊥
h

∆
=
{

δ2(A) | A∈SM
}

=
{

δ(u) | u∈RM
}

⊆ SM (62)

In anticipation of their utility with Euclidean distance matrices (EDMs)
in §5, for symmetric hollow matrices we introduce the linear bijective
vectorization dvec that is the natural analogue to symmetric matrix
vectorization svec (47): for Y = [Yij]∈ SM

h

dvecY
∆
=
√

2

























Y12

Y13

Y23

Y14

Y24

Y34...
YM−1,M

























∈ RM(M−1)/2 (63)

Like svec (47), dvec is an isometric isomorphism on the symmetric hollow
subspace.
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Figure 12: Convex hull of a random list of points in R3. Some points
from that generating list reside in the interior of this convex polyhedron.
[282, Convex Polyhedron] (Avis-Fukuda-Mizukoshi)

The set of all symmetric hollow matrices SM
h forms a proper subspace in

RM×M , so for it there must be a standard orthonormal basis in isometrically
isomorphic RM(M−1)/2

{Eij∈ SM
h } =

{

1√
2

(

eie
T
j + eje

T
i

)

, 1 ≤ i < j ≤M

}

(64)

where M(M−1)/2 standard basis matrices Eij are formed from the standard
basis vectors ei∈RM .

The symmetric hollow majorization corollary on page 484 characterizes
eigenvalues of symmetric hollow matrices.

2.3 Hulls

2.3.1 Affine hull, affine dimension

Affine dimension of any set in Rn is the dimension of the smallest affine
set (empty set, point, line, plane, hyperplane (§2.4.2), subspace, Rn) that
contains it. For nonempty sets, affine dimension is the same as dimension of
the subspace parallel to that affine set. [230, §1] [148, §A.2.1]

Ascribe the points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of
matrix X :

X = [x1 · · · xN ] ∈ Rn×N (65)
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In particular, we define affine dimension r of the N -point list X as
dimension of the smallest affine set in Euclidean space Rn that contains X ;

r
∆
= dim affX (66)

Affine dimension r is a lower bound sometimes called embedding dimension.
[266] [134] That affine set A in which those points are embedded is unique
and called the affine hull [46, §2.1.2] [247, §2.1];

A ∆
= aff {xℓ∈Rn, ℓ=1 . . . N} = affX
= x1 + R{xℓ − x1 , ℓ=2 . . . N} = {Xa | aT1 = 1} ⊆ Rn (67)

parallel to subspace

R{xℓ − x1 , ℓ=2 . . . N} = R(X − x11
T ) ⊆ Rn (68)

where R(A) = {Ax | ∀x} (120)

Given some arbitrary set C and any x∈ C
aff C = x+ aff(C − x) (69)

where aff(C−x) is a subspace.

2.3.1.0.1 Definition. Affine subset.
We analogize affine subset to subspace,2.14 defining it to be any nonempty
affine set (§2.1.4). △

aff ∅ ∆
= ∅ (70)

The affine hull of a point x is that point itself;

aff{x} = {x} (71)

The affine hull of two distinct points is the unique line through them.
(Figure 13) The affine hull of three noncollinear points in any dimension
is that unique plane containing the points, and so on. The subspace of
symmetric matrices Sm is the affine hull of the cone of positive semidefinite
matrices; (§2.9)

aff Sm
+ = Sm (72)

2.14The popular term affine subspace is an oxymoron.
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affine hull (drawn truncated)

convex hull

conic hull (truncated)

range or span is a plane (truncated)

A

C

K

R

Figure 13: Given two points in Euclidean vector space of any dimension,
their various hulls are illustrated. Each hull is a subset of range; generally,
A , C ,K ⊆ R . (Cartesian axes drawn for reference.)
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2.3.1.0.2 Example. Affine hull of rank-1 correlation matrices. [160]
The set of all m×m rank-1 correlation matrices is defined by all the binary
vectors y in Rm (confer §5.9.1.0.1)

{yyT ∈ Sm
+ | δ(yyT )=1} (73)

Affine hull of the rank-1 correlation matrices is equal to the set of normalized
symmetric matrices; id est,

aff{yyT ∈ Sm
+ | δ(yyT )=1} = {A∈ Sm | δ(A)=1} (74)

2

2.3.1.0.3 Exercise. Affine hull of correlation matrices.
Prove (74) via definition of affine hull. Find the convex hull instead. H

2.3.1.1 Comparison with respect to RN
+ and SM

+

The notation a� 0 means vector a belongs to the nonnegative orthant
RN

+ , whereas a� b denotes comparison of vector a to vector b on RN

with respect to the nonnegative orthant; id est, a� b means a− b belongs
to the nonnegative orthant, but neither a or b necessarily belongs to that
orthant. In particular, a� b ⇔ ai� bi ∀ i . (320)

The symbol ≥ is reserved for scalar comparison on the real line R with
respect to the nonnegative real line R+ as in aTy ≥ b . Comparison of
matrices with respect to the positive semidefinite cone SM

+ , like I �A� 0
in Example 2.3.2.0.1, is explained in §2.9.0.1.

2.3.2 Convex hull

The convex hull [148, §A.1.4] [46, §2.1.4] [230] of any bounded 2.15 list (or set)
of N points X∈ Rn×N forms a unique convex polyhedron (§2.12.0.0.1) whose
vertices constitute some subset of that list;

P ∆
= conv {xℓ , ℓ=1 . . . N} = convX = {Xa | aT1 = 1, a � 0} ⊆ Rn

(75)

2.15A set in Rn is bounded if and only if it can be contained in a Euclidean ball having
finite radius. [77, §2.2] (confer §5.7.3.0.1)
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The union of relative interior and relative boundary (§2.6.1.3) of the
polyhedron comprise the convex hull P , the smallest closed convex set that
contains the list X ; e.g., Figure 12. Given P , the generating list {xℓ} is
not unique.

Given some arbitrary set C⊆Rn, its convex hull conv C is equivalent to
the smallest closed convex set containing it. (confer §2.4.1.1.1) The convex
hull is a subset of the affine hull;

conv C ⊆ aff C = aff C = aff C = aff conv C (76)

Any closed bounded convex set C is equal to the convex hull of its boundary;

C = conv ∂C (77)

conv ∅ ∆
= ∅ (78)

2.3.2.0.1 Example. Hull of outer product. [212] [9, §4.1]
[216, §3] [175, §2.4] Convex hull of the set comprising outer product of
orthonormal matrices has equivalent expression: for 1 ≤ k ≤ N (§2.9.0.1)

conv
{

UUT | U ∈ RN×k, UTU= I
}

=
{

A∈ SN | I � A � 0 , 〈I , A〉=k
}

⊂ SN
+

(79)

This important convex body we call Fantope (after mathematician Ky Fan).
In case k= 1, there is slight simplification: ((1403), Example 2.9.2.4.1)

conv
{

UUT | U ∈ RN , UTU= I
}

=
{

A∈ SN | A � 0 , 〈I , A〉=1
}

(80)

In case k=N , the Fantope is identity matrix I . More generally, the set

{UUT | U ∈ RN×k, UTU= I} (81)

comprises the extreme points (§2.6.0.0.1) of its convex hull. By (1268), each
and every extreme point UUT has only k nonzero eigenvalues λ and they all
equal 1 ; id est, λ(UUT )1:k = λ(UTU) = 1. So the Frobenius norm of each
and every extreme point equals the same constant

‖UUT‖2F = k (82)

Each extreme point simultaneously lies on the boundary of the positive
semidefinite cone (when k <N , §2.9) and on the boundary of a hypersphere
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α
√

2β

γ

I

svec ∂S2

+

[

α β
β γ

]

Figure 14: Two Fantopes. Circle, (radius 1√
2
) shown here on boundary of

positive semidefinite cone S2

+ in isometrically isomorphic R3 from Figure 31,
comprises boundary of a Fantope (79) in this dimension (k= 1, N= 2).
Lone point illustrated is identity matrix I and that Fantope corresponding
to k= 2, N= 2. (View is from inside PSD cone looking toward origin.)
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of dimension k(N− k
2
+ 1

2
) and radius

√

k(1− k
N

) centered at k
N
I along

the ray (base 0) through the identity matrix I in isomorphic vector space

RN(N+1)/2 (§2.2.2.1).
Figure 14 illustrates extreme points (81) comprising the boundary of a

Fantope, the boundary of a disc corresponding to k= 1, N= 2 ; but that
circumscription does not hold in higher dimension. (§2.9.2.5) 2

2.3.3 Conic hull

In terms of a finite-length point list (or set) arranged columnar in X∈ Rn×N

(65), its conic hull is expressed

K ∆
= cone {xℓ , ℓ=1 . . . N} = coneX = {Xa | a � 0} ⊆ Rn (83)

id est, every nonnegative combination of points from the list. The conic hull
of any finite-length list forms a polyhedral cone [148, §A.4.3] (§2.12.1.0.1;
e.g., Figure 15); the smallest closed convex cone that contains the list.

By convention, the aberration [247, §2.1]

cone ∅ ∆
= {0} (84)

Given some arbitrary set C , it is apparent

conv C ⊆ cone C (85)

2.3.4 Vertex-description

The conditions in (67), (75), and (83) respectively define an affine
combination, convex combination, and conic combination of elements from
the set or list. Whenever a Euclidean body can be described as some
hull or span of a set of points, then that representation is loosely called
a vertex-description.

2.4 Halfspace, Hyperplane

A two-dimensional affine subset is called a plane. An (n−1)-dimensional
affine subset in Rn is called a hyperplane. [230] [148] Every hyperplane
partially bounds a halfspace (which is convex but not affine).
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Figure 15: A simplicial cone (§2.12.3.1.1) in R3 whose boundary is drawn
truncated; constructed using A∈R3×3 and C= 0 in (246). By the most
fundamental definition of a cone (§2.7.1), entire boundary can be constructed
from an aggregate of rays emanating exclusively from the origin. Each
of three extreme directions corresponds to an edge (§2.6.0.0.3); they are
conically, affinely, and linearly independent for this cone. Because this
set is polyhedral, exposed directions are in one-to-one correspondence with
extreme directions; there are only three. Its extreme directions give rise to
what is called a vertex-description of this polyhedral cone; simply, the conic
hull of extreme directions. Obviously this cone can also be constructed by
intersection of three halfspaces; hence the equivalent halfspace-description.
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∆

∂H={y | aT(y − yp)=0}

N (aT )={y | aTy=0}

c

dy

yp

a

H+

H−

Figure 16: Hyperplane illustrated ∂H is a line partially bounding halfspaces
H−= {y | aT(y − yp)≤ 0} and H+ = {y | aT(y − yp)≥ 0} in R2. Shaded is
a rectangular piece of semi-infinite H− with respect to which vector a is
outward-normal to bounding hyperplane; vector a is inward-normal with
respect to H+ . Halfspace H− contains nullspace N (aT ) (dashed line
through origin) because aTyp> 0. Hyperplane, halfspace, and nullspace are
each drawn truncated. Points c and d are equidistant from hyperplane, and
vector c− d is normal to it. ∆ is distance from origin to hyperplane.
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2.4.1 Halfspaces H+ and H−
Euclidean space Rn is partitioned into two halfspaces by any hyperplane
∂H ; id est, H−+H+ = Rn. The resulting (closed convex) halfspaces, both
partially bounded by ∂H , may be described

H− = {y | aTy ≤ b} = {y | aT(y − yp) ≤ 0} ⊂ Rn (86)

H+ = {y | aTy ≥ b} = {y | aT(y − yp) ≥ 0} ⊂ Rn (87)

where nonzero vector a∈Rn is an outward-normal to the hyperplane partially
bounding H− while an inward-normal with respect to H+ . For any vector
y− yp that makes an obtuse angle with normal a , vector y will lie in the
halfspaceH− on one side (shaded in Figure 16) of the hyperplane while acute
angles denote y in H+ on the other side.

An equivalent more intuitive representation of a halfspace comes about
when we consider all the points in Rn closer to point d than to point c or
equidistant, in the Euclidean sense; from Figure 16,

H− = {y | ‖y − d‖ ≤ ‖y − c‖} (88)

This representation, in terms of proximity, is resolved with the more
conventional representation of a halfspace (86) by squaring both sides of
the inequality in (88);

H− =

{

y | (c− d)Ty ≤ ‖c‖
2 − ‖d‖2

2

}

=

{

y | (c− d)T

(

y − c + d

2

)

≤ 0

}

(89)

2.4.1.1 PRINCIPLE 1: Halfspace-description of convex sets

The most fundamental principle in convex geometry follows from the
geometric Hahn-Banach theorem [182, §5.12] [16, §1] [88, §I.1.2] which
guarantees any closed convex set to be an intersection of halfspaces.

2.4.1.1.1 Theorem. Halfspaces. [46, §2.3.1] [230, §18]
[148, §A.4.2(b)] [30, §2.4] A closed convex set in Rn is equivalent to the
intersection of all halfspaces that contain it. ⋄
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Intersection of multiple halfspaces in Rn may be represented using a
matrix constant A ;

⋂

i

Hi− = {y | ATy � b} = {y | AT(y − yp) � 0} (90)

⋂

i

Hi+ = {y | ATy � b} = {y | AT(y − yp) � 0} (91)

where b is now a vector, and the ith column of A is normal to a hyperplane
∂Hi partially bounding Hi . By the halfspaces theorem, intersections like
this can describe interesting convex Euclidean bodies such as polyhedra and
cones, giving rise to the term halfspace-description.

2.4.2 Hyperplane ∂H representations

Every hyperplane ∂H is an affine set parallel to an (n−1)-dimensional
subspace of Rn ; it is itself a subspace if and only if it contains the origin.

dim ∂H = n− 1 (92)

so a hyperplane is a point in R , a line in R2, a plane in R3, and so on.
Every hyperplane can be described as the intersection of complementary
halfspaces; [230, §19]

∂H = H− ∩ H+ = {y | aTy ≤ b , aTy ≥ b} = {y | aTy = b} (93)

a halfspace-description. Assuming normal a∈Rn to be nonzero, then any
hyperplane in Rn can be described as the solution set to vector equation
aTy= b (illustrated in Figure 16 and Figure 17 for R2 )

∂H ∆
= {y | aTy = b} = {y | aT(y−yp) = 0} = {Zξ+ yp | ξ∈Rn−1} ⊂ Rn (94)

All solutions y constituting the hyperplane are offset from the nullspace of
aT by the same constant vector yp∈Rn that is any particular solution to
aTy=b ; id est,

y = Zξ + yp (95)

where the columns of Z∈Rn×n−1 constitute a basis for the nullspace
N (aT ) = {x∈Rn | aTx=0} .2.16

2.16We will later find this expression for y in terms of nullspace of aT (more generally, of
matrix AT (122)) to be a useful device for eliminating affine equality constraints, much as
we did here.
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1
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1
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1
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1

1

−1

−1

−1

−1

−1

−1

−1

−1

−1

a =

[

1
1

]

b =

[

−1
−1

]

c =

[

−1
1

]

d =

[

1
−1

]

e =

[

1
0

]

{y | aTy=1}

{y | aTy=−1}

{y | bTy=−1}

{y | bTy=1}

{y | cTy=1}

{y | cTy=−1}

{y | dTy=−1}

{y | dTy=1}

{y | eTy=−1} {y | eTy=1}

(a) (b)

(c) (d)

(e)

Figure 17: (a)-(d) Hyperplanes in R2 (truncated). Movement in normal
direction increases vector inner-product. This visual concept is exploited
to attain analytical solution of linear programs; e.g., Example 2.4.2.6.2,
Example 3.1.6.0.1, [46, exer.4.8-exer.4.20]. Each graph is also interpretable
as a contour plot of a real affine function of two variables as in
Figure 55. (e) Ratio |b|/‖a‖ from {x | aTx= b} represents radius of
hypersphere about 0 supported by hyperplane whose normal is a .
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Conversely, given any point yp in Rn, the unique hyperplane containing
it having normal a is the affine set ∂H (94) where b equals aTyp and
where a basis for N (aT ) is arranged in Z columnar. Hyperplane dimension
is apparent from the dimensions of Z ; that hyperplane is parallel to the
span of its columns.

2.4.2.0.1 Exercise. Hyperplane scaling.
Given normal y , draw a hyperplane {x∈R2 | xTy=1}. Suppose z = 1

2
y .

On the same plot, draw the hyperplane {x∈R2 | xTz=1}. Now suppose
z = 2y , then draw the last hyperplane again with this new z . What is the
apparent effect of scaling normal y ? H

2.4.2.0.2 Example. Distance from origin to hyperplane.
Given the (shortest) distance ∆∈R+ from the origin to a hyperplane
having normal vector a , we can find its representation ∂H by dropping
a perpendicular. The point thus found is the orthogonal projection of the
origin on ∂H (§E.5.0.0.5), equal to a∆/‖a‖ if the origin is known a priori
to belong to halfspace H− (Figure 16), or equal to −a∆/‖a‖ if the origin
belongs to halfspace H+ ; id est, when H−∋0

∂H =
{

y | aT (y − a∆/‖a‖) = 0
}

=
{

y | aTy = ‖a‖∆
}

(96)

or when H+∋0

∂H =
{

y | aT (y + a∆/‖a‖) = 0
}

=
{

y | aTy = −‖a‖∆
}

(97)

Knowledge of only distance ∆ and normal a thus introduces ambiguity into
the hyperplane representation. 2

2.4.2.1 Matrix variable

Any halfspace in Rmn may be represented using a matrix variable. For
variable Y ∈Rm×n, given constants A∈Rm×n and b = 〈A , Yp〉 ∈ R ,

H− = {Y ∈Rmn | 〈A , Y 〉 ≤ b} = {Y ∈Rmn | 〈A , Y −Yp〉 ≤ 0} (98)

H+ = {Y ∈Rmn | 〈A , Y 〉 ≥ b} = {Y ∈Rmn | 〈A , Y −Yp〉 ≥ 0} (99)

Recall vector inner-product from §2.2, 〈A , Y 〉= tr(ATY ).
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Hyperplanes in Rmn may, of course, also be represented using matrix
variables.

∂H = {Y | 〈A , Y 〉 = b} = {Y | 〈A , Y −Yp〉 = 0} ⊂ Rmn (100)

Vector a from Figure 16 is normal to the hyperplane illustrated. Likewise,
nonzero vectorized matrix A is normal to hyperplane ∂H ;

A ⊥ ∂H in Rmn (101)

2.4.2.2 Vertex-description of hyperplane

Any hyperplane in Rn may be described as the affine hull of a minimal set of
points {xℓ ∈Rn, ℓ= 1 . . . n} arranged columnar in a matrix X∈ Rn×n (65):

∂H = aff{xℓ ∈Rn, ℓ= 1 . . . n} , dim aff{xℓ ∀ ℓ}=n−1

= affX , dim affX= n−1

= x1 + R{xℓ − x1 , ℓ=2 . . . n} , dimR{xℓ − x1 , ℓ=2 . . . n}=n−1

= x1 + R(X − x11
T ) , dimR(X − x11

T ) = n−1
(102)

where
R(A) = {Ax | ∀x} (120)

2.4.2.3 Affine independence, minimal set

For any particular affine set, a minimal set of points constituting its
vertex-description is an affinely independent descriptive set and vice versa.

Arbitrary given points {xi∈Rn, i=1 . . . N} are affinely independent
(a.i.) if and only if, over all ζ∈RN � ζT1=1, ζk = 0 (confer §2.1.2)

xi ζi + · · ·+ xj ζj − xk = 0 , i 6= · · · 6=j 6=k = 1 . . . N (103)

has no solution ζ ; in words, iff no point from the given set can be expressed
as an affine combination of those remaining. We deduce

l.i. ⇒ a.i. (104)

Consequently, {xi , i=1 . . . N} is an affinely independent set if and only if
{xi−x1 , i=2 . . . N} is a linearly independent (l.i.) set. [153, §3] (Figure 18)

This is equivalent to the property that the columns of

[

X
1T

]

(for X∈ Rn×N

as in (65)) form a linearly independent set. [148, §A.1.3]
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A1

A2
A3

0

Figure 18: Any one particular point of three points illustrated does not belong
to affine hull Ai (i∈ 1, 2 , 3, each drawn truncated) of points remaining.
Three corresponding vectors in R2 are, therefore, affinely independent (but
neither linearly or conically independent).

2.4.2.4 Preservation of affine independence

Independence in the linear (§2.1.2.1), affine, and conic (§2.10.1) senses can
be preserved under linear transformation. Suppose a matrix X∈ Rn×N (65)
holds an affinely independent set in its columns. Consider a transformation

T (X) : Rn×N→ Rn×N ∆
= XY (105)

where the given matrix Y
∆
= [ y1 y2 · · · yN ]∈RN×N is represented by linear

operator T . Affine independence of {Xyi∈Rn, i=1 . . . N} demands (by
definition (103)) there exists no solution ζ∈RN � ζT1=1, ζk = 0, to

Xyi ζi + · · ·+Xyj ζj − Xyk = 0 , i 6= · · · 6=j 6=k = 1 . . . N (106)

By factoring X , we see that is ensured by affine independence of {yi∈RN}
and by R(Y )∩N (X) = 0 where

N (A) = {x | Ax=0} (121)
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C

a

{z∈R2 | aTz= κ1}
{z∈R2 | aTz= κ2}
{z∈R2 | aTz= κ3}

H−

H+

0> κ3 > κ2 > κ1

Figure 19: Each shaded line segment {z∈ C | aTz= κi} belonging to set
C⊂R2 shows intersection with hyperplane parametrized by scalar κi ; each
shows a (linear) contour in vector z of equal inner product with normal
vector a . Cartesian axes drawn for reference. (confer Figure 55)

2.4.2.5 affine maps

Affine transformations preserve affine hulls. Given any affine mapping T of
vector spaces and some arbitrary set C [230, p.8]

aff(T C) = T (aff C) (107)

2.4.2.6 PRINCIPLE 2: Supporting hyperplane

The second most fundamental principle of convex geometry also follows from
the geometric Hahn-Banach theorem [182, §5.12] [16, §1] that guarantees
existence of at least one hyperplane in Rn supporting a convex set (having
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yp

yp

Y

Y

∂H−

∂H+

(a)

(b)

a

ã

tradition

nontraditional

H+

H−

H+

H−

Figure 20: (a) Hyperplane ∂H− (108) supporting closed set Y∈R2.
Vector a is inward-normal to hyperplane with respect to halfspace H+ ,
but outward-normal with respect to set Y . A supporting hyperplane can
be considered the limit of an increasing sequence in the normal-direction like
that in Figure 19. (b) Hyperplane ∂H+ nontraditionally supporting Y .
Vector ã is inward-normal to hyperplane now with respect to both
halfspace H+ and set Y . Tradition [148] [230] recognizes only positive
normal polarity in support function σY as in (108); id est, normal a ,
figure (a). But both interpretations of supporting hyperplane are useful.
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nonempty interior)2.17 at each point on its boundary.

2.4.2.6.1 Definition. Supporting hyperplane ∂H .
The partial boundary ∂H of a closed halfspace that contains arbitrary set Y
is called a supporting hyperplane ∂H to Y when the hyperplane contains at
least one point of Y . [230, §11] Specifically, given normal a 6=0 (belonging
to H+ by definition), the supporting hyperplane to Y at yp∈ ∂Y [sic] is

∂H− =
{

y | aT(y − yp) = 0 , yp∈Y , aT(z − yp)≤ 0 ∀ z∈Y
}

=
{

y | aTy = sup{aTz | z∈Y}
} (108)

where normal a and set Y reside in opposite halfspaces. (Figure 20(a)) Real
function

σY(a)
∆
= sup{aTz | z∈Y} (458)

is called the support function for Y .
An equivalent but nontraditional representation2.18 for a supporting

hyperplane is obtained by reversing polarity of normal a ; (1459)

∂H+ =
{

y | ãT(y − yp) = 0 , yp∈Y , ãT(z − yp)≥ 0 ∀ z∈Y
}

=
{

y | ãTy = − inf{ãTz | z∈Y} = sup{−ãTz | z∈Y}
} (109)

where normal ã and set Y now both reside in H+ . (Figure 20(b))
When a supporting hyperplane contains only a single point of Y , that

hyperplane is termed strictly supporting (and termed tangent to Y if the
supporting hyperplane is unique there [230, §18, p.169]). △

A closed convex set C⊂Rn, for example, can be expressed as the
intersection of all halfspaces partially bounded by hyperplanes supporting
it; videlicet, [182, p.135]

C =
⋂

a∈R
n

{

y | aTy ≤ σC(a)
}

(110)

by the halfspaces theorem (§2.4.1.1.1).

2.17It is conventional to speak of a hyperplane supporting set C but not containing C ;
called nontrivial support. [230, p.100] Hyperplanes in support of lower-dimensional bodies
are admitted.
2.18 useful for constructing the dual cone; e.g., Figure 42(b). Tradition recognizes the
polar cone; which is the negative of the dual cone.
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There is no geometric difference2.19 between supporting hyperplane ∂H+

or ∂H− or ∂H and an ordinary hyperplane ∂H coincident with them.

2.4.2.6.2 Example. Minimization on the unit cube.
Consider minimization of a linear function on a hypercube, given vector c

minimize
x

cTx

subject to −1 � x � 1
(111)

This convex optimization problem is called a linear program because the
objective of minimization is linear and the constraints describe a polyhedron
(intersection of a finite number of halfspaces and hyperplanes). Applying
graphical concepts from Figure 17, Figure 19, and Figure 20, an optimal
solution can be shown to be x⋆ =− sgn(c) but is not necessarily unique.
Because a solution always exists at a hypercube vertex (§2.6.1.0.1) regardless
of the value of nonzero vector c [64], mathematicians see this geometry
as a means to relax a discrete problem (whose desired solution is integer,
confer Example 4.2.3.0.2). 2

2.4.2.6.3 Exercise. Unbounded below.
Suppose instead we minimize over the unit hypersphere in Example 2.4.2.6.2;
‖x‖ ≤ 1. What is an expression for optimal solution now? Is that program
still linear?

Now suppose we instead minimize absolute value in (111). Are the
following programs equivalent for some arbitrary real convex set C ?
(confer (433))

minimize
x∈R

|x|
subject to −1 ≤ x ≤ 1

x ∈ C
≡

minimize
x+ , x−

x+ + x−

subject to 1 ≥ x− ≥ 0

1 ≥ x+ ≥ 0

x+ − x− ∈ C

(112)

Many optimization problems of interest and some older methods of
solution require nonnegative variables. The method illustrated below splits
a variable into its nonnegative and negative parts; x= x+ − x− (extensible

2.19If vector-normal polarity is unimportant, we may instead signify a supporting
hyperplane by ∂H .
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to vectors). Under what conditions on vector a and scalar b is an optimal
solution x⋆ negative infinity?

minimize
x+∈R , x−∈R

x+ − x−

subject to x− ≥ 0

x+ ≥ 0

aT

[

x+

x−

]

= b

(113)

Minimization of the objective function2.20 entails maximization of x− .
H

2.4.2.7 PRINCIPLE 3: Separating hyperplane

The third most fundamental principle of convex geometry again follows from
the geometric Hahn-Banach theorem [182, §5.12] [16, §1] [88, §I.1.2] that
guarantees existence of a hyperplane separating two nonempty convex sets in
Rn whose relative interiors are nonintersecting. Separation intuitively means
each set belongs to a halfspace on an opposing side of the hyperplane. There
are two cases of interest:

1) If the two sets intersect only at their relative boundaries (§2.6.1.3), then
there exists a separating hyperplane ∂H containing the intersection but
containing no points relatively interior to either set. If at least one of
the two sets is open, conversely, then the existence of a separating
hyperplane implies the two sets are nonintersecting. [46, §2.5.1]

2) A strictly separating hyperplane ∂H intersects the closure of neither
set; its existence is guaranteed when the intersection of the closures is
empty and at least one set is bounded. [148, §A.4.1]

2.4.3 Angle between hyperspaces

Given halfspace descriptions, the dihedral angle between hyperplanes and
halfspaces is defined as the angle between their defining normals. Given
normals a and b respectively describing ∂Ha and ∂Hb , for example

�(∂Ha , ∂Hb)
∆
= arccos

( 〈a , b〉
‖a‖ ‖b‖

)

radians (114)

2.20The objective is the function that is argument to minimization or maximization.
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2.5 Subspace representations

There are two common forms of expression for Euclidean subspaces, both
coming from elementary linear algebra: range form and nullspace form;
a.k.a, vertex-description and halfspace-description respectively.

The fundamental vector subspaces associated with a matrix A∈Rm×n

[249, §3.1] are ordinarily related

R(AT ) ⊥ N (A) , N (AT ) ⊥ R(A) (115)

R(AT )⊕ N (A) = Rn , N (AT )⊕ R(A) = Rm (116)

and of dimension:

dimR(AT ) = dimR(A) = rankA ≤ min{m,n} (117)

with complementarity

dimN (A) = n− rankA , dimN (AT ) = m− rankA (118)

From these four fundamental subspaces, the rowspace and range identify one
form of subspace description (range form or vertex-description (§2.3.4))

R(AT )
∆
= spanAT = {ATy | y∈Rm} = {x∈Rn | ATy=x , y∈R(A)} (119)

R(A)
∆
= spanA = {Ax | x∈Rn} = {y∈Rm | Ax=y , x∈R(AT )} (120)

while the nullspaces identify the second common form (nullspace form or
halfspace-description (93))

N (A)
∆
= {x∈Rn | Ax=0} (121)

N (AT )
∆
= {y∈Rm | ATy=0} (122)

Range forms (119) (120) are realized as the respective span of the column
vectors in matrices AT and A , whereas nullspace form (121) or (122) is the
solution set to a linear equation similar to hyperplane definition (94). Yet
because matrix A generally has multiple rows, halfspace-description N (A) is
actually the intersection of as many hyperplanes through the origin; for (121),
each row of A is normal to a hyperplane while each row of AT is a normal
for (122).
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2.5.1 Subspace or affine subset . . .

Any particular vector subspace Rp can be described as N (A) the nullspace
of some matrix A or as R(B) the range of some matrix B .

More generally, we have the choice of expressing an n−m-dimensional
affine subset in Rn as the intersection of m hyperplanes, or as the offset span
of n−m vectors:

2.5.1.1 . . . as hyperplane intersection

Any affine subset A of dimension n−m can be described as an intersection
of m hyperplanes in Rn ; given fat (m≤n) full-rank (rank = min{m, n})
matrix

A
∆
=





aT
1
...
aT

m



∈ Rm×n (123)

and vector b∈Rm,

A ∆
= {x∈Rn | Ax= b} =

m
⋂

i=1

{

x | aT
ix= bi

}

(124)

a halfspace-description. (93)

For example: The intersection of any two independent2.21 hyperplanes
in R3 is a line, whereas three independent hyperplanes intersect at a
point. In R4, the intersection of two independent hyperplanes is a plane
(Example 2.5.1.2.1), whereas three hyperplanes intersect at a line, four at a
point, and so on.

For n>k

A ∩ Rk = {x∈Rn | Ax= b} ∩ Rk =
m
⋂

i=1

{

x∈Rk | ai(1 :k)Tx= bi

}

(125)

The result in §2.4.2.2 is extensible; id est, any affine subset A also has a
vertex-description:

2.21Hyperplanes are said to be independent iff the normals defining them are linearly
independent.
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2.5.1.2 . . . as span of nullspace basis

Alternatively, we may compute a basis for the nullspace of matrix A in (123)
and then equivalently express the affine subset as its range plus an offset:
Define

Z
∆
= basisN (A)∈Rn×n−m (126)

so AZ= 0. Then we have the vertex-description,

A = {x∈Rn | Ax= b} =
{

Zξ + xp | ξ∈Rn−m
}

⊆ Rn (127)

the offset span of n−m column vectors, where xp is any particular solution
to Ax= b .

2.5.1.2.1 Example. Intersecting planes in 4-space.
Two planes can intersect at a point in four-dimensional Euclidean vector
space. It is easy to visualize intersection of two planes in three dimensions;
a line can be formed. In four dimensions it is harder to visualize. So let’s
resort to the tools acquired.

Suppose an intersection of two hyperplanes in four dimensions is specified
by a fat full-rank matrix A1∈ R2×4 (m= 2, n= 4) as in (124):

A1
∆
=

{

x∈R4

∣

∣

∣

∣

[

a11 a12 a13 a14

a21 a22 a23 a24

]

x= b1

}

(128)

The nullspace of A1 is two dimensional (from Z in (127)), so A1 represents
a plane in four dimensions. Similarly define a second plane in terms of
A2∈ R2×4 :

A2
∆
=

{

x∈R4

∣

∣

∣

∣

[

a31 a32 a33 a34

a41 a42 a43 a44

]

x= b2

}

(129)

If the two planes are independent (meaning any line in one is linearly
independent of any line from the other), they will intersect at a point because

then

[

A1

A2

]

is invertible;

A1 ∩ A2 =

{

x∈R4

∣

∣

∣

∣

[

A1

A2

]

x =

[

b1
b2

]}

(130)

2
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2.5.2 Intersection of subspaces

The intersection of nullspaces associated with two matrices A∈Rm×n and
B∈Rk×n can be expressed most simply as

N (A) ∩ N (B) = N
([

A
B

])

∆
= {x∈Rn |

[

A
B

]

x = 0} (131)

the nullspace of their rowwise concatenation.

Suppose the columns of a matrix Z constitute a basis for N (A) while the
columns of a matrix W constitute a basis for N (BZ). Then [110, §12.4.2]

N (A) ∩ N (B) = R(ZW ) (132)

If each basis is orthonormal, then the columns of ZW constitute an
orthonormal basis for the intersection.

In the particular circumstance A and B are each positive semidefinite
[18, §6], or in the circumstance A and B are two linearly independent dyads
(§B.1.1), then

N (A) ∩ N (B) = N (A +B) ,







A,B∈ SM
+

or
A +B = u1v

T
1 + u2v

T
2 (l.i.)

(133)

2.6 Extreme, Exposed

2.6.0.0.1 Definition. Extreme point.
An extreme point xε of a convex set C is a point, belonging to its closure
C [30, §3.3], that is not expressible as a convex combination of points in C
distinct from xε ; id est, for xε∈ C and all x1 , x2∈ C \xε

µx1 + (1− µ)x2 6= xε , µ ∈ [0, 1] (134)

△
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In other words, xε is an extreme point of C if and only if xε is not a
point relatively interior to any line segment in C . [268, §2.10]

Borwein & Lewis offer: [41, §4.1.6] An extreme point of a convex set C is
a point xε in C whose relative complement C \xε is convex.

The set consisting of a single point C={xε} is itself an extreme point.

2.6.0.0.2 Theorem. Extreme existence. [230, §18.5.3] [20, §II.3.5]
A nonempty closed convex set containing no lines has at least one extreme
point. ⋄

2.6.0.0.3 Definition. Face, edge. [148, §A.2.3]� A face F of convex set C is a convex subset F⊆ C such that every
closed line segment x1x2 in C , having a relatively interior point
(x∈ rel intx1x2) in F , has both endpoints in F . The zero-dimensional
faces of C constitute its extreme points. The empty set and C itself
are conventional faces of C . [230, §18]� All faces F are extreme sets by definition; id est, for F⊆ C and all
x1 , x2∈ C\F

µx1 + (1− µ)x2 /∈ F , µ ∈ [0, 1] (135)� A one-dimensional face of a convex set is called an edge. △

Dimension of a face is the penultimate number of affinely independent
points (§2.4.2.3) belonging to it;

dimF = sup
ρ

dim{x2− x1 , x3− x1 , . . . , xρ− x1 | xi∈F , i=1 . . . ρ} (136)

The point of intersection in C with a strictly supporting hyperplane
identifies an extreme point, but not vice versa. The nonempty intersection of
any supporting hyperplane with C identifies a face, in general, but not vice
versa. To acquire a converse, the concept exposed face requires introduction:
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BA

D

C

Figure 21: Closed convex set in R2. Point A is exposed hence extreme;
a classical vertex. Point B is extreme but not an exposed point. Point C
is exposed and extreme; zero-dimensional exposure makes it a vertex.
Point D is neither an exposed or extreme point although it belongs to a
one-dimensional exposed face. [148, §A.2.4] [247, §3.6] Closed face AB is
exposed; a facet. The arc is not a conventional face, yet it is composed
entirely of extreme points. Union of all rotations of this entire set about
its vertical edge produces another convex set in three dimensions having
no edges; but that convex set produced by rotation about horizontal edge
containing D has edges.
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2.6.1 Exposure

2.6.1.0.1 Definition. Exposed face, exposed point, vertex, facet.
[148, §A.2.3, A.2.4]� F is an exposed face of an n-dimensional convex set C iff there is a

supporting hyperplane ∂H to C such that

F = C ∩ ∂H (137)

Only faces of dimension −1 through n−1 can be exposed by a
hyperplane.� An exposed point , the definition of vertex, is equivalent to a
zero-dimensional exposed face; the point of intersection with a strictly
supporting hyperplane.� A facet is an (n−1)-dimensional exposed face of an n-dimensional
convex set C ; in one-to-one correspondence with the
(n−1)-dimensional faces.2.22� {exposed points} = {extreme points}
{exposed faces} ⊆ {faces} △

2.6.1.1 Density of exposed points

For any closed convex set C , its exposed points constitute a dense subset of
its extreme points; [230, §18] [252] [247, §3.6, p.115] dense in the sense [282]
that closure of that subset yields the set of extreme points.

For the convex set illustrated in Figure 21, point B cannot be exposed
because it relatively bounds both the facet AB and the closed quarter circle,
each bounding the set. Since B is not relatively interior to any line segment
in the set, then B is an extreme point by definition. Point B may be regarded
as the limit of some sequence of exposed points beginning at vertex C .

2.22This coincidence occurs simply because the facet’s dimension is the same as the
dimension of the supporting hyperplane exposing it.
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2.6.1.2 Face transitivity and algebra

Faces of a convex set enjoy transitive relation. If F1 is a face (an extreme set)
of F2 which in turn is a face of F3 , then it is always true that F1 is a
face of F3 . (The parallel statement for exposed faces is false. [230, §18])
For example, any extreme point of F2 is an extreme point of F3 ; in
this example, F2 could be a face exposed by a hyperplane supporting
polyhedron F3 . [164, def.115/6, p.358] Yet it is erroneous to presume that
a face, of dimension 1 or more, consists entirely of extreme points, nor is a
face of dimension 2 or more entirely composed of edges, and so on.

For the polyhedron in R3 from Figure 12, for example, the nonempty
faces exposed by a hyperplane are the vertices, edges, and facets; there
are no more. The zero-, one-, and two-dimensional faces are in one-to-one
correspondence with the exposed faces in that example.

Define the smallest face F that contains some element G of a convex
set C :

F(C ∋G) (138)

videlicet, C ⊇ F(C ∋G) ∋ G . An affine set has no faces except itself and the
empty set. The smallest face that contains G of the intersection of convex
set C with an affine set A [175, §2.4]

F((C∩A)∋G) = F(C ∋G) ∩ A (139)

equals the intersection of A with the smallest face that contains G of set C .

2.6.1.3 Boundary

The classical definition of boundary of a set C presumes nonempty interior:

∂ C = C \ int C (14)

More suitable for the study of convex sets is the relative boundary; defined
[148, §A.2.1.2]

rel ∂ C = C \ rel int C (140)

the boundary relative to the affine hull of C , conventionally equivalent to:
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2.6.1.3.1 Definition. Conventional boundary of convex set. [148, §C.3.1]
The relative boundary ∂ C of a nonempty convex set C is the union of all the
exposed faces of C . △

Equivalence of this definition to (140) comes about because it is
conventionally presumed that any supporting hyperplane, central to the
definition of exposure, does not contain C . [230, p.100]

Any face F of convex set C (that is not C itself) belongs to rel ∂ C .
(§2.8.2.1) In the exception when C is a single point {x} , (11)

rel ∂{x} = {x}\{x} = ∅ , x∈Rn (141)

A bounded convex polyhedron (§2.12.0.0.1) having nonempty interior, for
example, in R has a boundary constructed from two points, in R2 from
at least three line segments, in R3 from convex polygons, while a convex
polychoron (a bounded polyhedron in R4 [282]) has a boundary constructed
from three-dimensional convex polyhedra.

By Definition 2.6.1.3.1, an affine set has no relative boundary.

2.7 Cones

In optimization, convex cones achieve prominence because they generalize
subspaces. Most compelling is the projection analogy: Projection on a
subspace can be ascertained from projection on its orthogonal complement
(§E), whereas projection on a closed convex cone can be determined from
projection instead on its algebraic complement (§2.13, §E.9.2.1); called the
polar cone.

2.7.0.0.1 Definition. Ray.
The one-dimensional set

{ζΓ +B | ζ ≥ 0 , Γ 6= 0} ⊂ Rn (142)

defines a halfline called a ray in nonzero direction Γ∈Rn having base
B∈Rn. When B=0, a ray is the conic hull of direction Γ ; hence a convex
cone. △

The conventional boundary of a single ray, base 0, in any dimension is
the origin because that is the union of all exposed faces not containing the
entire set. Its relative interior is the ray itself excluding the origin.
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0

X

X

(a)
0

(b)

Figure 22: (a) Two-dimensional nonconvex cone drawn truncated. Boundary
of this cone is itself a cone. Each polar half is itself a convex cone. (b) This
convex cone (drawn truncated) is a line through the origin in any dimension.
It has no relative boundary, while its relative interior comprises entire line.

0

Figure 23: This nonconvex cone in R2 is a pair of lines through the origin.
[182, §2.4]
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0

Figure 24: Boundary of a convex cone in R2 is a nonconvex cone; a pair of
rays emanating from the origin.

0

X

Figure 25: Nonconvex cone X drawn truncated in R2. Boundary is also a
cone. [182, §2.4] Cone exterior is convex cone.
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X

X

Figure 26: Truncated nonconvex cone X = {x ∈ R2 | x1 ≥ x2 , x1x2 ≥ 0}.
Boundary is also a cone. [182, §2.4] Cartesian axes drawn for reference. Each
half (about the origin) is itself a convex cone.

2.7.1 Cone defined

A set X is called, simply, cone if and only if

Γ ∈ X ⇒ ζΓ ∈ X for all ζ ≥ 0 (143)

where X denotes closure of cone X . An example of such a cone is the
union of two opposing quadrants; e.g., X =

{

x∈R2 | x1x2≥ 0
}

which is not
convex. [280, §2.5] Similar examples are shown in Figure 22 and Figure 26.

All cones can be defined by an aggregate of rays emanating exclusively
from the origin (but not all cones are convex). Hence all closed cones contain
the origin and are unbounded, excepting the simplest cone {0}. The empty
set ∅ is not a cone, but its conic hull is;

cone ∅ ∆
= {0} (84)
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2.7.2 Convex cone

We call the set K⊆RM a convex cone iff

Γ1 ,Γ2 ∈ K ⇒ ζΓ1 + ξΓ2 ∈ K for all ζ , ξ ≥ 0 (144)

Apparent from this definition, ζΓ1 ∈ K and ξΓ2 ∈ K for all ζ , ξ≥ 0. The
set K is convex since, for any particular ζ , ξ ≥ 0

µ ζΓ1 + (1− µ) ξΓ2 ∈ K ∀µ ∈ [0, 1] (145)

because µ ζ , (1− µ) ξ ≥ 0.
Obviously,

{X} ⊃ {K} (146)

the set of all convex cones is a proper subset of all cones. The set of
convex cones is a narrower but more familiar class of cone, any member
of which can be equivalently described as the intersection of a possibly
(but not necessarily) infinite number of hyperplanes (through the origin)
and halfspaces whose bounding hyperplanes pass through the origin; a
halfspace-description (§2.4). The interior of a convex cone is possibly empty.

Figure 27: Not a cone; ironically, the three-dimensional flared horn (with or
without its interior) resembling the mathematical symbol ≻ denoting cone
membership and partial order.
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Familiar examples of convex cones include an unbounded ice-cream cone
united with its interior (a.k.a: second-order cone, quadratic cone, circular
cone (§2.9.2.5.1), Lorentz cone (confer Figure 34) [46, exmps.2.3 & 2.25]),

Kℓ =

{[

x
t

]

∈ Rn× R | ‖x‖ℓ ≤ t

}

, ℓ=2 (147)

and any polyhedral cone (§2.12.1.0.1); e.g., any orthant generated by
Cartesian half-axes (§2.1.3). Esoteric examples of convex cones include
the point at the origin, any line through the origin, any ray having the
origin as base such as the nonnegative real line R+ in subspace R , any
halfspace partially bounded by a hyperplane through the origin, the positive
semidefinite cone SM

+ (160), the cone of Euclidean distance matrices EDMN

(711) (§6), any subspace, and Euclidean vector space Rn.

2.7.2.1 cone invariance

(confer Figures: 15, 22, 23, 24, 25, 26, 27, 29, 31, 38, 41, 44, 46, 47,
48, 49, 50, 51, 52, 95, 108, 130) More Euclidean bodies are cones,
it seems, than are not. This class of convex body, the convex cone, is
invariant to nonnegative scaling, vector summation, affine and inverse affine
transformation, Cartesian product, and intersection, [230, p.22] but is not
invariant to projection; e.g., Figure 33.

2.7.2.1.1 Theorem. Cone intersection. [230, §2, §19]
The intersection of an arbitrary collection of convex cones is a convex cone.
Intersection of an arbitrary collection of closed convex cones is a closed
convex cone. [189, §2.3] Intersection of a finite number of polyhedral cones
(§2.12.1.0.1, Figure 38 p.123) is polyhedral. ⋄

The property pointedness is associated with a convex cone.

2.7.2.1.2 Definition. Pointed convex cone. (confer §2.12.2.2)
A convex cone K is pointed iff it contains no line. Equivalently, K is not
pointed iff there exists any nonzero direction Γ ∈ K such that −Γ ∈ K .
[46, §2.4.1] If the origin is an extreme point of K or, equivalently, if

K ∩ −K = {0} (148)

then K is pointed, and vice versa. [247, §2.10] △
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Thus the simplest and only bounded [280, p.75] convex cone
K= {0} ⊆ Rn is pointed by convention, but has empty interior. Its relative
boundary is the empty set (141) while its relative interior is the point
itself (11). The pointed convex cone that is a halfline emanating from the
origin in Rn has the origin as relative boundary while its relative interior is
the halfline itself, excluding the origin.

2.7.2.1.3 Theorem. Pointed cones. [41, §3.3.15, exer.20]
A closed convex cone K⊂Rn is pointed if and only if there exists a normal
α such that the set

C ∆
= {x∈K | 〈x , α〉=1} (149)

is closed, bounded, and K= cone C . Equivalently, if and only if there exists
a vector β and positive scalar ǫ such that

〈x , β〉 ≥ ǫ‖x‖ ∀x∈K (150)

is K pointed. ⋄

If closed convex cone K is not pointed, then it has no extreme point. Yet
a pointed closed convex cone has only one extreme point; it resides at the
origin. [30, §3.3]

From the cone intersection theorem it follows that an intersection of
convex cones is pointed if at least one of the cones is.

2.7.2.2 Pointed closed convex cone and partial order

A pointed closed convex cone K induces partial order [282] on Rn or Rm×n,
[18, §1] [242, p.7] respectively defined by vector or matrix inequality;

x �
K
z ⇔ z − x ∈ K (151)

x ≺
K
z ⇔ z − x ∈ rel intK (152)

Neither x or z is necessarily a member of K for these relations to hold. Only
when K is the nonnegative orthant do these inequalities reduce to ordinary
entrywise comparison. (§2.13.4.2.3) Inclusive of that special case, we ascribe
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C1

C2

x+K

y −K

x

y

(b)

(a)

Figure 28: (a) Point x is the minimum element of set C1 with respect to
cone K because cone translated to x∈ C1 contains set. (b) Point y is a
minimal element of set C2 with respect to cone K because negative cone
translated to y∈ C2 contains only y . (Cones drawn truncated in R2.)
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nomenclature generalized inequality to comparison with respect to a pointed
closed convex cone.

The visceral mechanics of actually comparing points when the cone K
is not an orthant is well illustrated in the example of Figure 49 which
relies on the equivalent membership-interpretation in definition (151) or
(152). Comparable points and the minimum element of some vector- or
matrix-valued partially ordered set are thus well defined, so decreasing
sequences with respect to cone K can therefore converge in this sense: Point
x ∈ C is the (unique) minimum element of set C with respect to cone K iff
for each and every z ∈ C we have x� z ; equivalently, iff C ⊆ x+K .2.23

Further properties of partial ordering with respect to pointed closed
convex cone K are:

reflexivity (x�x)

antisymmetry (x�z , z�x⇒ x=z)

transitivity (x� y , y�z ⇒ x�z), (x� y , y≺z ⇒ x≺z)

homogeneity (x� y , λ≥0⇒ λx�λz), (x≺ y , λ>0⇒ λx≺λz)

additivity (x�z , u�v ⇒ x+u� z+ v), (x≺z , u�v ⇒ x+u≺ z+ v)

A closely related concept, minimal element, is useful for partially ordered
sets having no minimum element: Point x ∈ C is a minimal element of set C
with respect to K if and only if (x−K) ∩ C = x . (Figure 28) No uniqueness
is implied here, although implicit is the assumption: dimK ≥ dim aff C .

2.7.2.2.1 Definition. Proper cone: [46, §2.4.1] a cone that is� pointed� closed� convex� has nonempty interior (is full-dimensional). △

2.23Borwein & Lewis [41, §3.3, exer.21] ignore possibility of equality to x+K in this
condition, and require a second condition: . . . and C ⊂ y +K for some y in Rn implies

x ∈ y +K .
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A proper cone remains proper under injective linear transformation.
[62, §5.1]

Examples of proper cones are the positive semidefinite cone SM
+ in the

ambient space of symmetric matrices (§2.9), the nonnegative real line R+ in
vector space R , or any orthant in Rn.

2.8 Cone boundary

Every hyperplane supporting a convex cone contains the origin. [148, §A.4.2]
Because any supporting hyperplane to a convex cone must therefore itself be
a cone, then from the cone intersection theorem it follows:

2.8.0.0.1 Lemma. Cone faces. [20, §II.8]
Each nonempty exposed face of a convex cone is a convex cone. ⋄

2.8.0.0.2 Theorem. Proper-cone boundary.
Suppose a nonzero point Γ lies on the boundary ∂K of proper cone K in Rn.
Then it follows that the ray {ζΓ | ζ ≥ 0} also belongs to ∂K . ⋄

Proof. By virtue of its propriety, a proper cone guarantees the existence
of a strictly supporting hyperplane at the origin. [230, Cor.11.7.3]2.24 Hence
the origin belongs to the boundary of K because it is the zero-dimensional
exposed face. The origin belongs to the ray through Γ , and the ray belongs
to K by definition (143). By the cone faces lemma, each and every nonempty
exposed face must include the origin. Hence the closed line segment 0Γ must
lie in an exposed face of K because both endpoints do by Definition 2.6.1.3.1.
That means there exists a supporting hyperplane ∂H to K containing 0Γ .
So the ray through Γ belongs both to K and to ∂H . ∂H must therefore
expose a face of K that contains the ray; id est,

{ζΓ | ζ ≥ 0} ⊆ K ∩ ∂H ⊂ ∂K (153)

�

2.24Rockafellar’s corollary yields a supporting hyperplane at the origin to any convex cone
in Rn not equal to Rn.
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Proper cone {0} in R0 has no boundary (140) because (11)

rel int{0} = {0} (154)

The boundary of any proper cone in R is the origin.
The boundary of any convex cone whose dimension exceeds 1 can be

constructed entirely from an aggregate of rays emanating exclusively from
the origin.

2.8.1 Extreme direction

The property extreme direction arises naturally in connection with the
pointed closed convex cone K⊂Rn, being analogous to extreme point.
[230, §18, p.162]2.25 An extreme direction Γε of pointed K is a vector
corresponding to an edge that is a ray emanating from the origin.2.26

Nonzero direction Γε in pointed K is extreme if and only if

ζ1 Γ1+ ζ2 Γ2 6= Γε ∀ ζ1 , ζ2 ≥ 0 , ∀ Γ1 ,Γ2 ∈ K\{ζΓε∈K | ζ≥0} (155)

In words, an extreme direction in a pointed closed convex cone is the
direction of a ray, called an extreme ray, that cannot be expressed as a conic
combination of any ray directions in the cone distinct from it.

An extreme ray is a one-dimensional face of K . By (85), extreme
direction Γε is not a point relatively interior to any line segment in
K\{ζΓε∈K | ζ≥0}. Thus, by analogy, the corresponding extreme ray
{ζΓε∈K | ζ≥0} is not a ray relatively interior to any plane segment 2.27

in K .

2.8.1.1 extreme distinction, uniqueness

An extreme direction is unique, but its vector representation Γε is not
because any positive scaling of it produces another vector in the same
(extreme) direction. Hence an extreme direction is unique to within a positive
scaling. When we say extreme directions are distinct, we are referring to
distinctness of rays containing them. Nonzero vectors of various length in

2.25We diverge from Rockafellar’s extreme direction: “extreme point at infinity”.
2.26An edge (§2.6.0.0.3) of a convex cone is not necessarily a ray. A convex cone may

contain an edge that is a line; e.g., a wedge-shaped polyhedral cone (K∗ in Figure 29).
2.27A planar fragment; in this context, a planar cone.
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K

∂K∗

Figure 29: K is a pointed polyhedral cone having empty interior in R3

(drawn truncated and in a plane parallel to the floor upon which you stand).
K∗ is a wedge whose truncated boundary is illustrated (drawn perpendicular
to the floor). In this particular instance, K ⊂ intK∗ (excepting the origin).
Cartesian coordinate axes drawn for reference.
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the same extreme direction are therefore interpreted to be identical extreme
directions.2.28

The extreme directions of the polyhedral cone in Figure 15 (page 60), for
example, correspond to its three edges.

The extreme directions of the positive semidefinite cone (§2.9) comprise
the infinite set of all symmetric rank-one matrices. [18, §6] [145, §III] It
is sometimes prudent to instead consider the less infinite but complete
normalized set, for M> 0 (confer (193))

{zzT∈ SM | ‖z‖= 1} (156)

The positive semidefinite cone in one dimension M=1, S+ the nonnegative
real line, has one extreme direction belonging to its relative interior; an
idiosyncrasy of dimension 1.

Pointed closed convex cone K = {0} has no extreme direction because
extreme directions are nonzero by definition.� If closed convex cone K is not pointed, then it has no extreme directions

and no vertex. [18, §1]

Conversely, pointed closed convex cone K is equivalent to the convex hull
of its vertex and all its extreme directions. [230, §18, p.167] That is the
practical utility of extreme direction; to facilitate construction of polyhedral
sets, apparent from the extremes theorem:

2.8.1.1.1 Theorem. (Klee) Extremes. [247, §3.6] [230, §18, p.166]
(confer §2.3.2, §2.12.2.0.1) Any closed convex set containing no lines can
be expressed as the convex hull of its extreme points and extreme rays. ⋄

It follows that any element of a convex set containing no lines may
be expressed as a linear combination of its extreme elements; e.g.,
Example 2.9.2.4.1.

2.8.1.2 Generators

In the narrowest sense, generators for a convex set comprise any collection
of points and directions whose convex hull constructs the set.

2.28Like vectors, an extreme direction can be identified by the Cartesian point at the
vector’s head with respect to the origin.
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When the extremes theorem applies, the extreme points and directions
are called generators of a convex set. An arbitrary collection of generators
for a convex set includes its extreme elements as a subset; the set of extreme
elements of a convex set is a minimal set of generators for that convex set.
Any polyhedral set has a minimal set of generators whose cardinality is finite.

When the convex set under scrutiny is a closed convex cone, conic
combination of generators during construction is implicit as shown in
Example 2.8.1.2.1 and Example 2.10.2.0.1. So, a vertex at the origin (if it
exists) becomes benign.

We can, of course, generate affine sets by taking the affine hull of any
collection of points and directions. We broaden, thereby, the meaning of
generator to be inclusive of all kinds of hulls.

Any hull of generators is loosely called a vertex-description. (§2.3.4)
Hulls encompass subspaces, so any basis constitutes generators for a
vertex-description; span basisR(A).

2.8.1.2.1 Example. Application of extremes theorem.
Given an extreme point at the origin and N extreme rays, denoting the ith

extreme direction by Γi∈Rn, then the convex hull is (75)

P =
{

[0 Γ1 Γ2 · · · ΓN ] a ζ | aT1 = 1, a � 0, ζ ≥ 0
}

=
{

[Γ1 Γ2 · · · ΓN ] a ζ | aT1 ≤ 1, a � 0, ζ ≥ 0
}

=
{

[Γ1 Γ2 · · · ΓN ] b | b � 0
}

⊂ Rn
(157)

a closed convex set that is simply a conic hull like (83). 2

2.8.2 Exposed direction

2.8.2.0.1 Definition. Exposed point & direction of pointed convex cone.
[230, §18] (confer §2.6.1.0.1)� When a convex cone has a vertex, an exposed point, it resides at the

origin; there can be only one.� In the closure of a pointed convex cone, an exposed direction is the
direction of a one-dimensional exposed face that is a ray emanating
from the origin.� {exposed directions} ⊆ {extreme directions} △
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For a proper cone in vector space Rn with n≥ 2, we can say more:

{exposed directions} = {extreme directions} (158)

It follows from Lemma 2.8.0.0.1 for any pointed closed convex cone, there
is one-to-one correspondence of one-dimensional exposed faces with exposed
directions; id est, there is no one-dimensional exposed face that is not a ray
base 0.

The pointed closed convex cone EDM2, for example, is a ray in
isomorphic subspace R whose relative boundary (§2.6.1.3.1) is the origin.
The conventionally exposed directions of EDM2 constitute the empty set
∅ ⊂ {extreme direction}. This cone has one extreme direction belonging to
its relative interior; an idiosyncrasy of dimension 1.

2.8.2.1 Connection between boundary and extremes

2.8.2.1.1 Theorem. Exposed. [230, §18.7] (confer §2.8.1.1.1)
Any closed convex set C containing no lines (and whose dimension is at
least 2) can be expressed as the closure of the convex hull of its exposed
points and exposed rays. ⋄

From Theorem 2.8.1.1.1,

rel ∂ C = C \ rel int C (140)

= conv{exposed points and exposed rays} \ rel int C
= conv{extreme points and extreme rays} \ rel int C















(159)

Thus each and every extreme point of a convex set (that is not a point)
resides on its relative boundary, while each and every extreme direction of a
convex set (that is not a halfline and contains no line) resides on its relative
boundary because extreme points and directions of such respective sets do
not belong to the relative interior by definition.

The relationship between extreme sets and the relative boundary actually
goes deeper: Any face F of convex set C (that is not C itself) belongs to
rel ∂ C , so dimF< dim C . [230, §18.1.3]

2.8.2.2 Converse caveat

It is inconsequent to presume that each and every extreme point and direction
is necessarily exposed, as might be erroneously inferred from the conventional
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D

C

B

A

0

Figure 30: Properties of extreme points carry over to extreme directions.
[230, §18] Four rays (drawn truncated) on boundary of conic hull of
two-dimensional closed convex set from Figure 21 lifted to R3. Ray
through point A is exposed hence extreme. Extreme direction B on cone
boundary is not an exposed direction, although it belongs to the exposed
face cone{A ,B}. Extreme ray through C is exposed. Point D is neither
an exposed or extreme direction although it belongs to a two-dimensional
exposed face of the conic hull.
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boundary definition (§2.6.1.3.1); although it can correctly be inferred: each
and every extreme point and direction belongs to some exposed face.

Arbitrary points residing on the relative boundary of a convex set are not
necessarily exposed or extreme points. Similarly, the direction of an arbitrary
ray, base 0, on the boundary of a convex cone is not necessarily an exposed
or extreme direction. For the polyhedral cone illustrated in Figure 15, for
example, there are three two-dimensional exposed faces constituting the
entire boundary, each composed of an infinity of rays. Yet there are only
three exposed directions.

Neither is an extreme direction on the boundary of a pointed convex cone
necessarily an exposed direction. Lift the two-dimensional set in Figure 21,
for example, into three dimensions such that no two points in the set are
collinear with the origin. Then its conic hull can have an extreme direction
B on the boundary that is not an exposed direction, illustrated in Figure 30.

2.9 Positive semidefinite (PSD) cone

The cone of positive semidefinite matrices studied in this section
is arguably the most important of all non-polyhedral cones whose
facial structure we completely understand.

−Alexander Barvinok [20, p.78]

2.9.0.0.1 Definition. Positive semidefinite cone.
The set of all symmetric positive semidefinite matrices of particular
dimension M is called the positive semidefinite cone:

SM
+

∆
=
{

A ∈ SM | A � 0
}

=
{

A ∈ SM | yTAy≥ 0 ∀ ‖y‖= 1
}

=
⋂

‖y‖=1

{

A ∈ SM | 〈yyT , A〉 ≥ 0
}

(160)

formed by the intersection of an infinite number of halfspaces (§2.4.1.1) in
vectorized variable A ,2.29 each halfspace having partial boundary containing
the origin in isomorphic RM(M+1)/2. It is a unique immutable proper cone
in the ambient space of symmetric matrices SM .

2.29 infinite in number when M>1. Because yTA y=yTAT y , matrix A is almost always
assumed symmetric. (§A.2.1)
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The positive definite (full-rank) matrices comprise the cone interior,2.30

int SM
+ =

{

A ∈ SM | A ≻ 0
}

=
{

A ∈ SM | yTAy> 0 ∀ ‖y‖= 1
}

= {A ∈ SM
+ | rankA = M}

(161)

while all singular positive semidefinite matrices (having at least one 0
eigenvalue) reside on the cone boundary (Figure 31); (§A.7.5)

∂SM
+ =

{

A ∈ SM | min{λ(A)i , i=1 . . . M} = 0
}

=
{

A ∈ SM
+ | 〈yyT , A〉=0 for some ‖y‖= 1

}

=
{

A ∈ SM
+ | rankA < M

}

(162)

where λ(A)∈RM holds the eigenvalues of A . △

The only symmetric positive semidefinite matrix in SM
+ having M

0-eigenvalues resides at the origin. (§A.7.3.0.1)

2.9.0.1 Membership

Observe the notation A� 0 ; meaning,2.31 matrix A is symmetric
and belongs to the positive semidefinite cone in the subspace of
symmetric matrices, whereas A≻ 0 denotes membership to that cone’s
interior. (§2.13.2) This notation further implies that coordinates [sic] for
orthogonal expansion of a positive (semi)definite matrix must be its
(nonnegative) positive eigenvalues (§2.13.7.1.1, §E.6.4.1.1) when expanded
in its eigenmatrices (§A.5.1).

Generalizing comparison on the real line, the notation A�B denotes
comparison with respect to the positive semidefinite cone; (§A.3.1) id est,
A�B ⇔ A−B ∈ SM

+ but neither matrix A or B necessarily belongs to
the positive semidefinite cone. Yet, (1286) A�B , B� 0 ⇒ A�0 ; id est,
A ∈ SM

+ .

2.30The remaining inequalities in (160) also become strict for membership to the cone
interior.
2.31The symbol ≥ is reserved for scalar comparison on the real line R with respect to the
nonnegative real line R+ as in aTy ≥ b , while a � b denotes comparison of vectors on
RM with respect to the nonnegative orthant RM

+ (§2.3.1.1).
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α

√
2β

γ

svec ∂S2

+

[

α β
β γ

]

Minimal set of generators are the extreme directions: svec{yyT | y∈RM}

Figure 31: Truncated boundary of PSD cone in S2 plotted in isometrically
isomorphic R3 via svec (47); courtesy, Alexandre W. d’Aspremont. (Plotted
is 0-contour of smallest eigenvalue (162). Lightest shading is closest.
Darkest shading is furthest and inside shell.) Entire boundary can be
constructed from an aggregate of rays (§2.7.0.0.1) emanating exclusively
from the origin,

{

κ2[ z2
1

√
2z1z2 z2

2 ]T | κ∈R
}

. In this dimension the cone
is circular (§2.9.2.5) while each and every ray on boundary corresponds to
an extreme direction, but such is not the case in any higher dimension
(confer Figure 15). PSD cone geometry is not as simple in higher dimensions
[20, §II.12], although for real matrices it is self-dual (321) in ambient space
of symmetric matrices. [145, §II] PSD cone has no two-dimensional faces in
any dimension, and its only extreme point resides at the origin.
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2.9.0.1.1 Example. Equality constraints in semidefinite program (546).
Employing properties of partial ordering (§2.7.2.2) for the pointed closed
convex positive semidefinite cone, it is easy to show, given A+ S=C

S � 0 ⇔ A � C (163)

2

2.9.1 Positive semidefinite cone is convex

The set of all positive semidefinite matrices forms a convex cone in the
ambient space of symmetric matrices because any pair satisfies definition
(144); [150, §7.1] videlicet, for all ζ1 , ζ2 ≥ 0 and each and every A1 , A2 ∈ SM

ζ1A1 + ζ2A2 � 0 ⇐ A1 � 0 , A2 � 0 (164)

a fact easily verified by the definitive test for positive semidefiniteness of a
symmetric matrix (§A):

A � 0 ⇔ xTAx ≥ 0 for each and every ‖x‖= 1 (165)

id est, for A1 , A2 � 0 and each and every ζ1 , ζ2 ≥ 0

ζ1 x
TA1x+ ζ2 x

TA2x ≥ 0 for each and every normalized x ∈ RM (166)

The convex cone SM
+ is more easily visualized in the isomorphic vector

space RM(M+1)/2 whose dimension is the number of free variables in a
symmetric M×M matrix. When M= 2 the PSD cone is semi-infinite in
expanse in R3, having boundary illustrated in Figure 31. When M= 3 the
PSD cone is six-dimensional, and so on.

2.9.1.0.1 Example. Sets from maps of positive semidefinite cone.
The set

C = {X∈ Sn× x∈Rn | X� xxT} (167)

is convex because it has Schur-form; (§A.4)

X − xxT � 0 ⇔ f(X , x)
∆
=

[

X x
xT 1

]

� 0 (168)
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X

x

C

Figure 32: Convex set C={X∈ S× x∈R | X� xxT} drawn truncated.

e.g., Figure 32. Set C is the inverse image (§2.1.9.0.1) of Sn+1
+ under the

affine mapping f . The set {X∈ Sn× x∈Rn | X� xxT} is not convex, in
contrast, having no Schur-form. Yet for fixed x= xp , the set

{X∈ Sn | X� xpx
T
p } (169)

is simply the negative semidefinite cone shifted to xpx
T
p . 2

2.9.1.0.2 Example. Inverse image of positive semidefinite cone.
Now consider finding the set of all matrices X∈ SN satisfying

AX +B � 0 (170)

given A ,B∈ SN . Define the set

X ∆
= {X | AX +B � 0} ⊆ SN (171)

which is the inverse image of the positive semidefinite cone under affine

transformation g(X)
∆
=AX+B . Set X must therefore be convex by

Theorem 2.1.9.0.1.
Yet we would like a less amorphous characterization of this set, so instead

we consider its vectorization (30) which is easier to visualize:

vec g(X) = vec(AX) + vecB = (I ⊗A) vecX + vecB (172)
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where
I ⊗A ∆

= QΛQT ∈ SN 2

(173)

is a block-diagonal matrix formed by Kronecker product (§A.1 no.21,§D.1.2.1). Assign

x
∆
= vecX ∈ RN 2

b
∆
= vecB ∈ RN 2 (174)

then make the equivalent problem: Find

vecX = {x∈RN 2 | (I ⊗A)x+ b ∈ K} (175)

where
K ∆

= vec SN
+ (176)

is a proper cone isometrically isomorphic with the positive semidefinite cone
in the subspace of symmetric matrices; the vectorization of every element of
SN

+ . Utilizing the diagonalization (173),

vecX = {x | ΛQTx ∈ QT(K − b)}
= {x | ΦQTx ∈ Λ†QT(K − b)} ⊆ RN 2 (177)

where † denotes matrix pseudoinverse (§E) and

Φ
∆
= Λ†Λ (178)

is a diagonal projection matrix whose entries are either 1 or 0 (§E.3). We
have the complementary sum

ΦQTx+ (I − Φ)QTx = QTx (179)

So, adding (I−Φ)QTx to both sides of the membership within (177) admits

vecX = {x∈RN 2 | QTx ∈ Λ†QT(K − b) + (I − Φ)QTx}
= {x | QTx ∈ Φ

(

Λ†QT(K − b)
)

⊕ (I − Φ)RN 2}
= {x ∈ QΛ†QT(K − b)⊕ Q(I − Φ)RN 2}
= (I ⊗A)†(K − b) ⊕ N (I ⊗A)

(180)

where we used the facts: linear function QTx in x on RN 2

is a bijection,
and ΦΛ†= Λ† .

vecX = (I ⊗A)† vec(SN
+ −B) ⊕ N (I ⊗A) (181)



2.9. POSITIVE SEMIDEFINITE (PSD) CONE 103

In words, set vecX is the vector sum of the translated PSD cone
(linearly mapped onto the rowspace of I ⊗A (§E)) and the nullspace of
I ⊗A (synthesis of fact from §A.6.3 and §A.7.3.0.1). Should I ⊗A have no
nullspace, then vecX =(I ⊗A)−1 vec(SN

+ −B) which is the expected result.
2

2.9.2 Positive semidefinite cone boundary

For any symmetric positive semidefinite matrix A of rank ρ , there must
exist a rank ρ matrix Y such that A be expressible as an outer product
in Y ; [249, §6.3]

A = Y Y T ∈ SM
+ , rankA=ρ , Y ∈ RM×ρ (182)

Then the boundary of the positive semidefinite cone may be expressed

∂SM
+ =

{

A ∈ SM
+ | rankA<M

}

=
{

Y Y T | Y ∈ RM×M−1
}

(183)

Because the boundary of any convex body is obtained with closure of its
relative interior (§2.1.7, §2.6.1.3), from (161) we must also have

SM
+ =

{

A ∈ SM
+ | rankA=M

}

=
{

Y Y T | Y ∈ RM×M , rankY =M
}

=
{

Y Y T | Y ∈ RM×M
}

(184)

2.9.2.1 rank ρ subset of the positive semidefinite cone

For the same reason (closure), this applies more generally; for 0≤ρ≤M
{

A ∈ SM
+ | rankA= ρ

}

=
{

A ∈ SM
+ | rankA≤ ρ

}

(185)

For easy reference, we give such generally nonconvex sets a name:
rank ρ subset of a positive semidefinite cone. For ρ <M this subset,
nonconvex for M> 1, resides on the positive semidefinite cone boundary.

2.9.2.1.1 Exercise. Closure and rank ρ subset.
Prove equality in (185). H

For example,

∂SM
+ =

{

A ∈ SM
+ | rankA=M− 1

}

=
{

A ∈ SM
+ | rankA≤M− 1

}

(186)
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(a) (b)

√
2β

α

[

α β
β γ

]

svec S2

+

Figure 33: (a) Projection of the PSD cone S2

+ , truncated above γ=1, on
αβ-plane in isometrically isomorphic R3. View is from above with respect to
Figure 31. (b) Truncated above γ=2. From these plots we may infer, for
example, the line

{

[ 0 1/
√

2 γ ]T | γ∈R
}

intercepts the PSD cone at some
large value of γ ; in fact, γ=∞ .
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In S2, each and every ray on the boundary of the positive semidefinite cone
in isomorphic R3 corresponds to a symmetric rank-1 matrix (Figure 31), but
that does not hold in any higher dimension.

2.9.2.2 Subspace tangent to open rank-ρ subset

When the positive semidefinite cone subset in (185) is left unclosed as in

M(ρ)
∆
=
{

A ∈ SM
+ | rankA= ρ

}

(187)

then we can specify a subspace tangent to the positive semidefinite cone
at a particular member of manifold M(ρ). Specifically, the subspace RM
tangent to manifold M(ρ) at B∈M(ρ) [135, §5, prop.1.1]

RM(B)
∆
= {XB +BXT | X∈ RM×M} ⊆ SM (188)

has dimension

dim svecRM(B) = ρ

(

M − ρ− 1

2

)

= ρ(M − ρ) +
ρ(ρ+ 1)

2
(189)

Tangent subspace RM contains no member of the positive semidefinite cone
SM

+ whose rank exceeds ρ .
A good example of such a tangent subspace is given in §E.7.2.0.2 by

(1768); RM(11T ) = SM⊥
c , orthogonal complement to the geometric center

subspace. (Figure 105, p.424)

2.9.2.3 Faces of PSD cone, their dimension versus rank

Each and every face of the positive semidefinite cone, having dimension less
than that of the cone, is exposed. [179, §6] [158, §2.3.4] Because each and
every face of the positive semidefinite cone contains the origin (§2.8.0.0.1),
each face belongs to a subspace of the same dimension.

Given positive semidefinite matrix A∈ SM
+ , define F

(

SM
+ ∋A

)

(138) as

the smallest face that contains A of the positive semidefinite cone SM
+ . Then

A , having ordered diagonalization QΛQT (§A.5.2), is relatively interior to
[20, §II.12] [77, §31.5.3] [175, §2.4]

F
(

SM
+ ∋A

)

= {X∈ SM
+ | N (X) ⊇ N (A)}

= {X∈ SM
+ | 〈Q(I − ΛΛ†)QT , X 〉 = 0}

≃ Srank A
+

(190)
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which is isomorphic with the convex cone Srank A
+ . Thus dimension of the

smallest face containing given matrix A is

dimF
(

SM
+ ∋A

)

= rank(A)(rank(A) + 1)/2 (191)

in isomorphic RM(M+1)/2, and each and every face of SM
+ is isomorphic with

a positive semidefinite cone having dimension the same as the face. Observe:
not all dimensions are represented, and the only zero-dimensional face is the
origin. The positive semidefinite cone has no facets, for example.

2.9.2.3.1 Table: Rank k versus dimension of S3

+ faces

k dimF(S3

+∋ rank-k matrix)
0 0

boundary 1 1
2 3

interior 3 6

For the positive semidefinite cone S2

+ in isometrically isomorphic R3

depicted in Figure 31, for example, rank-2 matrices belong to the interior of
the face having dimension 3 (the entire closed cone), while rank-1 matrices
belong to the relative interior of a face having dimension 1 (the boundary
constitutes all the one-dimensional faces, in this dimension, which are rays
emanating from the origin), and the only rank-0 matrix is the point at the
origin (the zero-dimensional face).

Any simultaneously diagonalizable positive semidefinite rank-k matrices
belong to the same face (190). That observation leads to the following
hyperplane characterization of PSD cone faces: Any rank-k<M positive
semidefinite matrix A belongs to a face, of the positive semidefinite cone,
described by an intersection with a hyperplane: for A=QΛQT and 0≤k<M

F
(

SM
+ ∋A � rank(A)= k

)

= {X∈ SM
+ | 〈Q(I − ΛΛ†)QT , X 〉 = 0}

=

{

X∈ SM
+

∣

∣

∣

∣

〈

Q

(

I −
[

I∈ Sk 0
0T 0

])

QT , X

〉

= 0

}

= SM
+ ∩ ∂H+ (192)

Faces are doubly indexed: continuously indexed by orthogonal matrix Q ,
and discretely indexed by rank k . Each and every orthogonal matrix Q
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makes projectors Q(: , k+1:M)Q(: , k+1:M)T indexed by k , in other words,
each projector describing a normal svec

(

Q(: , k+1:M)Q(: , k+1:M)T
)

to a
supporting hyperplane ∂H+ (containing the origin) exposing (§2.11) a face
of the positive semidefinite cone containing only rank-k matrices.

2.9.2.4 Extreme directions of positive semidefinite cone

Because the positive semidefinite cone is pointed (§2.7.2.1.2), there is a
one-to-one correspondence of one-dimensional faces with extreme directions
in any dimension M ; id est, because of the cone faces lemma (§2.8.0.0.1)
and the direct correspondence of exposed faces to faces of SM

+ , it follows
there is no one-dimensional face of the positive semidefinite cone that is not
a ray emanating from the origin.

Symmetric dyads constitute the set of all extreme directions: For M> 0

{yyT∈ SM | y∈RM} ⊂ ∂SM
+ (193)

this superset (confer (156)) of extreme directions for the positive semidefinite
cone is, generally, a subset of the boundary. For two-dimensional matrices,
(Figure 31)

{yyT∈ S2 | y∈R2} = ∂S2

+ (194)

while for one-dimensional matrices, in exception, (§2.7)

{yyT∈ S | y 6=0} = int S+ (195)

Each and every extreme direction yyT makes the same angle with the
identity matrix in isomorphic RM(M+1)/2, dependent only on dimension;
videlicet,2.32

�(yyT , I ) = arccos
〈yyT , I 〉
‖yyT‖F ‖I‖F

= arccos

(

1√
M

)

∀ y ∈ RM (196)

2.32Analogy with respect to the EDM cone is considered by Hayden & Wells et alii

[134, p.162] where it is found: angle is not constant. The extreme directions of the EDM
cone can be found in §6.5.3.1 while the cone axis is −E=11T − I (902).
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2.9.2.4.1 Example. Positive semidefinite matrix from extreme directions.
Diagonalizability (§A.5) of symmetric matrices yields the following results:

Any symmetric positive semidefinite matrix (1253) can be written in the
form

A =
∑

i

λi ziz
T
i = ÂÂT =

∑

i

âi â
T
i � 0 , λ � 0 (197)

a conic combination of linearly independent extreme directions (âi â
T
i or ziz

T
i

where ‖zi‖=1), where λ is a vector of eigenvalues.
If we limit consideration to all symmetric positive semidefinite matrices

bounded such that trA=1

C ∆
= {A � 0 | trA= 1} (198)

then any matrix A from that set may be expressed as a convex combination
of linearly independent extreme directions;

A =
∑

i

λi ziz
T
i ∈ C , 1Tλ = 1 , λ � 0 (199)

Implications are:

1. set C is convex, (it is an intersection of PSD cone with hyperplane)

2. because the set of eigenvalues corresponding to a given square matrix A
is unique, no single eigenvalue can exceed 1 ; id est, I �A .

Set C is an instance of Fantope (80). 2

2.9.2.5 Positive semidefinite cone is generally not circular

Extreme angle equation (196) suggests that the positive semidefinite cone
might be invariant to rotation about its axis of revolution; id est, a circular
cone. We investigate this now:

2.9.2.5.1 Definition. Circular cone:2.33

a pointed closed convex cone having hyperspherical sections orthogonal to
its axis of revolution about which the cone is invariant to rotation. △

2.33A circular cone is assumed convex throughout, although not so by other authors. We
also assume a right circular cone.
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0

R

Figure 34: This circular cone continues upward infinitely. Axis of revolution
is illustrated as vertical line segment through origin. R is the radius, the
distance measured from any extreme direction to axis of revolution. Were
this a Lorentz cone, any plane slice containing the axis of revolution would
make a right angle.
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A conic section is the intersection of a cone with any hyperplane. In three
dimensions, an intersecting plane perpendicular to a circular cone’s axis of
revolution produces a section bounded by a circle. (Figure 34) A prominent
example of a circular cone in convex analysis is the Lorentz cone (147). We
also find that the positive semidefinite cone and cone of Euclidean distance
matrices are circular cones, but only in low dimension.

The positive semidefinite cone has axis of revolution that is the ray
(base 0) through the identity matrix I . Consider the set of normalized
extreme directions of the positive semidefinite cone: for some arbitrary
positive constant a∈R+

{yyT∈ SM | ‖y‖ =
√
a} ⊂ ∂SM

+ (200)

The distance from each extreme direction to the axis of revolution is the
radius

R
∆
= inf

c
‖yyT − cI‖F = a

√

1− 1

M
(201)

which is the distance from yyT to a
M
I ; the length of vector yyT− a

M
I .

Because distance R (in a particular dimension) from the axis of revolution
to each and every normalized extreme direction is identical, the extreme
directions lie on the boundary of a hypersphere in isometrically isomorphic
RM(M+1)/2. From Example 2.9.2.4.1, the convex hull (excluding the vertex
at the origin) of the normalized extreme directions is a conic section

C ∆
= conv{yyT | y∈RM , yTy= a} = SM

+ ∩ {A∈ SM | 〈I , A〉 = a} (202)

orthogonal to the identity matrix I ;

〈C− a

M
I , I 〉 = tr(C− a

M
I ) = 0 (203)

Although the positive semidefinite cone possesses some characteristics of
a circular cone, we can prove it is not by demonstrating a shortage of extreme
directions; id est, some extreme directions corresponding to each and every
angle of rotation about the axis of revolution are nonexistent: Referring to
Figure 35, [288, §1-7]
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a
M
I

θ a
M

11T

yyT

R

Figure 35: Illustrated is a section, perpendicular to axis of revolution, of
circular cone from Figure 34. Radius R is distance from any extreme
direction to axis at a

M
I . Vector a

M
11T is an arbitrary reference by which

to measure angle θ .

cos θ =

〈

a
M

11T − a
M
I , yyT − a

M
I
〉

a2(1− 1
M

)
(204)

Solving for vector y we get

a(1 + (M−1) cos θ) = (1Ty)2 (205)

Because this does not have real solution for every matrix dimension M and
for all 0≤ θ≤ 2π , then we can conclude that the positive semidefinite cone
might be circular but only in matrix dimensions 1 and 2 .2.34 �

Because of a shortage of extreme directions, conic section (202) cannot
be hyperspherical by the extremes theorem (§2.8.1.1.1).

2.34In fact, the positive semidefinite cone is circular in matrix dimensions 1 and 2 while
it is a rotation of the Lorentz cone in matrix dimension 2.
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Figure 36: Polyhedral proper cone K , created by intersection of halfspaces,
inscribes PSD cone in isometrically isomorphic R3 as predicted by Geršgorin
discs theorem for A=[Aij]∈ S2. Hyperplanes supporting K intersect along
boundary of PSD cone. Four extreme directions of K coincide with extreme
directions of PSD cone.
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2.9.2.5.2 Example. PSD cone inscription in three dimensions.

Theorem. Geršgorin discs. [150, §6.1] [274]
For p∈Rm

+ given A=[Aij]∈ Sm, then all eigenvalues of A belong to the union
of m closed intervals on the real line;

λ(A) ∈
m
⋃

i=1















ξ ∈ R |ξ − Aii| ≤ ̺i
∆
=

1

pi

m
∑

j=1

j 6= i

pj |Aij|















=
m
⋃

i=1

[Aii−̺i , Aii+̺i]

(206)

Furthermore, if a union of k of these m [intervals ] forms a connected region
that is disjoint from all the remaining n−k [intervals ], then there are
precisely k eigenvalues of A in this region. ⋄

To apply the theorem to determine positive semidefiniteness of symmetric
matrix A , we observe that for each i we must have

Aii ≥ ̺i (207)

Suppose
m = 2 (208)

so A∈ S2. Vectorizing A as in (47), svecA belongs to isometrically
isomorphic R3. Then we have m2m−1 = 4 inequalities, in the matrix entries
Aij with Geršgorin parameters p=[pi]∈R2

+ ,

p1A11 ≥ ±p2A12

p2A22 ≥ ±p1A12
(209)

which describe an intersection of four halfspaces in Rm(m+1)/2. That
intersection creates the polyhedral proper cone K (§2.12.1) whose
construction is illustrated in Figure 36. Drawn truncated is the boundary
of the positive semidefinite cone svec S2

+ and the bounding hyperplanes
supporting K .

Created by means of Geršgorin discs, K always belongs to the positive
semidefinite cone for any nonnegative value of p ∈Rm

+ . Hence any point in
K corresponds to some positive semidefinite matrix A . Only the extreme
directions of K intersect the positive semidefinite cone boundary in this
dimension; the four extreme directions of K are extreme directions of the
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positive semidefinite cone. As p1/p2 increases in value from 0, two extreme
directions of K sweep the entire boundary of this positive semidefinite cone.
Because the entire positive semidefinite cone can be swept by K , the system
of linear inequalities

Y T svecA
∆
=

[

p1 ±p2/
√

2 0

0 ±p1/
√

2 p2

]

svecA � 0 (210)

when made dynamic can replace a semidefinite constraint A� 0 ; id est, for

K = {z | Y Tz � 0} ⊂ svec Sm
+ (211)

given p where Y ∈ Rm(m+1)/2×m2m−1

svecA ∈ K ⇒ A ∈ Sm
+ (212)

but

∃ p � Y T svecA � 0 ⇔ A � 0 (213)

In other words, diagonal dominance [150, p.349, §7.2.3]

Aii ≥
m
∑

j=1

j 6= i

|Aij| , ∀ i = 1 . . . m (214)

is only a sufficient condition for membership to the PSD cone; but by
dynamic weighting p in this dimension, it was made necessary and
sufficient. 2

In higher dimension (m> 2), the boundary of the positive semidefinite
cone is no longer constituted completely by its extreme directions (symmetric
rank-one matrices); the geometry becomes complicated. How all the extreme
directions can be swept by an inscribed polyhedral cone,2.35 similarly to the
foregoing example, remains an open question.

2.9.2.5.3 Exercise. Dual inscription.
Find dual polyhedral proper cone K∗ from Figure 36. H

2.35It is not necessary to sweep the entire boundary in higher dimension.
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2.9.2.6 Boundary constituents of the positive semidefinite cone

2.9.2.6.1 Lemma. Sum of positive semidefinite matrices.
For A,B∈ SM

+

rank(A +B) = rank(µA+ (1−µ)B) (215)

over the open interval (0, 1) of µ . ⋄

Proof. Any positive semidefinite matrix belonging to the PSD cone
has an eigen decomposition that is a positively scaled sum of linearly
independent symmetric dyads. By the linearly independent dyads definition
in §B.1.1.0.1, rank of the sum A+B is equivalent to the number of linearly
independent dyads constituting it. Linear independence is insensitive to
further positive scaling by µ . The assumption of positive semidefiniteness
prevents annihilation of any dyad from the sum A+B . �

2.9.2.6.2 Example. Rank function quasiconcavity. (confer §3.3)
For A,B∈Rm×n [150, §0.4]

rankA+ rankB ≥ rank(A +B) (216)

that follows from the fact [249, §3.6]

dimR(A) + dimR(B) = dimR(A +B) + dim(R(A) ∩R(B)) (217)

For A,B∈ SM
+ [46, §3.4.2]

rankA+ rankB ≥ rank(A +B) ≥ min{rankA , rankB} (218)

that follows from the fact

N (A +B) = N (A) ∩ N (B) , A,B∈ SM
+ (133)

Rank is a quasiconcave function on SM
+ because the right-hand inequality in

(218) has the concave form (539); videlicet, Lemma 2.9.2.6.1. 2

From this example we see, unlike convex functions, quasiconvex functions
are not necessarily continuous. (§3.3) We also glean:
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2.9.2.6.3 Theorem. Convex subsets of positive semidefinite cone.
The subsets of the positive semidefinite cone SM

+ , for 0≤ρ≤M

SM
+ (ρ)

∆
= {X∈ SM

+ | rankX ≥ ρ} (219)

are pointed convex cones, but not closed unless ρ= 0 ; id est, SM
+ (0)= SM

+ .
⋄

Proof. Given ρ , a subset SM
+ (ρ) is convex if and only if

convex combination of any two members has rank at least ρ . That is
confirmed applying identity (215) from Lemma 2.9.2.6.1 to (218); id est, for
A,B∈ SM

+ (ρ) on the closed interval µ∈ [0 , 1]

rank(µA+ (1−µ)B) ≥ min{rankA , rankB} (220)

It can similarly be shown, almost identically to proof of the lemma, any conic
combination of A,B in subset SM

+ (ρ) remains a member; id est, ∀ ζ , ξ≥ 0

rank(ζA+ ξB) ≥ min{rank(ζA) , rank(ξB)} (221)

Therefore, SM
+ (ρ) is a convex cone. �

Another proof of convexity can be made by projection arguments:

2.9.2.7 Projection on SM
+ (ρ)

Because these cones SM
+ (ρ) indexed by ρ (219) are convex, projection on

them is straightforward. Given a symmetric matrixH having diagonalization

H
∆
=QΛQT ∈ SM (§A.5.2) with eigenvalues Λ arranged in nonincreasing

order, then its Euclidean projection (minimum-distance projection) on SM
+ (ρ)

PSM
+ (ρ)H = QΥ⋆QT (222)

corresponds to a map of its eigenvalues:

Υ⋆
ii =

{

max {ǫ , Λii} , i=1 . . . ρ
max {0 , Λii} , i=ρ+1 . . . M

(223)

where ǫ is positive but arbitrarily close to 0.
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2.9.2.7.1 Exercise. Projection on open convex cones.
Prove (223) using Theorem E.9.2.0.1. H

Because each H∈ SM has unique projection on SM
+ (ρ) (despite possibility

of repeated eigenvalues in Λ), we may conclude it is a convex set by the
Bunt-Motzkin theorem (§E.9.0.0.1).

Compare (223) to the well-known result regarding Euclidean projection
on a rank ρ subset of the positive semidefinite cone (§2.9.2.1)

SM
+ \SM

+ (ρ+ 1) = {X∈ SM
+ | rankX ≤ ρ} (224)

PSM
+ \SM

+ (ρ+1)H = QΥ⋆QT (225)

As proved in §7.1.4, this projection of H corresponds to the eigenvalue map

Υ⋆
ii =

{

max {0 , Λii} , i=1 . . . ρ
0 , i=ρ+1 . . . M

(1147)

Together these two results (223) and (1147) mean: A higher-rank solution
to projection on the positive semidefinite cone lies arbitrarily close to any
given lower-rank projection, but not vice versa. Were the number of
nonnegative eigenvalues in Λ known a priori not to exceed ρ , then these
two different projections would produce identical results in the limit ǫ→ 0.

2.9.2.8 Uniting constituents

Interior of the PSD cone int SM
+ is convex by Theorem 2.9.2.6.3, for example,

because all positive semidefinite matrices having rank M constitute the cone
interior.

All positive semidefinite matrices of rank less than M constitute the cone
boundary; an amalgam of positive semidefinite matrices of different rank.
Thus each nonconvex subset of positive semidefinite matrices, for 0<ρ<M

{Y ∈ SM
+ | rankY = ρ} (226)

having rank ρ successively 1 lower than M , appends a nonconvex
constituent to the cone boundary; but only in their union is the boundary
complete: (confer §2.9.2)

∂SM
+ =

M−1
⋃

ρ=0

{Y ∈ SM
+ | rankY = ρ} (227)
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The composite sequence, the cone interior in union with each successive
constituent, remains convex at each step; id est, for 0≤k≤M

M
⋃

ρ=k

{Y ∈ SM
+ | rankY = ρ} (228)

is convex for each k by Theorem 2.9.2.6.3.

2.9.2.9 Peeling constituents

Proceeding the other way: To peel constituents off the complete positive
semidefinite cone boundary, one starts by removing the origin; the only
rank-0 positive semidefinite matrix. What remains is convex. Next, the
extreme directions are removed because they constitute all the rank-1 positive
semidefinite matrices. What remains is again convex, and so on. Proceeding
in this manner eventually removes the entire boundary leaving, at last, the
convex interior of the PSD cone; all the positive definite matrices.

2.9.2.9.1 Exercise. Difference A−B .
What about the difference of matrices A,B belonging to the positive
semidefinite cone? Show:� The difference of any two points on the boundary belongs to the

boundary or exterior.� The difference A−B , where A belongs to the boundary while B is
interior, belongs to the exterior. H

2.9.3 Barvinok’s proposition

Barvinok posits existence and quantifies an upper bound on rank of a positive
semidefinite matrix belonging to the intersection of the PSD cone with an
affine subset:

2.9.3.0.1 Proposition. (Barvinok) Affine intersection with PSD cone.
[20, §II.13] [21, §2.2] Consider finding a matrix X∈ SN satisfying

X � 0 , 〈Aj , X 〉 = bj , j=1 . . . m (229)
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given nonzero linearly independent Aj∈ SN and real bj . Define the affine
subset

A ∆
= {X | 〈Aj , X 〉= bj , j=1 . . . m} ⊆ SN (230)

If the intersection A ∩ SN
+ is nonempty, then there exists a matrix

X∈A ∩ SN
+ such that given a number of equalities m

rankX (rankX + 1)/2 ≤ m (231)

whence the upper bound2.36

rankX ≤
⌊√

8m+ 1− 1

2

⌋

(232)

or given desired rank instead, equivalently,

m < (rankX + 1)(rankX + 2)/2 (233)

An extreme point of A ∩ SN
+ satisfies (232) and (233). (confer §4.1.1.2)

A matrix X
∆
=RTR is an extreme point if and only if the smallest face that

contains X of A ∩ SN
+ has dimension 0 ; [175, §2.4] id est, iff (138)

dimF
(

(A ∩ SN
+ )∋X

)

= rank(X )(rank(X ) + 1)/2− rank
[

svecRA1R
T svecRA2R

T · · · svecRAmR
T
]

(234)

equals 0 in isomorphic RN(N+1)/2.
Now the intersection A ∩ SN

+ is assumed bounded: Assume a given
nonzero upper bound ρ on rank, a number of equalities

m=(ρ+ 1)(ρ+ 2)/2 (235)

and matrix dimension N ≥ ρ + 2 ≥ 3. If the intersection is nonempty and
bounded, then there exists a matrix X∈A ∩ SN

+ such that

rankX ≤ ρ (236)

This represents a tightening of the upper bound; a reduction by exactly 1
of the bound provided by (232) given the same specified number m (235) of
equalities; id est,

rankX ≤
√

8m+ 1− 1

2
− 1 (237)

⋄
2.36 §4.1.1.2 contains an intuitive explanation. This bound is itself limited above, of course,
by N ; a tight limit corresponding to an interior point of SN

+ .
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When the intersection A ∩ SN
+ is known a priori to consist only of a

single point, then Barvinok’s proposition provides the greatest upper bound
on its rank not exceeding N . The intersection can be a single nonzero point
only if the number of linearly independent hyperplanes m constituting A
satisfies2.37

N(N+ 1)/2− 1 ≤ m ≤ N(N+ 1)/2 (238)

2.10 Conic independence (c.i.)

In contrast to extreme direction, the property conically independent direction
is more generally applicable, inclusive of all closed convex cones (not
only pointed closed convex cones). Similar to the definition for linear
independence, arbitrary given directions {Γi∈Rn, i=1 . . . N} are conically
independent if and only if, for all ζ∈RN

+

Γi ζi + · · ·+ Γj ζj − Γℓ ζℓ = 0 , i 6= · · · 6=j 6=ℓ = 1 . . . N (239)

has only the trivial solution ζ=0 ; in words, iff no direction from the given
set can be expressed as a conic combination of those remaining. (Figure 37,
for example. A Matlab implementation of test (239) is given in §F.2.) It
is evident that linear independence (l.i.) of N directions implies their conic
independence;� l.i. ⇒ c.i.

Arranging any set of generators for a particular convex cone in a matrix
columnar,

X
∆
= [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (240)

then the relationship l.i. ⇒ c.i. suggests: the number of l.i. generators in
the columns of X cannot exceed the number of c.i. generators. Denoting by
k the number of conically independent generators contained in X , we have
the most fundamental rank inequality for convex cones

dim aff K = dim aff[0 X ] = rankX ≤ k ≤ N (241)

Whereas N directions in n dimensions can no longer be linearly independent
once N exceeds n , conic independence remains possible:

2.37For N>1, N(N+1)/2−1 independent hyperplanes in RN(N+1)/2 can make a line
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0
00

(a) (b) (c)

Figure 37: Vectors in R2 : (a) affinely and conically independent,
(b) affinely independent but not conically independent, (c) conically
independent but not affinely independent. None of the examples exhibits
linear independence. (In general, a.i. < c.i.)

2.10.0.0.1 Table: Maximum number of c.i. directions

n supk (pointed) supk (not pointed)

0 0 0
1 1 2
2 2 4
3 ∞ ∞
...

...
...

Assuming veracity of this table, there is an apparent vastness between two
and three dimensions. The finite numbers of conically independent directions
indicate:� Convex cones in dimensions 0, 1, and 2 must be polyhedral. (§2.12.1)

Conic independence is certainly one convex idea that cannot be completely
explained by a two-dimensional picture. [20, p.vii]

From this table it is also evident that dimension of Euclidean space cannot
exceed the number of conically independent directions possible;� n ≤ supk

tangent to svec ∂SN
+ at a point because all one-dimensional faces of SN

+ are exposed.
Because a pointed convex cone has only one vertex, the origin, there can be no intersection
of svec ∂SN

+ with any higher-dimensional affine subset A that will make a nonzero point.
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2.10.0.0.2 Exercise. Conically independent columns and rows.
We suspect the number of conically independent columns (rows) of X to
be the same for X†T , where † denotes matrix pseudoinverse (§E). Prove
whether it holds that the columns (rows) of X are c.i.⇔ the columns (rows)
of X†T are c.i. H

2.10.1 Preservation of conic independence

Independence in the linear (§2.1.2.1), affine (§2.4.2.4), and conic senses can
be preserved under linear transformation. Suppose a matrix X∈ Rn×N (240)
holds a conically independent set columnar. Consider the transformation

T (X) : Rn×N→ Rn×N ∆
= XY (242)

where the given matrix Y
∆
= [ y1 y2 · · · yN ]∈RN×N is represented by linear

operator T . Conic independence of {Xyi∈Rn, i=1 . . . N} demands, by
definition (239),

Xyi ζi + · · ·+Xyj ζj − Xyℓ ζℓ = 0 , i 6= · · · 6=j 6=ℓ = 1 . . . N (243)

have no nontrivial solution ζ∈RN
+ . That is ensured by conic independence

of {yi∈RN} and by R(Y )∩N (X) = 0 ; seen by factoring X .

2.10.1.1 linear maps of cones

[18, §7] If K is a convex cone in Euclidean space R and T is any linear
mapping from R to Euclidean space M , then T (K) is a convex cone in M
and x � y with respect to K implies T (x)� T (y) with respect to T (K).
If K is closed or has nonempty interior in R , then so is T (K) in M .

If T is a linear bijection, then x � y ⇔ T (x)� T (y). Further, if F is
a face of K , then T (F) is a face of T (K).

2.10.2 Pointed closed convex K & conic independence

The following bullets can be derived from definitions (155) and (239) in
conjunction with the extremes theorem (§2.8.1.1.1):

The set of all extreme directions from a pointed closed convex cone
K⊂Rn is not necessarily a linearly independent set, yet it must be a conically
independent set; (compare Figure 15 on page 60 with Figure 38(a))
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K

K

∂K∗

(a)

(b)

Figure 38: (a) A pointed polyhedral cone (drawn truncated) in R3 having six
facets. The extreme directions, corresponding to six edges emanating from
the origin, are generators for this cone; not linearly independent but they
must be conically independent. (b) The boundary of dual cone K∗ (drawn
truncated) is now added to the drawing of same K . K∗ is polyhedral, proper,
and has the same number of extreme directions as K has facets.



124 CHAPTER 2. CONVEX GEOMETRY� {extreme directions} ⇒ {c.i.}

Conversely, when a conically independent set of directions from pointed
closed convex cone K is known a priori to comprise generators, then all
directions from that set must be extreme directions of the cone;� {extreme directions} ⇔ {c.i. generators of pointed closed convex K}

Barker & Carlson [18, §1] call the extreme directions a minimal generating
set for a pointed closed convex cone. A minimal set of generators is therefore
a conically independent set of generators, and vice versa,2.38 for a pointed
closed convex cone.

Any collection of n or fewer extreme directions from pointed closed
convex cone K⊂Rn must be linearly independent;� {≤ n extreme directions in Rn} ⇒ { l.i.}

Conversely, because l.i. ⇒ c.i.,� {extreme directions} ⇐ { l.i. generators of pointed closed convex K}

2.10.2.0.1 Example. Vertex-description of halfspace H about origin.
From n+ 1 points in Rn we can make a vertex-description of a convex
cone that is a halfspace H , where {xℓ∈Rn, ℓ=1 . . . n} constitutes a
minimal set of generators for a hyperplane ∂H through the origin. An
example is illustrated in Figure 39. By demanding the augmented set
{xℓ∈Rn, ℓ=1 . . . n+ 1} be affinely independent (we want xn+1 not parallel
to ∂H ), then

H =
⋃

ζ≥0

(ζ xn+1 + ∂H)

= {ζ xn+1 + cone{xℓ∈Rn, ℓ=1 . . . n} | ζ≥ 0}

= cone{xℓ∈Rn, ℓ=1 . . . n+ 1}

(244)

a union of parallel hyperplanes. Cardinality is one step beyond dimension of
the ambient space, but {xℓ ∀ ℓ} is a minimal set of generators for this convex
cone H which has no extreme elements. 2

2.38This converse does not hold for nonpointed closed convex cones as Table 2.10.0.0.1
implies; e.g., ponder four conically independent generators for a plane (case n=2).



2.10. CONIC INDEPENDENCE (C.I.) 125

0

H

x1

x2

x3

∂H

Figure 39: Minimal set of generators X= [x1 x2 x3 ]∈R2×3 for halfspace
about origin.

2.10.3 Utility of conic independence

Perhaps the most useful application of conic independence is determination
of the intersection of closed convex cones from their halfspace-descriptions,
or representation of the sum of closed convex cones from their
vertex-descriptions.

⋂Ki A halfspace-description for the intersection of any number of closed
convex cones Ki can be acquired by pruning normals; specifically,
only the conically independent normals from the aggregate of all the
halfspace-descriptions need be retained.

∑Ki Generators for the sum of any number of closed convex cones Ki can
be determined by retaining only the conically independent generators
from the aggregate of all the vertex-descriptions.

Such conically independent sets are not necessarily unique or minimal.
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2.11 When extreme means exposed

For any convex polyhedral set in Rn having nonempty interior, distinction
between the terms extreme and exposed vanishes [247, §2.4] [77, §2.2] for
faces of all dimensions except n ; their meanings become equivalent as we
saw in Figure 12 (discussed in §2.6.1.2). In other words, each and every face
of any polyhedral set (except the set itself) can be exposed by a hyperplane,
and vice versa; e.g., Figure 15.

Lewis [179, §6] [158, §2.3.4] claims nonempty extreme proper subsets and
the exposed subsets coincide for Sn

+ ; id est, each and every face of the positive
semidefinite cone, whose dimension is less than the dimension of the cone,
is exposed. A more general discussion of cones having this property can be
found in [257]; e.g., the Lorentz cone (147) [17, §II.A].

2.12 Convex polyhedra

Every polyhedron, such as the convex hull (75) of a bounded list X , can
be expressed as the solution set of a finite system of linear equalities and
inequalities, and vice versa. [77, §2.2]

2.12.0.0.1 Definition. Convex polyhedra, halfspace-description.
[46, §2.2.4] A convex polyhedron is the intersection of a finite number of
halfspaces and hyperplanes;

P = {y | Ay � b , Cy = d} ⊆ Rn (245)

where coefficients A and C generally denote matrices. Each row of C is a
vector normal to a hyperplane, while each row of A is a vector inward-normal
to a hyperplane partially bounding a halfspace. △

By the halfspaces theorem in §2.4.1.1.1, a polyhedron thus described is a
closed convex set having possibly empty interior; e.g., Figure 12. Convex
polyhedra2.39 are finite-dimensional comprising all affine sets (§2.3.1),
polyhedral cones, line segments, rays, halfspaces, convex polygons, solids
[164, def.104/6, p.343], polychora, polytopes,2.40 etcetera.

2.39We consider only convex polyhedra throughout, but acknowledge the existence of
concave polyhedra. [282, Kepler-Poinsot Solid ]
2.40Some authors distinguish bounded polyhedra via the designation polytope. [77, §2.2]
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It follows from definition (245) by exposure that each face of a convex
polyhedron is a convex polyhedron.

The projection of any polyhedron on a subspace remains a polyhedron.
More generally, the image of a polyhedron under any linear transformation
is a polyhedron. [20, §I.9]

When b and d in (245) are 0, the resultant is a polyhedral cone. The
set of all polyhedral cones is a subset of convex cones:

2.12.1 Polyhedral cone

From our study of cones, we see: the number of intersecting hyperplanes and
halfspaces constituting a convex cone is possibly but not necessarily infinite.
When the number is finite, the convex cone is termed polyhedral. That is
the primary distinguishing feature between the set of all convex cones and
polyhedra; all polyhedra, including polyhedral cones, are finitely generated
[230, §19]. We distinguish polyhedral cones in the set of all convex cones for
this reason, although all convex cones of dimension 2 or less are polyhedral.

2.12.1.0.1 Definition. Polyhedral cone, halfspace-description.2.41

(confer (252)) A polyhedral cone is the intersection of a finite number of
halfspaces and hyperplanes about the origin;

K = {y | Ay � 0 , Cy = 0} ⊆ Rn (a)

= {y | Ay � 0 , Cy � 0 , Cy � 0} (b)

=







y |





A
C
−C



y � 0







(c)

(246)

where coefficients A and C generally denote matrices of finite dimension.
Each row of C is a vector normal to a hyperplane containing the origin,
while each row of A is a vector inward-normal to a hyperplane containing
the origin and partially bounding a halfspace. △

A polyhedral cone thus defined is closed, convex, possibly has empty
interior, and only a finite number of generators (§2.8.1.2), and vice versa.
(Minkowski/Weyl) [247, §2.8] [230, thm.19.1]

2.41Rockafellar [230, §19] proposes affine sets be handled via complementary pairs of affine
inequalities; e.g., Cy�d and Cy�d .
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From the definition it follows that any single hyperplane through the
origin, or any halfspace partially bounded by a hyperplane through the origin
is a polyhedral cone. The most familiar example of polyhedral cone is any
quadrant (or orthant, §2.1.3) generated by Cartesian half-axes. Esoteric
examples of polyhedral cone include the point at the origin, any line through
the origin, any ray having the origin as base such as the nonnegative real
line R+ in subspace R , polyhedral flavors of the (proper) Lorentz cone
(confer (147))

Kℓ =

{[

x
t

]

∈ Rn× R | ‖x‖ℓ ≤ t

}

, ℓ=1 or ∞ (247)

any subspace, and Rn. More examples are illustrated in Figure 38 and
Figure 15.

2.12.2 Vertices of convex polyhedra

By definition, a vertex (§2.6.1.0.1) always lies on the relative boundary of a
convex polyhedron. [164, def.115/6, p.358] In Figure 12, each vertex of the
polyhedron is located at the intersection of three or more facets, and every
edge belongs to precisely two facets [20, §VI.1, p.252]. In Figure 15, the only
vertex of that polyhedral cone lies at the origin.

The set of all polyhedral cones is clearly a subset of convex polyhedra and
a subset of convex cones. Not all convex polyhedra are bounded, evidently,
neither can they all be described by the convex hull of a bounded set of points
as we defined it in (75). Hence we propose a universal vertex-description of
polyhedra in terms of that same finite-length list X (65):

2.12.2.0.1 Definition. Convex polyhedra, vertex-description.
(confer §2.8.1.1.1) Denote the truncated a-vector,

ai:ℓ =

[

ai...
aℓ

]

(248)

By discriminating a suitable finite-length generating list (or set) arranged
columnar in X∈ Rn×N , then any particular polyhedron may be described

P =
{

Xa | aT
1:k1 = 1 , am:N � 0 , {1 . . . k} ∪ {m. . .N} = {1 . . . N}

}

(249)

where 0 ≤ k ≤ N and 1 ≤m ≤ N + 1 . Setting k = 0 removes the affine
equality condition. Setting m=N + 1 removes the inequality. △
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Coefficient indices in (249) may or may not be overlapping, but all
the coefficients are assumed constrained. From (67), (75), and (83), we
summarize how the coefficient conditions may be applied;

affine sets −→ aT
1:k1 = 1

polyhedral cones −→ am:N � 0

}

←− convex hull (m ≤ k) (250)

It is always possible to describe a convex hull in the region of overlapping
indices because, for 1 ≤ m ≤ k ≤ N

{am:k | aT
m:k1 = 1, am:k � 0} ⊆ {am:k | aT

1:k1 = 1, am:N � 0} (251)

Members of a generating list are not necessarily vertices of the
corresponding polyhedron; certainly true for (75) and (249), some subset
of list members reside in the polyhedron’s relative interior. Conversely, when
boundedness (75) applies, the convex hull of the vertices is a polyhedron
identical to the convex hull of the generating list.

2.12.2.1 Vertex-description of polyhedral cone

Given closed convex cone K in a subspace of Rn having any set of generators
for it arranged in a matrix X∈ Rn×N as in (240), then that cone is described
setting m=1 and k=0 in vertex-description (249):

K = cone(X) = {Xa | a � 0} ⊆ Rn (252)

a conic hull, like (83), of N generators.
This vertex description is extensible to an infinite number of generators;

which follows from the extremes theorem (§2.8.1.1.1) and Example 2.8.1.2.1.

2.12.2.2 Pointedness

[247, §2.10] Assuming all generators constituting the columns of X∈ Rn×N

are nonzero, polyhedral cone K is pointed (§2.7.2.1.2) if and only if
there is no nonzero a� 0 that solves Xa=0; id est, iff N (X) ∩ RN

+ = 0.

(If rankX= n , then the dual cone K∗ is pointed. (268))
A polyhedral proper cone in Rn must have at least n linearly independent

generators, or be the intersection of at least n halfspaces whose partial
boundaries have normals that are linearly independent. Otherwise, the cone
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1

S = {s | s � 0 , 1Ts ≤ 1}

Figure 40: Unit simplex S in R3 is a unique solid tetrahedron, but is not
regular.

will contain at least one line and there can be no vertex; id est, the cone
cannot otherwise be pointed.

For any pointed polyhedral cone, there is a one-to-one correspondence of
one-dimensional faces with extreme directions.

Examples of pointed closed convex cones K are not limited to polyhedral
cones: the origin, any 0-based ray in a subspace, any two-dimensional
V-shaped cone in a subspace, the Lorentz (ice-cream) cone and its polyhedral
flavors, the cone of Euclidean distance matrices EDMN in SN

h , the proper
cones: SM

+ in ambient SM , any orthant in Rn or Rm×n; e.g., the nonnegative
real line R+ in vector space R .



2.12. CONVEX POLYHEDRA 131

2.12.3 Unit simplex

A peculiar convex subset of the nonnegative orthant having
halfspace-description

S ∆
= {s | s � 0 , 1Ts ≤ 1} ⊆ Rn

+ (253)

is a unique bounded convex polyhedron called unit simplex (Figure 40)
having nonempty interior, n+ 1 vertices, and dimension [46, §2.2.4]

dimS = n (254)

The origin supplies one vertex while heads of the standard basis [150]
[249] {ei , i=1 . . . n} in Rn constitute those remaining;2.42 thus its
vertex-description:

S = conv {0, {ei , i=1 . . . n}}
=

{

[0 e1 e2 · · · en ] a | aT1 = 1 , a � 0
} (255)

2.12.3.1 Simplex

The unit simplex comes from a class of general polyhedra called simplex,
having vertex-description: [64] [230] [280] [77]

conv{xℓ ∈Rn} | ℓ= 1 . . . k+1 , dim aff{xℓ}= k , n≥ k (256)

So defined, a simplex is a closed bounded convex set having possibly empty
interior. Examples of simplices, by increasing affine dimension, are: a point,
any line segment, any triangle and its relative interior, a general tetrahedron,
polychoron, and so on.

2.12.3.1.1 Definition. Simplicial cone.
A polyhedral proper (§2.7.2.2.1) cone K in Rn is called simplicial iff K
has exactly n extreme directions; [17, §II.A] equivalently, iff proper K has
exactly n linearly independent generators contained in any given set of
generators. △

There are an infinite variety of simplicial cones in Rn ; e.g., Figure 15,
Figure 41, Figure 50. Any orthant is simplicial, as is any rotation thereof.

2.42In R0 the unit simplex is the point at the origin, in R the unit simplex is the line
segment [0, 1], in R2 it is a triangle and its relative interior, in R3 it is the convex hull of
a tetrahedron (Figure 40), in R4 it is the convex hull of a pentatope [282], and so on.
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Figure 41: Two views of a simplicial cone and its dual in R3 (second view on
next page). Semi-infinite boundary of each cone is truncated for illustration.
Cartesian axes are drawn for reference.
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2.12.4 Converting between descriptions

Conversion between halfspace-descriptions (245) (246) and equivalent
vertex-descriptions (75) (249) is nontrivial, in general, [13] [77, §2.2] but the
conversion is easy for simplices. [46, §2.2] Nonetheless, we tacitly assume the
two descriptions to be equivalent. [230, §19, thm.19.1] We explore conversions
in §2.13.4 and §2.13.9:

2.13 Dual cone & generalized inequality

& biorthogonal expansion

These three concepts, dual cone, generalized inequality, and biorthogonal
expansion, are inextricably melded; meaning, it is difficult to completely
discuss one without mentioning the others. The dual cone is critical in tests
for convergence by contemporary primal/dual methods for numerical solution
of conic problems. [299] [204, §4.5] For unique minimum-distance projection
on a closed convex cone K , the negative dual cone −K∗ plays the role that
orthogonal complement plays for subspace projection.2.43 (§E.9.2.1) Indeed,
−K∗ is the algebraic complement in Rn ;

K ⊞−K∗= Rn (257)

where ⊞ denotes unique orthogonal vector sum.

One way to think of a pointed closed convex cone is as a new kind of
coordinate system whose basis is generally nonorthogonal; a conic system,
very much like the familiar Cartesian system whose analogous cone is
the first quadrant or nonnegative orthant. Generalized inequality �K
is a formalized means to determine membership to any pointed closed
convex cone (§2.7.2.2) whereas biorthogonal expansion is, fundamentally, an
expression of coordinates in a pointed conic system. When cone K is the
nonnegative orthant, then these three concepts come into alignment with the
Cartesian prototype; biorthogonal expansion becomes orthogonal expansion.

2.43Namely, projection on a subspace is ascertainable from its projection on the orthogonal
complement.
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2.13.1 Dual cone

For any set K (convex or not), the dual cone [46, §2.6.1] [73, §4.2]

K∗ ∆
=
{

y ∈Rn | 〈y , x〉 ≥ 0 for all x ∈ K
}

(258)

is a unique cone2.44 that is always closed and convex because it is an
intersection of halfspaces (halfspaces theorem (§2.4.1.1.1)) whose partial
boundaries each contain the origin, each halfspace having inward-normal x
belonging to K ; e.g., Figure 42(a).

When cone K is convex, there is a second and equivalent construction:
Dual cone K∗ is the union of each and every vector y inward-normal to
a hyperplane supporting K or bounding a halfspace containing K ; e.g.,
Figure 42(b). When K is represented by a halfspace-description such as
(246), for example, where

A
∆
=





aT
1
...
aT

m



∈ Rm×n , C
∆
=





cT1
...
cTp



∈ Rp×n (259)

then the dual cone can be represented as the conic hull

K∗= cone{a1 , . . . , am , ±c1 , . . . , ±cp} (260)

a vertex-description, because each and every conic combination of normals
from the halfspace-description of K yields another inward-normal to a
hyperplane supporting or bounding a halfspace containing K .
K∗ can also be constructed pointwise using projection theory from §E.9.2:

for PKx the Euclidean projection of point x on closed convex cone K

−K∗ = {x− PKx | x∈Rn} = {x∈Rn | PKx = 0} (1793)

2.13.1.0.1 Exercise. Manual dual cone construction.
Perhaps the most instructive graphical method of dual cone construction is
cut-and-try. Find the dual of each polyhedral cone from Figure 43 by using
dual cone equation (258). H

2.44The dual cone is the negative polar cone defined by many authors; K∗= −K◦ .
[148, §A.3.2] [230, §14] [29] [20] [247, §2.7]
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0

K
(a)

K∗

K∗

0

K (b)

y

Figure 42: Two equivalent constructions of dual cone K∗ in R2 : (a) Showing
construction by intersection of halfspaces about 0 (drawn truncated). Only
those two halfspaces whose bounding hyperplanes have inward-normal
corresponding to an extreme direction of this pointed closed convex cone
K⊂R2 need be drawn; by (319). (b) Suggesting construction by union of
inward-normals y to each and every hyperplane ∂H+ supporting K . This
interpretation is valid when K is convex because existence of a supporting
hyperplane is then guaranteed (§2.4.2.6).
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KK
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∂K∗
∂K∗

(a) (b)
q

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ G(K∗) (317)

Figure 43: Dual cone construction by right angle. Each extreme direction of a
polyhedral cone is orthogonal to a facet of its dual cone, and vice versa, in any
dimension. (§2.13.6.1) (a) This characteristic guides graphical construction
of dual cone in two dimensions: It suggests finding dual-cone boundary ∂
by making right angles with extreme directions of polyhedral cone. The
construction is then pruned so that each dual boundary vector does not
exceed π/2 radians in angle with each and every vector from polyhedral
cone. Were dual cone in R2 to narrow, Figure 44 would be reached in limit.
(b) Same polyhedral cone and its dual continued into three dimensions.
(confer Figure 50)
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K

K∗

0

Figure 44: K is a halfspace about the origin in R2. K∗ is a ray base 0,
hence has empty interior in R2 ; so K cannot be pointed. (Both convex
cones appear truncated.)

2.13.1.0.2 Exercise. Dual cone definitions.
What is {x∈Rn | xTz≥0 ∀ z∈Rn} ?
What is {x∈Rn | xTz≥1 ∀ z∈Rn} ?
What is {x∈Rn | xTz≥1 ∀ z∈Rn

+} ? H

As defined, dual cone K∗ exists even when the affine hull of the original
cone is a proper subspace; id est, even when the original cone has empty
interior. Rockafellar formulates the dimension of K and K∗. [230, §14]2.45

To further motivate our understanding of the dual cone, consider the
ease with which convergence can be observed in the following optimization
problem (p):

2.13.1.0.3 Example. Dual problem. (confer §4.1)
Duality is a powerful and widely employed tool in applied mathematics for a
number of reasons. First, the dual program is always convex even if the primal
is not. Second, the number of variables in the dual is equal to the number of
constraints in the primal which is often less than the number of variables in

2.45His monumental work Convex Analysis has not one figure or illustration. See
[20, §II.16] for a good illustration of Rockafellar’s recession cone [30].



2.13. DUAL CONE & GENERALIZED INEQUALITY 139

f(xp , z) or g(z)

f(x , zp) or f(x)

x
z

Figure 45: Although objective functions from conic problems (263p) and
(263d) are linear, this is a mnemonic icon for primal and dual problems.
When problems are strong duals, duality gap is 0 ; meaning, functions
f(x) and g(z) (dotted) kiss at saddle value, as depicted at center.
Otherwise, dual functions never meet (f(x) > g(z)) by (261). Drawing by
http://en.wikipedia.org/wiki/User:Kieff

http://en.wikipedia.org/wiki/User:Kieff
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the primal program. Third, the maximum value achieved by the dual problem
is often equal to the minimum of the primal. [222, §2.1.3] Essentially, duality
theory concerns representation of a given optimization problem as half a
minimax problem. [230, §36] [46, §5.4] Given any real function f(x, z)

minimize
x

maximize
z

f(x, z) ≥ maximize
z

minimize
x

f(x, z) (261)

always holds. When

minimize
x

maximize
z

f(x, z) = maximize
z

minimize
x

f(x, z) (262)

we have strong duality and then a saddle value [104] exists. (Figure 45)
[227, p.3] Consider primal conic problem (p) and its corresponding dual
problem (d): [217, §3.3.1] [175, §2.1] given vectors α , β and matrix
constant C

(p)

minimize
x

αTx

subject to x ∈ K
Cx = β

maximize
y , z

βTz

subject to y ∈ K∗

CTz + y = α

(d) (263)

Observe the dual problem is also conic, and its objective function value never
exceeds that of the primal;

αTx ≥ βTz

xT(CTz + y) ≥ (Cx)T z

xTy ≥ 0

(264)

which holds by definition (258). Under the sufficient condition: (263p) is
a convex problem and satisfies Slater’s condition,2.46 then each problem (p)
and (d) attains the same optimal value of its objective and each problem
is called a strong dual to the other because the duality gap (primal−dual
objective difference) is 0. Then (p) and (d) are together equivalent to the
minimax problem

minimize
x,y,z

αTx− βTz

subject to x ∈ K , y ∈ K∗

Cx= β , CTz + y = α

(p)−(d) (265)

2.46A convex problem, essentially, has convex objective function optimized over a convex
set. (§4) In this context, (p) is convex if K is a convex cone. Slater’s condition is satisfied
whenever any primal strictly feasible point exists. (p.235)
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whose optimal objective always has the saddle value 0 (regardless of the
particular convex cone K and other problem parameters). [269, §3.2] Thus
determination of convergence for either primal or dual problem is facilitated.

2

2.13.1.1 Key properties of dual cone� For any cone, (−K)
∗

= −K∗� For any cones K1 and K2 , K1 ⊆ K2 ⇒ K∗1 ⊇ K
∗
2 [247, §2.7]� (Cartesian product) For closed convex cones K1 and K2 , their

Cartesian product K = K1 × K2 is a closed convex cone, and

K∗= K∗1 × K
∗
2 (266)� (conjugation) [230, §14] [73, §4.5] When K is any convex cone, the dual

of the dual cone is the closure of the original cone; K∗∗= K . Because
K∗∗∗= K∗

K∗= (K)
∗

(267)

When K is closed and convex, then the dual of the dual cone is the
original cone; K∗∗= K .� If any cone K has nonempty interior, then K∗ is pointed;

K nonempty interior ⇒ K∗ pointed (268)

Conversely, if the closure of any convex cone K is pointed, then K∗ has
nonempty interior;

K pointed ⇒ K∗ nonempty interior (269)

Given that a cone K⊂Rn is closed and convex, K is pointed if
and only if K∗−K∗= Rn ; id est, iff K∗ has nonempty interior.
[41, §3.3, exer.20]� (vector sum) [230, thm.3.8] For convex cones K1 and K2

K1 + K2 = conv(K1 ∪ K2) (270)



142 CHAPTER 2. CONVEX GEOMETRY� (dual vector-sum) [230, §16.4.2] [73, §4.6] For convex cones K1 and K2

K∗1 ∩ K
∗
2 = (K1 + K2)

∗
= (K1 ∪ K2)

∗
(271)

(closure of vector sum of duals)2.47 For closed convex cones K1 and K2

(K1 ∩ K2)
∗

= K∗1 + K∗2 = conv(K∗1 ∪ K
∗
2) (272)

where closure becomes superfluous under the condition K1 ∩ intK2 6= ∅
[41, §3.3, exer.16, §4.1, exer.7].� (Krein-Rutman) For closed convex cones K1⊆ Rm and K2⊆Rn

and any linear map A : Rn→Rm, then provided intK1 ∩ AK2 6= ∅
[41, §3.3.13, confer §4.1, exer.9]

(A−1K1 ∩ K2)
∗

= ATK∗1 + K∗2 (273)

where the dual of cone K1 is with respect to its ambient space Rm and
the dual of cone K2 is with respect to Rn, where A−1K1 denotes the
inverse image (§2.1.9.0.1) of K1 under mapping A , and where AT

denotes the adjoint operation.� K is proper if and only if K∗ is proper.� K is polyhedral if and only if K∗ is polyhedral. [247, §2.8]� K is simplicial if and only if K∗ is simplicial. (§2.13.9.2) A simplicial
cone and its dual are polyhedral proper cones (Figure 50, Figure 41),
but not the converse.� K ⊞−K∗= Rn ⇔ K is closed and convex. (1792) (p.676)� Any direction in a proper cone K is normal to a hyperplane separating
K from −K∗.

2.47These parallel analogous results for subspaces R1 ,R2⊆Rn ; [73, §4.6]

(R1+R2)
⊥ = R⊥1 ∩R⊥2

(R1∩R2)
⊥ = R⊥1 +R⊥2

R⊥⊥=R for any subspace R .
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K∗

K

0

K∗

K
0

R3

R2

Figure 46: When convex cone K is any one Cartesian axis, its dual cone
is the convex hull of all axes remaining. In R3, dual cone K∗ (drawn tiled
and truncated) is a hyperplane through origin; its normal belongs to line K .
In R2, dual cone K∗ is a line through origin while convex cone K is that line
orthogonal.
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2.13.1.2 Examples of dual cone

When K is Rn, K∗ is the point at the origin, and vice versa.
When K is a subspace, K∗ is its orthogonal complement, and vice versa.

(§E.9.2.1, Figure 46)
When cone K is a halfspace in Rn with n> 0 (Figure 44 for example),

the dual cone K∗ is a ray (base 0) belonging to that halfspace but orthogonal
to its bounding hyperplane (that contains the origin), and vice versa.

When convex cone K is a closed halfplane in R3 (Figure 47), it is neither
pointed or of nonempty interior; hence, the dual cone K∗ can be neither of
nonempty interior or pointed.

When K is any particular orthant in Rn, the dual cone is identical; id est,
K=K∗.

When K is any quadrant in subspace R2, K∗ is a wedge-shaped polyhedral

cone in R3; e.g., for K equal to quadrant I , K∗=
[

R2

+

R

]

.

When K is a polyhedral flavor of the Lorentz cone Kℓ (247), the dual is
the polyhedral proper cone Kq : for ℓ=1 or ∞

Kq = K∗ℓ =

{[

x
t

]

∈ Rn× R | ‖x‖q ≤ t

}

(274)

where ‖x‖q is the dual norm determined via solution to 1/ℓ+ 1/q = 1.

2.13.2 Abstractions of Farkas’ lemma

2.13.2.0.1 Corollary. Generalized inequality and membership relation.
[148, §A.4.2] Let K be any closed convex cone and K∗ its dual, and let x
and y belong to a vector space Rn. Then

y ∈ K∗ ⇔ 〈y , x〉 ≥ 0 for all x ∈ K (275)

which is, merely, a statement of fact by definition of dual cone (258). By
closure we have conjugation:

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗ (276)

which may be regarded as a simple translation of the Farkas lemma [89] as
in [230, §22] to the language of convex cones, and a generalization of the
well-known Cartesian fact

x � 0 ⇔ 〈y , x〉 ≥ 0 for all y � 0 (277)
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K

K∗

Figure 47: K and K∗ are halfplanes in R3 ; blades. Both semi-infinite convex
cones appear truncated. Each cone is like K in Figure 44, but embedded in
a two-dimensional subspace of R3. Cartesian coordinate axes drawn for
reference.
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for which implicitly K = K∗= Rn
+ the nonnegative orthant.

Membership relation (276) is often written instead as dual generalized
inequalities, when K and K∗ are pointed closed convex cones,

x �
K

0 ⇔ 〈y , x〉 ≥ 0 for all y �
K∗

0 (278)

meaning, coordinates for biorthogonal expansion of x (§2.13.8) [275] must
be nonnegative when x belongs to K . By conjugation [230, thm.14.1]

y �
K∗

0 ⇔ 〈y , x〉 ≥ 0 for all x �
K

0 (279)

⋄

When pointed closed convex cone K is not polyhedral, coordinate axes
for biorthogonal expansion asserted by the corollary are taken from extreme
directions of K ; expansion is assured by Carathéodory’s theorem (§E.6.4.1.1).

We presume, throughout, the obvious:

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗ (276)
⇔

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗ , ‖y‖= 1

(280)

2.13.2.0.2 Exercise. Test of dual generalized inequalities.
Test Corollary 2.13.2.0.1 and (280) graphically on the two-dimensional
polyhedral cone and its dual in Figure 43. H

When pointed closed convex cone K is implicit from context:
(confer §2.7.2.2)

x � 0 ⇔ x ∈ K
x ≻ 0 ⇔ x ∈ rel intK

(281)

Strict inequality x ≻ 0 means coordinates for biorthogonal expansion of x
must be positive when x belongs to rel intK . Strict membership relations
are useful; e.g., for any proper cone K and its dual K∗

x ∈ intK ⇔ 〈y , x〉 > 0 for all y ∈ K∗, y 6= 0 (282)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ intK∗ (283)
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By conjugation, we also have the dual relations:

y ∈ intK∗ ⇔ 〈y , x〉 > 0 for all x ∈ K , x 6= 0 (284)

y ∈ K∗, y 6= 0 ⇔ 〈y , x〉 > 0 for all x ∈ intK (285)

Boundary-membership relations for proper cones are also useful:

x ∈ ∂K ⇔ ∃ y � 〈y , x〉 = 0 , y ∈ K∗, y 6= 0 , x ∈ K (286)

y ∈ ∂K∗ ⇔ ∃ x � 〈y , x〉 = 0 , x ∈ K , x 6= 0 , y ∈ K∗ (287)

2.13.2.0.3 Example. Linear inequality. [254, §4]
(confer §2.13.5.1.1) Consider a given matrix A and closed convex cone K .
By membership relation we have

Ay ∈ K∗ ⇔ xTAy≥ 0 ∀x ∈ K
⇔ yTz≥ 0 ∀ z ∈ {ATx | x ∈ K}
⇔ y ∈ {ATx | x ∈ K}∗

(288)

This implies
{y | Ay ∈ K∗} = {ATx | x ∈ K}∗ (289)

If we regard A as a linear operator, then AT is its adjoint. When, for
example, K is the self-dual nonnegative orthant, (§2.13.5.1) then

{y | Ay � 0} = {ATx | x � 0}∗ (290)

2

2.13.2.1 Null certificate, Theorem of the alternative

If in particular xp /∈K a closed convex cone, then the construction
in Figure 42(b) suggests there exists a supporting hyperplane (having
inward-normal belonging to dual cone K∗) separating xp from K ; indeed,
(276)

xp /∈ K ⇔ ∃ y ∈ K∗ � 〈y , xp〉 < 0 (291)

The existence of any one such y is a certificate of null membership. From a
different perspective,

xp ∈ K
or in the alternative

∃ y ∈ K∗ � 〈y , xp〉 < 0

(292)
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By alternative is meant: these two systems are incompatible; one system is
feasible while the other is not.

2.13.2.1.1 Example. Theorem of the alternative for linear inequality.
Myriad alternative systems of linear inequality can be explained in terms of
pointed closed convex cones and their duals.

Beginning from the simplest Cartesian dual generalized inequalities (277)
(with respect to the nonnegative orthant Rm

+ ),

y � 0 ⇔ xTy ≥ 0 for all x � 0 (293)

Given A∈Rn×m, we make vector substitution ATy ← y

ATy � 0 ⇔ xTATy ≥ 0 for all x � 0 (294)

Introducing a new vector by calculating b
∆
=Ax we get

ATy � 0 ⇔ bTy ≥ 0 , b =Ax for all x � 0 (295)

By complementing sense of the scalar inequality:

ATy � 0

or in the alternative

bTy < 0 , ∃ b =Ax , x � 0

(296)

If one system has a solution, then the other does not; define a

convex cone K ∆
={y | ATy� 0} , then y ∈ K or in the alternative y /∈ K .

Scalar inequality bTy< 0 can be moved to the other side of the alternative,
but that requires some explanation: From the results of Example 2.13.2.0.3,
the dual cone is K∗={Ax | x� 0}. We have

y ∈ K ⇔ bTy ≥ 0 for all b ∈ K∗ (297)

ATy � 0 ⇔ bTy ≥ 0 for all b ∈ {Ax | x� 0} (298)

Given some b vector and y ∈ K , then bTy< 0 can only mean b /∈ K∗. An
alternative system is therefore simply b ∈ K∗ : [148, p.59] (Farkas/Tucker)

ATy � 0 , bTy < 0

or in the alternative

b =Ax , x � 0

(299)
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For another example, from membership relation (275) with affine
transformation of dual variable we may write: Given A∈Rn×m and b∈Rn

b− Ay ∈ K∗ ⇔ xT(b− Ay)≥ 0 ∀x ∈ K (300)

ATx=0 , b− Ay ∈ K∗ ⇒ xT b≥ 0 ∀x ∈ K (301)

From membership relation (300), conversely, suppose we allow any y∈Rm.
Then because −xTAy is unbounded below, xT(b−Ay)≥ 0 implies ATx=0 :
for y∈Rm

ATx=0 , b− Ay ∈ K∗ ⇐ xT(b− Ay)≥ 0 ∀x ∈ K (302)

In toto,
b− Ay ∈ K∗ ⇔ xT b≥ 0 , ATx=0 ∀x ∈ K (303)

Vector x belongs to cone K but is also constrained to lie in a subspace
of Rn specified by an intersection of hyperplanes through the origin
{x∈Rn |ATx=0}. From this, alternative systems of generalized inequality
with respect to pointed closed convex cones K and K∗

Ay �
K∗

b

or in the alternative

xT b < 0 , ATx=0 , x �
K

0

(304)

derived from (303) simply by taking the complementary sense of the
inequality in xT b . These two systems are alternatives; if one system has
a solution, then the other does not.2.48 [230, p.201]

By invoking a strict membership relation between proper cones (282),
we can construct a more exotic alternative strengthened by demand for an
interior point;

2.48If solutions at ±∞ are disallowed, then the alternative systems become instead
mutually exclusive with respect to nonpolyhedral cones. Simultaneous infeasibility of
the two systems is not precluded by mutual exclusivity; called a weak alternative.

Ye provides an example illustrating simultaneous infeasibility with respect to the positive

semidefinite cone: x∈S2, y∈R , A =

[

1 0
0 0

]

, and b =

[

0 1
1 0

]

where xT b means

〈x , b〉 . A better strategy than disallowing solutions at ±∞ is to demand an interior
point as in (306) or Lemma 4.2.1.1.2. Then question of simultaneous infeasibility is moot.
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b− Ay ≻
K∗

0 ⇔ xT b > 0 , ATx=0 ∀x �
K

0 , x 6= 0 (305)

From this, alternative systems of generalized inequality [46, pages:50,54,262]

Ay ≺
K∗

b

or in the alternative

xT b≤ 0 , ATx=0 , x �
K

0 , x 6= 0

(306)

derived from (305) by taking the complementary sense of the inequality
in xT b .

And from this, alternative systems with respect to the nonnegative
orthant attributed to Gordan in 1873: [111] [41, §2.2] substituting A←AT

and setting b= 0

ATy ≺ 0

or in the alternative

Ax= 0 , x � 0 , ‖x‖1 = 1

(307)

2

2.13.3 Optimality condition

The general first-order necessary and sufficient condition for optimality
of solution x⋆ to a minimization problem ((263p) for example) with
real differentiable convex objective function f(x) : Rn→R is [229, §3]
(confer §2.13.10.1) (Figure 53)

∇f(x⋆)T (x− x⋆) ≥ 0 ∀x ∈ C , x⋆∈ C (308)

where C is the feasible set, a convex set of all variable values satisfying the
problem constraints, and where ∇f(x⋆) is the gradient of f (§3.1.8) with
respect to x evaluated at x⋆.
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2.13.3.0.1 Example. Equality constrained problem.
Given a real differentiable convex function f(x) : Rn→R defined on
domain Rn, a fat full-rank matrix C∈Rp×n, and vector d∈Rp, the convex
optimization problem

minimize
x

f(x)

subject to Cx = d
(309)

is characterized by the well-known necessary and sufficient optimality
condition [46, §4.2.3]

∇f(x⋆) + CTν = 0 (310)

where ν∈Rp is the eminent Lagrange multiplier. [228] Feasible solution x⋆

is optimal, in other words, if and only if ∇f(x⋆) belongs to R(CT ). Via
membership relation, we now derive this particular condition from the general
first-order condition for optimality (308):

In this case, the feasible set is

C ∆
= {x∈Rn | Cx= d} = {Zξ + xp | ξ∈Rn−rank C} (311)

where Z∈Rn×n−rank C holds basisN (C) columnar, and xp is any particular
solution to Cx= d . Since x⋆∈ C , we arbitrarily choose xp = x⋆ which
yields the equivalent optimality condition

∇f(x⋆)TZξ ≥ 0 ∀ ξ∈Rn−rank C (312)

But this is simply half of a membership relation, and the cone dual to
Rn−rank C is the origin in Rn−rank C . We must therefore have

ZT∇f(x⋆) = 0 ⇔ ∇f(x⋆)TZξ ≥ 0 ∀ ξ∈Rn−rank C (313)

meaning, ∇f(x⋆) must be orthogonal to N (C). This condition

ZT∇f(x⋆) = 0 , x⋆∈ C (314)

is necessary and sufficient for optimality of x⋆. 2
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2.13.4 Discretization of membership relation

2.13.4.1 Dual halfspace-description

Halfspace-description of the dual cone is equally simple (and extensible
to an infinite number of generators) as vertex-description (252) for the
corresponding closed convex cone: By definition (258), for X∈ Rn×N as in
(240), (confer (246))

K∗ =
{

y ∈Rn | zTy ≥ 0 for all z ∈ K
}

=
{

y ∈Rn | zTy ≥ 0 for all z=Xa , a � 0
}

=
{

y ∈Rn | aTXTy ≥ 0 , a � 0
}

=
{

y ∈Rn | XTy � 0
}

(315)

that follows from the generalized inequality and membership corollary (277).
The semi-infinity of tests specified by all z ∈ K has been reduced to a set
of generators for K constituting the columns of X ; id est, the test has been
discretized.

Whenever K is known to be closed and convex, then the converse must
also hold; id est, given any set of generators for K∗ arranged columnar
in Y , then the consequent vertex-description of the dual cone connotes a
halfspace-description for K : [247, §2.8]

K∗= {Y a | a � 0} ⇔ K∗∗= K =
{

z | Y Tz � 0
}

(316)

2.13.4.2 First dual-cone formula

From these two results (315) and (316) we deduce a general principle:� From any given vertex-description of a convex cone K , a
halfspace-description of the dual cone K∗ is immediate by matrix
transposition; conversely, from any given halfspace-description, a dual
vertex-description is immediate.

Various other converses are just a little trickier. (§2.13.9)
We deduce further: For any polyhedral cone K , the dual cone K∗ is also

polyhedral and K∗∗= K . [247, §2.8]
The generalized inequality and membership corollary is discretized in the

following theorem [18, §1]2.49 that follows directly from (315) and (316):

2.49Barker & Carlson state the theorem only for the pointed closed convex case.
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2.13.4.2.1 Theorem. Discrete membership. (confer §2.13.2.0.1)
Given any set of generators (§2.8.1.2) denoted by G(K) for closed convex
cone K⊆Rn and any set of generators denoted G(K∗) for its dual, let x
and y belong to vector space Rn. Then discretization of the generalized
inequality and membership corollary is necessary and sufficient for certifying
membership:

x ∈ K ⇔ 〈γ∗, x〉 ≥ 0 for all γ∗ ∈ G(K∗) (317)

y ∈ K∗ ⇔ 〈γ , y〉 ≥ 0 for all γ ∈ G(K) (318)
⋄

2.13.4.2.2 Exercise. Test of discretized dual generalized inequalities.
Test Theorem 2.13.4.2.1 on Figure 43(a) using the extreme directions as
generators. H

From the discrete membership theorem we may further deduce a more
surgical description of dual cone that prescribes only a finite number of
halfspaces for its construction when polyhedral: (Figure 42(a))

K∗= {y ∈Rn | 〈γ , y〉 ≥ 0 for all γ ∈ G(K)} (319)

2.13.4.2.3 Exercise. Comparison with respect to orthant.
When comparison is with respect to the nonnegative orthant K= Rn

+ , then
from the discrete membership theorem it directly follows:

x � z ⇔ xi ≤ zi ∀ i (320)

Generate simple counterexamples demonstrating that this equivalence with
entrywise inequality holds only when the underlying cone inducing partial
order is the nonnegative orthant. H

2.13.5 Dual PSD cone and generalized inequality

The dual positive semidefinite cone K∗ is confined to SM by convention;

SM ∗
+

∆
= {Y ∈ SM | 〈Y , X 〉 ≥ 0 for all X∈ SM

+ } = SM
+ (321)

The positive semidefinite cone is self-dual in the ambient space of symmetric
matrices [46, exmp.2.24] [28] [145, §II]; K=K∗ .
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Dual generalized inequalities with respect to the positive semidefinite cone
in the ambient space of symmetric matrices can therefore be simply stated:
(Fejér)

X � 0 ⇔ tr(Y TX) ≥ 0 for all Y � 0 (322)

Membership to this cone can be determined in the isometrically isomorphic
Euclidean space RM 2

via (31). (§2.2.1) By the two interpretations in §2.13.1,
positive semidefinite matrix Y can be interpreted as inward-normal to a
hyperplane supporting the positive semidefinite cone.

The fundamental statement of positive semidefiniteness, yTXy≥0 ∀ y
(§A.3.0.0.1), evokes a particular instance of these dual generalized
inequalities (322):

X � 0 ⇔ 〈yyT , X 〉 ≥ 0 ∀ yyT(� 0) (1245)

Discretization (§2.13.4.2.1) allows replacement of positive semidefinite
matrices Y with this minimal set of generators comprising the extreme
directions of the positive semidefinite cone (§2.9.2.4).

2.13.5.1 self-dual cones

From (110) (a consequence of the halfspaces theorem (§2.4.1.1.1)), where the
only finite value of the support function for a convex cone is 0 [148, §C.2.3.1],
or from discretized definition (319) of the dual cone we get a rather
self-evident characterization of self-duality:

K = K∗ ⇔ K =
⋂

γ∈G(K)

{

y | γTy ≥ 0
}

(323)

In words: Cone K is self-dual iff its own extreme directions are
inward-normals to a (minimal) set of hyperplanes bounding halfspaces whose
intersection constructs it. This means each extreme direction of K is normal
to a hyperplane exposing one of its own faces; a necessary but insufficient
condition for self-duality (Figure 48, for example).

Self-dual cones are of necessarily nonempty interior [25, §I] and invariant
to rotation about the origin. Their most prominent representatives are the
orthants, the positive semidefinite cone SM

+ in the ambient space of symmetric
matrices (321), and the Lorentz cone (147) [17, §II.A] [46, exmp.2.25]. In
three dimensions, a plane containing the axis of revolution of a self-dual cone
(and the origin) will produce a slice whose boundary makes a right angle.
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K
0 ∂K∗

K

∂K∗

(a)

(b)

Figure 48: Two (truncated) views of a polyhedral cone K and its dual in R3.
Each of four extreme directions from K belongs to a face of dual cone K∗.
Shrouded (inside) cone K is symmetrical about its axis of revolution. Each
pair of diametrically opposed extreme directions from K makes a right angle.
An orthant (or any rotation thereof; a simplicial cone) is not the only self-dual
polyhedral cone in three or more dimensions; [17, §2.A.21] e.g., consider an
equilateral with five extreme directions. In fact, every self-dual polyhedral
cone in R3 has an odd number of extreme directions. [19, thm.3]
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2.13.5.1.1 Example. Linear matrix inequality. (confer §2.13.2.0.3)
Consider a peculiar vertex-description for a closed convex cone defined over
the positive semidefinite cone (instead of the nonnegative orthant as in
definition (83)): for X∈ Sn given Aj∈ Sn, j=1 . . . m

K =











〈A1 , X 〉
...

〈Am , X 〉



 | X� 0







⊆ Rm

=











svec(A1)
T

...
svec(Am)T



svecX | X� 0







∆
= {A svecX | X� 0}

(324)

where A∈Rm×n(n+1)/2, and where symmetric vectorization svec is defined
in (47). K is indeed a convex cone because by (144)

A svecXp1 , A svecXp2∈ K ⇒ A(ζ svecXp1+ξ svecXp2) ∈ K for all ζ , ξ ≥ 0
(325)

since a nonnegatively weighted sum of positive semidefinite matrices must be
positive semidefinite. (§A.3.1.0.2) Although matrix A is finite-dimensional,
K is generally not a polyhedral cone (unless m equals 1 or 2) because
X∈ Sn

+ . Provided the Aj matrices are linearly independent, then

rel intK = intK (326)

meaning, the cone interior is nonempty implying the dual cone is pointed
by (268).

If matrix A has no nullspace, on the other hand, then (by §2.10.1.1 and
Definition 2.2.1.0.1) A svecX is an isomorphism in X between the positive
semidefinite cone and R(A). In that case, convex cone K has relative
interior

rel intK = {A svecX | X≻ 0} (327)

and boundary

rel ∂K = {A svecX | X� 0 , X⊁ 0} (328)
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Now consider the (closed convex) dual cone:

K∗ = {y | 〈A svecX , y〉 ≥ 0 for all X� 0} ⊆ Rm

=
{

y | 〈svecX , ATy〉 ≥ 0 for all X� 0
}

=
{

y | svec−1(ATy) � 0
}

(329)

that follows from (322) and leads to an equally peculiar halfspace-description

K∗= {y∈Rm |
m
∑

j=1

yjAj � 0} (330)

The summation inequality with respect to the positive semidefinite cone is
known as a linear matrix inequality. [44] [102] [192] [272]

When the Aj matrices are linearly independent, function g(y)
∆
=
∑

yjAj

on Rm is a linear bijection. The inverse image of the positive semidefinite
cone under g(y) must therefore have dimension m . In that circumstance,
the dual cone interior is nonempty

intK∗= {y∈Rm |
m
∑

j=1

yjAj ≻ 0} (331)

having boundary

∂K∗= {y∈Rm |
m
∑

j=1

yjAj � 0 ,
m
∑

j=1

yjAj ⊁ 0} (332)

2

2.13.6 Dual of pointed polyhedral cone

In a subspace of Rn, now we consider a pointed polyhedral cone K given in
terms of its extreme directions Γi arranged columnar in X ;

X = [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (240)

The extremes theorem (§2.8.1.1.1) provides the vertex-description of a
pointed polyhedral cone in terms of its finite number of extreme directions
and its lone vertex at the origin:
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2.13.6.0.1 Definition. Pointed polyhedral cone, vertex-description.
(encore) (confer (252) (157)) Given pointed polyhedral cone K in a subspace
of Rn, denoting its ith extreme direction by Γi∈Rn arranged in a matrix X
as in (240), then that cone may be described: (75) (confer (253))

K =
{

[0 X ] a ζ | aT1 = 1, a � 0, ζ ≥ 0
}

=
{

Xaζ | aT1 ≤ 1, a � 0, ζ ≥ 0
}

=
{

Xb | b � 0
}

⊆ Rn
(333)

that is simply a conic hull (like (83)) of a finite number N of directions.
△

Whenever coneK is pointed closed and convex (not only polyhedral), then
dual cone K∗ has a halfspace-description in terms of the extreme directions
Γi of K :

K∗=
{

y | γTy ≥ 0 for all γ ∈ {Γi , i=1 . . . N} ⊆ rel ∂K
}

(334)

because when {Γi} constitutes any set of generators for K , the discretization
result in §2.13.4.1 allows relaxation of the requirement ∀x∈K in (258) to
∀ γ∈{Γi} directly.2.50 That dual cone so defined is unique, identical to (258),
polyhedral whenever the number of generators N is finite

K∗=
{

y | XTy � 0
}

⊆ Rn (315)

and has nonempty interior because K is assumed pointed (but K∗ is not
necessarily pointed unless K has nonempty interior (§2.13.1.1)).

2.13.6.1 Facet normal & extreme direction

We see from (315) that the conically independent generators of cone K
(namely, the extreme directions of pointed closed convex cone K constituting
the columns of X) each define an inward-normal to a hyperplane supporting
K∗ (§2.4.2.6.1) and exposing a dual facet when N is finite. Were K∗
pointed and finitely generated, then by conjugation the dual statement
would also hold; id est, the extreme directions of pointed K∗ each define
an inward-normal to a hyperplane supporting K and exposing a facet when
N is finite. Examine Figure 43 or Figure 48, for example.

2.50The extreme directions of K constitute a minimal set of generators.
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We may conclude the extreme directions of polyhedral proper K are
respectively orthogonal to the facets of K∗ ; likewise, the extreme directions
of polyhedral proper K∗ are respectively orthogonal to the facets of K .

2.13.7 Biorthogonal expansion by example

2.13.7.0.1 Example. Relationship to dual polyhedral cone.
Simplicial cone K illustrated in Figure 49 induces a partial order on R2. All
points greater than x with respect to K , for example, are contained in the
translated cone x+K . The extreme directions Γ1 and Γ2 of K do not
make an orthogonal set; neither do extreme directions Γ3 and Γ4 of dual
cone K∗ ; rather, we have the biorthogonality condition, [275]

ΓT
4 Γ1 = ΓT

3 Γ2 = 0

ΓT
3 Γ1 6= 0 , ΓT

4 Γ2 6= 0
(335)

Biorthogonal expansion of x ∈K is then

x = Γ1
ΓT

3 x

ΓT
3 Γ1

+ Γ2
ΓT

4 x

ΓT
4 Γ2

(336)

where ΓT
3 x/(Γ

T
3 Γ1) is the nonnegative coefficient of nonorthogonal projection

(§E.6.1) of x on Γ1 in the direction orthogonal to Γ3 , and where
ΓT

4 x/(Γ
T
4 Γ2) is the nonnegative coefficient of nonorthogonal projection of

x on Γ2 in the direction orthogonal to Γ4 ; they are coordinates in this
nonorthogonal system. Those coefficients must be nonnegative x �K 0
because x ∈K (281) and K is simplicial.

If we ascribe the extreme directions of K to the columns of a matrix

X
∆
= [ Γ1 Γ2 ] (337)

then we find that the pseudoinverse transpose matrix

X†T =

[

Γ3
1

ΓT
3 Γ1

Γ4
1

ΓT
4 Γ2

]

(338)

holds the extreme directions of the dual cone. Therefore,

x = XX†x (344)
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x

y

z

w

w +K

0
Γ1 ⊥ Γ4

Γ2 ⊥ Γ3

Γ1

Γ2

Γ3

Γ4

K

K∗

K∗

Figure 49: (confer Figure 119) Simplicial cone K in R2 and its dual K∗
drawn truncated. Conically independent generators Γ1 and Γ2 constitute
extreme directions of K while Γ3 and Γ4 constitute extreme directions of K∗.
Dotted ray-pairs bound translated cones K . Point x is comparable to point
z (and vice versa) but not to y ; z � x ⇔ z − x ∈K ⇔ z − x �K 0 iff ∃
nonnegative coordinates for biorthogonal expansion of z − x . Point y is not
comparable to z because z does not belong to y ±K . Flipping a translated
cone is quite helpful for visualization: x � z ⇔ x ∈ z −K ⇔ x− z �K 0.
Points need not belong to K to be comparable; e.g., all points greater than w
belong to w +K .
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is the biorthogonal expansion (336) (§E.0.1), and the biorthogonality
condition (335) can be expressed succinctly (§E.1.1)2.51

X†X = I (345)

Expansion w=XX†w for any w ∈R2 is unique if and only if the extreme
directions of K are linearly independent; id est, iff X has no nullspace.

2

2.13.7.1 Pointed cones and biorthogonality

Biorthogonality condition X†X= I from Example 2.13.7.0.1 means Γ1 and
Γ2 are linearly independent generators of K (§B.1.1.1); generators because
every x∈K is their conic combination. From §2.10.2 we know that means
Γ1 and Γ2 must be extreme directions of K .

A biorthogonal expansion is necessarily associated with a pointed closed
convex cone; pointed, otherwise there can be no extreme directions (§2.8.1).
We will address biorthogonal expansion with respect to a pointed polyhedral
cone having empty interior in §2.13.8.

2.13.7.1.1 Example. Expansions implied by diagonalization.
(confer §6.5.3.1.1) When matrix X∈RM×M is diagonalizable (§A.5),

X = SΛS−1 = [ s1 · · · sM ] Λ





wT
1...

wT
M



 =
M
∑

i=1

λi siw
T
i (1339)

coordinates for biorthogonal expansion are its eigenvalues λi (contained in
diagonal matrix Λ) when expanded in S ;

X = SS−1X = [ s1 · · · sM ]





wT
1 X...

wT
MX



 =
M
∑

i=1

λi siw
T
i (339)

Coordinate value depend upon the geometric relationship of X to its linearly
independent eigenmatrices siw

T
i . (§A.5.1, §B.1.1)

2.51Possibly confusing is the fact that formula XX†x is simultaneously the orthogonal
projection of x on R(X) (1678), and a sum of nonorthogonal projections of x∈R(X) on
the range of each and every column of full-rank X skinny-or-square (§E.5.0.0.2).
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T
i are linearly independent dyads constituted by right

and left eigenvectors of diagonalizable X and are generators of some
pointed polyhedral cone K in a subspace of RM×M .

When S is real and X belongs to that polyhedral cone K , for example,
then coordinates of expansion (the eigenvalues λi ) must be nonnegative.

When X=QΛQT is symmetric, coordinates for biorthogonal expansion
are its eigenvalues when expanded in Q ; id est, for X∈ SM

X = QQTX =
M
∑

i=1

qi q
T
i X =

M
∑

i=1

λi qiq
T
i ∈ SM (340)

becomes an orthogonal expansion with orthonormality condition QTQ=I
where λi is the ith eigenvalue of X , qi is the corresponding ith eigenvector
arranged columnar in orthogonal matrix

Q = [ q1 q2 · · · qM ] ∈ RM×M (341)

and where eigenmatrix qiq
T
i is an extreme direction of some pointed

polyhedral cone K⊂ SM and an extreme direction of the positive semidefinite
cone SM

+ .� Orthogonal expansion is a special case of biorthogonal expansion of
X∈ aff K occurring when polyhedral cone K is any rotation about the
origin of an orthant belonging to a subspace.

Similarly, when X=QΛQT belongs to the positive semidefinite cone in
the subspace of symmetric matrices, coordinates for orthogonal expansion
must be its nonnegative eigenvalues (1253) when expanded in Q ; id est, for
X∈ SM

+

X = QQTX =
M
∑

i=1

qi q
T
i X =

M
∑

i=1

λi qiq
T
i ∈ SM

+ (342)

where λi≥ 0 is the ith eigenvalue of X . This means X simultaneously
belongs to the positive semidefinite cone and to the pointed polyhedral cone
K formed by the conic hull of its eigenmatrices. 2
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2.13.7.1.2 Example. Expansion respecting nonpositive orthant.
Suppose x ∈ K any orthant in Rn .2.52 Then coordinates for biorthogonal
expansion of x must be nonnegative; in fact, absolute value of the Cartesian
coordinates.

Suppose, in particular, x belongs to the nonpositive orthant K = Rn
− .

Then the biorthogonal expansion becomes an orthogonal expansion

x = XXTx =
n
∑

i=1

−ei(−eT
i x) =

n
∑

i=1

−ei|eT
i x| ∈ Rn

− (343)

and the coordinates of expansion are nonnegative. For this orthant K we have
orthonormality condition XTX= I where X=−I , ei∈Rn is a standard
basis vector, and −ei is an extreme direction (§2.8.1) of K .

Of course, this expansion x=XXTx applies more broadly to domain Rn,
but then the coordinates each belong to all of R . 2

2.13.8 Biorthogonal expansion, derivation

Biorthogonal expansion is a means for determining coordinates in a pointed
conic coordinate system characterized by a nonorthogonal basis. Study
of nonorthogonal bases invokes pointed polyhedral cones and their duals;
extreme directions of a cone K are assumed to constitute the basis while
those of the dual cone K∗ determine coordinates.

Unique biorthogonal expansion with respect to K depends upon existence
of its linearly independent extreme directions: Polyhedral cone K must be
pointed; then it possesses extreme directions. Those extreme directions must
be linearly independent to uniquely represent any point in their span.

We consider nonempty pointed polyhedral cone K having possibly empty
interior; id est, we consider a basis spanning a subspace. Then we need
only observe that section of dual cone K∗ in the affine hull of K because, by
expansion of x , membership x∈ aff K is implicit and because any breach
of the ordinary dual cone into ambient space becomes irrelevant (§2.13.9.3).
Biorthogonal expansion

x = XX†x ∈ aff K = aff cone(X) (344)

is expressed in the extreme directions {Γi} of K arranged columnar in

X = [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (240)

2.52An orthant is simplicial and self-dual.
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under assumption of biorthogonality

X†X = I (345)

where † denotes matrix pseudoinverse (§E). We therefore seek, in this
section, a vertex-description for K∗∩ aff K in terms of linearly independent
dual generators {Γ∗i }⊂ aff K in the same finite quantity2.53 as the extreme
directions {Γi} of

K = cone(X) = {Xa | a � 0} ⊆ Rn (252)

We assume the quantity of extreme directions N does not exceed the
dimension n of ambient vector space because, otherwise, the expansion could
not be unique; id est, assume N linearly independent extreme directions
hence N≤ n (X skinny2.54-or-square full-rank). In other words, fat full-rank
matrix X is prohibited by uniqueness because of the existence of an infinity
of right-inverses;� polyhedral cones whose extreme directions number in excess of the

ambient space dimension are precluded in biorthogonal expansion.

2.13.8.1 x ∈ K

Suppose x belongs to K⊆Rn. Then x=Xa for some a�0. Vector a is
unique only when {Γi} is a linearly independent set.2.55 Vector a∈RN can
take the form a=Bx if R(B)= RN . Then we require Xa=XBx= x and
Bx=BXa= a . The pseudoinverse B=X†∈RN×n (§E) is suitable when X
is skinny-or-square and full-rank. In that case rankX=N , and for all c � 0
and i=1 . . . N

a � 0 ⇔ X†Xa � 0 ⇔ aTXTX†T c ≥ 0 ⇔ ΓT
i X

†Tc ≥ 0 (346)

The penultimate inequality follows from the generalized inequality and
membership corollary, while the last inequality is a consequence of that

2.53When K is contained in a proper subspace of Rn, the ordinary dual cone K∗ will have
more generators in any minimal set than K has extreme directions.
2.54“Skinny” meaning thin; more rows than columns.
2.55Conic independence alone (§2.10) is insufficient to guarantee uniqueness.
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corollary’s discretization (§2.13.4.2.1).2.56 From (346) and (334) we deduce

K∗∩ aff K = cone(X†T ) = {X†T c | c � 0} ⊆ Rn (347)

is the vertex-description for that section of K∗ in the affine hull of K because
R(X†T ) = R(X) by definition of the pseudoinverse. From (268), we know
K∗∩ aff K must be pointed if rel intK is logically assumed nonempty with
respect to aff K .

Conversely, suppose full-rank skinny-or-square matrix

X†T
∆
=
[

Γ
∗
1 Γ

∗
2 · · · Γ

∗
N

]

∈ Rn×N (348)

comprises the extreme directions {Γ∗i }⊂ aff K of the dual-cone intersection
with the affine hull of K .2.57 From the discrete membership theorem and
(272) we get a partial dual to (334); id est, assuming x∈ aff coneX

x ∈ K ⇔ γ∗Tx ≥ 0 for all γ∗∈
{

Γ
∗
i , i=1 . . . N

}

⊂ ∂K∗∩ aff K (349)

⇔ X†x � 0 (350)

that leads to a partial halfspace-description,

K =
{

x∈aff coneX | X†x � 0
}

(351)

For γ∗=X†T ei , any x=Xa , and for all i we have eT
iX
†Xa = eT

i a ≥ 0
only when a � 0. Hence x∈K .

2.56

a � 0 ⇔ aTXTX†T c ≥ 0 ∀ (c � 0 ⇔ aTXTX†T c ≥ 0 ∀ a � 0)
∀ (c � 0 ⇔ ΓT

i X
†Tc ≥ 0 ∀ i ) �

Intuitively, any nonnegative vector a is a conic combination of the standard basis
{ei∈RN}; a� 0 ⇔ ai ei�0 for all i . The last inequality in (346) is a consequence of the
fact that x=Xa may be any extreme direction of K , in which case a is a standard basis
vector; a= ei � 0. Theoretically, because c�0 defines a pointed polyhedral cone (in fact,
the nonnegative orthant in RN), we can take (346) one step further by discretizing c :

a � 0 ⇔ ΓT
i Γ
∗

j ≥ 0 for i, j=1 . . . N ⇔ X†X ≥ 0

In words, X†X must be a matrix whose entries are each nonnegative.
2.57When closed convex cone K has empty interior, K∗ has no extreme directions.
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When X is full-rank, then the unique biorthogonal expansion of x ∈ K
becomes (344)

x = XX†x =
N
∑

i=1

Γi Γ
∗T
i x (352)

whose coordinates Γ
∗T
i x must be nonnegative because K is assumed pointed

closed and convex. Whenever X is full-rank, so is its pseudoinverse X†.
(§E) In the present case, the columns of X†T are linearly independent and
generators of the dual cone K∗∩ aff K ; hence, the columns constitute its
extreme directions. (§2.10) That section of the dual cone is itself a polyhedral
cone (by (246) or the cone intersection theorem, §2.7.2.1.1) having the same
number of extreme directions as K .

2.13.8.2 x ∈ aff K
The extreme directions of K and K∗∩ aff K have a distinct relationship;
because X†X= I , then for i,j= 1 . . . N , ΓT

i Γ
∗
i = 1, while for i 6= j ,

ΓT
i Γ
∗
j = 0. Yet neither set of extreme directions, {Γi} nor {Γ∗i } , is

necessarily orthogonal. This is, precisely, a biorthogonality condition,
[275, §2.2.4] [150] implying each set of extreme directions is linearly
independent. (§B.1.1.1)

The biorthogonal expansion therefore applies more broadly; meaning,
for any x ∈ aff K , vector x can be uniquely expressed x=Xb where
b∈RN because aff K contains the origin. Thus, for any such x∈R(X)
(confer §E.1.1), biorthogonal expansion (352) becomes x=XX†Xb=Xb .

2.13.9 Formulae, algorithm finding dual cone

2.13.9.1 Pointed K , dual, X skinny-or-square full-rank

We wish to derive expressions for a convex cone and its ordinary dual
under the general assumptions: pointed polyhedral K denoted by its linearly
independent extreme directions arranged columnar in matrix X such that

rank(X∈ Rn×N) = N
∆
= dim aff K ≤ n (353)

The vertex-description is given:

K = {Xa | a � 0} ⊆ Rn (354)
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from which a halfspace-description for the dual cone follows directly:

K∗= {y∈Rn | XTy � 0} (355)

By defining a matrix

X⊥
∆
= basisN (XT ) (356)

(a columnar basis for the orthogonal complement of R(X)), we can say

aff coneX = aff K = {x | X⊥Tx = 0} (357)

meaning K lies in a subspace, perhaps Rn. Thus we have a
halfspace-description

K = {x∈Rn | X†x � 0 , X⊥Tx = 0} (358)

and from (272), a vertex-description2.58

K∗= { [X†T X⊥ −X⊥ ]b | b � 0 } ⊆ Rn (359)

These results are summarized for a pointed polyhedral cone, having
linearly independent generators, and its ordinary dual:

Cone Table 1 K K∗

vertex-description X X†T , ±X⊥
halfspace-description X† , X⊥T XT

2.13.9.2 Simplicial case

When a convex cone is simplicial (§2.12.3), Cone Table 1 simplifies because
then aff coneX= Rn : For square X and assuming simplicial K such that

rank(X∈ Rn×N) = N
∆
= dim aff K = n (360)

we have

Cone Table S K K∗

vertex-description X X†T

halfspace-description X† XT

2.58These descriptions are not unique. A vertex-description of the dual cone, for example,
might use four conically independent generators for a plane (§2.10.0.0.1) when only three
would suffice.
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For example, vertex-description (359) simplifies to

K∗ = {X†T b | b � 0} ⊂ Rn (361)

Now, because dimR(X)= dimR(X†T ) , (§E) the dual cone K∗ is simplicial
whenever K is.

2.13.9.3 Cone membership relations in a subspace

It is obvious by definition (258) of the ordinary dual coneK∗ in ambient vector
space R that its determination instead in subspace M⊆R is identical to
its intersection with M ; id est, assuming closed convex cone K⊆M and
K∗⊆R

(K∗ were ambientM) ≡ (K∗ in ambient R) ∩M (362)

because
{

y ∈M | 〈y , x〉 ≥ 0 for all x ∈ K
}

=
{

y ∈R | 〈y , x〉 ≥ 0 for all x ∈ K
}

∩ M
(363)

From this, a constrained membership relation for the ordinary dual cone
K∗⊆R , assuming x, y∈M and closed convex cone K⊆M

y ∈ K∗∩M ⇔ 〈y , x〉 ≥ 0 for all x ∈ K (364)

By closure in subspaceM we have conjugation (§2.13.1.1):

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗∩M (365)

This means membership determination in subspace M requires knowledge
of the dual cone only in M . For sake of completeness, for proper cone K
with respect to subspaceM (confer (282))

x ∈ intK ⇔ 〈y , x〉 > 0 for all y ∈ K∗∩M , y 6= 0 (366)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ intK∗∩M (367)

(By conjugation, we also have the dual relations.) Yet whenM equals aff K
for K a closed convex cone

x ∈ rel intK ⇔ 〈y , x〉 > 0 for all y ∈ K∗∩ aff K , y 6= 0 (368)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ rel int(K∗∩ aff K) (369)
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2.13.9.4 Subspace M = aff K
Assume now a subspaceM that is the affine hull of cone K : Consider again
a pointed polyhedral cone K denoted by its extreme directions arranged
columnar in matrix X such that

rank(X∈ Rn×N) = N
∆
= dim aff K ≤ n (353)

We want expressions for the convex cone and its dual in subspace M=aff K :

Cone Table A K K∗∩ aff K
vertex-description X X†T

halfspace-description X† , X⊥T XT , X⊥T

When dim aff K = n , this table reduces to Cone Table S. These descriptions
facilitate work in a proper subspace. The subspace of symmetric matrices
SN , for example, often serves as ambient space.2.59

2.13.9.4.1 Example. Monotone nonnegative cone.
[46, exer.2.33] [264, §2] Simplicial cone (§2.12.3.1.1) KM+ is the cone of all
nonnegative vectors having their entries sorted in nonincreasing order:

KM+
∆
= {x | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0} ⊆ Rn

+

= {x | (ei − ei+1)
Tx ≥ 0, i = 1 . . . n−1, eT

nx ≥ 0}
= {x | X†x � 0}

(370)

a halfspace-description where ei is the ith standard basis vector, and where

X†T
∆
= [ e1−e2 e2−e3 · · · en ] ∈ Rn×n (371)

(With X† in hand, we might concisely scribe the remaining vertex and
halfspace-descriptions from the tables for KM+ and its dual. Instead we use
dual generalized inequalities in their derivation.) For any vectors x and y ,
simple algebra demands

xTy =
n
∑

i=1

xi yi = (x1 − x2)y1 + (x2 − x3)(y1 + y2) + (x3 − x4)(y1 + y2 + y3) + · · ·

+ (xn−1 − xn)(y1 + · · ·+ yn−1) + xn(y1 + · · ·+ yn) (372)

2.59The dual cone of positive semidefinite matrices SN∗

+ = SN
+ remains in SN by convention,

whereas the ordinary dual cone would venture into RN×N .
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Figure 50: Simplicial cones. (a) Monotone nonnegative cone KM+ and its
dual K∗M+ (drawn truncated) in R2. (b) Monotone nonnegative cone and
boundary of its dual (both drawn truncated) in R3. Extreme directions of
K∗M+ are indicated.
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Because xi− xi+1 ≥ 0 ∀ i by assumption whenever x ∈KM+ , we can employ
dual generalized inequalities (279) with respect to the self-dual nonnegative
orthant Rn

+ to find the halfspace-description of the dual cone K∗M+ . We can
say xTy≥ 0 for all X†x� 0 [sic] if and only if

y1 ≥ 0 , y1 + y2 ≥ 0 , . . . , y1 + y2 + · · ·+ yn ≥ 0 (373)

id est,
xTy ≥ 0 ∀X†x � 0 ⇔ XTy � 0 (374)

where
X = [ e1 e1+ e2 e1+ e2+ e3 · · · 1 ] ∈ Rn×n (375)

Because X†x � 0 connotes membership of x to pointed KM+ , then by
(258) the dual cone we seek comprises all y for which (374) holds; thus its
halfspace-description

K∗M+ = {y �
K∗

M+

0} = {y | ∑k
i=1 yi ≥ 0 , k= 1 . . . n} = {y | XTy � 0} ⊂ Rn

(376)

The monotone nonnegative cone and its dual are simplicial, illustrated for
two Euclidean spaces in Figure 50.

From §2.13.6.1, the extreme directions of proper KM+ are respectively
orthogonal to the facets of K∗M+ . Because K∗M+ is simplicial, the
inward-normals to its facets constitute the linearly independent rows of XT

by (376). Hence the vertex-description for KM+ employs the columns of X
in agreement with Cone Table S because X†=X−1. Likewise, the extreme
directions of proper K∗M+ are respectively orthogonal to the facets of KM+

whose inward-normals are contained in the rows of X† by (370). So the
vertex-description for K∗M+ employs the columns of X†T . 2

2.13.9.4.2 Example. Monotone cone.
(Figure 51, Figure 52) Of nonempty interior but not pointed, the monotone
cone is polyhedral and defined by the halfspace-description

KM ∆
= {x ∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn} = {x ∈ Rn | X∗Tx � 0} (377)

Its dual is therefore pointed but of empty interior, having vertex-description

K∗M = {X∗ b ∆
= [ e1− e2 e2− e3 · · · en−1− en ] b | b � 0 } ⊂ Rn (378)
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Figure 51: Monotone cone KM and its dual K∗M (drawn truncated) in R2.

where the columns of X∗ comprise the extreme directions of K∗M . Because
K∗M is pointed and satisfies

rank(X∗∈ Rn×N) = N
∆
= dim aff K∗ ≤ n (379)

where N= n−1, and because KM is closed and convex, we may adapt Cone
Table 1 as follows:

Cone Table 1* K∗ K∗∗= K
vertex-description X∗ X∗†T , ±X∗⊥

halfspace-description X∗† , X∗⊥T X∗T

The vertex-description for KM is therefore

KM = {[X∗†T X∗⊥ −X∗⊥ ]a | a � 0} ⊂ Rn (380)

where X∗⊥= 1 and

X∗† =
1

n























n− 1 −1 −1 · · · −1 −1 −1

n− 2 n− 2 −2
. . . · · · −2 −2

... n− 3 n− 3
. . . −(n− 4)

... −3

3
... n− 4

. . . −(n− 3) −(n− 3)
...

2 2 · · · . . . 2 −(n− 2) −(n− 2)

1 1 1 · · · 1 1 −(n− 1)























∈ Rn−1×n

(381)
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Figure 52: Two views of monotone cone KM and its dual K∗M (drawn
truncated) in R3. Monotone cone is not pointed. Dual monotone cone
has empty interior. Cartesian coordinate axes are drawn for reference.
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while

K∗M = {y ∈ Rn | X∗†y � 0 , X∗⊥Ty = 0} (382)

is the dual monotone cone halfspace-description. 2

2.13.9.5 More pointed cone descriptions with equality condition

Consider pointed polyhedral cone K having a linearly independent set of
generators and whose subspace membership is explicit; id est, we are given
the ordinary halfspace-description

K = {x | Ax � 0 , Cx = 0} ⊆ Rn (246a)

where A∈Rm×n and C ∈ Rp×n. This can be equivalently written in terms
of nullspace of C and vector ξ :

K = {Zξ ∈ Rn | AZξ � 0} (383)

where R(Z∈Rn×n−rank C )
∆
=N (C) . Assuming (353) is satisfied

rankX
∆
= rank

(

(AZ)†∈ Rn−rank C×m
)

= m− ℓ = dim aff K ≤ n− rankC
(384)

where ℓ is the number of conically dependent rows in AZ (§2.10)
that must be removed to make ÂZ before the cone tables become
applicable.2.60 Then the results collected in the cone tables admit the

assignment X̂
∆
=(ÂZ)†∈Rn−rank C×m−ℓ, where Â∈Rm−ℓ×n, followed with

linear transformation by Z . So we get the vertex-description, for (ÂZ)†

skinny-or-square full-rank,

K = {Z(ÂZ)† b | b � 0} (385)

From this and (315) we get a halfspace-description of the dual cone

K∗= {y ∈Rn | (ZTÂT )†ZTy � 0} (386)

2.60When the conically dependent rows are removed, the rows remaining must be linearly
independent for the cone tables to apply.
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From this and Cone Table 1 (p.167) we get a vertex-description, (1642)

K∗= {[Z†T(ÂZ)T CT −CT ]c | c � 0} (387)

Yet because

K = {x | Ax � 0} ∩ {x | Cx = 0} (388)

then, by (272), we get an equivalent vertex-description for the dual cone

K∗ = {x | Ax � 0}∗ + {x | Cx = 0}∗

= {[AT CT −CT ]b | b � 0}
(389)

from which the conically dependent columns may, of course, be removed.

2.13.10 Dual cone-translate

First-order optimality condition (308) inspires a dual-cone variant: For any
set K , the negative dual of its translation by any a∈Rn is

−(K − a)∗ ∆
=
{

y ∈Rn | 〈y , x− a〉≤ 0 for all x ∈ K
}

=
{

y ∈Rn | 〈y , x〉≤ 0 for all x ∈ K − a
} (390)

a closed convex cone called the normal cone to K at point a . (§E.10.3.2.1)
From this, a new membership relation like (276) for closed convex cone K :

y ∈ −(K − a)∗ ⇔ 〈y , x− a〉≤ 0 for all x ∈ K (391)

2.13.10.1 first-order optimality condition - restatement

The general first-order necessary and sufficient condition for optimality
of solution x⋆ to a minimization problem with real differentiable convex
objective function f(x) : Rn→R over convex feasible set C is [229, §3]
(confer (308))

−∇f(x⋆) ∈ −(C − x⋆)∗ , x⋆∈ C (392)

id est, the negative gradient (§3.1.8) belongs to the normal cone at x⋆ as in
Figure 53.
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α

C

β

γ

x⋆

−∇f(x⋆)

{y | ∇f(x⋆)T (y − x⋆) = 0 , f(x⋆)= γ}

{z | f(z) = α}

α ≥ β ≥ γ

Figure 53: Shown is a plausible contour plot in R2 of some arbitrary
differentiable real convex function f(x) at selected levels α , β , and γ ;
id est, contours of equal level f (level sets) drawn (dashed) in function’s
domain. Function is minimized over convex set C at point x⋆ iff negative
gradient −∇f(x⋆) belongs to normal cone to C there. In circumstance
depicted, normal cone is a ray whose direction is coincident with negative
gradient. From results in §3.1.9 (p.211), ∇f(x⋆) is normal to the γ-sublevel
set by Definition E.9.1.0.1.
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2.13.10.1.1 Example. Normal cone to orthant.
Consider proper cone K= Rn

+ , the self-dual nonnegative orthant in Rn.
The normal cone to Rn

+ at a∈K is (1860)

K⊥
Rn

+
(a∈Rn

+) = −(Rn
+ − a)∗ = −Rn

+ ∩ a⊥ , a∈Rn
+ (393)

where −Rn
+ =−K∗ is the algebraic complement of Rn

+ , and a⊥ is the
orthogonal complement of point a . This means: When point a is interior to
Rn

+ , the normal cone is the origin. If np represents the number of nonzero
entries in point a ∈ ∂Rn

+ , then dim(−Rn
+ ∩ a⊥)= n− np and there is a

complementary relationship between the nonzero entries in point a and the
nonzero entries in any vector x∈−Rn

+ ∩ a⊥. 2

2.13.10.1.2 Example. Optimality conditions for conic problem.
Consider a convex optimization problem having real differentiable convex
objective function f(x) : Rn→R defined on domain Rn ;

minimize
x

f(x)

subject to x ∈ K (394)

The feasible set is a pointed polyhedral cone K possessing a linearly
independent set of generators and whose subspace membership is made
explicit by fat full-rank matrix C∈Rp×n ; id est, we are given the
halfspace-description

K = {x | Ax � 0 , Cx = 0} ⊆ Rn (246a)

where A∈Rm×n. The vertex-description of this cone, assuming (ÂZ)†

skinny-or-square full-rank, is

K = {Z(ÂZ)† b | b � 0} (385)

where Â∈Rm−ℓ×n, ℓ is the number of conically dependent rows in AZ
(§2.10) that must be removed, and Z∈Rn×n−rank C holds basisN (C)
columnar.
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From optimality condition (308),

∇f(x⋆)T (Z(ÂZ)† b− x⋆)≥ 0 ∀ b � 0 (395)

−∇f(x⋆)TZ(ÂZ)†(b− b⋆)≤ 0 ∀ b � 0 (396)

because
x⋆ ∆

= Z(ÂZ)† b⋆∈ K (397)

From membership relation (391) and Example 2.13.10.1.1

〈−(ZTÂT )†ZT∇f(x⋆) , b− b⋆〉 ≤ 0 for all b ∈ Rm−ℓ
+

⇔
−(ZTÂT )†ZT∇f(x⋆) ∈ −Rm−ℓ

+ ∩ b⋆⊥
(398)

Then the equivalent necessary and sufficient conditions for optimality of the
conic program (394) with pointed polyhedral feasible setK are: (confer (314))

(ZTÂT )†ZT∇f(x⋆) �
R

m−ℓ
+

0 , b⋆ �
R

m−ℓ
+

0 , ∇f(x⋆)TZ(ÂZ)† b⋆ = 0 (399)

When K= Rn
+ , in particular, then C=0, A=Z= I∈ Sn ; id est,

minimize
x

f(x)

subject to x �
Rn

+

0 (400)

The necessary and sufficient conditions become (confer [46, §4.2.3])

∇f(x⋆) �
Rn

+

0 , x⋆�
Rn

+

0 , ∇f(x⋆)Tx⋆ = 0 (401)

2

2.13.10.1.3 Example. Linear complementarity. [200] [233]
Given matrix A∈Rn×n and vector q ∈Rn, the complementarity problem is
a feasibility problem:

find w , z
subject to w � 0

z � 0

wTz = 0
w = q + Az

(402)
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Volumes have been written about this problem, most notably by Cottle [59].
The problem is not convex if both vectors w and z are variable. But if one of
them is fixed, then the problem becomes convex with a very simple geometric
interpretation: Define the affine subset

A ∆
= {y∈Rn | Ay=w − q} (403)

For wTz to vanish, there must be a complementary relationship between the
nonzero entries of vectors w and z ; id est, wizi =0 ∀ i . Given w� 0 , then
z belongs to the convex set of feasible solutions:

z ∈ −K⊥
Rn

+
(w∈Rn

+) ∩ A = Rn
+ ∩ w⊥ ∩ A (404)

where K⊥
Rn

+
(w) is the normal cone to Rn

+ at w (393). If this intersection is

nonempty, then the problem is solvable. 2

2.13.11 Proper nonsimplicial K , dual, X fat full-rank

Assume we are given a set of N conically independent generators2.61 (§2.10)
of an arbitrary polyhedral proper cone K in Rn arranged columnar in
X∈ Rn×N such that N>n (fat) and rankX= n . Having found formula
(361) to determine the dual of a simplicial cone, the easiest way to find a
vertex-description of the proper dual cone K∗ is to first decompose K into
simplicial parts Ki so that K =

⋃Ki .2.62 Each component simplicial cone
in K corresponds to some subset of n linearly independent columns from X .
The key idea, here, is how the extreme directions of the simplicial parts must
remain extreme directions of K . Finding the dual of K amounts to finding
the dual of each simplicial part:

2.61We can always remove conically dependent columns from X to construct K or to
determine K∗. (§F.2)
2.62That proposition presupposes, of course, that we know how to perform simplicial
decomposition efficiently; also called “triangulation”. [226] [123, §3.1] [124, §3.1] Existence
of multiple simplicial parts means expansion of x∈K like (352) can no longer be unique
because N the number of extreme directions in K exceeds n the dimension of the space.
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2.13.11.0.1 Theorem. Dual cone intersection. [247, §2.7]
Suppose proper cone K⊂Rn equals the union of M simplicial cones Ki whose
extreme directions all coincide with those of K . Then proper dual cone K∗
is the intersection of M dual simplicial cones K∗i ; id est,

K =
M
⋃

i=1

Ki ⇒ K∗=
M
⋂

i=1

K∗i (405)

⋄

Proof. For Xi∈Rn×n, a complete matrix of linearly independent
extreme directions (p.124) arranged columnar, corresponding simplicial Ki

(§2.12.3.1.1) has vertex-description

Ki = {Xi c | c � 0} (406)

Now suppose,

K =
M
⋃

i=1

Ki =
M
⋃

i=1

{Xi c | c � 0} (407)

The union of all Ki can be equivalently expressed

K =















[X1 X2 · · · XM ]









a
b
...
c









| a, b, . . . , c � 0















(408)

Because extreme directions of the simplices Ki are extreme directions of K
by assumption, then by the extremes theorem (§2.8.1.1.1),

K = { [X1 X2 · · · XM ] d | d � 0 } (409)

Defining X
∆
= [X1 X2 · · · XM ] (with any redundant [sic] columns optionally

removed from X), then K∗ can be expressed, (315) (Cone Table S, p.167)

K∗ = {y | XTy � 0} =
M
⋂

i=1

{y | XT
i y � 0} =

M
⋂

i=1

K∗i (410)

�
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To find the extreme directions of the dual cone, first we observe that some
facets of each simplicial part Ki are common to facets of K by assumption,
and the union of all those common facets comprises the set of all facets of
K by design. For any particular polyhedral proper cone K , the extreme
directions of dual cone K∗ are respectively orthogonal to the facets of K .
(§2.13.6.1) Then the extreme directions of the dual cone can be found among
the inward-normals to facets of the component simplicial cones Ki ; those
normals are extreme directions of the dual simplicial cones K∗i . From the
theorem and Cone Table S (p.167),

K∗ =
M
⋂

i=1

K∗i =
M
⋂

i=1

{X†Ti c | c � 0} (411)

The set of extreme directions {Γ∗i } for proper dual cone K∗ is therefore
constituted by the conically independent generators, from the columns
of all the dual simplicial matrices {X†Ti } , that do not violate discrete
definition (315) of K∗ ;

{

Γ
∗
1 , Γ

∗
2 . . . Γ

∗
N

}

= c.i.
{

X†Ti (:,j) , i=1 . . . M , j=1 . . . n | X†i (j, :)Γℓ ≥ 0, ℓ=1 . . . N
}

(412)

where c.i. denotes selection of only the conically independent vectors from
the argument set, argument (:,j) denotes the j th column while (j, :) denotes
the j th row, and {Γℓ} constitutes the extreme directions of K . Figure 38(b)
(p.123) shows a cone and its dual found via this formulation.

2.13.11.0.2 Example. Dual of K nonsimplicial in subspace aff K .
Given conically independent generators for pointed closed convex cone K in
R4 arranged columnar in

X = [ Γ1 Γ2 Γ3 Γ4 ] =









1 1 0 0
−1 0 1 0

0 −1 0 1
0 0 −1 −1









(413)
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having dim aff K= rankX= 3, then performing the most inefficient
simplicial decomposition in aff K we find

X1 =









1 1 0
−1 0 1

0 −1 0
0 0 −1









, X2 =









1 1 0
−1 0 0

0 −1 1
0 0 −1









X3 =









1 0 0
−1 1 0

0 0 1
0 −1 −1









, X4 =









1 0 0
0 1 0
−1 0 1

0 −1 −1









(414)

The corresponding dual simplicial cones in aff K have generators respectively
columnar in

4X†T1 =









2 1 1
−2 1 1

2 −3 1
−2 1 −3









, 4X†T2 =









1 2 1
−3 2 1

1 −2 1
1 −2 −3









4X†T3 =









3 2 −1
−1 2 −1
−1 −2 3
−1 −2 −1









, 4X†T4 =









3 −1 2
−1 3 −2
−1 −1 2
−1 −1 −2









(415)

Applying (412) we get

[

Γ
∗
1 Γ

∗
2 Γ

∗
3 Γ

∗
4

]

=
1

4









1 2 3 2
1 2 −1 −2
1 −2 −1 2
−3 −2 −1 −2









(416)

whose rank is 3, and is the known result;2.63 the conically independent
generators for that pointed section of the dual cone K∗ in aff K ; id est,
K∗∩ aff K . 2

2.63These calculations proceed so as to be consistent with [78, §6]; as if the ambient vector
space were the proper subspace aff K whose dimension is 3. In that ambient space, K
may be regarded as a proper cone. Yet that author (from the citation) erroneously states
the dimension of the ordinary dual cone to be 3 ; it is, in fact, 4.



Chapter 3

Geometry of convex functions

The link between convex sets and convex functions is via the
epigraph: A function is convex if and only if its epigraph is a
convex set.

−Stephen Boyd & Lieven Vandenberghe [46, §3.1.7]

We limit our treatment of multidimensional functions3.1 to finite-dimensional
Euclidean space. Then the icon for the one-dimensional (real)
convex function is bowl-shaped (Figure 59), whereas the concave icon is the
inverted bowl; respectively characterized by a unique global minimum and
maximum whose existence is assumed. Because of this simple relationship,
usage of the term convexity is often implicitly inclusive of concavity in the
literature. Despite the iconic imagery, the reader is reminded that the set
of all convex, concave, quasiconvex, and quasiconcave functions contains the
monotonic functions [151] [158, §2.3.5]; e.g., [46, §3.6, exer.3.46].

3.1 vector- or matrix-valued functions including the real functions. Appendix D, with its
tables of first- and second-order gradients, is the practical adjunct to this chapter.© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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3.1 Convex function

3.1.1 real and vector-valued function

Vector-valued function

f(X) : Rp×k→RM =







f1(X)
...

fM(X)






(417)

assigns each X in its domain dom f (a subset of ambient vector space Rp×k)
to a specific element [189, p.3] of its range (a subset of RM). Function f(X)
is linear in X on its domain if and only if, for each and every Y, Z∈dom f
and α , β∈R

f(αY + βZ) = αf(Y ) + βf(Z) (418)

A vector-valued function f(X) : Rp×k→RM is convex in X if and only if
dom f is a convex set and, for each and every Y, Z∈dom f and 0≤µ≤1

f(µY + (1− µ)Z) �
RM

+

µf(Y ) + (1− µ)f(Z) (419)

As defined, continuity is implied but not differentiability. Reversing the
sense of the inequality flips this definition to concavity. Linear functions are,
apparently, simultaneously convex and concave.

Vector-valued functions are most often compared (151) as in (419) with
respect to the M -dimensional self-dual nonnegative orthant RM

+ , a proper
cone.3.2 In this case, the test prescribed by (419) is simply a comparison
on R of each entry fi of a vector-valued function f . (§2.13.4.2.3) The
vector-valued function case is therefore a straightforward generalization of
conventional convexity theory for a real function. [46, §3, §4] This conclusion
follows from theory of dual generalized inequalities (§2.13.2.0.1) which asserts

3.2The definition of convexity can be broadened to other (not necessarily proper) cones;
referred to in the literature as K-convexity. [218]
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(a) (b)

f1(x) f2(x)

Figure 54: Each convex real function has a unique minimizer x⋆ but,
for x∈R , f1(x)=x2 is strictly convex whereas f2(x)=

√
x2 = |x| is not.

Strict convexity of a real function is therefore only a sufficient condition for
minimizer uniqueness.

f convex ⇔ wTf convex ∀w∈ G(RM
+ ) (420)

shown by substitution of the defining inequality (419). Discretization
(§2.13.4.2.1) allows relaxation of the semi-infinite number of conditions
∀w� 0 to:

∀w ∈ G(RM
+ ) = {ei , i=1 . . . M} (421)

(the standard basis for RM and a minimal set of generators (§2.8.1.2) for RM
+ )

from which the stated conclusion follows; id est, the test for convexity of a
vector-valued function is a comparison on R of each entry.

3.1.1.0.1 Exercise. Cone of convex functions.
Prove that relation (420) implies: the set of all vector-valued convex functions
in RM is a convex cone. Indeed, any nonnegatively weighted sum of (strictly)
convex functions remains (strictly) convex.3.3 Interior to the cone are the
strictly convex functions. H

3.3The strict case excludes the cone’s point at the origin.
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3.1.2 strict convexity

When f(X) instead satisfies, for each and every distinct Y and Z in dom f
and all 0<µ<1

f(µY + (1− µ)Z) ≺
RM

+

µf(Y ) + (1− µ)f(Z) (422)

then we shall say f is a strictly convex function.
Similarly to (420)

f strictly convex ⇔ wTf strictly convex ∀w∈ G(RM
+ ) (423)

discretization allows relaxation of the semi-infinite number of conditions
∀w� 0 , w 6= 0 (282) to a finite number (421). More tests for strict convexity
are given in §3.1.8.1.2, §3.1.11, and §3.2.3.0.2.

Any convex real function f(X) has unique minimum value over any
convex subset of its domain. Yet solution to some convex optimization
problem is, in general, not unique; e.g., given a minimization of a convex
real function over some abstracted convex set C

minimize
X

f(X)

subject to X∈ C
(424)

any optimal solution X⋆ comes from a convex set of optimal solutions

X⋆ ∈ {X | f(X) = inf
Y ∈C

f(Y ) } (425)

But a strictly convex real function has a unique minimizer X⋆ ; id est, for the
optimal solution set in (425) to be a single point, it is sufficient (Figure 54)
that f(X) be a strictly convex real3.4 function and set C convex.

Quadratic real functions xTPx+ qTx+ r characterized by a symmetric
positive definite matrix P are strictly convex in x . The vector 2-norm
square ‖x‖2 (Euclidean norm square) and Frobenius norm square ‖X‖2F ,
for example, are strictly convex functions of their respective argument (each
norm is convex but not strictly convex). Figure 54(a) illustrates a strictly
convex real function.
3.4It is more customary to consider only a real function for the objective of a convex

optimization problem because vector- or matrix-valued functions can introduce ambiguity
into the optimal value of the objective. (§2.7.2.2) Study of multidimensional objective
functions is called multicriteria optimization [242] or vector optimization.
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3.1.3 norm functions, absolute value

‖x‖1 = minimize
t∈R

n
1T t

subject to −t � x � t
(426)

where |x|= t⋆.

‖x‖2 = minimize
t∈R

t

subject to

[

tI x
xT t

]

� 0
(427)

where ‖x‖ = t⋆.

‖x‖∞ = minimize
t∈R

t

subject to −t1 � x � t1
(428)

where max {|xi| , i=1 . . . n} = t⋆.

‖x‖1 = minimize
α∈R

n
, β∈R

n
1T (α+ β)

subject to α, β � 0
x = α− β

(429)

where |x|= α⋆ + β⋆ because of complementarity α⋆Tβ⋆ = 0.
Optimal solution is norm dependent. [46, p.297] Given set C

minimize
x∈R

n
‖x‖1

subject to x ∈ C
≡

minimize
x∈R

n
, t∈R

n
1T t

subject to −t � x � t

x ∈ C
(430)

minimize
x∈R

n
‖x‖2

subject to x ∈ C
≡

minimize
x∈R

n
, t∈R

t

subject to

[

tI x
xT t

]

� 0

x ∈ C

(431)

minimize
x∈R

n
‖x‖∞

subject to x ∈ C
≡

minimize
x∈R

n
, t∈R

t

subject to −t1 � x � t1

x ∈ C
(432)

In Rn these norms represent: ‖x‖1 is length measured along a grid, ‖x‖2 is
Euclidean length, ‖x‖∞ is maximum |coordinate|.
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(Ye)

minimize
x∈R

n
‖x‖1

subject to x ∈ C
≡

minimize
α∈R

n , β∈R
n , x∈R

n
1T (α+ β)

subject to α, β � 0
x = α− β
x ∈ C

(433)

All these problems are convex when set C is.

3.1.3.1 k smallest/largest entries

Sum of the k smallest entries of x∈Rn is the optimal objective value from:
for 1≤k≤n

n
∑

i=n−k+1

π(x)i = minimize
y∈R

n
xTy

subject to 0 � y � 1

1Ty = k

or

n
∑

i=n−k+1

π(x)i = maximize
z∈R

n
, t∈R

k t+ 1T z

subject to x � t1 + z
z � 0

(434)

which are dual programs, where π(x)1 = max{xi , i=1 . . . n} where π
is the nonlinear permutation operator sorting its vector argument into
nonincreasing order.

Sum of the k largest entries of x∈Rn is the optimal objective value from:
[46, exer.5.19]

k
∑

i=1

π(x)i = maximize
y∈R

n
xTy

subject to 0 � y � 1

1Ty = k

or

k
∑

i=1

π(x)i = minimize
z∈R

n
, t∈R

k t+ 1T z

subject to x � t1 + z
z � 0

(435)
which are dual programs.

Let Πx be a permutation of entries xi such that their absolute value
becomes arranged in nonincreasing order: |Πx|1 ≥ |Πx|2 ≥ · · · ≥ |Πx|n . By
properties of vector norm, [166, p.59] [110, p.52] sum of the k largest entries
of |x|∈Rn is a norm:

‖x‖n
k

∆
=

k
∑

i=1

|Πx|i = minimize
z∈R

n
, t∈R

k t+ 1T z

subject to −t1− z � x � t1 + z
z � 0

(436)
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where the norm subscript derives from a binomial coefficient

(

n
k

)

, and

‖x‖n
n

∆
= ‖x‖1

‖x‖n
1

∆
= ‖x‖∞

(437)

Finding k largest absolute entries of an n-length vector x is expressible as
supremum of 2kn!/(k!(n− k)!) linear functions of x . [46, exer.6.3(e)]

minimize
x∈R

n
‖x‖n

k

subject to x ∈ C
≡

minimize
z∈R

n
, t∈R , x∈R

n
k t+ 1T z

subject to −t1− z � x � t1 + z
z � 0
x ∈ C (438)

3.1.3.2 clipping

Clipping negative vector entries is accomplished:

‖x+‖1 = minimize
t∈R

n
1T t

subject to x � t

0 � t

(439)

where, for x = [xi]∈Rn

x+ = t⋆ =

[{

xi , xi ≥ 0

0 , xi < 0
, i=1 . . . n

]

(440)

(clipping)

minimize
x∈R

n
‖x+‖1

subject to x ∈ C
≡

minimize
x∈R

n
, t∈R

n
1T t

subject to x � t

0 � t

x ∈ C

(441)
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3.1.4 inverted

We wish to implement objectives of the form x−1. Suppose we have a 2×2
matrix

T
∆
=

[

x z
z y

]

∈ R2 (442)

which is positive semidefinite by (1314) when

T � 0 ⇔ x > 0 and xy ≥ z2 (443)

This means we may formulate convex problems, having inverted variables,
as semidefinite programs; e.g.,

minimize
x∈R

x−1

subject to x > 0

x ∈ C
≡

minimize
x , y ∈ R

y

subject to

[

x 1
1 y

]

� 0

x ∈ C

(444)

or

x > 0 , y ≥ 1

x
⇔

[

x 1
1 y

]

� 0 (445)

(inverted) For vector x=[xi , i=1 . . . n]∈Rn

minimize
x∈R

n

n
∑

i=1

x−1
i

subject to x ≻ 0

x ∈ C

≡

minimize
x∈R

n , y∈R

y

subject to

[

xi

√
n√

n y

]

� 0 , i=1 . . . n

x ∈ C (446)

or

x ≻ 0 , y ≥ tr
(

δ(x)−1
)

⇔
[

xi

√
n√

n y

]

� 0 , i=1 . . . n (447)

3.1.5 fractional power

[100] To implement an objective of the form xα for positive α , we quantize
α and work instead with that approximation. Choose nonnegative integer q
for adequate quantization of α like so:

α
∆
=

k

2q (448)
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where k∈{0, 1, 2 . . . 2q−1}. Any k from that set may be written

k=
q
∑

i=1

bi 2
i−1 where bi∈{0, 1}. Define vector y=[yi , i=0 . . . q] with y0 =1.

3.1.5.1 positive

Then we have the equivalent semidefinite program for maximizing a concave
function xα, for quantized 0≤α<1

maximize
x∈R

xα

subject to x > 0

x ∈ C
≡

maximize
x∈R , y∈R

q+1
yq

subject to

[

yi−1 yi

yi xbi

]

� 0 , i=1 . . . q

x ∈ C (449)

where nonnegativity of yq is enforced by maximization; id est,

x > 0 , yq≤ xα ⇔
[

yi−1 yi

yi xbi

]

� 0 , i=1 . . . q (450)

3.1.5.2 negative

Is it also desirable implement an objective of the form x−α for positive α .
The technique is nearly the same as before: for quantized 0≤α<1

minimize
x∈R

x−α

subject to x > 0

x ∈ C
≡

minimize
x , z∈R , y∈R

q+1
z

subject to

[

yi−1 yi

yi xbi

]

� 0 , i=1 . . . q

[

z 1

1 yq

]

� 0

x ∈ C (451)

or

x > 0 , z ≥ x−α ⇔

[

yi−1 yi

yi xbi

]

� 0 , i=1 . . . q

[

z 1

1 yq

]

� 0

(452)
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3.1.5.3 positive inverse

Now define vector t=[ti , i=0 . . . q] with t0 =1. To implement an objective
x1/α for quantized 0≤α<1 as in (448)

minimize
x∈R

x1/α

subject to x ≥ 0

x ∈ C
≡

minimize
y∈R , t∈R

q+1
y

subject to

[

ti−1 ti

ti ybi

]

� 0 , i=1 . . . q

x = tq ≥ 0

x ∈ C (453)

or

x ≥ 0 , y ≥ x1/α ⇔

[

ti−1 ti

ti ybi

]

� 0 , i=1 . . . q

x = tq ≥ 0

(454)

3.1.6 affine function

A function f(X) is affine when it is continuous and has the dimensionally
extensible form (confer §2.9.1.0.2)

f(X) = AX +B (455)

When B=0 then f(X) is a linear function. All affine functions are
simultaneously convex and concave.

The real affine function in Figure 55 illustrates hyperplanes in its domain
constituting contours of equal function-value (level sets {z | f(z)=κ}).

Variegated multidimensional affine functions are recognized by the
existence of no multivariate terms in argument entries and no polynomial
terms in argument entries of degree higher than 1 ; id est, entries of the
function are characterized only by linear combinations of the argument
entries plus constants.

For X∈ SM and matrices A ,B , Q , R of any compatible dimensions, for
example, the expression XAX is not affine in X whereas

g(X) =

[

R BTX
XB Q+ ATX +XA

]

(456)
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C

a

H−

A

H+ {z∈R 2| a Tz= κ1 }{z∈R 2| a Tz= κ2 }{z∈R 2| a Tz= κ3 }

f(z)

z2

z1

Figure 55: Cartesian axes in R3 and three hyperplanes intersecting convex set
C⊂R2 reproduced from Figure 19. Plotted with third dimension is affine set
A= f(R2) a plane. Sequence of hyperplanes, w.r.t domain R2 of an affine
function f(z)= aTz + b : R2→R , is increasing in direction of gradient a
(§3.1.8.0.3) because affine function increases in normal direction (Figure 17).

is an affine multidimensional function. Such a function is typical in
engineering control. [296, §2.2]3.5 [44] [102]

3.1.6.0.1 Example. Linear objective.
Consider minimization of a real affine function f(z)= aTz + b over the
convex feasible set C in its domain R2 illustrated in Figure 55. Since
vector b is fixed, the problem posed is the same as the convex optimization

minimize
z

aTz

subject to z∈ C
(457)

3.5The interpretation from this citation of {X∈ SM | g(X)� 0} as “an intersection
between a linear subspace and the cone of positive semidefinite matrices” is incorrect.
(See §2.9.1.0.2 for a similar example.) The conditions they state under which strong
duality holds for semidefinite programming are conservative. (confer §4.2.3.0.1)
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whose objective of minimization is a real linear function. Were convex set C
polyhedral (§2.12), then this problem would be called a linear program.
Were C a positive semidefinite cone, then this problem would be called a
semidefinite program.

There are two distinct ways to visualize this problem: one in the
objective function’s domain R2, the other including the ambient space

of the objective function’s range as in

[

R2

R

]

. Both visualizations are

illustrated in Figure 55. Visualization in the function domain is easier
because of lower dimension and because level sets of any affine function are
affine (§2.1.9). In this circumstance, the level sets are parallel hyperplanes
with respect to R2. One solves optimization problem (457) graphically by
finding that hyperplane intersecting feasible set C furthest right (in the
direction of negative gradient −a (§3.1.8)). 2

When a differentiable convex objective function f is nonlinear, the
negative gradient −∇f is a viable search direction (replacing −a in (457)).
(§2.13.10.1, Figure 53) [104] Then the nonlinear objective function can be
replaced with a dynamic linear objective; linear as in (457).

3.1.6.0.2 Example. Support function. [46, §3.2]
For arbitrary set Y ⊆ Rn, its support function σY(a) : Rn→R is defined

σY(a)
∆
= sup

z∈Y
aTz (458)

whose range contains ±∞ [182, p.135] [148, §C.2.3.1]. For each z ∈ Y ,
aTz is a linear function of vector a . Because σY(a) is the pointwise
supremum of linear functions, it is convex in a . (Figure 56) Application
of the support function is illustrated in Figure 20(a) for one particular
normal a . 2

3.1.7 epigraph, sublevel set

It is well established that a continuous real function is convex if and
only if its epigraph makes a convex set. [148] [230] [268] [280] [182]
Thereby, piecewise-continuous convex functions are admitted. Epigraph is
the connection between convex sets and convex functions. Its generalization
to a vector-valued function f(X) : Rp×k→RM is straightforward: [218]
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a

{aTz1 + b1 | a∈R}

{aTz2 + b2 | a∈R}

{aTz3 + b3 | a∈R}

{aTz4 + b4 | a∈R}

{aTz5 + b5 | a∈R}

sup
i
aT

pzi + bi

Figure 56: Pointwise supremum of convex functions remains a convex
function. Illustrated is a supremum of affine functions in variable a evaluated
for a particular argument ap . Topmost affine function is supremum for each
value of a .

quasiconvex convex

f(x)q(x)

xx

Figure 57: Quasiconvex function q epigraph is not necessarily convex, but
convex function f epigraph is convex in any dimension. Sublevel sets are
necessarily convex for either.
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epi f
∆
= {(X , t)∈Rp×k× RM | X∈ dom f , f(X) �

RM
+

t } (459)

id est,

f convex ⇔ epi f convex (460)

Necessity is proven: [46, exer.3.60] Given any (X, u) , (Y , v)∈ epi f , we
must show for all µ∈ [0, 1] that µ(X, u) + (1−µ)(Y , v)∈ epi f ; id est, we
must show

f(µX + (1−µ)Y ) �
RM

+

µu+ (1−µ)v (461)

Yet this holds by definition because f(µX+(1−µ)Y ) � µf(X)+(1−µ)f(Y ).
The converse also holds. �

3.1.7.0.1 Exercise. Epigraph sufficiency.
Prove that converse: Given any (X, u) , (Y , v)∈ epi f , if for all µ∈ [0, 1]
µ(X, u) + (1−µ)(Y , v)∈ epi f holds, then f must be convex. H

Sublevel sets of a real convex function are convex. Likewise, corresponding
to each and every ν ∈RM

Lνf
∆
= {X∈ dom f | f(X) �

RM
+

ν } ⊆ Rp×k (462)

sublevel sets of a vector-valued convex function are convex. As for real
functions, the converse does not hold. (Figure 57)

To prove necessity of convex sublevel sets: For any X,Y ∈Lνf we must
show for each and every µ∈ [0, 1] that µX + (1−µ)Y ∈Lνf . By definition,

f(µX + (1−µ)Y ) �
RM

+

µf(X) + (1−µ)f(Y ) �
RM

+

ν (463)

�
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When an epigraph (459) is artificially bounded above, t � ν , then the
corresponding sublevel set can be regarded as an orthogonal projection of
the epigraph on the function domain.

Sense of the inequality is reversed in (459), for concave functions, and we
use instead the nomenclature hypograph. Sense of the inequality in (462) is
reversed, similarly, with each convex set then called superlevel set.

3.1.7.0.2 Example. Matrix pseudofractional function.
Consider a real function of two variables on dom f = Sn

+×R(A)

f(A , x) : Sn× Rn→R = xTA†x (464)

This function is convex simultaneously in both variables when variable
matrix A belongs to the entire positive semidefinite cone Sn

+ and variable
vector x is confined to range R(A) of matrix A .

To explain this, we need only demonstrate that the function epigraph is
convex. Consider Schur-form (1311) from §A.4: for t ∈R

G(A , z , t) =

[

A z
zT t

]

� 0

⇔
zT(I − AA†) = 0

t− zTA†z ≥ 0

A � 0

(465)

Inverse image of the positive semidefinite cone Sn+1
+ under affine mapping

G(A , z , t) is convex by Theorem 2.1.9.0.1. Of the equivalent conditions for
positive semidefiniteness of G , the first is an equality demanding vector z
belong to R(A). Function f(A , z)= zTA†z is convex on Sn

+×R(A) because
the Cartesian product constituting its epigraph

epi f(A , z) =
{

(A , z , t) | A � 0 , z∈R(A) , zTA†z ≤ t
}

= G−1
(

Sn+1
+

)

(466)

is convex. 2

3.1.7.0.3 Exercise. Matrix product function.
Continue Example 3.1.7.0.2 by introducing vector variable x and making
the substitution z←Ax . Because of matrix symmetry (§E), for all x∈Rn

f(A , z(x)) = zTA†z = xTATA†Ax = xTAx = f(A , x) (467)
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whose epigraph is

epi f(A , x) =
{

(A , x , t) | A � 0 , xTAx ≤ t
}

(468)

Provide two simple explanations why f(A , x) = xTAx is not a function
convex simultaneously in positive semidefinite matrix A and vector x on
dom f = Sn

+× Rn. H

3.1.7.0.4 Example. Matrix fractional function. (confer §3.2.2.0.1)
Continuing Example 3.1.7.0.2, now consider a real function of two variables
on dom f = Sn

+×Rn for small positive constant ǫ (confer (1639))

f(A , x) = ǫ xT(A+ ǫ I )−1x (469)

where the inverse always exists by (1255). This function is convex
simultaneously in both variables over the entire positive semidefinite cone Sn

+

and all x∈Rn : Consider Schur-form (1314) from §A.4: for t ∈R

G(A , z , t) =

[

A+ ǫ I z
zT ǫ−1 t

]

� 0

⇔
t− ǫ zT(A+ ǫ I )−1z ≥ 0

A+ ǫ I ≻ 0

(470)

Inverse image of the positive semidefinite cone Sn+1
+ under affine mapping

G(A , z , t) is convex by Theorem 2.1.9.0.1. Function f(A , z) is convex on
Sn

+×Rn because its epigraph is that inverse image:

epi f(A , z) =
{

(A , z , t) | A+ ǫ I ≻ 0 , ǫ zT(A+ ǫ I )−1z ≤ t
}

= G−1
(

Sn+1
+

)

(471)
2

3.1.7.1 matrix fractional projector function

Consider nonlinear function f having orthogonal projector W as argument:

f(W, x) = ǫ xT(W + ǫ I )−1x (472)

Projection matrix W has property W †= W T = W � 0 (1683). Any
orthogonal projector can be decomposed into an outer product of



3.1. CONVEX FUNCTION 199

orthonormal matrices W = UUT where UTU= I as explained in§E.3.2. From (1639) for any ǫ > 0 and idempotent symmetric W ,
ǫ(W + ǫ I )−1 = I − (1 + ǫ)−1W from which

f(W, x) = ǫ xT(W + ǫ I )−1x = xT
(

I − (1 + ǫ)−1W
)

x (473)

Therefore

lim
ǫ→0+

f(W, x) = lim
ǫ→0+

ǫ xT(W + ǫ I )−1x = xT(I −W )x (474)

where I −W is also an orthogonal projector (§E.2).
We learned from Example 3.1.7.0.4 that f(W, x)= ǫ xT(W+ ǫ I )−1x is

convex simultaneously in both variables over all x ∈Rn when W ∈ Sn
+ is

confined to the entire positive semidefinite cone (including its boundary). It
is now our goal to incorporate f into an optimization problem such that
an optimal solution returned always comprises a projection matrix W . The
set of orthogonal projection matrices is a nonconvex subset of the positive
semidefinite cone. So f cannot be convex on the projection matrices, and
its equivalent (for idempotent W )

f(W, x) = xT
(

I − (1 + ǫ)−1W
)

x (475)

cannot be convex simultaneously in both variables on either the positive
semidefinite or symmetric projection matrices.

Suppose we allow dom f to constitute the entire positive semidefinite
cone but constrain W to a Fantope (79); e.g., for convex set C and 0< k< n
as in

minimize
x∈R

n
, W∈S

n
ǫ xT(W + ǫ I )−1x

subject to 0 � W � I

trW = k

x ∈ C

(476)

Although this is a convex problem, there is no guarantee that optimal W is
a projection matrix because only extreme points of a Fantope are orthogonal
projection matrices UUT .

Let’s try partitioning the problem into two convex parts (one for x and
one for W ), substitute equivalence (473), and then iterate solution of convex
problem
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minimize
x∈R

n
xT(I − (1 + ǫ)−1W )x

subject to x ∈ C
(477)

with convex problem

(a)

minimize
W∈S

n
x⋆T(I − (1 + ǫ)−1W )x⋆

subject to 0 � W � I

trW = k

≡
maximize

W∈S
n

x⋆TWx⋆

subject to 0 � W � I

trW = k

(478)

until convergence, where x⋆ represents an optimal solution of (477) from
any particular iteration. The idea is to optimally solve for the partitioned
variables which are later combined to solve the original problem (476).
What makes this approach sound is that the constraints are separable, the
partitioned feasible sets are not interdependent, and the fact that the original
problem (though nonlinear) is convex simultaneously in both variables.3.6

But partitioning alone does not guarantee a projector. To make
orthogonal projector W a certainty, we must invoke a known analytical
optimal solution to problem (478): Diagonalize optimal solution from

problem (477) x⋆x⋆T ∆
= QΛQT (§A.5.2) and set U⋆ = Q(: , 1:k)∈Rn×k

per (1480c);

W = U⋆U⋆T =
x⋆x⋆T

‖x⋆‖2 + Q(: , 2:k)Q(: , 2:k)T (479)

Then optimal solution (x⋆, U⋆) to problem (476) is found, for small ǫ , by
iterating solution to problem (477) with optimal (projector) solution (479)
to convex problem (478).

Proof. Optimal vector x⋆ is orthogonal to the last n−1 columns of
orthogonal matrix Q , so

f ⋆
(477)

= ‖x⋆‖2(1− (1 + ǫ)−1) (480)

after each iteration. Convergence of f ⋆
(477)

is proven with the observation

that iteration (477) (478a) is a nonincreasing sequence that is bounded below
by 0. Any bounded monotonic sequence in R is convergent. [189, §1.2]

3.6A convex problem has convex feasible set, and the objective surface has one and only
one global minimum.
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[30, §1.1] Expression (479) for optimal projector W holds at each iteration,
therefore ‖x⋆‖2(1− (1 + ǫ)−1) must also represent the optimal objective
value f ⋆

(477)
at convergence.

Because the objective f(476) from problem (476) is also bounded below

by 0 on the same domain, this convergent optimal objective value f ⋆
(477)

(for

positive ǫ arbitrarily close to 0) is necessarily optimal for (476); id est,

f ⋆
(477)

≥ f ⋆
(476)

≥ 0 (481)

by (1462), and

lim
ǫ→0+

f ⋆
(477)

= 0 (482)

Since optimal (x⋆, U⋆) from problem (477) is feasible to problem (476), and
because their objectives are equivalent for projectors by (473), then converged
(x⋆, U⋆) must also be optimal to (476) in the limit. Because problem (476)
is convex, this represents a globally optimal solution. �

3.1.7.2 Semidefinite program via Schur

Schur complement (1311) can be used to convert a projection problem
to an optimization problem in epigraph form. Suppose, for example,
we are presented with the constrained projection problem studied by
Hayden & Wells in [133] (who provide analytical solution): Given A∈RM×M

and some full-rank matrix S∈RM×L with L<M

minimize
X∈ SM

‖A −X‖2F
subject to STXS � 0

(483)

Variable X is constrained to be positive semidefinite, but only on a subspace
determined by S . First we write the epigraph form:

minimize
X∈ SM , t∈R

t

subject to ‖A −X‖2F ≤ t

STXS � 0

(484)
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Next we use the Schur complement [204, §6.4.3] [181] and matrix
vectorization (§2.2):

minimize
X∈ SM , t∈R

t

subject to

[

tI vec(A −X)
vec(A −X)T 1

]

� 0

STXS � 0

(485)

This semidefinite program is an epigraph form in disguise, equivalent
to (483); it demonstrates how a quadratic objective or constraint can be
converted to a semidefinite constraint.

Were problem (483) instead equivalently expressed without the square

minimize
X∈ SM

‖A −X‖F
subject to STXS � 0

(486)

then we get a subtle variation:

minimize
X∈ SM , t∈R

t

subject to ‖A −X‖F ≤ t

STXS � 0

(487)

that leads to an equivalent for (486)

minimize
X∈ SM , t∈R

t

subject to

[

tI vec(A −X)
vec(A −X)T t

]

� 0

STXS � 0

(488)

3.1.7.2.1 Example. Schur anomaly.
Consider a problem abstract in the convex constraint, given symmetric
matrix A

minimize
X∈ SM

‖X‖2F − ‖A −X‖2F
subject to X∈ C

(489)

the minimization of a difference of two quadratic functions each convex in
matrix X . Observe equality
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Figure 58: Gradient in R2 evaluated on grid over some open disc in domain
of convex quadratic bowl f(Y )= Y TY : R2→R illustrated in Figure 59.
Circular contours are level sets; each defined by a constant function-value.

‖X‖2F − ‖A −X‖2F = 2 tr(XA)− ‖A‖2F (490)

So problem (489) is equivalent to the convex optimization

minimize
X∈ SM

tr(XA)

subject to X∈ C
(491)

But this problem (489) does not have Schur-form

minimize
X∈ SM , α , t

t− α
subject to X∈ C

‖X‖2F ≤ t

‖A −X‖2F ≥ α

(492)

because the constraint in α is nonconvex. (§2.9.1.0.1) 2
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3.1.8 gradient

Gradient ∇f of any differentiable multidimensional function f (formally
defined in §D.1) maps each entry fi to a space having the same dimension
as the ambient space of its domain. Notation ∇f is shorthand for gradient
∇xf(x) of f with respect to x . ∇f(y) can mean ∇yf(y) or gradient
∇xf(y) of f(x) with respect to x evaluated at y ; a distinction that should
become clear from context.

Gradient of a differentiable real function f(x) : RK→R with respect to
its vector domain is defined

∇f(x)
∆
=













∂f(x)
∂x1

∂f(x)
∂x2...

∂f(x)
∂xK













∈ RK (1536)

while the second-order gradient of the twice differentiable real function with
respect to its vector domain is traditionally called the Hessian ;3.7

∇2f(x)
∆
=















∂2f(x)
∂2x1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xK

∂2f(x)
∂x2∂x1

∂2f(x)
∂2x2

· · · ∂2f(x)
∂x2∂xK

...
...

. . .
...

∂2f(x)
∂xK∂x1

∂2f(x)
∂xK∂x2

· · · ∂2f(x)
∂2xK















∈ SK (1537)

The gradient can be interpreted as a vector pointing in the direction of
greatest change. [161, §15.6] The gradient can also be interpreted as that
vector normal to a level set; e.g., Figure 60, Figure 53.

For the quadratic bowl in Figure 59, the gradient maps to R2 ; illustrated
in Figure 58. For a one-dimensional function of real variable, for example,
the gradient evaluated at any point in the function domain is just the slope
(or derivative) of that function there. (confer §D.1.4.1)� For any differentiable multidimensional function, zero gradient ∇f= 0

is a necessary condition for its unconstrained minimization [104, §3.2]:

3.7Jacobian is the Hessian transpose, so commonly confused in matrix calculus.
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3.1.8.0.1 Example. Projection on a rank-1 subset.
For A∈SN having eigenvalues λ(A)= [λi]∈RN , consider the unconstrained
nonconvex optimization that is a projection on the rank-1 subset (§2.9.2.1)

of positive semidefinite cone SN
+ : Defining λ1

∆
= max

i
{λ(A)i} and

corresponding eigenvector v1

minimize
x

‖xxT − A‖2F = minimize
x

tr(xxT(xTx)− 2AxxT + ATA)

=

{

‖λ(A)‖2 , λ1 ≤ 0

‖λ(A)‖2 − λ2
1 , λ1 > 0

(1475)

arg minimize
x

‖xxT − A‖2F =

{

0 , λ1 ≤ 0

v1

√
λ1 , λ1 > 0

(1476)

From (1563) and §D.2.1, the gradient of ‖xxT − A‖2F is

∇x

(

(xTx)2 − 2xTAx
)

= 4(xTx)x− 4Ax (493)

Setting the gradient to 0

Ax = x(xTx) (494)

is necessary for optimal solution. Replace vector x with a normalized
eigenvector vi of A∈SN , corresponding to a positive eigenvalue λi , scaled
by square root of that eigenvalue. Then (494) is satisfied

x← vi

√

λi ⇒ Avi = viλi (495)

xxT = λi viv
T
i is a rank-1 matrix on the positive semidefinite cone boundary,

and the minimum is achieved (§7.1.2) when λi =λ1 is the largest positive
eigenvalue of A . If A has no positive eigenvalue, then x=0 yields the
minimum. 2� For any differentiable multidimensional convex function, zero gradient

∇f= 0 is a necessary and sufficient condition for its unconstrained
minimization [46, §5.5.3]:



206 CHAPTER 3. GEOMETRY OF CONVEX FUNCTIONS

3.1.8.0.2 Example. Pseudoinverse.
The pseudoinverse matrix is the unique solution to an unconstrained convex
optimization problem [110, §5.5.4]: given A∈Rm×n

minimize
X∈Rn×m

‖XA− I‖2F (496)

where
‖XA− I‖2F = tr

(

ATXTXA−XA− ATXT + I
)

(497)

whose gradient (§D.2.3)

∇X‖XA− I‖2F = 2
(

XAAT − AT
)

= 0 (498)

vanishes when
XAAT = AT (499)

When A is fat full-rank, then AAT is invertible, X⋆ = AT (AAT )−1 is the
pseudoinverse A† , and AA†= I . Otherwise, we can make AAT invertible
by adding a positively scaled identity, for any A∈Rm×n

X = AT(AAT + t I )−1 (500)

Invertibility is guaranteed for any finite positive value of t by (1255). Then

matrix X becomes the pseudoinverse X→ A†
∆
=X⋆ in the limit t→ 0+.

Minimizing instead ‖AX − I‖2F yields the second flavor in (1638). 2

3.1.8.0.3 Example. Hyperplane, line, described by affine function.
Consider the real affine function of vector variable,

f(x) : Rp→R = aTx+ b (501)

whose domain is Rp and whose gradient ∇f(x)=a is a constant vector
(independent of x). This function describes the real line R (its range), and
it describes a nonvertical [148, §B.1.2] hyperplane ∂H in the space Rp×R
for any particular vector a (confer §2.4.2);

∂H =

{[

x
aTx+ b

]

| x∈Rp

}

⊂ Rp×R (502)

having nonzero normal

η =

[

a
−1

]

∈ Rp×R (503)
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This equivalence to a hyperplane holds only for real functions.3.8 The

epigraph of the real affine function f(x) is therefore a halfspace in

[

Rp

R

]

,

so we have:

The real affine function is to convex functions
as

the hyperplane is to convex sets.

Similarly, the matrix-valued affine function of real variable x , for any
particular matrix A∈RM×N ,

h(x) : R→RM×N = Ax+B (504)

describes a line in RM×N in direction A

{Ax+B | x∈R} ⊆ RM×N (505)

and describes a line in R×RM×N

{[

x
Ax+B

]

| x∈R

}

⊂ R×RM×N (506)

whose slope with respect to x is A . 2

3.8To prove that, consider a vector-valued affine function

f(x) : Rp→RM = Ax+ b

having gradient ∇f(x)=AT ∈ Rp×M : The affine set

{[

x
Ax+ b

]

| x∈Rp

}

⊂ Rp×RM

is perpendicular to

η
∆
=

[

∇f(x)
−I

]

∈ Rp×M×RM×M

because

ηT

([

x
Ax+ b

]

−
[

0
b

])

= 0 ∀x ∈ Rp

Yet η is a vector (in Rp×RM ) only when M= 1. �
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∂H−

f(Y )

[

∇f(X)
−1

]

Figure 59: When a real function f is differentiable at each point in its open
domain, there is an intuitive geometric interpretation of function convexity
in terms of its gradient ∇f and its epigraph: Drawn is a convex quadratic
bowl in R2×R (confer Figure 117, p.563); f(Y )= Y TY : R2→R versus Y
on some open disc in R2. Supporting hyperplane ∂H−∈R2× R (which is
tangent, only partially drawn) and its normal vector [∇f(X)T −1 ]T at the
particular point of support [XT f(X) ]T are illustrated. The interpretation:
At each and every coordinate Y , there is such a hyperplane containing
[Y T f(Y ) ]T and supporting the epigraph.
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3.1.8.1 monotonic function

A real differentiable function f of real argument is called monotonic when its
first derivative (not necessarily continuous) maintains sign over the function
domain.

3.1.8.1.1 Definition. Monotonicity.
Multidimensional function f is monotonic when sgn〈f(Y )−f(X) , Y −X〉
is invariant (ignoring 0) to all X,Y ∈ dom f . Nonnegative (nonpositive)
sign denotes nonnegative (nonpositive) monotonicity. △

When argument X and f(X) are dimensionally incompatible, the one
having smaller dimension is padded with 1 to complete the test. It is
necessary and sufficient for each entry fi from this monotonicity definition
to be monotonic with the same sign.

A convex function can be characterized by a similar kind of nonnegative
monotonicity of its gradient:

3.1.8.1.2 Theorem. Gradient monotonicity. [148, §B.4.1.4]
[41, §3.1, exer.20] Given f(X) : Rp×k→R a real differentiable function with
matrix argument on open convex domain, the condition

〈∇f(Y )−∇f(X) , Y −X〉 ≥ 0 for each and every X,Y ∈ dom f (507)

is necessary and sufficient for convexity of f . Strict inequality and caveat
distinct Y ,X provide necessary and sufficient conditions for strict convexity.

⋄

3.1.8.1.3 Example. Composition of functions. [46, §3.2.4] [148, §B.2.1]
Monotonic functions play a vital role determining convexity of functions
constructed by transformation. Given functions g : Rk→R and
h : Rn→Rk, their composition f = g(h) : Rn→R defined by

f(x) = g(h(x)) , dom f = {x∈ domh | h(x)∈ dom g} (508)

is convex when
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and composite function f is concave when� g is concave nonnegatively monotonic and h is concave� g is concave nonpositively monotonic and h is convex

where ∞ (−∞) is assigned to convex (concave) g when evaluated outside
its domain. When functions are differentiable, these rules are consequent to
(1564). Convexity (concavity) of any g is preserved when h is affine. 2

3.1.9 first-order convexity condition, real function

Discretization of w� 0 in (420) invites refocus to the real-valued function:

3.1.9.0.1 Theorem. Necessary and sufficient convexity condition.
[46, §3.1.3] [88, §I.5.2] [299, §1.2.3] [30, §1.2] [247, §4.2] [229, §3] For real
differentiable function f(X) : Rp×k→R with matrix argument on open
convex domain, the condition (confer §D.1.7)

f(Y ) ≥ f(X) + 〈∇f(X) , Y −X〉 for each and every X,Y ∈ dom f (509)

is necessary and sufficient for convexity of f . ⋄

When f(X) : Rp→R is a real differentiable convex function with vector
argument on open convex domain, there is simplification of the first-order
condition (509); for each and every X,Y ∈ dom f

f(Y ) ≥ f(X) + ∇f(X)T (Y −X) (510)

From this we can find a unique [280, §5.5.4] nonvertical [148, §B.1.2]
hyperplane ∂H− (§2.4), expressed in terms of the function gradient,

supporting epi f at

[

X
f(X)

]

: videlicet, defining f(Y /∈ dom f )
∆
= ∞

[46, §3.1.7]
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[

Y
t

]

∈ epi f ⇔ t ≥ f(Y ) ⇒
[

∇f(X)T −1
]

([

Y
t

]

−
[

X
f(X)

])

≤ 0

(511)

This means, for each and every point X in the domain of a real convex
function f(X) , there exists a hyperplane ∂H− in Rp× R having normal
[

∇f(X)
−1

]

supporting the function epigraph at

[

X
f(X)

]

∈ ∂H−

∂H− =

{[

Y
t

]

∈
[

Rp

R

]

[

∇f(X)T −1
]

([

Y
t

]

−
[

X
f(X)

])

= 0

}

(512)

One such supporting hyperplane (confer Figure 20(a)) is illustrated in
Figure 59 for a convex quadratic.

From (510) we deduce, for each and every X,Y ∈ dom f

∇f(X)T (Y −X) ≥ 0 ⇒ f(Y ) ≥ f(X) (513)

meaning, the gradient at X identifies a supporting hyperplane there in Rp

{Y ∈ Rp | ∇f(X)T (Y −X) = 0} (514)

to the convex sublevel sets of convex function f (confer (462))

Lf(X)f
∆
= {Y ∈ dom f | f(Y ) ≤ f(X)} ⊆ Rp (515)

illustrated for an arbitrary real convex function in Figure 60.

3.1.10 first-order convexity condition, vector function

Now consider the first-order necessary and sufficient condition for convexity
of a vector-valued function: Differentiable function f(X) : Rp×k→RM is
convex if and only if dom f is open, convex, and for each and every
X,Y ∈ dom f

f(Y ) �
RM

+

f(X) +
→Y−X

df(X) = f(X) +
d

dt

∣

∣

∣

∣

t=0

f(X+ t (Y −X)) (516)
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α

β

γ∇f(X)

Y−X

{Z | f(Z) = α}

{Y | ∇f(X)T (Y −X) = 0 , f(X)=α}

α ≥ β ≥ γ

Figure 60: Shown is a plausible contour plot in R2 of some arbitrary real
convex function f(Z) at selected levels α , β , and γ ; contours of equal
level f (level sets) drawn in the function’s domain. A convex function
has convex sublevel sets Lf(X)f (515). [230, §4.6] The sublevel set whose
boundary is the level set at α , for instance, comprises all the shaded regions.
For any particular convex function, the family comprising all its sublevel sets
is nested. [148, p.75] Were the sublevel sets not convex, we may certainly
conclude the corresponding function is neither convex. Contour plots of real
affine functions are illustrated in Figure 17 and Figure 55.
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where
→Y−X

df(X) is the directional derivative3.9 [161] [250] of f at X in direction
Y −X . This, of course, follows from the real-valued function case: by dual
generalized inequalities (§2.13.2.0.1),

f(Y )− f(X)−
→Y−X

df(X) �
RM

+

0 ⇔
〈

f(Y )− f(X)−
→Y−X

df(X) , w

〉

≥ 0 ∀w �
RM

+

0

(517)
where

→Y−X

df(X) =











tr
(

∇f1(X)T (Y −X)
)

tr
(

∇f2(X)T (Y −X)
)

...

tr
(

∇fM(X)T (Y −X)
)











∈ RM (518)

Necessary and sufficient discretization (420) allows relaxation of the
semi-infinite number of conditions w� 0 instead to w ∈ {ei , i=1 . . . M}
the extreme directions of the nonnegative orthant. Each extreme direction

picks out a real entry fi and
→Y−X

df(X)i from vector-valued function f and its

directional derivative
→Y−X

df(X) , then Theorem 3.1.9.0.1 applies.
The vector-valued function case (516) is therefore a straightforward

application of the first-order convexity condition for real functions to each
entry of the vector-valued function.

3.1.11 second-order convexity condition

Again, by discretization (420), we are obliged only to consider each individual
entry fi of a vector-valued function f ; id est, the real functions {fi}.

For f(X) : Rp→RM , a twice differentiable vector-valued function with
vector argument on open convex domain,

∇2fi(X) �
S

p
+

0 ∀X∈ dom f , i=1 . . . M (519)

3.9We extend the traditional definition of directional derivative in §D.1.4 so that direction
may be indicated by a vector or a matrix, thereby broadening the scope of the Taylor
series (§D.1.7). The right-hand side of the inequality (516) is the first-order Taylor series
expansion of f about X .
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is a necessary and sufficient condition for convexity of f . Obviously, when
M= 1, this convexity condition also serves for a real function. Intuitively,
condition (519) precludes points of inflection, as in Figure 61 on page 220.

Strict inequality is a sufficient condition for strict convexity, but that is
nothing new; videlicet, the strictly convex real function fi(x)=x4 does not
have positive second derivative at each and every x∈R . Quadratic forms
constitute a notable exception where the strict-case converse is reliably true.

3.1.11.0.1 Exercise. Real fractional function. (confer §3.1.4, §3.1.7.0.4)
Prove that real function f(x, y) = x/y is not convex on the nonnegative
orthant. Also exhibit this in a plot of the function. (In fact, f is quasilinear
(p.222) on {y > 0}.) H

3.1.11.1 second-order ⇒ first-order condition

For a twice-differentiable real function fi(X) : Rp→R having open domain,
a consequence of the mean value theorem from calculus allows compression
of its complete Taylor series expansion about X∈ dom fi (§D.1.7) to three
terms: On some open interval of ‖Y ‖ so each and every line segment
[X,Y ] belongs to dom fi , there exists an α∈ [0 , 1] such that [299, §1.2.3]
[30, §1.1.4]

fi(Y ) = fi(X)+∇fi(X)T (Y−X)+
1

2
(Y−X)T∇2fi(αX +(1−α)Y )(Y−X)

(520)

The first-order condition for convexity (510) follows directly from this and
the second-order condition (519).

3.2 Matrix-valued convex function

We need different tools for matrix argument: We are primarily interested in
continuous matrix-valued functions g(X). We choose symmetric g(X)∈ SM

because matrix-valued functions are most often compared (521) with respect
to the positive semidefinite cone SM

+ in the ambient space of symmetric
matrices.3.10

3.10Function symmetry is not a necessary requirement for convexity; indeed, for A∈Rm×p

and B∈Rm×k, g(X) = AX +B is a convex (affine) function in X on domain Rp×k with
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3.2.0.0.1 Definition. Convex matrix-valued function:
1) Matrix-definition.
A function g(X) : Rp×k→SM is convex in X iff dom g is a convex set and,
for each and every Y, Z∈dom g and all 0≤µ≤1 [158, §2.3.7]

g(µY + (1− µ)Z) �
SM
+

µ g(Y ) + (1− µ)g(Z) (521)

Reversing the sense of the inequality flips this definition to concavity. Strict
convexity is defined less a stroke of the pen in (521) similarly to (422).
2) Scalar-definition.
It follows that g(X) : Rp×k→SM is convex in X iff wTg(X)w : Rp×k→R is
convex in X for each and every ‖w‖= 1 ; shown by substituting the defining
inequality (521). By dual generalized inequalities we have the equivalent but
more broad criterion, (§2.13.5)

g convex ⇔ 〈W , g〉 convex ∀W �
SM
+

0 (522)

Strict convexity on both sides requires caveat W 6= 0. Because the set of
all extreme directions for the positive semidefinite cone (§2.9.2.4) comprises
a minimal set of generators for that cone, discretization (§2.13.4.2.1) allows
replacement of matrix W with symmetric dyad wwT as proposed. △

3.2.1 first-order convexity condition, matrix function

From the scalar-definition we have, for differentiable matrix-valued
function g and for each and every real vector w of unit norm ‖w‖= 1,

wTg(Y )w ≥ wTg(X)w + wT
→Y−X

dg(X) w (523)

that follows immediately from the first-order condition (509) for convexity of
a real function because

wT
→Y−X

dg(X) w =
〈

∇X w
Tg(X)w , Y −X

〉

(524)

respect to the nonnegative orthant Rm×k
+ . Symmetric convex functions share the same

benefits as symmetric matrices. Horn & Johnson [150, §7.7] liken symmetric matrices to
real numbers, and (symmetric) positive definite matrices to positive real numbers.
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where
→Y−X

dg(X) is the directional derivative (§D.1.4) of function g at X in
direction Y −X . By discretized dual generalized inequalities, (§2.13.5)

g(Y )− g(X)−
→Y−X

dg(X) �
SM
+

0 ⇔
〈

g(Y )− g(X)−
→Y−X

dg(X) , wwT

〉

≥ 0 ∀wwT(�
SM
+

0)

(525)
For each and every X,Y ∈ dom g (confer (516))

g(Y ) �
SM
+

g(X) +
→Y−X

dg(X) (526)

must therefore be necessary and sufficient for convexity of a matrix-valued
function of matrix variable on open convex domain.

3.2.2 epigraph of matrix-valued function, sublevel sets

We generalize the epigraph to a continuous matrix-valued function
g(X) : Rp×k→SM :

epi g
∆
= {(X , T )∈Rp×k× SM | X∈ dom g , g(X) �

SM
+

T } (527)

from which it follows

g convex ⇔ epi g convex (528)

Proof of necessity is similar to that in §3.1.7 on page 196.

Sublevel sets of a matrix-valued convex function corresponding to each
and every S∈ SM (confer (462))

L
S
g

∆
= {X∈ dom g | g(X) �

SM
+

S } ⊆ Rp×k (529)

are convex. There is no converse.
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3.2.2.0.1 Example. Matrix fractional function redux.
Generalizing Example 3.1.7.0.4 consider a matrix-valued function of two
variables on dom g = SN

+×Rn×N for small positive constant ǫ (confer (1639))

g(A , X) = ǫX(A+ ǫ I )−1XT (530)

where the inverse always exists by (1255). This function is convex
simultaneously in both variables over the entire positive semidefinite cone SN

+

and all X∈Rn×N : Consider Schur-form (1314) from §A.4: for T ∈ Sn

G(A , X , T ) =

[

A+ ǫ I XT

X ǫ−1 T

]

� 0

⇔
T − ǫX(A+ ǫ I )−1XT � 0

A+ ǫ I ≻ 0

(531)

By Theorem 2.1.9.0.1, inverse image of the positive semidefinite cone SN+n
+

under affine mapping G(A , X , T ) is convex. Function g(A , X ) is convex
on SN

+×Rn×N because its epigraph is that inverse image:

epi g(A , X ) =
{

(A , X , T ) | A+ ǫ I ≻ 0 , ǫX(A+ ǫ I )−1XT � T
}

= G−1
(

SN+n
+

)

(532)
2

3.2.3 second-order condition, matrix function

The following line theorem is a potent tool for establishing convexity of a
multidimensional function. To understand it, what is meant by line must first
be solidified. Given a function g(X) : Rp×k→SM and particular X, Y ∈ Rp×k

not necessarily in that function’s domain, then we say a line {X+ t Y | t ∈R}
passes through dom g when X+ t Y ∈ dom g over some interval of t ∈R .

3.2.3.0.1 Theorem. Line theorem. [46, §3.1.1]
Matrix-valued function g(X) : Rp×k→SM is convex in X if and only if it
remains convex on the intersection of any line with its domain. ⋄

Now we assume a twice differentiable function.
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3.2.3.0.2 Definition. Differentiable convex matrix-valued function.
Matrix-valued function g(X) : Rp×k→SM is convex in X iff dom g is an
open convex set, and its second derivative g′′(X+ t Y ) : R→SM is positive
semidefinite on each point of intersection along every line {X+ t Y | t ∈R}
that intersects dom g ; id est, iff for each and every X, Y ∈ Rp×k such that
X+ t Y ∈ dom g over some open interval of t ∈R

d2

dt2
g(X+ t Y ) �

SM
+

0 (533)

Similarly, if

d2

dt2
g(X+ t Y ) ≻

SM
+

0 (534)

then g is strictly convex; the converse is generally false. [46, §3.1.4]3.11 △

3.2.3.0.3 Example. Matrix inverse. (confer §3.1.5)
The matrix-valued function Xµ is convex on int SM

+ for −1≤µ≤0
or 1≤µ≤2 and concave for 0≤µ≤1. [46, §3.6.2] In particular, the
function g(X) = X−1 is convex on int SM

+ . For each and every Y ∈ SM

(§D.2.1, §A.3.1.0.5)

d2

dt2
g(X+ t Y ) = 2(X+ t Y )−1Y (X+ t Y )−1Y (X+ t Y )−1 �

SM
+

0 (535)

on some open interval of t ∈R such that X+ t Y ≻ 0. Hence, g(X) is
convex in X . This result is extensible;3.12 trX−1 is convex on that same
domain. [150, §7.6, prob.2] [41, §3.1, exer.25] 2

3.2.3.0.4 Example. Matrix squared.
Iconic real function f(x)= x2 is strictly convex on R . The matrix-valued
function g(X)=X2 is convex on the domain of symmetric matrices; for
X, Y ∈ SM and any open interval of t ∈R (§D.2.1)

3.11Quadratic forms constitute a notable exception where the strict-case converse is
reliably true.
3.12 d/dt tr g(X+ t Y ) = tr d/dt g(X+ t Y ). [151, p.491]
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d2

dt2
g(X+ t Y ) =

d2

dt2
(X+ t Y )2 = 2Y 2 (536)

which is positive semidefinite when Y is symmetric because then Y 2 = Y TY
(1261).3.13

A more appropriate matrix-valued counterpart for f is g(X)=XTX
which is a convex function on domain X∈ Rm×n, and strictly convex
whenever X is skinny-or-square full-rank. This matrix-valued function can
be generalized to g(X)=XTAX which is convex whenever matrix A is
positive semidefinite (p.574), and strictly convex when A is positive definite
and X is skinny-or-square full-rank (Corollary A.3.1.0.5). 2

3.2.3.0.5 Example. Matrix exponential.
The matrix-valued function g(X) = eX : SM→ SM is convex on the subspace
of circulant [118] symmetric matrices. Applying the line theorem, for all t∈R
and circulant X, Y ∈ SM , from Table D.2.7 we have

d2

dt2
eX+ t Y = Y eX+ t Y Y �

SM
+

0 , (XY )T = XY (537)

because all circulant matrices are commutative and, for symmetric matrices,
XY = Y X ⇔ (XY )T =XY (1279). Given symmetric argument, the matrix
exponential always resides interior to the cone of positive semidefinite
matrices in the symmetric matrix subspace; eA≻ 0 ∀A∈SM (1636). Then
for any matrix Y of compatible dimension, Y TeAY is positive semidefinite.
(§A.3.1.0.5)

The subspace of circulant symmetric matrices contains all diagonal
matrices. The matrix exponential of any diagonal matrix eΛ exponentiates
each individual entry on the main diagonal. [183, §5.3] So, changing
the function domain to the subspace of real diagonal matrices reduces the
matrix exponential to a vector-valued function in an isometrically isomorphic
subspace RM ; known convex (§3.1.1) from the real-valued function case
[46, §3.1.5]. 2

There are, of course, multifarious methods to determine function
convexity, [46] [30] [88] each of them efficient when appropriate.

3.13By (1280) in §A.3.1, changing the domain instead to all symmetric and nonsymmetric
positive semidefinite matrices, for example, will not produce a convex function.
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Figure 61: Iconic unimodal differentiable quasiconvex function of two
variables graphed in R2× R on some open disc in R2. Note reversal of
curvature in direction of gradient.

3.2.3.0.6 Exercise. log det function.
Show by two different methods: log detX is concave on the interior of the
positive semidefinite cone. H

3.3 Quasiconvex

Quasiconvex functions [46, §3.4] [148] [247] [280] [178, §2] are useful in
practical problem solving because they are unimodal (by definition when
nonmonotonic); a global minimum is guaranteed to exist over any convex set
in the function domain; e.g., Figure 61.

3.3.0.0.1 Definition. Quasiconvex function.
f(X) : Rp×k→R is a quasiconvex function of matrix X iff dom f is a convex
set and for each and every Y, Z∈dom f , 0≤µ≤1

f(µY + (1− µ)Z) ≤ max{f(Y ) , f(Z)} (538)
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A quasiconcave function is determined:

f(µY + (1− µ)Z) ≥ min{f(Y ) , f(Z)} (539)

△

Unlike convex functions, quasiconvex functions are not necessarily
continuous; e.g., quasiconcave rank(X) on SM

+ (§2.9.2.6.2) and card(x)
on RM

+ . Although insufficient for convex functions, convexity of each and
every sublevel set serves as a definition of quasiconvexity:

3.3.0.0.2 Definition. Quasiconvex multidimensional function.
Scalar-, vector-, or matrix-valued function g(X) : Rp×k→SM is a quasiconvex
function of matrix X iff dom g is a convex set and the sublevel set
corresponding to each and every S∈ SM

L
S
g = {X∈ dom g | g(X) � S } ⊆ Rp×k (529)

is convex. Vectors are compared with respect to the nonnegative orthant RM
+

while matrices are with respect to the positive semidefinite cone SM
+ .

Convexity of the superlevel set corresponding to each and every S∈ SM ,
likewise

LSg = {X∈ dom g | g(X) � S } ⊆ Rp×k (540)

is necessary and sufficient for quasiconcavity. △

3.3.0.0.3 Exercise. Nonconvexity of matrix product.
Consider the real function on a positive definite domain

f(X) = tr(X1X2) , dom f
∆
=

[

rel int SN
+ 0

0 rel int SN
+

]

(541)

where

X
∆
=

[

X1 0
0 X2

]

≻
S2N
+

0 (542)

with superlevel sets

Lsf = {X ∈ dom f | f(X) ≥ s }
= {X ∈ dom f | 〈X1 , X2〉 ≥ s } (543)
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Prove: f(X) is not quasiconcave except when N= 1, nor is it quasiconvex
unless X1 = X2 . H

When a function is simultaneously quasiconvex and quasiconcave, it
is called quasilinear. Quasilinear functions are completely determined by
convex level sets. One-dimensional function f(x) = x3 and vector-valued
signum function sgn(x) for example, are quasilinear. Any monotonic
function is quasilinear.3.14

3.4 Salient properties

of convex and quasiconvex functions

1. � A convex (or concave) function is assumed continuous but not
necessarily differentiable on the relative interior of its domain.
[230, §10]� A quasiconvex (or quasiconcave) function is not necessarily a
continuous function.

2. convexity ⇒ quasiconvexity ⇔ convex sublevel sets
concavity ⇒ quasiconcavity ⇔ convex superlevel sets
monotonicity ⇒ quasilinearity ⇔ convex level sets

3. � (homogeneity) Convexity, concavity, quasiconvexity, and
quasiconcavity are invariant to nonnegative scaling of function.� g convex ⇔ −g concave
g quasiconvex ⇔ −g quasiconcave

4. The line theorem (§3.2.3.0.1) translates identically to quasiconvexity
(quasiconcavity). [46, §3.4.2]

5. (affine transformation of argument) Composition g(h(X)) of a
convex (concave) function g with any affine function h : Rm×n→ Rp×k

remains convex (concave) in X∈ Rm×n, where h(Rm×n) ∩ dom g 6= ∅ .
[148, §B.2.1] Likewise for the quasiconvex (quasiconcave) functions g .

3.14 e.g., a monotonic concave function is therefore quasiconvex, but it is best to avoid
this confusion of terms.
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6. � A nonnegatively weighted sum of (strictly) convex (concave)
functions remains (strictly) convex (concave). (§3.1.1.0.1)
Pointwise supremum (infimum) of convex (concave) functions
remains convex (concave). (Figure 56) [230, §5]� A nonnegatively weighted maximum (minimum) of quasiconvex
(quasiconcave) functions remains quasiconvex (quasiconcave).
Pointwise supremum (infimum) of quasiconvex (quasiconcave)
functions remains quasiconvex (quasiconcave).
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Chapter 4

Semidefinite programming

Prior to 1984 ,4.1 linear and nonlinear programming, one a subset
of the other, had evolved for the most part along unconnected
paths, without even a common terminology. (The use of
“programming” to mean “optimization” serves as a persistent
reminder of these differences.)

−Forsgren, Gill, & Wright (2002) [98]

Given some application of convex analysis, it may at first seem puzzling why
the search for its solution ends abruptly with a formalized statement of the
problem itself as a constrained optimization. The explanation is: typically
we do not seek analytical solution because there are relatively few. (§C) If a
problem can be expressed in convex form, rather, then there exist computer
programs providing efficient numerical global solution. [253] [117] [291] [292]
[293] [299]

The goal, then, becomes conversion of a given problem (perhaps a
nonconvex or combinatorial problem statement) to an equivalent convex form
or to an alternation of convex subproblems convergent to a solution of the
original problem: A fundamental property of convex optimization problems is
that any locally optimal point is also (globally) optimal. [46, §4.2.2] [229, §1]
Given convex real objective function g and convex feasible set C⊆dom g ,
which is the set of all variable values satisfying the problem constraints, we

4.1 nascence of interior-point methods of solution [273] [289],© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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have the generic convex optimization problem

minimize
X

g(X)

subject to X∈ C
(544)

where constraints are abstract here in the membership of variable X to
feasible set C . Inequality constraint functions of a convex optimization
problem are convex while equality constraint functions are conventionally
affine, but not necessarily so. Affine equality constraint functions (necessarily
convex), as opposed to the larger set of all convex equality constraint
functions having convex level sets, make convex optimization tractable.

Similarly, the problem

maximize
X

g(X)

subject to X∈ C
(545)

is convex were g a real concave function. As conversion to convex form is not
always possible, there is much ongoing research to determine which problem
classes have convex expression or relaxation. [27] [44] [102] [204] [260] [100]

4.1 Conic problem

Still, we are surprised to see the relatively small number of
submissions to semidefinite programming (SDP) solvers, as this
is an area of significant current interest to the optimization
community. We speculate that semidefinite programming is
simply experiencing the fate of most new areas: Users have yet to
understand how to pose their problems as semidefinite programs,
and the lack of support for SDP solvers in popular modelling
languages likely discourages submissions.

−SIAM News, 2002. [79, p.9]

Consider a prototypical conic problem (p) and its dual (d): [217, §3.3.1]
[175, §2.1]

(p)

minimize
x

cTx

subject to x ∈ K
Ax = b

maximize
y,s

bTy

subject to s ∈ K∗

ATy + s = c

(d) (263)
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where K is a closed convex cone, K∗ is its dual, matrix A is fixed, and the
remaining quantities are vectors.

When K is a polyhedral cone (§2.12.1), then each conic problem becomes
a linear program [64]. More generally, each optimization problem is convex
when K is a closed convex cone. Unlike the optimal objective value, a
solution to each problem is not necessarily unique; in other words, the optimal
solution set {x⋆} or {y⋆, s⋆} is convex and may comprise more than a single
point although the corresponding optimal objective value is unique when the
feasible set is nonempty.

When K is the self-dual cone of positive semidefinite matrices in the
subspace of symmetric matrices, then each conic problem is called a
semidefinite program (SDP); [204, §6.4] primal problem (P) having matrix
variable X∈ Sn while corresponding dual (D) has matrix slack variable
S∈ Sn and vector variable y= [yi]∈Rm : [8] [9, §2] [299, §1.3.8]

(P)

minimize
X∈ S

n
〈C , X 〉

subject to X � 0

A svecX = b

maximize
y∈R

m
, S∈S

n
〈b , y〉

subject to S � 0

svec−1(ATy) + S = C

(D)

(546)

This is the prototypical semidefinite program and its dual, where matrix
C ∈ Sn and vector b∈Rm are fixed, as is

A
∆
=





svec(A1)
T

...
svec(Am)T



 ∈ Rm×n(n+1)/2 (547)

where Ai∈ Sn, i=1 . . . m , are given. Thus

A svecX =





〈A1 , X 〉
...

〈Am , X 〉





svec−1(ATy) =
m
∑

i=1

yiAi

(548)

The vector inner-product for matrices is defined in the Euclidean/Frobenius
sense in the isomorphic vector space Rn(n+1)/2; id est,

〈C , X 〉 ∆
= tr(CTX) = svec(C)T svecX (31)
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where svecX defined by (47) denotes symmetric vectorization.

Semidefinite programming has emerged recently to prominence primarily
because it admits a new class of problem previously unsolvable by convex
optimization techniques, [44] secondarily because it theoretically subsumes
other convex techniques such as linear, quadratic, and second-order cone
programming. Determination of the Riemann mapping function from
complex analysis [211] [24, §8, §13], for example, can be posed as a
semidefinite program.

4.1.1 Maximal complementarity

It has been shown that contemporary interior-point methods (developed
circa 1990 [102]) [46, §11] [290] [214] [204] [9] [98] for numerical
solution of semidefinite programs can converge to a solution of maximal
complementarity ; [126, §5] [298] [185] [109] not a vertex-solution but a
solution of highest cardinality or rank among all optimal solutions.4.2

[299, §2.5.3]

4.1.1.1 Reduced-rank solution

A simple rank reduction algorithm for construction of a primal optimal
solution X⋆ to (546P) satisfying an upper bound on rank governed by
Proposition 2.9.3.0.1 is presented in §4.3. That proposition asserts existence
of feasible solutions with an upper bound on their rank; [20, §II.13.1]
specifically, it asserts an extreme point (§2.6.0.0.1) of the primal feasible
set A ∩ Sn

+ satisfies upper bound

rankX ≤
⌊√

8m+ 1− 1

2

⌋

(232)

where, given A∈Rm×n(n+1)/2 and b∈Rm

A ∆
= {X∈ Sn | A svecX = b} (549)

is the affine subset from primal problem (546P).

4.2This characteristic might be regarded as a disadvantage to this method of numerical
solution, but this behavior is not certain and depends on solver implementation.
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Γ2

Γ1

S3

+

0

A=∂H

C

P

Figure 62: Visualizing positive semidefinite cone in high dimension: Proper
polyhedral cone S3

+⊂R3 representing positive semidefinite cone S3

+⊂ S3 ;
analogizing its intersection with hyperplane S3

+ ∩ ∂H . Number of facets
is arbitrary (analogy is not inspired by eigen decomposition). The rank-0
positive semidefinite matrix corresponds to the origin in R3, rank-1 positive
semidefinite matrices correspond to the edges of the polyhedral cone, rank-2
to the facet relative interiors, and rank-3 to the polyhedral cone interior.
Vertices Γ1 and Γ2 are extreme points of polyhedron P=∂H ∩ S3

+ , and
extreme directions of S3

+ . A given vector C is normal to another hyperplane
(not illustrated but independent w.r.t ∂H) containing line segment Γ1Γ2

minimizing real linear function 〈C , X 〉 on P . (confer Figure 17)
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4.1.1.2 Coexistence of low- and high-rank solutions; analogy

That low-rank and high-rank optimal solutions {X⋆} of (546P) coexist may
be grasped with the following analogy: We compare a proper polyhedral cone
S3

+ in R3 (illustrated in Figure 62) to the positive semidefinite cone S3

+ in
isometrically isomorphic R6, difficult to visualize. The analogy is good:� int S3

+ is constituted by rank-3 matrices

intS3

+ has three dimensions� boundary ∂S3

+ contains rank-0, rank-1, and rank-2 matrices

boundary ∂S3

+ contains 0-, 1-, and 2-dimensional faces� the only rank-0 matrix resides in the vertex at the origin� Rank-1 matrices are in one-to-one correspondence with extreme
directions of S3

+ and S3

+ . The set of all rank-1 symmetric matrices in
this dimension

{

G ∈ S3

+ | rankG=1
}

(550)

is not a connected set.� In any SDP feasibility problem, an SDP feasible solution with the lowest
rank must be an extreme point of the feasible set. Thus, there must exist
an SDP objective function such that this lowest-rank feasible solution
uniquely optimizes it. −Ye, 2006� Rank of a sum of members F+G in Lemma 2.9.2.6.1 and location of
a difference F−G in §2.9.2.9.1 similarly hold for S3

+ and S3

+ .� Euclidean distance from any particular rank-3 positive semidefinite
matrix (in the cone interior) to the closest rank-2 positive semidefinite
matrix (on the boundary) is generally less than the distance to the
closest rank-1 positive semidefinite matrix. (§7.1.2)� distance from any point in ∂S3

+ to int S3

+ is infinitesimal (§2.1.7.1.1)

distance from any point in ∂S3

+ to intS3

+ is infinitesimal
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+ correspond to faces of S3

+ (confer Table 2.9.2.3.1)

k dimF(S3

+) dimF(S3

+) dimF(S3

+∋ rank-k matrix)
0 0 0 0

boundary 1 1 1 1
2 2 3 3

interior 3 3 6 6

Integer k indexes k-dimensional faces F of S3

+ . Positive semidefinite
cone S3

+ has four kinds of faces, including cone itself (k = 3,
boundary + interior), whose dimensions in isometrically isomorphic
R6 are listed under dimF(S3

+). Smallest face F(S3

+∋ rank-k matrix)
that contains a rank-k positive semidefinite matrix has dimension
k(k + 1)/2 by (191).� For A equal to intersection of m hyperplanes having independent
normals, and for X∈ S3

+ ∩ A , we have rankX ≤ m ; the analogue
to (232).

Proof. With reference to Figure 62: Assume one (m= 1) hyperplane
A= ∂H intersects the polyhedral cone. Every intersecting plane
contains at least one matrix having rank less than or equal to 1 ; id est,
from all X∈ ∂H ∩ S3

+ there exists anX such that rankX≤ 1. Rank 1
is therefore an upper bound in this case.

Now visualize intersection of the polyhedral cone with two (m= 2)
hyperplanes having linearly independent normals. The hyperplane
intersectionAmakes a line. Every intersecting line contains at least one
matrix having rank less than or equal to 2, providing an upper bound.
In other words, there exists a positive semidefinite matrix X belonging
to any line intersecting the polyhedral cone such that rankX ≤ 2.

In the case of three independent intersecting hyperplanes (m= 3), the
hyperplane intersection A makes a point that can reside anywhere in
the polyhedral cone. The upper bound on a point in S3

+ is also the
greatest upper bound: rankX ≤ 3. �
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4.1.1.2.1 Example. Optimization on A ∩ S3

+ .
Consider minimization of the real linear function 〈C , X 〉 on

P ∆
= A ∩ S3

+ (551)

a polyhedral feasible set;

f ⋆
0

∆
= minimize

X
〈C , X 〉

subject to X ∈ A ∩ S3

+

(552)

As illustrated for particular vector C and hyperplane A= ∂H in Figure 62,
this linear function is minimized (confer Figure 17) on any X belonging to
the face of P containing extreme points {Γ1 , Γ2} and all the rank-2 matrices
in between; id est, on any X belonging to the face of P

F(P) = {X | 〈C , X 〉 = f ⋆
0 } ∩ A ∩ S3

+ (553)

exposed by the hyperplane {X | 〈C , X 〉=f ⋆
0}. In other words, the set of all

optimal points X⋆ is a face of P

{X⋆} = F(P) = Γ1Γ2 (554)

comprising rank-1 and rank-2 positive semidefinite matrices. Rank 1 is
the upper bound on existence in the feasible set P for this case m= 1
hyperplane constituting A . The rank-1 matrices Γ1 and Γ2 in face F(P)
are extreme points of that face and (by transitivity (§2.6.1.2)) extreme
points of the intersection P as well. As predicted by analogy to Barvinok’s
Proposition 2.9.3.0.1, the upper bound on rank of X existent in the feasible
set P is satisfied by an extreme point. The upper bound on rank of an
optimal solution X⋆ existent in F(P) is thereby also satisfied by an extreme
point of P precisely because {X⋆} constitutes F(P) ;4.3 in particular,

{X⋆∈ P | rankX⋆≤ 1} = {Γ1 , Γ2} ⊆ F(P) (555)

As all linear functions on a polyhedron are minimized on a face, [64] [184]
[203] [206] by analogy we so demonstrate coexistence of optimal solutions X⋆

of (546P) having assorted rank. 2

4.3 and every face contains a subset of the extreme points of P by the extreme

existence theorem (§2.6.0.0.2). This means: because the affine subset A and hyperplane
{X | 〈C , X 〉 = f⋆

0 } must intersect a whole face of P , calculation of an upper bound on
rank of X⋆ ignores counting the hyperplane when determining m in (232).
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4.1.1.3 Previous work

Barvinok showed [21, §2.2] when given a positive definite matrix C and an
arbitrarily small neighborhood of C comprising positive definite matrices,
there exists a matrix C̃ from that neighborhood such that optimal solution
X⋆ to (546P) (substituting C̃ ) is an extreme point of A ∩ Sn

+ and satisfies
upper bound (232).4.4 Given arbitrary positive definite C , this means
nothing inherently guarantees that an optimal solutionX⋆ to problem (546P)
satisfies (232); certainly nothing given any symmetric matrix C , as the
problem is posed. This can be proved by example:

4.1.1.3.1 Example. (Ye) Maximal Complementarity.
Assume dimension n to be an even positive number. Then the particular
instance of problem (546P),

minimize
X∈ S

n

〈[

I 0
0 2I

]

, X

〉

subject to X � 0

〈I , X 〉 = n

(556)

has optimal solution

X⋆ =

[

2I 0
0 0

]

∈ Sn (557)

with an equal number of twos and zeros along the main diagonal. Indeed,
optimal solution (557) is a terminal solution along the central path taken by
the interior-point method as implemented in [299, §2.5.3]; it is also a solution
of highest rank among all optimal solutions to (556). Clearly, rank of this
primal optimal solution exceeds by far a rank-1 solution predicted by upper
bound (232). 2

4.1.1.4 Later developments

This rational example (556) indicates the need for a more generally applicable
and simple algorithm to identify an optimal solutionX⋆ satisfying Barvinok’s
Proposition 2.9.3.0.1. We will review such an algorithm in §4.3, but first we
provide more background.

4.4Further, the set of all such C̃ in that neighborhood is open and dense.
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4.2 Framework

4.2.1 Feasible sets

Denote by C and C∗ the convex sets of primal and dual points respectively
satisfying the primal and dual constraints in (546), each assumed nonempty;

C =







X∈ Sn
+ |





〈A1 , X 〉
...

〈Am , X 〉



= b







= A ∩ Sn
+

C∗ =

{

S∈ Sn
+ , y= [yi]∈Rm |

m
∑

i=1

yiAi + S = C

}

(558)

These are the primal feasible set and dual feasible set in domain intersection
of the respective constraint functions. Geometrically, primal feasible A ∩ Sn

+

represents an intersection of the positive semidefinite cone Sn
+ with an

affine subset A of the subspace of symmetric matrices Sn in isometrically
isomorphic Rn(n+1)/2. The affine subset has dimension n(n+1)/2−m when
the Ai are linearly independent. Dual feasible set C∗ is the Cartesian product
of the positive semidefinite cone with its inverse image (§2.1.9.0.1) under
affine transformation C−∑ yiAi .4.5 Both sets are closed and convex and
the objective functions on a Euclidean vector space are linear, hence (546P)
and (546D) are convex optimization problems.

4.2.1.1 A ∩ Sn
+ emptiness determination via Farkas’ lemma

4.2.1.1.1 Lemma. Semidefinite Farkas’ lemma.
Given an arbitrary set {Ai∈ Sn, i=1 . . . m} and a vector b= [bi]∈Rm,
define the affine subset

A = {X∈ Sn | 〈Ai , X 〉 = bi , i=1 . . . m} (549)

Primal feasible set A ∩ Sn
+ is nonempty if and only if yT b≥ 0 holds for

each and every vector y= [yi]∈Rm such that
m
∑

i=1

yiAi� 0.

4.5The inequality C−∑ yiAi� 0 follows directly from (546D) (§2.9.0.1.1) and is known
as a linear matrix inequality. (§2.13.5.1.1) Because

∑

yiAi�C , matrix S is known as a
slack variable (a term borrowed from linear programming [64]) since its inclusion raises
this inequality to equality.
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Equivalently, primal feasible set A ∩ Sn
+ is nonempty if and only

if yT b≥ 0 holds for each and every norm-1 vector ‖y‖= 1 such that
m
∑

i=1

yiAi� 0. ⋄

Semidefinite Farkas’ lemma follows directly from a membership relation
(§2.13.2.0.1) and the closed convex cones from linear matrix inequality
example 2.13.5.1.1; given convex cone K and its dual

K = {A svecX | X� 0} (324)

K∗= {y |
m
∑

j=1

yjAj � 0} (330)

where

A =





svec(A1)
T

...
svec(Am)T



 ∈ Rm×n(n+1)/2 (547)

then we have membership relation

b ∈ K ⇔ 〈y , b〉 ≥ 0 ∀ y ∈ K∗ (276)

and equivalents

b ∈ K ⇔ ∃X � 0 � A svecX = b ⇔ A ∩ Sn
+ 6= ∅ (559)

b ∈ K ⇔ 〈y , b〉 ≥ 0 ∀ y ∈ K∗ ⇔ A ∩ Sn
+ 6= ∅ (560)

Semidefinite Farkas’ lemma provides the conditions required for a set
of hyperplanes to have a nonempty intersection A ∩ Sn

+ with the positive
semidefinite cone. While the lemma as stated is correct, Ye points out
[299, §1.3.8] that a positive definite version of this lemma is required for
semidefinite programming because any feasible point in the relative interior
A ∩ int Sn

+ is required by Slater’s condition4.6 to achieve 0 duality gap
(primal−dual objective difference §4.2.3, Figure 45). In our circumstance,
assuming a nonempty intersection, a positive definite lemma is required
to insure a point of intersection closest to the origin is not at infinity;

4.6Slater’s sufficient condition is satisfied whenever any primal strictly feasible point
exists; id est, any point feasible with the affine equality (or affine inequality) constraint
functions and relatively interior to convex cone K . If cone K is polyhedral, then Slater’s
condition is satisfied when any feasible point exists relatively interior to K or on its relative
boundary. [46, §5.2.3] [29, p.325]
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e.g., Figure 33. Then given A∈Rm×n(n+1)/2 having rank m , we wish to
detect existence of a nonempty relative interior of the primal feasible set;4.7

b ∈ intK ⇔ 〈y , b〉 > 0 ∀ y ∈ K∗, y 6= 0 ⇔ A∩ int Sn
+ 6= ∅ (561)

A positive definite Farkas’ lemma can easily be constructed from this
membership relation (282) and these proper convex cones K (324) and
K∗ (330):

4.2.1.1.2 Lemma. Positive definite Farkas’ lemma.
Given a linearly independent set {Ai∈ Sn, i=1 . . . m} and a vector
b= [bi]∈Rm, define the affine subset

A = {X∈ Sn | 〈Ai , X 〉 = bi , i=1 . . . m} (549)

Primal feasible set relative interior A ∩ int Sn
+ is nonempty if and only if

yT b > 0 holds for each and every vector y= [yi] 6= 0 such that
m
∑

i=1

yiAi� 0.

Equivalently, primal feasible set relative interior A ∩ int Sn
+ is nonempty

if and only if yT b > 0 holds for each and every norm-1 vector ‖y‖= 1 such

that
m
∑

i=1

yiAi� 0. ⋄

4.2.1.1.3 Example. “New” Farkas’ lemma.
In 1995, Lasserre [167, §III] presented an example originally offered by
Ben-Israel in 1969 [26, p.378] as evidence of failure in semidefinite Farkas’
Lemma 4.2.1.1.1:

A
∆
=

[

svec(A1)
T

svec(A2)
T

]

=

[

0 1 0
0 0 1

]

, b =

[

1
0

]

(562)

The intersection A ∩ Sn
+ is practically empty because the solution set

{X� 0 | A svecX= b} =

{[

α 1√
2

1√
2

0

]

� 0 | α∈R

}

(563)

4.7Detection of A ∩ int Sn
+ by examining K interior is a trick need not be lost.
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is positive semidefinite only asymptotically (α→∞). Yet the dual system
m
∑

i=1

yiAi� 0⇒ yT b≥0 indicates nonempty intersection; videlicet, for ‖y‖= 1

y1

[

0 1√
2

1√
2

0

]

+ y2

[

0 0
0 1

]

� 0 ⇔ y =

[

0
1

]

⇒ yT b= 0 (564)

On the other hand, positive definite Farkas’ Lemma 4.2.1.1.2 shows
A ∩ int Sn

+ is empty; what we need to know for semidefinite programming.

Based on Ben-Israel’s example, Lasserre suggested addition of another
condition to semidefinite Farkas’ Lemma 4.2.1.1.1 to make a “new” lemma.
Ye recommends positive definite Farkas’ Lemma 4.2.1.1.2 instead; which is
simpler and obviates Lasserre’s proposed additional condition. 2

4.2.1.2 Theorem of the alternative for semidefinite programming

Because these Farkas’ lemmas follow from membership relations, we may
construct alternative systems from them. Applying the method of §2.13.2.1.1,
then from positive definite Farkas’ lemma, for example, we get

A ∩ int Sn
+ 6= ∅

or in the alternative

yT b≤ 0 ,
m
∑

i=1

yiAi � 0 , y 6= 0

(565)

Any single vector y satisfying the alternative certifies A ∩ int Sn
+ is empty.

Such a vector can be found as a solution to another semidefinite program:
for linearly independent set {Ai∈ Sn, i=1 . . . m}

minimize
y

yT b

subject to
m
∑

i=1

yiAi � 0

‖y‖2 ≤ 1

(566)

If an optimal vector y⋆ 6= 0 can be found such that y⋆T b≤ 0, then relative
interior of the primal feasible set A ∩ int Sn

+ from (558) is empty.
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4.2.1.3 Boundary-membership criterion

(confer (560) (561)) From boundary-membership relation (286) for proper
cones and from linear matrix inequality cones K (324) and K∗ (330)

b ∈ ∂K ⇔ ∃ y � 〈y , b〉= 0 , y ∈ K∗, y 6= 0 , b ∈ K ⇔ ∂Sn
+ ⊃ A∩ Sn

+ 6= ∅
(567)

Whether vector b ∈ ∂K belongs to cone K boundary, that is a
determination we can indeed make; one that is certainly expressible as a
feasibility problem: assuming b ∈ K (559) given linearly independent set
{Ai∈ Sn, i=1 . . . m} 4.8

find y 6= 0

subject to yT b = 0
m
∑

i=1

yiAi � 0

(568)

Any such feasible vector y 6= 0 certifies that affine subset A (549) intersects
the positive semidefinite cone Sn

+ only on its boundary; in other words,
nonempty feasible set A ∩ Sn

+ belongs to the positive semidefinite cone
boundary ∂Sn

+ .

4.2.2 Duals

The dual objective function evaluated at any feasible point represents a lower
bound on the primal optimal objective value. We can see this by direct
substitution: Assume the feasible sets A ∩ Sn

+ and C∗ are nonempty. Then
it is always true:

〈C , X 〉 ≥ 〈b , y〉
〈

∑

i

yiAi + S , X

〉

≥ [ 〈A1 , X 〉 · · · 〈Am , X 〉 ] y

〈S , X 〉 ≥ 0

(569)

The converse also follows because

X � 0 , S � 0 ⇒ 〈S,X 〉 ≥ 0 (1285)

4.8From the results of Example 2.13.5.1.1, vector b on the boundary of K cannot be
detected simply by looking for 0 eigenvalues in matrix X .
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Optimal value of the dual objective thus represents the greatest lower bound
on the primal. This fact is known as the weak duality theorem for semidefinite
programming, [299, §1.3.8] and can be used to detect convergence in any
primal/dual numerical method of solution.

4.2.3 Optimality conditions

When any primal feasible point exists relatively interior to A ∩ Sn
+ in Sn,

or when any dual feasible point exists relatively interior to C∗ in Sn× Rm,
then by Slater’s sufficient condition these two problems (546P) and (546D)
become strong duals. In other words, the primal optimal objective value
becomes equivalent to the dual optimal objective value: there is no duality
gap (Figure 45); id est, if ∃X∈ A ∩ int Sn

+ or ∃S, y∈ rel int C∗ then

〈C , X⋆〉 = 〈b , y⋆〉
〈

∑

i

y⋆
iAi + S⋆ , X⋆

〉

= [ 〈A1 , X
⋆〉 · · · 〈Am , X⋆〉 ] y⋆

〈S⋆, X⋆〉 = 0

(570)

where S⋆, y⋆ denote a dual optimal solution.4.9 We summarize this:

4.2.3.0.1 Corollary. Optimality and strong duality. [269, §3.1]
[299, §1.3.8] For semidefinite programs (546P) and (546D), assume primal
and dual feasible sets A ∩ Sn

+⊂ Sn and C∗⊂ Sn× Rm (558) are nonempty.
Then� X⋆ is optimal for (P)� S⋆, y⋆ are optimal for (D)� the duality gap 〈C,X⋆〉−〈b , y⋆〉 is 0

if and only if

i) ∃X∈ A ∩ int Sn
+ or ∃S , y ∈ rel int C∗
and

ii) 〈S⋆, X⋆〉 = 0 ⋄

4.9Optimality condition 〈S⋆, X⋆〉=0 is called a complementary slackness condition, in
keeping with the tradition of linear programming, [64] that forbids dual inequalities in
(546) to simultaneously hold strictly. [229, §4]
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For symmetric positive semidefinite matrices, requirement ii is equivalent
to the complementarity (§A.7.4)

〈S⋆, X⋆〉 = 0 ⇔ S⋆X⋆ = X⋆S⋆ = 0 (571)

Commutativity of diagonalizable matrices is a necessary and sufficient
condition [150, §1.3.12] for these two optimal symmetric matrices to be
simultaneously diagonalizable. Therefore

rankX⋆ + rankS⋆ ≤ n (572)

Proof. To see that, the product of symmetric optimal matrices
X⋆, S⋆∈ Sn must itself be symmetric because of commutativity. (1279) The
symmetric product has diagonalization [9, cor.2.11]

S⋆X⋆ = X⋆S⋆ = QΛS⋆ΛX⋆QT = 0 ⇔ ΛX⋆ΛS⋆ = 0 (573)

where Q is an orthogonal matrix. The product of the nonnegative diagonal Λ
matrices can be 0 if their main diagonal zeros are complementary or coincide.
Due only to symmetry, rankX⋆ = rank ΛX⋆ and rankS⋆ = rank ΛS⋆ for
these optimal primal and dual solutions. (1264) So, because of the
complementarity, the total number of nonzero diagonal entries from both Λ
cannot exceed n . �

When equality is attained in (572)

rankX⋆ + rankS⋆ = n (574)

there are no coinciding main diagonal zeros in ΛX⋆ΛS⋆ , and so we have what
is called strict complementarity.4.10 Logically it follows that a necessary and
sufficient condition for strict complementarity of an optimal primal and dual
solution is

X⋆ + S⋆ ≻ 0 (575)

The beauty of Corollary 4.2.3.0.1 is its conjugacy; id est, one can solve
either the primal or dual problem and then find a solution to the other via the
optimality conditions. When a dual optimal solution is known, for example,
a primal optimal solution belongs to the hyperplane {X | 〈S⋆, X 〉=0}.
4.10 distinct from maximal complementarity (§4.1.1).
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4.2.3.0.2 Example. Minimum cardinality Boolean. [63] [27, §4.3.4] [260]
(confer Example 4.4.3.0.1) Consider finding a minimum cardinality Boolean
solution x to the classic linear algebra problem Ax= b given noiseless data
A∈Rm×n and b∈Rm ;

minimize
x

‖x‖0
subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(576)

where ‖x‖0 denotes cardinality of vector x (a.k.a, 0-norm; not a convex
function).

A minimum cardinality solution answers the question: “Which fewest
linear combination of columns in A constructs vector b ?” Cardinality
problems have extraordinarily wide appeal, arising in many fields of science
and across many disciplines. [238] [157] [120] [121] Yet designing an efficient
algorithm to optimize cardinality has proved difficult. In this example, we
also constrain the variable to be Boolean. The Boolean constraint forces
an identical solution were the norm in problem (576) instead the 1-norm or
2-norm; id est, the two problems

(576)

minimize
x

‖x‖0
subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

=

minimize
x

‖x‖1
subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(577)

are the same. The Boolean constraint makes the 1-norm problem nonconvex.
Given data4.11

A =







−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2
− 1

3

−9 4 8 1
4

1
9

1
4
− 1

9






, b =







1
1
2
1
4






(578)

the obvious and desired solution to the problem posed,

x⋆ = e4 ∈ R6 (579)

has norm ‖x⋆‖2 =1 and minimum cardinality; the minimum number of
nonzero entries in vector x . The Matlab backslash command x=A\b ,

4.11This particular matrix A is full-rank having three-dimensional nullspace (but the
columns are not conically independent).
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for example, finds

x
M

=



















2
128

0
5

128

0
90
128

0



















(580)

having norm ‖x
M
‖2 = 0.7044 . Coincidentally, x

M
is a 1-norm solution;

id est, an optimal solution to

minimize
x

‖x‖1
subject to Ax = b

(581)

The pseudoinverse solution (rounded)

x
P

= A†b =

















−0.0456
−0.1881

0.0623
0.2668
0.3770
−0.1102

















(582)

has least norm ‖x
P
‖2 =0.5165 ; id est, the optimal solution to

minimize
x

‖x‖2
subject to Ax = b

(583)

Certainly, none of the traditional methods provide x⋆ = e4 (579).
We can reformulate this minimum cardinality Boolean problem (576) as

a semidefinite program: First transform the variable

x
∆
= (x̂+ 1)1

2
(584)

so x̂i∈{−1, 1} ; equivalently,

minimize
x̂

‖(x̂+ 1)1
2
‖0

subject to A(x̂+ 1)1
2

= b

δ(x̂x̂T ) = 1

(585)
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where δ is the main-diagonal linear operator (§A.1). By assigning (§B.1)

G =

[

x̂
1

]

[ x̂T 1 ]
=

[

X x̂
x̂T 1

]

∆
=

[

x̂x̂T x̂
x̂T 1

]

∈ Sn+1 (586)

problem (585) becomes equivalent to: (Theorem A.3.1.0.7)

minimize
X∈ S

n
, x̂∈R

n
1T x̂

subject to A(x̂+ 1)1
2

= b

G =

[

X x̂
x̂T 1

]

δ(X) = 1
(G � 0)
rankG = 1

(587)

where solution is confined to rank-1 vertices of the elliptope in Sn+1

(§5.9.1.0.1) by the rank constraint, the positive semidefiniteness, and the
equality constraints δ(X)=1. The rank constraint makes this problem
nonconvex; by removing it4.12 we get the semidefinite program

minimize
X∈ S

n
, x̂∈R

n
1T x̂

subject to A(x̂+ 1)1
2

= b

G =

[

X x̂
x̂T 1

]

� 0

δ(X) = 1

(588)

whose optimal solution x⋆ (584) is identical to that of minimum cardinality
Boolean problem (576) if and only if rankG⋆ =1. Hope4.13 of acquiring a
rank-1 solution is not ill-founded because 2n elliptope vertices have rank 1,
and we are minimizing an affine function on a subset of the elliptope
(Figure 87) containing rank-1 vertices; id est, by assumption that the
feasible set of minimum cardinality Boolean problem (576) is nonempty,

4.12Relaxed problem (588) can also be derived via Lagrange duality; it is a dual of a
dual program [sic ] to (587). [227] [46, §5, exer.5.39] [285, §IV] [101, §11.3.4] The relaxed
problem must therefore be convex having a larger feasible set; its optimal objective value
represents a generally loose lower bound (1462) on the optimal objective of problem (587).
4.13A more deterministic approach to constraining rank and cardinality is developed in§4.4.3.0.8.
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a desired solution resides on the elliptope relative boundary at a rank-1
vertex.4.14

For the data given in (578), our semidefinite program solver (accurate to
approximately 1E-8)4.15 finds optimal solution to (588)

round(G⋆) =





















1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1
−1 −1 −1 1 −1 −1 1

1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1
−1 −1 −1 1 −1 −1 1





















(589)

near a rank-1 vertex of the elliptope in Sn+1 ; its sorted eigenvalues,

λ(G⋆) =





















6.99999977799099
0.00000022687241
0.00000002250296
0.00000000262974
−0.00000000999738
−0.00000000999875
−0.00000001000000





















(590)

The negative eigenvalues are undoubtedly finite-precision effects. Because
the largest eigenvalue predominates by many orders of magnitude, we can
expect to find a good approximation to a minimum cardinality Boolean
solution by truncating all smaller eigenvalues. By so doing we find, indeed,

x⋆ = round

































0.00000000127947
0.00000000527369
0.00000000181001
0.99999997469044
0.00000001408950
0.00000000482903

































= e4 (591)

the desired result (579). 2

4.14Confinement to the elliptope can be regarded as a kind of normalization akin to
matrix A column normalization suggested in [82] and explored in Example 4.2.3.0.3.
4.15A typically ignored limitation of interior-point methods of solution is their relative
accuracy of only about 1E-8 on a machine using 64-bit (double precision) floating-point
arithmetic; id est, optimal solution cannot be more accurate than square root of machine
epsilon (2.2204E-16).
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4.2.3.0.3 Example. Optimization on elliptope versus 1-norm polyhedron
for minimum cardinality Boolean Example 4.2.3.0.2. A minimum
cardinality problem is typically formulated via, what is by now, the standard
practice [82] of column normalization applied to a 1-norm problem surrogate
like (581). Suppose we define a diagonal matrix

Λ
∆
=











‖A(: , 1)‖2 0
‖A(: , 2)‖2

. . .

0 ‖A(: , 6)‖2











∈ S6 (592)

used to normalize the columns (assumed nonzero) of given noiseless data
matrix A . Then approximate the minimum cardinality Boolean problem

minimize
x

‖x‖0
subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(576)

as
minimize

ỹ
‖ỹ‖1

subject to AΛ−1ỹ = b
1 � Λ−1ỹ � 0

(593)

where optimal solution
y⋆ = round(Λ−1ỹ⋆) (594)

The inequality in (593) relaxes Boolean constraint yi∈{0, 1} from (576);
serving to bound any solution y⋆ to a unit cube whose vertices are binary
numbers. Convex problem (593) is justified by the convex envelope

cenv ‖x‖0 on {x∈Rn | ‖x‖∞≤κ} =
1

κ
‖x‖1 (1171)

Donoho concurs with this particular formulation equivalently expressible as
a linear program via (430).

Approximation (593) is therefore equivalent to minimization of an affine
function on a bounded polyhedron, whereas semidefinite program

minimize
X∈ S

n
, x̂∈R

n
1T x̂

subject to A(x̂+ 1)1
2

= b

G =

[

X x̂
x̂T 1

]

� 0

δ(X) = 1

(588)
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minimizes an affine function on the elliptope intersected by
hyperplanes. Although the same Boolean solution is obtained from
this approximation (593) as compared with semidefinite program (588)
when given that particular data from Example 4.2.3.0.2, Singer confides a
counter-example: Instead, given data

A =

[

1 0 1√
2

0 1 1√
2

]

, b =

[

1

1

]

(595)

then solving approximation (593) yields

y⋆ = round













1− 1√
2

1− 1√
2

1












=







0

0

1






(596)

(infeasible, with or without rounding, with respect to original problem (576))
whereas solving semidefinite program (588) produces

round(G⋆) =









1 1 −1 1
1 1 −1 1
−1 −1 1 −1

1 1 −1 1









(597)

with sorted eigenvalues

λ(G⋆) =









3.99999965057264
0.00000035942736
−0.00000000000000
−0.00000001000000









(598)

Truncating all but the largest eigenvalue, we obtain (confer y⋆) (584)

x⋆ = round









0.99999999625299
0.99999999625299
0.00000001434518







 =





1
1
0



 (599)

the desired minimum cardinality Boolean result.
We leave pending a general performance assessment of standard-practice

approximation (593) as compared with our proposed semidefinite
program (588). 2
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4.3 Rank reduction

. . . it is not clear generally how to predict rankX⋆ or rankS⋆

before solving the SDP problem.

−Farid Alizadeh (1995) [9, p.22]

The premise of rank reduction in semidefinite programming is: an optimal
solution found does not satisfy Barvinok’s upper bound (232) on rank. The
particular numerical algorithm solving a semidefinite program may have
instead returned a high-rank optimal solution (§4.1.1; e.g., (557)) when a
lower-rank optimal solution was expected.

4.3.1 Posit a perturbation of X⋆

Recall from §4.1.1.1, there is an extreme point of A ∩ Sn
+ (549) satisfying

upper bound (232) on rank. [21, §2.2] It is therefore sufficient to locate
an extreme point of the intersection whose primal objective value (546P) is
optimal:4.16 [77, §31.5.3] [175, §2.4] [5, §3] [215]

Consider again the affine subset

A = {X∈ Sn | A svecX = b} (549)

where for Ai∈ Sn

A
∆
=





svec(A1)
T

...
svec(Am)T



 ∈ Rm×n(n+1)/2 (547)

Given any optimal solution X⋆ to

minimize
X∈ S

n
〈C , X 〉

subject to X ∈ A ∩ Sn
+

(546)(P)

4.16There is no known construction for Barvinok’s tighter result (237). −Monique Laurent
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whose rank does not satisfy upper bound (232), we posit existence of a set
of perturbations

{tjBj | tj∈R , Bj∈ Sn, j=1 . . . n} (600)

such that, for some 0≤ i≤n and scalars {tj , j=1 . . . i} ,

X⋆ +
i
∑

j=1

tjBj (601)

becomes an extreme point of A ∩ Sn
+ and remains an optimal solution of

(546P). Membership of (601) to affine subset A is secured for the ith

perturbation by demanding

〈Bi , Aj〉 = 0 , j=1 . . . m (602)

while membership to the positive semidefinite cone Sn
+ is insured by small

perturbation (611). In this manner feasibility is insured. Optimality is proved
in §4.3.3.

The following simple algorithm has very low computational intensity and
locates an optimal extreme point, assuming a nontrivial solution:

4.3.1.0.1 Procedure. Rank reduction. (§F.4)
initialize: Bi = 0 ∀ i
for iteration i=1...n

{

1. compute a nonzero perturbation matrix Bi of X⋆ +
i−1
∑

j=1

tjBj

2. maximize ti

subject to X⋆ +
i
∑

j=1

tjBj ∈ Sn
+

} ¶
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A rank-reduced optimal solution is then

X⋆ ← X⋆ +
i
∑

j=1

tjBj (603)

4.3.2 Perturbation form

The perturbations are independent of constants C ∈ Sn and b∈Rm in primal
and dual programs (546). Numerical accuracy of any rank-reduced result,
found by perturbation of an initial optimal solution X⋆, is therefore quite
dependent upon initial accuracy of X⋆.

4.3.2.0.1 Definition. Matrix step function. (confer §A.6.5.0.1)
Define the signum-like quasiconcave real function ψ : Sn→ R

ψ(Z )
∆
=

{

1 , Z � 0
−1 , otherwise

(604)

The value −1 is taken for indefinite or nonzero negative semidefinite
argument. △

Deza & Laurent [77, §31.5.3] prove: every perturbation matrix Bi ,
i=1 . . . n , is of the form

Bi = −ψ(Zi)RiZiR
T
i ∈ Sn (605)

where

X⋆ ∆
= R1R

T
1 , X⋆ +

i−1
∑

j=1

tjBj
∆
= RiR

T
i ∈ Sn (606)

where the tj are scalars and Ri∈Rn×ρ is full-rank and skinny where

ρ
∆
= rank

(

X⋆ +
i−1
∑

j=1

tjBj

)

(607)

and where matrix Zi∈ Sρ is found at each iteration i by solving a very
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simple feasibility problem: 4.17

find Zi∈ Sρ

subject to 〈Zi , R
T
iAjRi〉 = 0 , j=1 . . . m

(608)

Were there a sparsity pattern common to each member of the set
{RT

iAjRi∈ Sρ, j=1 . . . m} , then a good choice for Zi has 1 in each entry
corresponding to a 0 in the pattern; id est, a sparsity pattern complement.
At iteration i

X⋆ +
i−1
∑

j=1

tjBj + tiBi = Ri(I − tiψ(Zi)Zi)R
T
i (609)

By fact (1253), therefore

X⋆ +
i−1
∑

j=1

tjBj + tiBi � 0 ⇔ 1− tiψ(Zi)λ(Zi) � 0 (610)

where λ(Zi)∈Rρ denotes the eigenvalues of Zi .

Maximization of each ti in step 2 of the Procedure reduces rank of (609)
and locates a new point on the boundary ∂(A ∩ Sn

+) .4.18 Maximization of
ti thereby has closed form;

4.17A simple method of solution is closed-form projection of a random nonzero point on
that proper subspace of isometrically isomorphic Rρ(ρ+1)/2 specified by the constraints.
(§E.5.0.0.6) Such a solution is nontrivial assuming the specified intersection of hyperplanes
is not the origin; guaranteed by ρ(ρ + 1)/2>m . Indeed, this geometric intuition about
forming the perturbation is what bounds any solution’s rank from below; m is fixed by
the number of equality constraints in (546P) while rank ρ decreases with each iteration i .
Otherwise, we might iterate indefinitely.
4.18This holds because rank of a positive semidefinite matrix in Sn is diminished below
n by the number of its 0 eigenvalues (1264), and because a positive semidefinite matrix
having one or more 0 eigenvalues corresponds to a point on the PSD cone boundary (162).
Necessity and sufficiency are due to the facts: Ri can be completed to a nonsingular matrix
(§A.3.1.0.5), and I − tiψ(Zi)Zi can be padded with zeros while maintaining equivalence
in (609).
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(t⋆i )
−1 = max {ψ(Zi)λ(Zi)j , j=1 . . . ρ} (611)

When Zi is indefinite, the direction of perturbation (determined by ψ(Zi)) is
arbitrary. We may take an early exit from the Procedure were Zi to become
0 or were

rank
[

svecRT
iA1Ri svecRT

iA2Ri · · · svecRT
iAmRi

]

= ρ(ρ+ 1)/2 (612)

which characterizes the rank ρ of any [sic] extreme point in A ∩ Sn
+ .

[175, §2.4]

Proof. Assuming the form of every perturbation matrix is indeed (605),
then by (608)

svecZi ⊥
[

svec(RT
iA1Ri) svec(RT

iA2Ri) · · · svec(RT
iAmRi)

]

(613)

By orthogonal complement we have

rank
[

svec(RT
iA1Ri) · · · svec(RT

iAmRi)
]⊥

+ rank
[

svec(RT
iA1Ri) · · · svec(RT

iAmRi)
]

= ρ(ρ + 1)/2
(614)

When Zi can only be 0, then the perturbation is null because an extreme
point has been found; thus

[

svec(RT
iA1Ri) · · · svec(RT

iAmRi)
]⊥

= 0 (615)

from which the stated result (612) directly follows. �
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4.3.3 Optimality of perturbed X⋆

We show that the optimal objective value is unaltered by perturbation (605);
id est,

〈C , X⋆ +
i
∑

j=1

tjBj〉 = 〈C , X⋆〉 (616)

Proof. From Corollary 4.2.3.0.1 we have the necessary and sufficient
relationship between optimal primal and dual solutions under the assumption
of existence of a relatively interior feasible point:

S⋆X⋆ = S⋆R1R
T
1 = X⋆S⋆ = R1R

T
1 S

⋆ = 0 (617)

This means R(R1)⊆ N (S⋆) and R(S⋆)⊆ N (RT
1 ). From (606) and (609)

we get the sequence:

X⋆ = R1R
T
1

X⋆ + t1B1 = R2R
T
2 = R1(I − t1ψ(Z1)Z1)R

T
1

X⋆ + t1B1 + t2B2 = R3R
T
3 = R2(I − t2ψ(Z2)Z2)R

T
2 = R1(I − t1ψ(Z1)Z1)(I − t2ψ(Z2)Z2)R

T
1

...

X⋆ +
i
∑

j=1

tjBj = R1

(

i
∏

j=1

(I − tjψ(Zj)Zj)

)

RT
1 (618)

Substituting C= svec−1(ATy⋆) + S⋆ from (546),

〈C , X⋆ +
i
∑

j=1

tjBj〉 =

〈

svec−1(ATy⋆) + S⋆ , R1

(

i
∏

j=1

(I − tjψ(Zj)Zj)

)

RT
1

〉

=

〈

m
∑

k=1

y⋆
kAk , X

⋆ +
i
∑

j=1

tjBj

〉

=

〈

m
∑

k=1

y⋆
kAk + S⋆ , X⋆

〉

= 〈C , X⋆〉 (619)

because 〈Bi , Aj〉=0 ∀ i , j by design (602). �
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4.3.3.0.1 Example. Aδ(X) = b .
This academic example demonstrates that a solution found by rank reduction
can certainly have rank less than Barvinok’s upper bound (232): Assume a
given vector b∈Rm belongs to the conic hull of the columns of a given matrix
A∈Rm×n ;

A =







−1 1 8 1 1

−3 2 8 1
2

1
3

−9 4 8 1
4

1
9






, b =







1
1
2
1
4






(620)

Consider the convex optimization problem

minimize
X∈ S5

trX

subject to X � 0

Aδ(X) = b

(621)

that minimizes the 1-norm of the main diagonal; id est, problem (621) is the
same as

minimize
X∈ S5

‖δ(X)‖1
subject to X � 0

Aδ(X) = b

(622)

that finds a solution to Aδ(X)= b . Rank-3 solution X⋆ = δ(x
M

) is optimal,
where (confer (580))

x
M

=













2
128

0
5

128

0
90
128













(623)

Yet upper bound (232) predicts existence of at most a

rank-

(⌊
√

8m+ 1− 1

2

⌋

= 2

)

(624)

feasible solution from m= 3 equality constraints. To find a lower
rank ρ optimal solution to (621) (barring combinatorics), we invoke
Procedure 4.3.1.0.1:
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Initialize:

C= I , ρ=3, Aj
∆
= δ(A(j, :)) , j=1, 2, 3, X⋆ = δ(x

M
) , m=3, n=5.

{

Iteration i=1:

Step 1: R1 =



















√

2
128

0 0

0 0 0

0
√

5
128

0

0 0 0

0 0
√

90
128



















.

find Z1∈ S3

subject to 〈Z1 , R
T
1AjR1〉 = 0 , j=1, 2, 3

(625)

A nonzero randomly selected matrix Z1 having 0 main diagonal
is feasible and yields a nonzero perturbation matrix. Choose,
arbitrarily,

Z1 = 11T − I ∈ S3 (626)

then (rounding)

B1 =













0 0 0.0247 0 0.1048
0 0 0 0 0

0.0247 0 0 0 0.1657
0 0 0 0 0

0.1048 0 0.1657 0 0













(627)

Step 2: t⋆1 = 1 because λ(Z1)= [−1 −1 2 ]T . So,

X⋆← δ(x
M

) + B1 =













2
128

0 0.0247 0 0.1048
0 0 0 0 0

0.0247 0 5
128

0 0.1657
0 0 0 0 0

0.1048 0 0.1657 0 90
128













(628)

has rank ρ←1 and produces the same optimal objective value.

} 2
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4.3.3.0.2 Exercise. Rank reduction of maximal complementarity.
Apply rank reduction Procedure 4.3.1.0.1 to the maximal complementarity
example (§4.1.1.3.1). Demonstrate a rank-1 solution; which can certainly be
found (by Barvinok’s Proposition 2.9.3.0.1) because there is only one equality
constraint. H

4.3.4 thoughts regarding rank reduction

Because the rank reduction procedure is guaranteed only to produce another
optimal solution conforming to Barvinok’s upper bound (232), the Procedure
will not necessarily produce solutions of arbitrarily low rank; but if they exist,
the Procedure can. Arbitrariness of search direction when matrix Zi becomes
indefinite, mentioned on page 251, and the enormity of choices for Zi (608)
are liabilities for this algorithm.

4.3.4.1 Inequality constraints

The question naturally arises: what to do when a semidefinite program (not
in prototypical form (546))4.19 has inequality constraints of the form

αT
i svecX� βi , i = 1 . . . k (629)

where the βi are scalars. One expedient way to handle this circumstance is
to convert the inequality constraints to equality constraints by introducing a
slack variable γ ; id est,

αT
i svecX + γi = βi , i = 1 . . . k , γ � 0 (630)

thereby converting the problem to prototypical form.
Alternatively, we say the ith inequality constraint is active when it is

met with equality; id est, when for particular i in (629), αT
i svecX⋆ = βi .

An optimal high-rank solution X⋆ is, of course, feasible satisfying all the
constraints. But for the purpose of rank reduction, inactive inequality
constraints are ignored while active inequality constraints are interpreted as

4.19Contemporary numerical packages for solving semidefinite programs can solve a wider
range of problem than our conic prototype (546). Generally, they do so by transforming a
given problem into some prototypical form by introducing new constraints and variables.
[9] [293] We are momentarily considering a departure from the primal prototype that
augments the constraint set with affine inequalities.
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equality constraints. In other words, we take the union of active inequality
constraints (as equalities) with equality constraints A svecX= b to form
a composite affine subset Â substituting for (549). Then we proceed with
rank reduction of X⋆ as though the semidefinite program were in prototypical
form (546P).

4.4 Rank-constrained semidefinite program

Here we introduce a technique for finding low-rank optimal solutions to
semidefinite programs of a more general form:

4.4.1 rank constraint by convex iteration

Given a feasibility problem of the form

find G ∈ SN
+

subject to G ∈ C
rankG ≤ n

(631)

where C is a convex set presumed to contain positive semidefinite matrices
of rank n or less, we instead solve the convex problem

minimize
G∈SN

〈G , W 〉
subject to G ∈ C

G � 0

(632)

where direction matrix W is an optimal solution to semidefinite program

N
∑

i=n+1

λ(G⋆)i = minimize
W∈ SN

〈G⋆, W 〉
subject to 0 � W � I

trW = N − n

(1480a)

whose feasible set is a Fantope (§2.3.2.0.1), and where G⋆ is an optimal
solution to problem (632) given some iterate W . The idea is to iterate
solution of (632) and (1480a) until convergence, as defined in §4.4.1.1. 4.20

4.20The proposed iteration is not an alternating projection. (confer Figure 120)
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Optimal matrix W ⋆ is defined as any direction matrix yielding optimal
solution G⋆ of rank n or less to then convex equivalent (632) of feasibility
problem (631); id est, any direction matrix for which the last N− n
eigenvalues λ of G⋆ are zero: (p.541)

N
∑

i=n+1

λ(G⋆)i = 〈G⋆, W ⋆〉 ∆
= 0 (633)

We emphasize that convex problem (632) is not a relaxation of the
rank-constrained feasibility problem (631); at convergence, convex iteration
(632) (1480a) makes it instead an equivalent problem.4.21

We make no assumption regarding uniqueness of direction matrix W .
The feasible set of direction matrices in (1480a) is the convex hull of outer
product of all rank-(N− n) orthonormal matrices; videlicet,

conv
{

UUT | U ∈ RN×N−n, UTU= I
}

=
{

A∈ SN | I � A � 0 , 〈I , A 〉=N− n
}

(79)

Set {UUT | U ∈ RN×N−n, UTU= I} comprises the extreme points of this
Fantope (79).

4.4.1.1 convergence

We study convergence to ascertain conditions under which a direction matrix
will reveal a feasible G matrix of rank n or less in semidefinite program (632).
Denote by W ⋆ a particular optimal direction matrix from semidefinite
program (1480a) such that (633) holds. Then we define global convergence
of the iteration (632) (1480a) to correspond with this vanishing vector
inner-product (633) of optimal solutions.

Because this iterative technique for constraining rank is not a projection
method, it can find a rank-n solution G⋆ ((633) will be satisfied) only if at
least one exists in the feasible set of program (632).

4.4.1.1.1 Proof. Suppose 〈G⋆, W 〉=φ is satisfied for some
nonnegative constant φ after any particular iteration (632) (1480a) of the
two minimization problems. Once a particular value of φ is achieved,

4.21Terminology equivalent problem meaning, optimal solution to one problem can be
derived from optimal solution to another. Terminology same problem means: optimal
solution set for one problem is identical to the optimal solution set of another (without
transformation).
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it can never be exceeded by subsequent iterations because existence of
feasible G and W having that vector inner-product φ has been established
simultaneously in each problem. Because the infimum of vector inner-product
of two positive semidefinite matrix variables is zero, the nonincreasing
sequence of iterations is thus bounded below hence convergent because
any bounded monotonic sequence in R is convergent. [189, §1.2] [30, §1.1]
Local convergence to some φ is thereby established.

When a rank-n feasible solution to (632) exists, it remains pending to
show under what conditions 〈G⋆, W ⋆〉=0 (633) is achieved by iterative
solution of semidefinite programs (632) and (1480a). Then pair (G⋆, W ⋆)
becomes a fixed-point of iteration. �

A nonexistent feasible rank-n solution would mean failure to converge by
definition (633) but, as proved, the convex iteration always converges locally
if not globally. Now, an application:

4.4.1.1.2 Example. Sensor-Network Localization and Wireless Location.
Heuristic solution proposed by Carter & Jin to a sensor-network localization
problem appeared in a reputable journal [51]4.22 despite the heavy reliance
on heuristics, limitation to two Euclidean dimensions, and misapplication of
semidefinite programming (SDP). A large network is partitioned into smaller
subnetworks (as small as one sensor) and then semidefinite programming and
heuristics called spaseloc are applied to localize each and every partition
by two-dimensional distance geometry. Their partitioning procedure is
one-pass, yet termed iterative; a term applicable only in so far as adjoining
partitions can share localized sensors and anchors (absolute sensor positions
known a priori). But there is no iteration on the entire network, hence
the term “iterative” is misapplied. As partitions are selected based on
“rule sets” (heuristics, not geographics), they also term the partitioning
adaptive. But there is no adaptation once a partition is determined; hence,
another misapplication of an exacting technical term.

One can reasonably argue that semidefinite programming methods are
unnecessary for localization of large sensor networks. In the past, these
nonlinear localization problems were solved algebraically and computed by

4.22Despite the fact that his name appears as fourth author, Ye had no involvement in
writing this cited paper nor did he contribute to its content. The paper constitutes Jin’s
dissertation for University of Toronto although her name appears as second author.
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least squares solution to hyperbolic equations; called multilateration.4.23

Indeed, practical contemporary numerical methods for global positioning by
satellite (GPS) do not rely on semidefinite programming.

The beauty of semidefinite programming as relates to localization lies in
convex expression of classical multilateration: So & Ye showed [239] that the
problem of finding unique solution, to a noiseless nonlinear system describing
the common point of intersection of hyperspheres in real Euclidean vector
space, can be expressed as a semidefinite program via distance geometry.

But the need for SDP methods in Carter & Jin is also a question logically
consequent to their reliance on complicated and extensive heuristics for
partitioning a large network and for solving a partition whose intersensor
measurement data is inadequate for localization by distance geometry. While
partitions range in size between 2 and 10 sensors, 5 sensors optimally,
heuristics provided are only for 2 spatial dimensions (no higher-dimensional
algorithm is proposed). For these small numbers it remains unclarified as to
precisely what advantage is gained over traditional least squares by solving
many little semidefinite programs.

Partitioning of large sensor networks is a logical alternative to rapid
growth of SDP computational complexity with problem size. But when
impact of noise on distance measurement is of most concern, one is averse to
a partitioning scheme because noise-effects vary inversely with problem size.
[39, §2.2] (§5.13.2) Since an individual partition’s solution is not iterated
in Carter & Jin and is interdependent with adjoining partitions, we expect
errors to propagate from one partition to the next; the ultimate partition
solved, expected to suffer most.

Heuristics often fail on real-world data because of unanticipated
circumstances. When heuristics fail, generally they are repaired by adding
more heuristics. Tenuous is any presumption, for example, that distance
measurement errors have distribution characterized by circular contours of
equal probability about an unknown sensor-location. That presumption
effectively appears within Carter & Jin’s optimization problem statement
as affine equality constraints relating unknowns to distance measurements
that are corrupted by noise. Yet in most all urban environments, this
measurement noise is more aptly characterized by ellipsoids of varying

4.23Multilateration − literally, having many sides; shape of a geometric figure formed by
nearly intersecting lines of position. In navigation systems, therefore: Obtaining a fix from
multiple lines of position.

http://www.convexoptimization.com/TOOLS/multilateration.pdf
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orientation and eccentricity as one recedes from a sensor. Each unknown
sensor must therefore instead be bound to its own particular range of
distance, primarily determined by the terrain.4.24 The nonconvex problem
we must instead solve is:

find
i , j ∈ I

{xi , xj}
subject to dij ≤ ‖xi − xj‖2 ≤ dij

(634)

where xi represents sensor location, and where dij and dij respectively

represent lower and upper bounds on measured distance from ith to j th

sensor (or from sensor to anchor). Figure 67 illustrates contours of equal
sensor-location uncertainty. By establishing these individual upper and lower
bounds, orientation and eccentricity can effectively be incorporated into the
problem statement.

Generally speaking, there can be no unique solution to the sensor-network
localization problem because there is no unique formulation; that is the art of
optimization. Any optimal solution obtained depends on whether or how the
network is partitioned and how the problem is formulated. When a particular
formulation is a convex optimization problem, then the set of all optimal
solutions forms a convex set containing the actual or true localization.
Measurement noise precludes equality constraints representing distance. The
optimal solution set is consequently expanded; necessitated by introduction
of distance inequalities admitting more and higher-rank solutions. Even
were the optimal solution set a single point, it is not necessarily the true
localization because there is little hope of exact localization by any algorithm
once significant noise is introduced.

Carter & Jin gauge performance of their heuristics to the SDP formulation
of author Biswas whom they regard as vanguard to the art. [12, §1] Biswas
posed localization as an optimization problem minimizing a distance measure.
[35] [33] Intuitively, minimization of any distance measure yields compacted
solutions; (confer §6.4.0.0.1) precisely the anomaly motivating Carter & Jin.
Their two-dimensional heuristics outperformed Biswas’ localizations both
in execution-time and proximity to the desired result. Perhaps, instead of
heuristics, Biswas’ approach to localization can be improved: [32] [34].

The sensor-network localization problem is considered difficult. [12, §2]
Rank constraints in optimization are considered more difficult. In what

4.24A distinct contour map corresponding to each anchor is required in practice.
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2
3

41

Figure 63: 2-lattice in R2, hand-drawn. Nodes 3 and 4 are anchors;
remaining nodes are sensors. Radio range of sensor 1 indicated by arc.

follows, we present the localization problem as a semidefinite program
(equivalent to (634)) having an explicit rank constraint which controls
Euclidean dimension of an optimal solution. We show how to achieve that
rank constraint only if the feasible set contains a matrix of desired rank.
Our problem formulation is extensible to any spatial dimension.

proposed standardized test
Jin proposes an academic test in real Euclidean two-dimensional space

R2 that we adopt. In essence, this test is a localization of sensors and
anchors arranged in a regular triangular lattice. Lattice connectivity is
solely determined by sensor radio range; a connectivity graph is assumed
incomplete. In the interest of test standardization, we propose adoption
of a few small examples: Figure 63 through Figure 66 and their particular
connectivity represented by matrices (635) through (638) respectively.

0 • ? •
• 0 • •
? • 0 ◦
• • ◦ 0

(635)

Matrix entries dot • indicate measurable distance between nodes while
unknown distance is denoted by ? (question mark). Matrix entries
hollow dot ◦ represent known distance between anchors (to very high
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Figure 64: 3-lattice in R2, hand-drawn. Nodes 7, 8, and 9 are anchors;
remaining nodes are sensors. Radio range of sensor 1 indicated by arc.

accuracy) while zero distance is denoted 0. Because measured distances
are quite unreliable in practice, our solution to the localization problem
substitutes a distinct range of possible distance for each measurable distance;
equality constraints exist only for anchors.

Anchors are chosen so as to increase difficulty for algorithms dependent
on existence of sensors in their convex hull. The challenge is to find a solution
in two dimensions close to the true sensor positions given incomplete noisy
intersensor distance information.

0 • • ? • ? ? • •
• 0 • • ? • ? • •
• • 0 • • • • • •
? • • 0 ? • • • •
• ? • ? 0 • • • •
? • • • • 0 • • •
? ? • • • • 0 ◦ ◦
• • • • • • ◦ 0 ◦
• • • • • • ◦ ◦ 0

(636)
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147

3161

15 5 6

13 11 12

Figure 65: 4-lattice in R2, hand-drawn. Nodes 13, 14, 15, and 16 are anchors;
remaining nodes are sensors. Radio range of sensor 1 indicated by arc.

0 ? ? • ? ? • ? ? ? ? ? ? ? • •
? 0 • • • • ? • ? ? ? ? ? • • •
? • 0 ? • • ? ? • ? ? ? ? ? • •
• • ? 0 • ? • • ? • ? ? • • • •
? • • • 0 • ? • • ? • • • • • •
? • • ? • 0 ? • • ? • • ? ? ? ?
• ? ? • ? ? 0 ? ? • ? ? • • • •
? • ? • • • ? 0 • • • • • • • •
? ? • ? • • ? • 0 ? • • • ? • ?
? ? ? • ? ? • • ? 0 • ? • • • ?
? ? ? ? • • ? • • • 0 • • • • ?
? ? ? ? • • ? • • ? • 0 ? ? ? ?
? ? ? • • ? • • • • • ? 0 ◦ ◦ ◦
? • ? • • ? • • ? • • ? ◦ 0 ◦ ◦
• • • • • ? • • • • • ? ◦ ◦ 0 ◦
• • • • • ? • • ? ? ? ? ◦ ◦ ◦ 0

(637)
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Figure 66: 5-lattice in R2. Nodes 21 through 25 are anchors.

0 • ? ? • • ? ? • ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
• 0 ? ? • • ? ? ? • ? ? ? ? ? ? ? ? ? ? ? ? ? • •
? ? 0 • ? • • • ? ? • • ? ? ? ? ? ? ? ? ? ? • • •
? ? • 0 ? ? • • ? ? ? • ? ? ? ? ? ? ? ? ? ? ? • ?
• • ? ? 0 • ? ? • • ? ? • • ? ? • ? ? ? ? ? • ? •
• • • ? • 0 • ? • • • ? ? • ? ? ? ? ? ? ? ? • • •
? ? • • ? • 0 • ? ? • • ? ? • • ? ? ? ? ? ? • • •
? ? • • ? ? • 0 ? ? • • ? ? • • ? ? ? ? ? ? ? • ?
• ? ? ? • • ? ? 0 • ? ? • • ? ? • • ? ? ? ? ? ? ?
? • ? ? • • ? ? • 0 • ? • • ? ? ? • ? ? • • • • •
? ? • ? ? • • • ? • 0 • ? • • • ? ? • ? ? • • • •
? ? • • ? ? • • ? ? • 0 ? ? • • ? ? • • ? • • • ?
? ? ? ? • ? ? ? • • ? ? 0 • ? ? • • ? ? • • ? ? ?
? ? ? ? • • ? ? • • • ? • 0 • ? • • • ? • • • • ?
? ? ? ? ? ? • • ? ? • • ? • 0 • ? ? • • • • • • ?
? ? ? ? ? ? • • ? ? • • ? ? • 0 ? ? • • ? • ? ? ?
? ? ? ? • ? ? ? • ? ? ? • • ? ? 0 • ? ? • ? ? ? ?
? ? ? ? ? ? ? ? • • ? ? • • ? ? • 0 • ? • • • ? ?
? ? ? ? ? ? ? ? ? ? • • ? • • • ? • 0 • • • • ? ?
? ? ? ? ? ? ? ? ? ? ? • ? ? • • ? ? • 0 • • ? ? ?
? ? ? ? ? ? ? ? ? • ? ? • • • ? • • • • 0 ◦ ◦ ◦ ◦
? ? ? ? ? ? ? ? ? • • • • • • • ? • • • ◦ 0 ◦ ◦ ◦
? ? • ? • • • ? ? • • • ? • • ? ? • • ? ◦ ◦ 0 ◦ ◦
? • • • ? • • • ? • • • ? • • ? ? ? ? ? ◦ ◦ ◦ 0 ◦
? • • ? • • • ? ? • • ? ? ? ? ? ? ? ? ? ◦ ◦ ◦ ◦ 0

(638)
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Figure 67: Uncertainty ellipsoid in R2 for each of 15 sensors • located within
three city blocks in downtown San Francisco. Data by Polaris Wireless. [241]

problem statement
Ascribe points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of a matrix X ;

X = [x1 · · · xN ] ∈ Rn×N (65)

where N is regarded as cardinality of list X . Positive semidefinite matrix
XTX , formed from inner product of the list, is a Gram matrix; [182, §3.6]

G
∆
= XTX =

















‖x1‖2 xT
1x2 xT

1x3 · · · xT
1xN

xT
2x1 ‖x2‖2 xT

2x3 · · · xT
2xN

xT
3x1 xT

3x2 ‖x3‖2 . . . xT
3xN

...
...

. . . . . .
...

xT
Nx1 xT

Nx2 xT
Nx3 · · · ‖xN‖2

















∈ SN
+ (718)

where SN
+ is the convex cone of N ×N positive semidefinite matrices in the

real symmetric matrix subspace SN .
Existence of noise precludes measured distance from the input data. We

instead assign measured distance to a range estimate specified by individual
upper and lower bounds: dij is an upper bound on distance-square from ith
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to j th sensor, while dij is a lower bound. These bounds become the input
data. Each measurement range is presumed different from the others because
of measurement uncertainty; e.g., Figure 67.

Our mathematical treatment of anchors and sensors is not
dichotomized.4.25 A known sensor position to high accuracy x̌i is an
anchor. Then the sensor-network localization problem (634) can be
expressed equivalently: Given a number of anchors m , and I a set
of indices (corresponding to all existing distance measurements • ),
for 0<n<N

minimize
G∈SN , X∈Rn×N

trZ

subject to dij ≤ 〈G , (ei − ej)(ei − ej)
T 〉 ≤ dij ∀(i, j)∈ I

〈G , eie
T
i 〉 = ‖x̌i‖2 , i=N−m+ 1 . . . N

〈G , (eie
T
j + eje

T
i )/2〉 = x̌T

i x̌j , i < j , ∀ i, j∈{N−m+ 1 . . . N}
X(: , N−m+ 1:N) = [ x̌N−m+1 · · · x̌N ]

Z =

[

I X
XT G

]

� 0

rankZ = n
(639)

where ei is the ith member of the standard basis for RN . Distance-square

dij = ‖xi − xj‖22
∆
= 〈xi − xj , xi − xj〉 (705)

is related to Gram matrix entries G
∆
=[gij] by a vector inner-product

dij = gii + gjj − 2gij

= 〈G , (ei − ej)(ei − ej)
T 〉 ∆

= tr(GT (ei − ej)(ei − ej)
T )

(720)

hence the scalar inequalities. The objective function trZ is a heuristic whose
sole purpose is to represent the convex envelope of rankZ . (§7.2.2.1.1) By
Schur complement (§A.4) any feasible G and X provide a comparison with
respect to the positive semidefinite cone

G � XTX (753)

4.25Wireless location problem thus stated identically; difference being: fewer sensors.



4.4. RANK-CONSTRAINED SEMIDEFINITE PROGRAM 267

which is a convex relaxation of the desired equality constraint
[

I X
XT G

]

=

[

I
XT

]

[ I X ] (754)

The rank constraint insures this equality holds thus restricting solution to Rn.

convex equivalent problem statement
Problem statement (639) is nonconvex because of the rank constraint.

We do not eliminate or ignore the rank constraint; rather, we find a convex
way to enforce it: for 0< n<N

minimize
G∈SN , X∈Rn×N

〈Z , W 〉
subject to dij ≤ 〈G , (ei − ej)(ei − ej)

T 〉 ≤ dij ∀(i, j)∈ I
〈G , eie

T
i 〉 = ‖x̌i‖2 , i=N−m+ 1 . . . N

〈G , (eie
T
j + eje

T
i )/2〉 = x̌T

i x̌j , i < j , ∀ i, j∈{N−m+ 1 . . . N}
X(: , N−m+ 1:N) = [ x̌N−m+1 · · · x̌N ]

Z =

[

I X
XT G

]

� 0 (640)

Each linear equality constraint in G∈ SN represents a hyperplane in
isometrically isomorphic Euclidean vector space RN(N+1)/2, while each linear
inequality pair represents a convex Euclidean body known as slab (an
intersection of two parallel but opposing halfspaces, Figure 9). In this convex
optimization problem (640), a semidefinite program, we substitute a vector
inner-product objective function for trace from nonconvex problem (639);

〈Z , I 〉 = trZ ← 〈Z , W 〉 (641)

a generalization of the known trace heuristic [91] for minimizing convex
envelope of rank, where W ∈ SN+n

+ is constant with respect to (640).
Matrix W is normal to a hyperplane in SN+n minimized over a convex
feasible set specified by the constraints in (640). Matrix W is chosen so −W
points in the direction of a feasible rank-n Gram matrix. Thus the purpose
of vector inner-product objective (641) is to locate a feasible rank-n Gram
matrix that is presumed existent on the boundary of positive semidefinite
cone SN

+ .
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direction matrix W

Denote by Z⋆ an optimal composite matrix from semidefinite
program (640). Then for Z⋆∈ SN+n whose eigenvalues λ(Z⋆)∈RN+n are
arranged in nonincreasing order, (Fan)

N+n
∑

i=n+1

λ(Z⋆)i = minimize
W∈ SN+n

〈Z⋆, W 〉
subject to 0 � W � I

trW = N

(1480a)

whose optimal solution is known in closed form. This eigenvalue sum is zero
when Z⋆ has rank n or less.

Foreknowledge of optimal Z⋆, to make possible this search for W , implies
recursion; id est, semidefinite program (640) is solved for Z⋆ initializing
W = I or W = 0. Once found, Z⋆ becomes constant in semidefinite program
(1480a) where a new normal direction W is found as its optimal solution.
Then the cycle (640) (1480a) iterates until convergence. When rankZ⋆ = n ,
solution via this convex iteration is optimal for sensor-network localization
problem (634) and its equivalent (639).

numerical solution

In all examples to follow, number of anchors

m =
√
N (642)

equals square root of cardinality N of list X . Indices set I identifying all
existing distance measurements • is ascertained from connectivity matrix
(635), (636), (637), or (638). We solve iteration (640) (1480a) in dimension
n= 2 for each respective example illustrated in Figure 63 through Figure 66.

In presence of negligible noise, actual position is reliably localized for
every standardized example; noteworthy in so far as each example represents
an incomplete graph. This means the set of all solutions having lowest rank
is a single point, to within a rigid transformation.

To make the examples interesting and consistent with previous work, we
randomize each range of distance-square that bounds 〈G , (ei− ej)(ei− ej)

T 〉
in (640); id est, for each and every (i, j)∈ I
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dij = dij(1 +
√

3 rand(1) η)2

dij = dij(1−
√

3 rand(1) η)2 (643)

where η= 0.1 is a constant noise factor, rand(1) is the Matlab function
providing one sample of uniformly distributed noise in the interval [0, 1] ,
and dij is actual distance-square from ith to j th sensor. Because of the
separate function calls rand(1) , each range of distance-square [ dij , dij ]

is not necessarily centered on actual distance-square dij . The factor
√

3
provides unit variance on the stochastic range.

Figure 68 through Figure 71 each illustrate one realization of numerical
solution to the standardized lattice problems posed by Figure 63 through
Figure 66 respectively. Exact localization is impossible because of
measurement noise. Certainly, by inspection of their published graphical
data, our new results are competitive with those of Carter & Jin. Obviously
our solutions do not suffer from those compaction-type errors (clustering of
localized sensors) exhibited by Biswas’ graphical results for the same noise
factor η ; which is all we intended to demonstrate.

localization example conclusion

Solution to this sensor-network localization problem became apparent by
understanding geometry of optimization. Trace of a matrix, to a student of
linear algebra, is perhaps a sum of eigenvalues. But to us, trace represents
the normal I to some hyperplane in Euclidean vector space.

The legacy of Carter & Jin [51] is a sobering demonstration of the need
for more efficient methods for solution of semidefinite programs, while
that of So & Ye [239] is the bonding of distance geometry to semidefinite
programming. Elegance of our semidefinite problem statement (640) for a
sensor-network localization problem in any dimension should provide some
impetus to focus more research on computational intensity. Higher speed
and greater accuracy from a simplex-like solver is what is required. 2

We numerically tested the foregoing technique for constraining rank on
a wide range of problems including localization of randomized positions,
stress (§7.2.2.7.1), ball packing (§5.4.2.2.3), and cardinality problems. We
have had some success introducing the direction vector inner-product (641)
as a regularization term (Pareto optimization) whose purpose is to constrain
rank, affine dimension, or cardinality:
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Figure 68: Typical solution for 2-lattice in Figure 63 with noise factor
η= 0.1 . Two red rightmost nodes are anchors; two remaining nodes are
sensors. Radio range of sensor 1 indicated by arc; radius = 1.14 . Actual
sensor indicated by target # while its localization is indicated by bullet • .
Rank-2 solution found in 1 iteration (640) (1480a) subject to reflection error.
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Figure 69: Typical solution for 3-lattice in Figure 64 with noise factor
η= 0.1 . Three red vertical middle nodes are anchors; remaining nodes are
sensors. Radio range of sensor 1 indicated by arc; radius = 1.12 . Actual
sensor indicated by target # while its localization is indicated by bullet • .
Rank-2 solution found in 2 iterations (640) (1480a).
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Figure 70: Typical solution for 4-lattice in Figure 65 with noise factor
η= 0.1 . Four red vertical middle-left nodes are anchors; remaining nodes
are sensors. Radio range of sensor 1 indicated by arc; radius = 0.75 . Actual
sensor indicated by target # while its localization is indicated by bullet • .
Rank-2 solution found in 7 iterations (640) (1480a).
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Figure 71: Typical solution for 5-lattice in Figure 66 with noise factor
η= 0.1 . Five red vertical middle nodes are anchors; remaining nodes are
sensors. Radio range of sensor 1 indicated by arc; radius = 0.56 . Actual
sensor indicated by target # while its localization is indicated by bullet • .
Rank-2 solution found in 3 iterations (640) (1480a).
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4.4.2 cardinality

Our goal is to reliably constrain rank in a semidefinite program. There
is a direct analogy to linear programming that is simpler to present but
equally hard to solve. In Optimization, that analogy is known as the
cardinality problem. If we can solve the cardinality problem, then solution
to the rank-constraint problem follows; and vice versa.

Consider a feasibility problem equivalent to the classical problem from
linear algebra Ax= b , but with an upper bound k on cardinality ‖x‖0 of
a nonnegative solution x : for vector b∈R(A)

find x ∈ Rn

subject to Ax = b

x � 0

‖x‖0 ≤ k

(644)

where ‖x‖0≤ k means vector x has at most k nonzero entries; such a vector
is presumed existent in the feasible set. Nonnegativity constraint x� 0 is
analogous to positive semidefiniteness; the notation means vector x belongs
to the nonnegative orthant Rn

+ . Cardinality is quasiconcave on Rn
+ just as

rank is quasiconcave on Sn
+ . [46, §3.4.2]

We propose that cardinality-constrained feasibility problem (644) is
equivalently expressed with convex constraints:

minimize
x∈R

n
, y∈R

n
xTy

subject to Ax = b

x � 0

0 � y � 1

yT1 = n− k

(645)

whose bilinear objective function xTy is quasiconcave only when n= 1.
This simple-looking problem (645) is very hard to solve, yet is not hard
to understand. Because the sets feasible to x and y are not interdependent,
we can separate the problem half in variable y :

minimize
y∈R

n
xTy

subject to 0 � y � 1

yT1 = n− k
(434)
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This linear program sums the n−k smallest entries from vector x . In
context of problem (645), we want n−k entries of x to sum to zero; id est,
we want a globally optimal objective x⋆Ty⋆ = 0 to vanish. Because all entries
in x must be nonnegative, then n−k entries are themselves zero whenever
their sum is, and then cardinality of x∈Rn is at most k .

Ideally, one wants to solve (645) directly, but contemporary techniques for
doing so are computationally intensive.4.26 Nevertheless, solving (645) should
not be ruled out, assuming an efficient method is discovered or transformation
to a convex equivalent can be found.

One efficient way to solve (645) is by transforming it to a sequence of
convex problems:

minimize
x∈R

n
xTy

subject to Ax = b

x � 0

(646)

minimize
y∈R

n
xTy

subject to 0 � y � 1

yT1 = n− k
(434)

This sequence is iterated until xTy vanishes; id est, until desired cardinality is
achieved. This technique works often and, for some problem classes (beyond
Ax= b), it works all the time; meaning, optimal solution to problem (645)
can often be found by this convex iteration. But examples can be found that
make the iteration stall at a solution not of desired cardinality. Heuristics
for breaking out of a stall can be implemented with some success:

4.4.3 more cardinality and rank constraint examples

4.4.3.0.1 Example. Sparsest solution to Ax = b .
Given data, from Example 4.2.3.0.2,

A =







−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2
− 1

3

−9 4 8 1
4

1
9

1
4
− 1

9






, b =







1
1
2
1
4






(578)

4.26 e.g., branch and bound method.



274 CHAPTER 4. SEMIDEFINITE PROGRAMMING

the sparsest solution to the classical linear equation Ax= b is x= e4∈R6

(confer (591)). And given data, from Example 4.2.3.0.3,

A =

[

1 0 1√
2

0 1 1√
2

]

, b =

[

1

1

]

(595)

the most sparse solution is x= [ 0 0
√

2 ]T ∈ R3 (confer (596)). Given
random data, in Matlab notation,

A=randn(m , n) , index=round((n−1)∗rand(1)) + 1, b=A(: , index)
(647)

where m and n are selected arbitrarily, the sparsest solution is x=eindex∈Rn

from the standard basis. Although these sparsest solutions are recoverable
by inspection, we seek to discern them instead by convex iteration; namely,
by iterating problem sequence (646) (434). From the numerical data given,
cardinality ‖x‖0 = 1 is expected. Iteration continues until xTy vanishes (to
within some numerical precision); id est, until desired cardinality is achieved.

All three examples return a correct cardinality-1 solution to within
machine precision in few iterations, but are occasionally subject to stall.
Stalls are remedied by reinitializing y to a random state. 2

Stalling is not an inevitable behavior. Convex iteration succeeds, for some
types of problem, all the time:

4.4.3.0.2 Example. Projection on ellipsoid boundary. [38] [99, §5.1]
[180, §2] This problem is exceptionally easy to solve by convex iteration:
Consider classical linear equation Ax = b but with a constraint on norm of
solution x , given matrices C , A , and vector b∈R(A)

find x ∈ RN

subject to Ax = b

‖Cx‖ = 1

(648)

The set {x | ‖Cx‖=1} describes an ellipsoid boundary. This is a nonconvex
problem because solution is constrained to that boundary. Assign

G =

[

Cx
1

]

[xTCT 1 ]
=

[

X Cx
xTCT 1

]

∆
=

[

CxxTCT Cx
xTCT 1

]

∈ SN+1

(649)
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Any rank-1 solution must have this form. (§B.1.0.2) Ellipsoidally constrained
feasibility problem (648) is equivalent to:

find
X∈SN

x ∈ RN

subject to Ax = b

G =

[

X Cx
xTCT 1

]

(G � 0)

rankG = 1

trX = 1

(650)

This is transformed to an equivalent convex problem by moving the rank
constraint to the objective: We iterate solution of

minimize
X∈SN , x∈RN

〈G , Y 〉
subject to Ax = b

G =

[

X Cx
xTCT 1

]

� 0

trX = 1

(651)

with
minimize

Y ∈ SN+1
〈G⋆, Y 〉

subject to 0 � Y � I

trY = N

(652)

Direction matrix Y ∈ SN+1, initially 0, controls rank. (1480a) Taking
singular value decomposition G⋆ = UΣQT ∈ RN+1, (§A.6) then a new
direction matrix Y = U(: , 2:N+1)U(: , 2:N+1)T optimally solves (652) at
each iteration. An optimal solution to (648) is thereby found in a few
iterations, making convex problem (651) its equivalent.

It remains possible for the iteration to stall; were a rank-1 G matrix not
found. In that case, the current search direction is momentarily reversed
with an added random element:

Y = −U(: , 2:N+1)
(

U(: , 2:N+1)T + randn(N , 1)U(: , 1)T
)

(653)

This heuristic is quite effective for this problem.
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When b /∈R(A) then problem (648) must be restated as a projection:

minimize
x∈RN

‖Ax− b‖

subject to ‖Cx‖ = 1
(654)

This is a projection of point b on an ellipsoid boundary because any affine
transformation of an ellipsoid remains an ellipsoid. Problem (651) in turn
becomes

minimize
X∈SN , x∈RN

〈G , Y 〉 + ‖Ax− b‖

subject to G =

[

X Cx
xTCT 1

]

� 0

trX = 1

(655)

We iterate this with calculation of direction matrix Y as before until a rank-1
G matrix is found. 2

4.4.3.0.3 Example. Tractable polynomial constraint.
The ability to handle rank constraints makes polynomial constraints
(generally nonconvex) transformable to convex constraints. All optimization
problems having polynomial objective and polynomial constraints can be
reformulated as a semidefinite program with a rank-1 constraint. [210]
Suppose we require

3 + 2x− xy ≤ 0 (656)

Assign

G =





x
y

1





[x y 1 ]
=

[

X z
zT 1

]

∆
=





x2 xy x
xy y2 y

x y 1



∈ S3 (657)

The polynomial constraint (656) is equivalent to the constraint set (§B.1.0.2)

tr(GA) ≤ 0

G =

[

X z
zT 1

]

(G � 0)

rankG = 1

(658)
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in symmetric variable matrix X∈ S2 and variable vector z∈R2 where

A =





0 −1
2

1
−1

2
0 0

1 0 3



 (659)

Then the method of convex iteration from §4.4.1 is applied to implement the
rank constraint. 2

4.4.3.0.4 Example. Procrustes problem. [38]
Example 4.4.3.0.2 is extensible. An orthonormal matrix Q∈Rn×p is
completely characterized by QTQ= I . Consider the particular case
Q= [x y ]∈Rn×2 as variable to a Procrustes problem (§C.3): given
A∈Rm×n and B∈Rm×2

minimize
Q∈Rn×2

‖AQ−B‖F
subject to QTQ = I

(660)

which is nonconvex. By vectorizing matrix Q we can make the assignment:

G =





x
y

1





[xT yT 1 ]
=





X Z x
ZT Y y
xT yT 1





∆
=





xxT xyT x
yxT yyT y
xT yT 1



∈ S2n+1 (661)

Now Procrustes problem (660) can be equivalently restated:

minimize
X , Y , Z , x , y

‖A[x y ]−B‖F

subject to G =





X Z x
ZT Y y
xT yT 1





(G � 0)

rankG = 1

trX = 1

trY = 1

trZ = 0

(662)
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To solve this, we form the convex problem sequence:

minimize
X , Y , Z , x , y

‖A[x y ]−B‖F + 〈G , W 〉

subject to G =





X Z x
ZT Y y
xT yT 1



 � 0

trX = 1

trY = 1

trZ = 0

(663)

and
minimize
W∈ S2n+1

〈G⋆, W 〉
subject to 0 � W � I

trW = 2n

(664)

whose optimal solution W , initially 0, is known in closed form (page 541).
These two problems are iterated until convergence and a rank-1 G matrix is
found. Optimal Q⋆ equals [x⋆ y⋆ ].

Numerically, this Procrustes problem is easy to solve; a solution seems
always to be found in one or few iterations. This problem formulation is
extensible, of course, to orthogonal (square) matrices Q . 2

4.4.3.0.5 Example. Boolean vector feasible to Ax � b . (confer §4.2.3.0.2)
Now we consider solution to a discrete problem whose only known analytical
method of solution is combinatorial in complexity: given A∈RM×N and
b∈RM

find x ∈ RN

subject to Ax� b

δ(xxT ) = 1

(665)

This nonconvex problem demands a Boolean solution [xi =±1, i=1 . . . N ].

Assign a rank-1 matrix of variables; symmetric variable matrix X and
solution vector x :

G =

[

x
1

]

[xT 1 ]
=

[

X x
xT 1

]

∆
=

[

xxT x
xT 1

]

∈ SN+1 (666)
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Then design an equivalent semidefinite feasibility problem to find a Boolean
solution to Ax� b :

find
X∈SN

x ∈ RN

subject to Ax� b

G =

[

X x
xT 1

]

rankG = 1

(G � 0)

δ(X) = 1

(667)

where x⋆
i ∈ {−1, 1} , i=1 . . . N . The two variables X and x are made

dependent via their assignment to rank-1 matrix G . By (1404), an optimal
rank-1 matrix G⋆ must take the form (666).

As before, we regularize the rank constraint by introducing a direction
matrix Y into the objective:

minimize
X∈SN , x∈RN

〈G , Y 〉
subject to Ax� b

G =

[

X x
xT 1

]

� 0

δ(X) = 1

(668)

Solution of this semidefinite program is iterated with calculation of the
direction matrix Y from semidefinite program (652). At convergence, in the
sense (633), convex problem (668) becomes equivalent to nonconvex Boolean
problem (665).

By (1480a), direction matrix Y can be an orthogonal projector having
closed-form expression. Given randomized data A and b for a large problem,
we find that stalling becomes likely (convergence of the iteration to a positive
fixed point 〈G⋆, Y 〉). To overcome this behavior, we introduce a heuristic
into the implementation in §F.6 that momentarily reverses direction of search
(≈ −Y ) upon stall detection. We find that rate of convergence can be sped
significantly by detecting stalls early. 2
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4.4.3.0.6 Example. Variable-vector normalization.
Suppose, within some convex optimization problem, we want vector variables
x , y∈RN constrained by a nonconvex equality:

x‖y‖ = y (669)

id est, ‖x‖= 1 and x points in the same direction as y ; e.g.,

minimize
x , y

f(x , y)

subject to (x , y)∈ C
x‖y‖ = y

(670)

where f is some convex function and C is some convex set. We can realize
the nonconvex equality by constraining rank and adding a regularization
term to the objective. Make the assignment:

G =





x
y

1





[xT yT 1 ]
=





X Z x
Z Y y
xT yT 1





∆
=





xxT xyT x
yxT yyT y
xT yT 1



∈ S2N+1 (671)

where X , Y ∈ SN , also Z∈ SN [sic] . Any rank-1 solution must take the
form of (671). (§B.1) The problem statement equivalent to (670) is then
written

minimize
X , Y , Z , x , y

f(x , y) + ‖X − Y ‖F
subject to (x , y)∈ C

G =





X Z x
Z Y y
xT yT 1





rankG = 1

(G � 0)

tr(X) = 1

δ(Z) � 0

(672)

The trace constraint on X normalizes vector x while the diagonal constraint
on Z maintains sign between respective entries of x and y . Regularization
term ‖X−Y ‖F then makes x equal to y to within a real scalar. (§C.2.0.0.1)
To make this program solvable by convex iteration, as explained before, we
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move the rank constraint to the objective

minimize
X , Y , Z , x , y

f(x , y) + ‖X − Y ‖F + 〈G , Y 〉
subject to (x , y)∈ C

G =





X Z x
Z Y y
xT yT 1



� 0

tr(X) = 1

δ(Z) � 0

(673)

by introducing a direction matrix Y found from (1480a)

minimize
Y ∈ S2N+1

〈G⋆, Y 〉
subject to 0 � Y � I

trY = 2N

(674)

whose optimal solution has closed form. Iteration (673) (674) terminates
when rankG= 1 and regularization 〈G , Y 〉 vanishes to within some
numerical tolerance in (673); typically, in two iterations. If function f
competes too much with the regularization, positively weighting each
regularization term will become required. At convergence, problem (673)
becomes a convex equivalent to the original nonconvex problem (670). 2

4.4.3.0.7 Example. fast max cut. [77]

Let Γ be an n-node graph, and let the arcs (i , j) of the graph be
associated with [ ] weights aij . The problem is to find a cut of the
largest possible weight, i.e., to partition the set of nodes into two
parts S , S ′ in such a way that the total weight of all arcs linking
S and S ′ (i.e., with one incident node in S and the other one
in S ′) is as large as possible. [27, §4.3.3]

Literature on the max cut problem is vast because this problem has elegant
primal and dual formulation, its solution is very difficult, and there exist
many commercial applications; e.g., semiconductor design [83], quantum
computing [295].
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Our purpose here is to demonstrate how iteration of two simple convex
problems can quickly converge to an optimal solution of the max cut

problem with a 98% success rate, on average.4.27 max cut is stated:

maximize
x

∑

1≤i<j≤n

aij(1− xixj)
1
2

subject to δ(xxT ) = 1
(675)

where [aij] are real arc weights, and binary vector x= [xi]∈Rn corresponds
to the n nodes; specifically,

node i ∈ S ⇔ xi = 1
node i ∈ S ′ ⇔ xi = −1

(676)

If nodes i and j have the same binary value xi and xj , then they belong
to the same partition and contribute nothing to the cut. Arc (i , j) traverses
the cut, otherwise, adding its weight aij to the cut.

max cut statement (675) is the same as, for A= [aij]∈Sn

maximize
x

1
4
〈11T− xxT , A〉

subject to δ(xxT ) = 1
(677)

Because of Boolean assumption δ(xxT ) = 1

〈11T− xxT , A〉 = 〈xxT , δ(A1)− A〉 (678)

so problem (677) is the same as

maximize
x

1
4
〈xxT , δ(A1)− A〉

subject to δ(xxT ) = 1
(679)

This max cut problem is combinatorial (nonconvex).

4.27We term our solution to max cut fast because we sacrifice a little accuracy to achieve
speed; id est, only about two or three convex iterations, achieved by heavily weighting a
rank regularization term.
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Because an estimate of upper bound to max cut is needed to ascertain
convergence when vector x has large cardinality, we digress to derive the
dual problem because it is instructive: Directly from (679), the Lagrangian
is [46, §5.1.5] (1223)

L(x , ν) = 1
4
〈xxT , δ(A1)− A〉 + 〈ν , δ(xxT )− 1〉

= 1
4
〈xxT , δ(A1)− A〉 + 〈δ(ν) , xxT 〉 − 〈ν , 1〉

= 1
4
〈xxT , δ(A1 + 4ν)− A〉 − 〈ν , 1〉

(680)

where quadratic xT(δ(A1+ 4ν)−A)x has supremum 0 if δ(A1+ 4ν)−A is
negative semidefinite, and has supremum∞ otherwise. The finite supremum
of dual function

g(ν) = sup
x
L(x , ν) =

{

−〈ν , 1〉 , A− δ(A1 + 4ν) � 0
∞ otherwise

(681)

is chosen to be the objective of minimization to dual convex problem

minimize
ν

−νT1

subject to A− δ(A1 + 4ν) � 0
(682)

whose optimal value provides a least upper bound to max cut, but is
not tight (duality gap is nonzero). [108] In fact, we find that the bound’s
variance is relatively large for this problem; thus ending our digression.4.28

To transform max cut to its convex equivalent, first define

X = xxT ∈ Sn (687)

then max cut (679) becomes

maximize
X∈ S

n

1
4
〈X , δ(A1)− A〉

subject to δ(X) = 1
(X � 0)
rankX = 1

(683)

4.28Taking the dual of (682) would provide (683) but without the rank constraint. [101]
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whose rank constraint can be regularized as in

maximize
X∈ S

n

1
4
〈X , δ(A1)− A〉 − w〈X , W 〉

subject to δ(X) = 1
X � 0

(684)

where w≈1000 is a nonnegative fixed weight, and W is a direction matrix
determined from

n
∑

i=2

λ(X⋆)i = minimize
W∈ S

n
〈X⋆, W 〉

subject to 0 � W � I

trW = n− 1

(1480a)

whose optimal solution is known in closed form. These two problems (684)
and (1480a) are iterated until convergence as defined on page 257.

Because convex problem statement (684) is so elegant, it is numerically
solvable for large binary vectors within reasonable time.4.29 To test our
convex iterative method, we compare an optimal convex result to an
actual solution of the max cut problem found by performing a brute force
combinatorial search of (679)4.30 for a tight upper bound. Search-time limits
binary vector lengths to 24 bits (about five days cpu time). Accuracy
obtained, 98%, is independent of binary vector length (12, 13, 20, 24)
when averaged over more than 231 problem instances including planar,
randomized, and toroidal graphs.4.31 A Matlab program is provided
in §F.7. That same accuracy is presumed maintained when binary vector
length is further increased. 2

4.29We solved for a length-250 binary vector in only a few minutes and convex iterations
on a Dell Precision model M90.
4.30 more computationally intensive than the proposed convex iteration by many orders
of magnitude. Solving max cut by searching over all binary vectors of length 100, for
example, would occupy a contemporary supercomputer for a million years.
4.31Existence of a polynomial-time approximation to max cut with accuracy better than
94.11% would refute proof of NP-hardness, which some researchers believe to be highly
unlikely. [131, thm.8.2]
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4.4.3.0.8 Example. Cardinality/sparsity problem.
d’Aspremont et alii [65] propose approximating a positive semidefinite matrix
A ∈ SN

+ by a rank-one matrix having a constraint on cardinality c : for
0 < c < N

minimize
z

‖A− zzT‖F
subject to card z ≤ c

(685)

which, they explain, is a hard problem equivalent to

maximize
x

xTAx

subject to ‖x‖ = 1

cardx ≤ c

(686)

where z
∆
=
√
λx and where optimal solution x⋆ is a principal eigenvector

(1474) (§A.5) of A and λ = x⋆TAx⋆ is the principal eigenvalue when c is
true cardinality of that eigenvector. This is principal component analysis
with a cardinality constraint which controls solution sparsity. Define the
matrix variable

X
∆
= xxT ∈ SN (687)

whose desired rank is 1, and whose desired diagonal cardinality

card δ(X) ≡ cardx (688)

is equivalent to cardinality c of vector x . Then we can transform cardinality
problem (686) to an equivalent problem in new variable X :4.32

maximize
X∈SN

〈X , A〉
subject to 〈X , I 〉 = 1

(X � 0)

rankX = 1

card δ(X) ≤ c

(689)

We transform problem (689) to an equivalent convex problem by
introducing two direction matrices: W to achieve desired cardinality

4.32A semidefiniteness constraint X� 0 is not required, theoretically, because positive
semidefiniteness of a rank-1 matrix is enforced by symmetry. (Theorem A.3.1.0.7)
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card δ(X) , and direction matrix Y to find an approximating rank-one
matrix X :

maximize
X∈SN

〈X , A− w1Y 〉 − w2〈δ(X) , δ(W )〉
subject to 〈X , I 〉 = 1

X � 0

(690)

where w1 and w2 are positive scalars respectively weighting tr(XY ) and
δ(X)T δ(W ) just enough to insure that they vanish to within some numerical
precision, where direction matrix Y is an optimal solution to semidefinite
program

minimize
Y ∈ SN

〈X⋆, Y 〉
subject to 0 � Y � I

trY = N − 1

(691)

and where diagonal direction matrix W ∈ SN optimally solves linear program

minimize
W=δ2(W )

〈δ(X⋆) , δ(W )〉
subject to 0 � δ(W ) � 1

trW = N − c
(692)

both direction matrix programs being derived from (1480a) whose analytical
solution is known. We emphasize (confer p.257): because this iteration
(690) (691) (692) (initial Y,W= 0) is not a projection method, success relies
on existence of matrices in the feasible set of (690) having desired rank and
diagonal cardinality. In particular, the feasible set of convex problem (690)
is a Fantope (80) whose extreme points constitute the set of all normalized
rank-one matrices; among those are found rank-one matrices of any desired
diagonal cardinality.

Convex problem (690) is neither a relaxation of cardinality problem (686);
instead, problem (690) is a convex equivalent to (686) at convergence of
iteration (690) (691) (692). Because the feasible set of convex problem (690)
contains all normalized rank-one matrices of any desired diagonal cardinality,
a constraint too low or high in cardinality will not prevent solution. An
optimal solution, whose diagonal cardinality is equal to cardinality of a
principal eigenvector of matrix A , will produce the lowest residual Frobenius
norm (to within machine precision and other noise processes) in the original
problem statement (685). 2
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Figure 72: Massachusetts Institute of Technology (MIT) logo, including its
white boundary, may be interpreted as a rank-5 matrix. (Stanford University
logo rank is much higher;) This constitutes Scene Y observed by the
one-pixel camera in Figure 73 for Example 4.4.3.0.9.

4.4.3.0.9 Example. Compressed sensing. [223]
As our modern technology-driven civilization acquires and exploits
ever-increasing amounts of data, everyone now knows that most of the data
we acquire can be thrown away with almost no perceptual loss − witness the
broad success of lossy compression formats for sounds, images, and specialized
technical data. The phenomenon of ubiquitous compressibility raises very
natural questions: Why go to so much effort to acquire all the data when
most of what we get will be thrown away? Can’t we just directly measure the
part that won’t end up being thrown away? −David Donoho [81]

Lossy data compression techniques are popular, but it is also well known
that losses become quite perceptible with signal processing that goes beyond
mere playback of a compressed signal. Spatial or audible frequencies masked
by a simultaneity become perceptible with significant post-filtering of the
compressed signal, for example. Further, there can be no universally
acceptable and unique metric of perception for gauging exactly how much
data can be tossed. For these reasons, there will always be need for raw
(uncompressed) data.

In this example we throw out only so much information as to leave
perfect reconstruction within reach. Specifically, the MIT logo in Figure 72
is perfectly reconstructed from 700 time-sequential samples {yi} acquired
by the one-pixel camera illustrated in Figure 73. The MIT-logo image
in this example effectively impinges a 46×81 array micromirror DMD.
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Y

yi

Figure 73: One-pixel camera from [279]. Compressive imaging (CI) camera
block diagram. Incident lightfield (corresponding to the desired image Y )
is reflected off a digital micromirror device (DMD) array whose mirror
orientations are modulated in the pseudorandom pattern supplied by the
random number generators (RNG). Each different mirror pattern produces
a voltage at the single photodiode that corresponds to one measurement yi .

This mirror array is modulated by a pseudonoise source that independently
positions all the individual mirrors. A single photodiode (one pixel)
integrates incident light from all mirrors. After stabilizing the mirrors to
a fixed but pseudorandom pattern, light so collected is then digitized into
one sample yi by analog-to-digital (A/D) conversion. This sampling process
is repeated with the micromirror array modulated to a new pseudorandom
pattern.

The most important questions are: How many samples do we need for
perfect reconstruction? Does that number of samples represent compression
of the original data?

We claim that perfect reconstruction of the MIT logo can be reliably
achieved with as few as 700 samples y=[yi]∈R700 from this one-pixel
camera. That number represents only 19% of total information from the
micromirrors.4.33

4.33This number is considered difficult to achieve judging from results reported in [223, §6].
If a minimal basis for the MIT logo were instead constructed, only five rows or columns
worth of data are independent. This means a lower bound on achievable compression is
about 230 samples; which corresponds to 6% of the original information.
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Our approach to reconstruction is to look for low-rank solution to an
underdetermined system:

find X
subject to A vecX = y

rankX ≤ 5
(693)

where vecX is vectorized matrix X∈ R46×81 (stacked columns). Each row
of fat matrix A is one realization of a pseudorandom pattern applied to the
micromirrors. Since these patterns are deterministic (known), then the ith

sample yi equals A(i , :) vecY ; id est, y=A vecY . Perfect reconstruction
means optimal solution X⋆ equals scene Y ∈ R46×81 to within machine
precision.

Because variable matrixX is generally not square or positive semidefinite,
we constrain its rank by rewriting the problem equivalently

find X
subject to A vecX = y

rank

[

W1 X
XT W2

]

≤ 5
(694)

This rank constraint on the composite matrix insures rankX≤ 5 for any
choice of dimensionally compatible matrices W1 and W2 . But to solve this
problem by convex iteration, we alternate solution of semidefinite program

minimize
W1 , W2 , X

[

W1 X
XT W2

]

Z

subject to A vecX = y
[

W1 X
XT W2

]

� 0

(695)

with semidefinite program

minimize
Z

[

W1 X
XT W2

]⋆

Z

subject to 0 � Z � I

trZ = 46 + 81− 5

(696)

(whose solution has closed form, p.541) until a rank-5 composite matrix
is found. With 1000 samples {yi} , convergence occurs in two iterations;
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700 samples require more than ten, but reconstruction remains perfect.
Reconstruction is independent of pseudorandom sequence parameters; e.g.,
binary sequences succeed with the same efficiency as Gaussian or uniformly
distributed sequences. 2

4.4.4 rank-constraint conclusion

We find that this direction matrix idea works well and quite independently
of desired rank or affine dimension.

There exists a common thread through all these Examples: that being,
convex iteration with a direction matrix as normal to a linear regularization.
But each problem type (per Example) possesses its own idiosyncrasies that
slightly modify how a rank-constrained optimal solution is actually obtained.
The ball packing problem in Chapter 5.4.2.2.3 requires a problem sequence
in a progressively larger number of balls to find a good initial value for the
direction matrix, whereas many of the examples in this chapter require an
initial value of 0. The sparsest solution Example 4.4.3.0.1 wants a direction
matrix corresponding to a rank-2 search when a rank-1 solution is desired.
Finding a feasible Boolean vector in Example 4.4.3.0.5 requires a procedure
to detect stalls, when other problems have no such requirement; and so on.

Nevertheless, this idea of direction matrix is good because of its simplicity:
When one is confronted with a problem otherwise convex if not for a rank
constraint, then that constraint becomes a linear regularization term in the
objective. Some work remains in refining initial value of the direction matrix
in the regularization because poor initialization of the convex iteration can
lead to an erroneous result.



Chapter 5

Euclidean Distance Matrix

These results were obtained by Schoenberg (1935), a surprisingly
late date for such a fundamental property of Euclidean geometry.

−John Clifford Gower [112, §3]

By itself, distance information between many points in Euclidean space is
lacking. We might want to know more; such as, relative or absolute position
or dimension of some hull. A question naturally arising in some fields
(e.g., geodesy, economics, genetics, psychology, biochemistry, engineering)
[69] asks what facts can be deduced given only distance information. What
can we know about the underlying points that the distance information
purports to describe? We also ask what it means when given distance
information is incomplete; or suppose the distance information is not reliable,
available, or specified only by certain tolerances (affine inequalities). These
questions motivate a study of interpoint distance, well represented in any
spatial dimension by a simple matrix from linear algebra.5.1 In what follows,
we will answer some of these questions via Euclidean distance matrices.

5.1 e.g., ◦

√
D∈RN×N , a classical two-dimensional matrix representation of absolute

interpoint distance because its entries (in ordered rows and columns) can be written neatly
on a piece of paper. Matrix D will be reserved throughout to hold distance-square.© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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√
5

2

1

D =

1 2 3





0 1 5
1 0 4
5 4 0





1

2

3

Figure 74: Convex hull of three points (N = 3) is shaded in R3 (n = 3).
Dotted lines are imagined vectors to points.

5.1 EDM

Euclidean space Rn is a finite-dimensional real vector space having an inner
product defined on it, hence a metric as well. [166, §3.1] A Euclidean distance
matrix, an EDM in RN×N

+ , is an exhaustive table of distance-square dij

between points taken by pair from a list of N points {xℓ , ℓ=1 . . . N} in Rn ;
the squared metric, the measure of distance-square:

dij = ‖xi − xj‖22
∆
= 〈xi − xj , xi − xj〉 (697)

Each point is labelled ordinally, hence the row or column index of an EDM,
i or j=1 . . . N , individually addresses all the points in the list.

Consider the following example of an EDM for the case N= 3 :

D = [dij] =





d11 d12 d13

d21 d22 d23

d31 d32 d33



 =





0 d12 d13

d12 0 d23

d13 d23 0



 =





0 1 5
1 0 4
5 4 0



 (698)

Matrix D has N 2 entries but only N(N−1)/2 pieces of information. In
Figure 74 are shown three points in R3 that can be arranged in a list to
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correspond to D in (698). Such a list is not unique because any rotation,
reflection, or translation (§5.5) of the points in Figure 74 would produce the
same EDM D .

5.2 First metric properties

For i,j = 1 . . . N , the Euclidean distance between points xi and xj must
satisfy the requirements imposed by any metric space: [166, §1.1] [189, §1.7]

1.
√

dij ≥ 0 , i 6= j nonnegativity

2.
√

dij = 0 , i = j self-distance

3.
√

dij =
√

dji symmetry

4.
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k triangle inequality

where
√

dij is the Euclidean metric in Rn (§5.4). Then all entries of an EDM
must be in concord with these Euclidean metric properties: specifically, each
entry must be nonnegative,5.2 the main diagonal must be 0 ,5.3 and an EDM
must be symmetric. The fourth property provides upper and lower bounds for
each entry. Property 4 is true more generally when there are no restrictions
on indices i,j,k , but furnishes no new information.

5.3 ∃ fifth Euclidean metric property

The four properties of the Euclidean metric provide information insufficient
to certify that a bounded convex polyhedron more complicated than a
triangle has a Euclidean realization. [112, §2] Yet any list of points or the
vertices of any bounded convex polyhedron must conform to the properties.

5.2Implicit from the terminology,
√

dij ≥ 0 ⇔ dij ≥ 0 is always assumed.
5.3What we call self-distance, Marsden calls nondegeneracy. [189, §1.6] Kreyszig calls

these first metric properties axioms of the metric; [166, p.4] Blumenthal refers to them as
postulates. [37, p.15]
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5.3.0.0.1 Example. Triangle.
Consider the EDM in (698), but missing one of its entries:

D =





0 1 d13

1 0 4
d31 4 0



 (699)

Can we determine unknown entries of D by applying the metric properties?
Property 1 demands

√
d13 ,
√
d31≥ 0, property 2 requires the main diagonal

be 0, while property 3 makes
√
d31 =

√
d13 . The fourth property tells us

1 ≤
√

d13 ≤ 3 (700)

Indeed, described over that closed interval [1, 3] is a family of triangular
polyhedra whose angle at vertex x2 varies from 0 to π radians. So, yes we
can determine the unknown entries of D , but they are not unique; nor should
they be from the information given for this example. 2

5.3.0.0.2 Example. Small completion problem, I.
Now consider the polyhedron in Figure 75(b) formed from an unknown
list {x1 , x2 , x3 , x4}. The corresponding EDM less one critical piece of
information, d14 , is given by

D =









0 1 5 d14

1 0 4 1
5 4 0 1
d14 1 1 0









(701)

From metric property 4 we may write a few inequalities for the two triangles
common to d14 ; we find

√
5−1 ≤

√

d14 ≤ 2 (702)

We cannot further narrow those bounds on
√
d14 using only the four metric

properties (§5.8.3.1.1). Yet there is only one possible choice for
√
d14 because

points x2 , x3 , x4 must be collinear. All other values of
√
d14 in the interval

[
√

5−1, 2] specify impossible distances in any dimension; id est, in this
particular example the triangle inequality does not yield an interval for

√
d14

over which a family of convex polyhedra can be reconstructed. 2



5.3. ∃ FIFTH EUCLIDEAN METRIC PROPERTY 295

x1 x2

x3

x4

√
5

1

1

1

2

x1 x2

x3

x4 (b)(a)

Figure 75: (a) Complete dimensionless EDM graph. (b) Emphasizing
obscured segments x2x4 , x4x3 , and x2x3 , now only five (2N−3) absolute
distances are specified. EDM so represented is incomplete, missing d14 as
in (701), yet the isometric reconstruction (§5.4.2.2.5) is unique as proved in§5.9.3.0.1 and §5.14.4.1.1. First four properties of Euclidean metric are not
a recipe for reconstruction of this polyhedron.

We will return to this simple Example 5.3.0.0.2 to illustrate more elegant
methods of solution in §5.8.3.1.1, §5.9.3.0.1, and §5.14.4.1.1. Until then, we
can deduce some general principles from the foregoing examples:� Unknown dij of an EDM are not necessarily uniquely determinable.� The triangle inequality does not produce necessarily tight bounds.5.4� Four Euclidean metric properties are insufficient for reconstruction.

5.4The term tight with reference to an inequality means equality is achievable.
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5.3.1 Lookahead

There must exist at least one requirement more than the four properties of
the Euclidean metric that makes them altogether necessary and sufficient to
certify realizability of bounded convex polyhedra. Indeed, there are infinitely
many more; there are precisely N + 1 necessary and sufficient Euclidean
metric requirements for N points constituting a generating list (§2.3.2). Here
is the fifth requirement:

5.3.1.0.1 Fifth Euclidean metric property. Relative-angle inequality.
(confer §5.14.2.1.1) Augmenting the four fundamental properties of the
Euclidean metric in Rn, for all i, j, ℓ 6= k∈{1 . . . N} , i<j<ℓ , and for
N≥ 4 distinct points {xk} , the inequalities

cos(θikℓ + θℓkj) ≤ cos θikj ≤ cos(θikℓ − θℓkj)

0 ≤ θikℓ , θℓkj , θikj ≤ π
(703)

where θikj = θjki is the angle between vectors at vertex xk (770) (Figure 76),
must be satisfied at each point xk regardless of affine dimension. ⋄

We will explore this in §5.14. One of our early goals is to determine
matrix criteria that subsume all the Euclidean metric properties and any
further requirements. Looking ahead, we will find (1041) (728) (733)

−zTDz ≥ 0
1Tz = 0

(∀ ‖z‖ = 1)

D ∈ SN
h

⇔ D ∈ EDMN (704)

where the convex cone of Euclidean distance matrices EDMN ⊆ SN
h belongs

to the subspace of symmetric hollow5.5 matrices (§2.2.3.0.1). Having found
equivalent matrix criteria, we will see there is a bridge from bounded convex
polyhedra to EDMs in §5.9 .5.6

5.5 0 main diagonal.
5.6From an EDM, a generating list (§2.3.2, §2.12.2) for a polyhedron can be found (§5.12)

correct to within a rotation, reflection, and translation (§5.5).
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θ
ikj θjkl

θikl

k

i

j

l

Figure 76: Nomenclature for fifth Euclidean metric property. Each angle θ
is made by a vector pair at vertex k while i, j, k, l index four points. The
fifth property is necessary for realization of four or more points reckoned by
three angles in any dimension.
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Now we develop some invaluable concepts, moving toward a link of the
Euclidean metric properties to matrix criteria.

5.4 EDM definition

Ascribe points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of a matrix

X = [x1 · · · xN ] ∈ Rn×N (65)

where N is regarded as cardinality of list X . When matrix D= [dij] is an
EDM, its entries must be related to those points constituting the list by the
Euclidean distance-square: for i, j=1 . . . N (§A.1.1 no.23)

dij = ‖xi − xj‖2 = (xi − xj)
T (xi − xj) = ‖xi‖2 + ‖xj‖2 − 2xT

ixj

=
[

xT
i xT

j

]

[

I −I
−I I

] [

xi

xj

]

= vec(X)T (Φij ⊗ I ) vecX = 〈Φij , X
TX 〉

(705)

where

vecX =











x1

x2
...
xN











∈ RnN (706)

and where Φij ⊗ I has I∈ Sn in its iith and jj th block of entries while
−I∈ Sn fills its ij th and jith block; id est,

Φij
∆
= δ((eie

T
j + eje

T
i )1)− (eie

T
j + eje

T
i ) ∈ SN

+

= eie
T
i + eje

T
j − eie

T
j − eje

T
i

= (ei − ej)(ei − ej)
T

(707)

where {ei∈RN , i=1 . . . N} is the set of standard basis vectors, and ⊗
signifies the Kronecker product (§D.1.2.1). Thus each entry dij is a convex
quadratic function [46, §3, §4] of vecX (30). [230, §6]
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The collection of all Euclidean distance matrices EDMN is a convex subset
of RN×N

+ called the EDM cone (§6, Figure 109, p.442);

0 ∈ EDMN ⊆ SN
h ∩ RN×N

+ ⊂ SN (708)

An EDM D must be expressible as a function of some list X ; id est, it must
have the form

D(X)
∆
= δ(XTX)1T + 1δ(XTX)T − 2XTX ∈ EDMN (709)

= [vec(X)T (Φij ⊗ I ) vecX , i, j=1 . . . N ] (710)

Function D(X) will make an EDM given any X∈ Rn×N , conversely, but
D(X) is not a convex function of X (§5.4.1). Now the EDM cone may be
described:

EDMN =
{

D(X) | X ∈ RN−1×N
}

(711)

Expression D(X) is a matrix definition of EDM and so conforms to the
Euclidean metric properties:

Nonnegativity of EDM entries (property 1, §5.2) is obvious from the
distance-square definition (705), so holds for any D expressible in the form
D(X) in (709).

When we say D is an EDM, reading from (709), it implicitly means
the main diagonal must be 0 (property 2, self-distance) and D must be
symmetric (property 3); δ(D) = 0 and DT = D or, equivalently, D∈ SN

h

are necessary matrix criteria.

5.4.0.1 homogeneity

Function D(X) is homogeneous in the sense, for ζ ∈R

◦
√

D(ζX) = |ζ| ◦
√

D(X) (712)

where the positive square root is entrywise.

Any nonnegatively scaled EDM remains an EDM; id est, the matrix class
EDM is invariant to nonnegative scaling (αD(X) for α≥0) because all
EDMs of dimension N constitute a convex cone EDMN (§6, Figure 96).
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5.4.1 −V T
ND(X)VN convexity

We saw that EDM entries dij

([

xi

xj

])

are convex quadratic functions. Yet

−D(X) (709) is not a quasiconvex function of matrix X ∈ Rn×N because the
second directional derivative (§3.3)

− d
2

dt2

∣

∣

∣

∣

t=0

D(X+ t Y ) = 2
(

−δ(Y TY )1T − 1δ(Y TY )T + 2Y TY
)

(713)

is indefinite for any Y ∈ Rn×N since its main diagonal is 0. [110, §4.2.8]
[150, §7.1, prob.2] Hence −D(X) can neither be convex in X .

The outcome is different when instead we consider

−V T
ND(X)VN = 2V T

NX
TXVN (714)

where we introduce the full-rank skinny Schoenberg auxiliary matrix (§B.4.2)

VN
∆
=

1√
2















−1 −1 · · · −1
1 0

1
. . .

0 1















=
1√
2

[

−1T

I

]

∈ RN×N−1 (715)

(N (VN )=0) having range

R(VN ) = N (1T ) , V T
N 1 = 0 (716)

Matrix-valued function (714) meets the criterion for convexity in §3.2.3.0.2
over its domain that is all of Rn×N ; videlicet, for any Y ∈ Rn×N

− d
2

dt2
V T
ND(X + t Y )VN = 4V T

N Y
TY VN � 0 (717)

Quadratic matrix-valued function −V T
ND(X)VN is therefore convex in X

achieving its minimum, with respect to a positive semidefinite cone (§2.7.2.2),
at X= 0. When the penultimate number of points exceeds the dimension
of the space n<N−1, strict convexity of the quadratic (714) becomes
impossible because (717) could not then be positive definite.
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5.4.2 Gram-form EDM definition

Positive semidefinite matrix XTX in (709), formed from inner product of the
list, is known as a Gram matrix ; [182, §3.6]

G
∆
= XTX =







xT
1
...

xT
N







[x1 · · · xN ]

=

















‖x1‖2 xT
1x2 xT

1x3 · · · xT
1xN

xT
2x1 ‖x2‖2 xT

2x3 · · · xT
2xN

xT
3x1 xT

3x2 ‖x3‖2 . . . xT
3xN

...
...

. . . . . .
...

xT
Nx1 xT

Nx2 xT
Nx3 · · · ‖xN‖2

















∈ SN
+

= δ





















‖x1‖
‖x2‖

...
‖xN‖





































1 cosψ12 cosψ13 · · · cosψ1N

cosψ12 1 cosψ23 · · · cosψ2N

cosψ13 cosψ23 1
. . . cosψ3N

...
...

. . . . . .
...

cosψ1N cosψ2N cosψ3N · · · 1

















δ





















‖x1‖
‖x2‖

...
‖xN‖





















∆
=
√

δ2(G) Ψ
√

δ2(G) (718)

where ψij (738) is angle between vectors xi and xj , and where δ2 denotes
a diagonal matrix in this case. Positive semidefiniteness of interpoint angle
matrix Ψ implies positive semidefiniteness of Gram matrix G ; [46, §8.3]

G � 0 ⇐ Ψ � 0 (719)

When δ2(G) is nonsingular, then G� 0 ⇔ Ψ� 0. (§A.3.1.0.5)

Distance-square dij (705) is related to Gram matrix entries GT =G
∆
= [gij]

dij = gii + gjj − 2gij

= 〈Φij , G〉
(720)

where Φij is defined in (707). Hence the linear EDM definition

D(G)
∆
= δ(G)1T + 1δ(G)T − 2G ∈ EDMN

= [〈Φij , G〉 , i, j=1 . . . N ]

}

⇐ G � 0 (721)

The EDM cone may be described, (confer (798)(804))

EDMN =
{

D(G) | G ∈ SN
+

}

(722)
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5.4.2.1 First point at origin

Assume the first point x1 in an unknown list X resides at the origin;

Xe1 = 0 ⇔ Ge1 = 0 (723)

Consider the symmetric translation (I − 1eT
1 )D(G)(I − e11

T ) that shifts
the first row and column of D(G) to the origin; setting Gram-form EDM
operator D(G) =D for convenience,

−
(

D − (De11
T + 1eT

1D) + 1eT
1De11

T
)

1
2

= G− (Ge11
T + 1eT

1G) + 1eT
1Ge11

T

(724)
where

e1
∆
=







1
0...
0






(725)

is the first vector from the standard basis. Then it follows for D∈ SN
h

G = −
(

D − (De11
T + 1eT

1D)
)

1
2
, x1 = 0

= −
[

0
√

2VN
]T
D
[

0
√

2VN
]

1
2

=

[

0 0T

0 −V T
NDVN

]

V T
NGVN = −V T

NDVN
1
2

∀X

(726)

where
I − e11T =

[

0
√

2VN
]

(727)

is a projector nonorthogonally projecting (§E.1) on

SN
1 = {G∈ SN | Ge1 = 0}

=
{

[

0
√

2VN
]T
Y
[

0
√

2VN
]

| Y ∈ SN
} (1770)

in the Euclidean sense. From (726) we get sufficiency of the first matrix
criterion for an EDM proved by Schoenberg in 1935; [234]5.7

5.7From (716) we know R(VN )=N (1T ) , so (728) is the same as (704). In fact, any
matrix V in place of VN will satisfy (728) whenever R(V )=R(VN )=N (1T ). But VN is
the matrix implicit in Schoenberg’s seminal exposition.
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D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(728)

We provide a rigorous complete more geometric proof of this Schoenberg
criterion in §5.9.1.0.3.

By substituting G=

[

0 0T

0 −V T
NDVN

]

(726) into D(G) (721), assuming

x1 = 0

D =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(729)
We provide details of this bijection in §5.6.2.

5.4.2.2 0 geometric center

Assume the geometric center (§5.5.1.0.1) of an unknown list X is the origin;

X1 = 0 ⇔ G1 = 0 (730)

Now consider the calculation (I − 1
N
11T )D(G)(I − 1

N
11T ) , a geometric

centering or projection operation. (§E.7.2.0.2) Setting D(G) =D for
convenience as in §5.4.2.1,

G = −
(

D − 1
N

(D11T + 11TD) + 1
N211TD11T

)

1
2
, X1 = 0

= −V DV 1
2

V GV = −V DV 1
2

∀X
(731)

where more properties of the auxiliary (geometric centering, projection)
matrix

V
∆
= I − 1

N
11T ∈ SN (732)

are found in §B.4. From (731) and the assumption D∈ SN
h we get sufficiency

of the more popular form of Schoenberg’s criterion:
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D ∈ EDMN ⇔
{

−V DV ∈ SN
+

D ∈ SN
h

(733)

Of particular utility when D∈EDMN is the fact, (§B.4.2 no.20) (705)

tr
(

−V DV 1
2

)

= 1
2N

∑

i,j

dij = 1
2N

vec(X)T

(

∑

i,j

Φij ⊗ I

)

vecX

= tr(V GV ) , G � 0

= trG =
N
∑

ℓ=1

‖xℓ‖2 = ‖X‖2F , X1 = 0

(734)

where
∑

Φij∈ SN
+ (707), therefore convex in vecX . We will find this trace

useful as a heuristic to minimize affine dimension of an unknown list arranged
columnar in X , (§7.2.2) but it tends to facilitate reconstruction of a list
configuration having least energy; id est, it compacts a reconstructed list by
minimizing total norm-square of the vertices.

By substituting G=−V DV 1
2

(731) into D(G) (721), assuming X1= 0
(confer §5.6.1)

D = δ
(

−V DV 1
2

)

1T + 1δ
(

−V DV 1
2

)T − 2
(

−V DV 1
2

)

(735)

These relationships will allow combination of distance and Gram
constraints in any optimization problem we may pose:� Constraining all main diagonal entries of a Gram matrix to 1, for

example, is equivalent to the constraint that all points lie on a
hypersphere (§5.9.1.0.2) of radius 1 centered at the origin. This
is equivalent to the EDM constraint: D1 = 2N1. [61, p.116] Any
further constraint on that Gram matrix then applies only to interpoint
angle Ψ .� More generally, interpoint angle Ψ can be constrained by fixing all the
individual point lengths δ(G)1/2 ; then

Ψ = −1

2
δ2(G)−1/2V DV δ2(G)−1/2 (736)
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5.4.2.2.1 Example. List member constraints via Gram matrix.
Capitalizing on identity (731) relating Gram and EDM D matrices, a
constraint set such as

tr
(

−1
2
V DV eie

T
i

)

= ‖xi‖2

tr
(

−1
2
V DV (eie

T
j + eje

T
i )1

2

)

= xT
i xj

tr
(

−1
2
V DV eje

T
j

)

= ‖xj‖2















(737)

relates list member xi to xj to within an isometry through inner-product
identity [288, §1-7]

cosψij =
xT

i xj

‖xi‖ ‖xj‖
(738)

For M list members, there are a total of M(M+1)/2 such constraints.
2

Consider the academic problem of finding a Gram matrix subject to
constraints on each and every entry of the corresponding EDM:

find
D∈SN

h

−V DV 1
2
∈ SN

subject to
〈

D , (eie
T
j + eje

T
i )1

2

〉

= ďij , i, j=1 . . . N , i < j

−V DV � 0

(739)

where the ďij are given nonnegative constants. EDM D can, of course,
be replaced with the equivalent Gram-form (721). Requiring only the
self-adjointness property (1223) of the main-diagonal linear operator δ we
get, for A∈ SN

〈D , A〉 =
〈

δ(G)1T + 1δ(G)T − 2G , A
〉

= 〈G , δ(A1)− A〉 2 (740)

Then the problem equivalent to (739) becomes, for G∈ SN
c ⇔ G1=0

find
G∈SN

c

G ∈ SN

subject to
〈

G , δ
(

(eie
T
j + eje

T
i )1
)

− (eie
T
j + eje

T
i )
〉

= ďij , i, j=1 . . . N , i < j

G � 0 (741)



306 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX

x1

x2

x3

x4

x5

x6

Figure 77: Arbitrary hexagon in R3 whose vertices are labelled clockwise.

Barvinok’s Proposition 2.9.3.0.1 predicts existence for either formulation
(739) or (741) such that implicit equality constraints induced by subspace
membership are ignored

rankG , rankV DV ≤
⌊

√

8(N(N−1)/2) + 1− 1

2

⌋

= N − 1 (742)

because, in each case, the Gram matrix is confined to a face of positive
semidefinite cone SN

+ isomorphic with SN−1
+ (§6.7.1). (§E.7.2.0.2) This bound

is tight (§5.7.1.1) and is the greatest upper bound.5.8

5.4.2.2.2 Example. Hexagon.
Barvinok [22, §2.6] poses a problem in geometric realizability of an arbitrary
hexagon (Figure 77) having:

1. prescribed (one-dimensional) face-lengths l

2. prescribed angles ϕ between the three pairs of opposing faces

3. a constraint on the sum of norm-square of each and every vertex x

5.8 −V DV |N←1 = 0 (§B.4.1)
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ten affine equality constraints in all on a Gram matrix G∈ S6 (731). Let’s
realize this as a convex feasibility problem (with constraints written in the
same order) also assuming 0 geometric center (730):

find
D∈S6

h

−V DV 1
2
∈ S6

subject to tr
(

D(eie
T
j + eje

T
i )1

2

)

= l2ij , j−1 = (i= 1 . . . 6) mod 6

tr
(

−1
2
V DV (Ai + AT

i )1
2

)

= cosϕi , i= 1, 2, 3

tr(−1
2
V DV ) = 1

−V DV � 0 (743)

where, for Ai∈ R6×6 (738)

A1 = (e1 − e6)(e3 − e4)T/(l61l34)
A2 = (e2 − e1)(e4 − e5)T/(l12l45)
A3 = (e3 − e2)(e5 − e6)T/(l23l56)

(744)

and where the first constraint on length-square l2ij can be equivalently written

as a constraint on the Gram matrix −V DV 1
2

via (740). We show how to
numerically solve such a problem by alternating projection in §E.10.2.1.1.
Barvinok’s Proposition 2.9.3.0.1 asserts existence of a list, corresponding
to Gram matrix G solving this feasibility problem, whose affine dimension
(§5.7.1.1) does not exceed 3 because the convex feasible set is bounded by
the third constraint tr(−1

2
V DV ) = 1 (734). 2

5.4.2.2.3 Example. Kissing-number of sphere packing.
Two nonoverlapping Euclidean balls are said to kiss if they touch. An
elementary geometrical problem can be posed: Given hyperspheres, each
having the same diameter 1, how many hyperspheres can simultaneously
kiss one central hypersphere? [302] The noncentral hyperspheres are allowed,
but not required, to kiss.

As posed, the problem seeks the maximal number of spheres K kissing
a central sphere in a particular dimension. The total number of spheres is
N=K+ 1. In one dimension the answer to this kissing problem is 2. In two
dimensions, 6. (Figure 7)

The question was presented in three dimensions to Isaac Newton in the
context of celestial mechanics, and became controversy with David Gregory
on the campus of Cambridge University in 1694. Newton correctly identified
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Figure 78: Sphere-packing illustration from [282, kissing number ].
Translucent balls illustrated all have the same diameter.

the kissing number as 12 (Figure 78) while Gregory argued for 13. Their
dispute was finally resolved in 1953 by Schütte & van der Waerden. [221] In
2003, Oleg Musin tightened the upper bound on kissing number K in four
dimensions from 25 to K= 24 by refining a method by Philippe Delsarte
from 1973 providing an infinite number [14] of linear inequalities necessary
for converting a rank-constrained semidefinite program5.9 to a linear
program.5.10 [201]

There are no proofs known for kissing number in higher dimension
excepting dimensions eight and twenty four.

Translating this problem to an EDM graph realization (Figure 75,
Figure 79) is suggested by Pfender & Ziegler. Imagine the centers of each
sphere are connected by line segments. Then the distance between centers
must obey simple criteria: Each sphere touching the central sphere has a line
segment of length exactly 1 joining its center to the central sphere’s center.
All spheres, excepting the central sphere, must have centers separated by a
distance of at least 1.

From this perspective, the kissing problem can be posed as a semidefinite
program. Assign index 1 to the central sphere, and assume a total of N

5.9 whose feasible set belongs to that subset of an elliptope (§5.9.1.0.1) bounded above
by some desired rank.
5.10Simplex-method solvers for linear programs produce numerically better results than
contemporary log-barrier (interior-point method) solvers for semidefinite programs by
about 7 orders of magnitude.
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spheres:
minimize

D∈SN
− trWV T

NDVN

subject to D1j = 1 , j = 2 . . . N

Dij ≥ 1 , 2 ≤ i < j = 3 . . . N

D ∈ EDMN

(745)

Then the kissing number
K=Nmax − 1 (746)

is found from the maximal number of spheres N that solve this semidefinite
program in a given affine dimension r . Matrix W can be interpreted as the
direction of search through the positive semidefinite cone SN−1

+ for a rank-r
optimal solution −V T

ND
⋆VN ; it is constant, in this program, determined by

a method disclosed in §4.4.1. In two dimensions,

W =

















4 1 2 −1 −1 1
1 4 −1 −1 2 1
2 −1 4 1 1 −1
−1 −1 1 4 1 2
−1 2 1 1 4 −1

1 1 −1 2 −1 4

















1

6
(747)

In three dimensions,

W =









































9 1 −2 −1 3 −1 −1 1 2 1 −2 1
1 9 3 −1 −1 1 1 −2 1 2 −1 −1
−2 3 9 1 2 −1 −1 2 −1 −1 1 2
−1 −1 1 9 1 −1 1 −1 3 2 −1 1

3 −1 2 1 9 1 1 −1 −1 −1 1 −1
−1 1 −1 −1 1 9 2 −1 2 −1 2 3
−1 1 −1 1 1 2 9 3 −1 1 −2 −1

1 −2 2 −1 −1 −1 3 9 2 −1 1 1
2 1 −1 3 −1 2 −1 2 9 −1 1 −1
1 2 −1 2 −1 −1 1 −1 −1 9 3 1
−2 −1 1 −1 1 2 −2 1 1 3 9 −1

1 −1 2 1 −1 3 −1 1 −1 1 −1 9









































1

12
(748)

A four-dimensional solution has rational direction matrix as well. Here is an
optimal point list5.11 in Matlab output format:

5.11An optimal five-dimensional point list is known: The answer was known at least 175
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Columns 1 through 6

X = 0 -0.1983 -0.4584 0.1657 0.9399 0.7416

0 0.6863 0.2936 0.6239 -0.2936 0.3927

0 -0.4835 0.8146 -0.6448 0.0611 -0.4224

0 0.5059 0.2004 -0.4093 -0.1632 0.3427

Columns 7 through 12

-0.4815 -0.9399 -0.7416 0.1983 0.4584 -0.2832

0 0.2936 -0.3927 -0.6863 -0.2936 -0.6863

-0.8756 -0.0611 0.4224 0.4835 -0.8146 -0.3922

-0.0372 0.1632 -0.3427 -0.5059 -0.2004 -0.5431

Columns 13 through 18

0.2832 -0.2926 -0.6473 0.0943 0.3640 -0.3640

0.6863 0.9176 -0.6239 -0.2313 -0.0624 0.0624

0.3922 0.1698 -0.2309 -0.6533 -0.1613 0.1613

0.5431 -0.2088 0.3721 0.7147 -0.9152 0.9152

Columns 19 through 25

-0.0943 0.6473 -0.1657 0.2926 -0.5759 0.5759 0.4815

0.2313 0.6239 -0.6239 -0.9176 0.2313 -0.2313 0

0.6533 0.2309 0.6448 -0.1698 -0.2224 0.2224 0.8756

-0.7147 -0.3721 0.4093 0.2088 -0.7520 0.7520 0.0372

This particular optimal solution was found by solving a problem sequence
in increasing number of spheres. Numerical problems begin to arise with
matrices of this cardinality due to interior-point methods of solution.

years ago. I believe Gauss knew it. Moreover, Korkine & Zolotarev proved in 1882 that D5

is the densest lattice in five dimensions. So they proved that if a kissing arrangement in

five dimensions can be extended to some lattice, then k(5)= 40. Of course, the conjecture

in the general case also is: k(5)= 40. You would like to see coordinates? Easily.

Let A=
√

2 ; then p(1)=(A,A, 0, 0, 0), p(2)=(−A,A, 0, 0, 0), p(3)=(A,−A, 0, 0, 0), . . .
p(40)=(0, 0, 0,−A,−A) ; i.e., we are considering points with coordinates that have two

A and three 0 with any choice of signs and any ordering of the coordinates; the same

coordinates-expression in dimensions 3 and 4.

The first miracle happens in dimension 6. There are better packings than D6

(Conjecture: k(6)=72). It’s a real miracle how dense the packing is in eight dimensions

(E8=Korkine & Zolotarev packing that was discovered in 1880s) and especially in

dimension 24, that is the so-called Leech lattice.
Actually, people in coding theory have conjectures on the kissing numbers for dimensions

up to 32 (or even greater? ). However, sometimes they found better lower bounds. I know

that Ericson & Zinoviev a few years ago discovered (by hand, no computer) in dimensions

13 and 14 better kissing arrangements than were known before. −Oleg Musin
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By eliminating some equality constraints for this particular problem,
matrix variable dimension can be reduced. From §5.8.3 we have

−V T
NDVN = 11T − [0 I ] D

[

0T

I

]

1

2
(749)

(which does not generally hold) where identity matrix I∈ SN−1 has one less
dimension than EDM D . By defining an EDM principal submatrix

D̂
∆
= [0 I ] D

[

0T

I

]

∈ SN−1
h (750)

we get a convex problem equivalent to (745)

minimize
D̂∈SN−1

− tr(WD̂)

subject to D̂ij ≥ 1 , 1 ≤ i < j = 2 . . . N−1

11T − D̂ 1
2
� 0

δ(D̂) = 0

(751)

Any feasible matrix 11T− D̂ 1
2

belongs to an elliptope (§5.9.1.0.1). 2

This next example shows how finding the common point of intersection
for three circles in a plane, a nonlinear problem, has convex expression.

5.4.2.2.4 Example. So & Ye trilateration in wireless sensor network.
Given three known absolute point positions in R2 (three anchors x̌2 , x̌3 , x̌4)
and only one unknown point (one sensor x1∈R2 ), the sensor’s absolute
position is determined from its noiseless measured distance-square ďi1

to each of three anchors (Figure 2, Figure 79(a)). This trilateration
can be expressed as a convex optimization problem in terms of list

X
∆
= [x1 x̌2 x̌3 x̌4 ]∈R2×4 and Gram matrix G∈ S4 (718):

minimize
G∈S4, X∈R2×4

trG

subject to tr(GΦi1) = ďi1 , i= 2, 3, 4

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i= 2, 3, 4

tr(G(eie
T
j + eje

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3, 4

X(: , 2:4) = [ x̌2 x̌3 x̌4 ]
[

I X
XT G

]

� 0

(752)
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(a) (b)

(c) (d)

x1
x1

x1
x1

x̌2

x̌3 x̌4

x2
x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x6

√
d12

√
d13

√
d14

Figure 79: (a) Given three distances indicated with absolute point
positions x̌2 , x̌3 , x̌4 known and noncollinear, absolute position of x1 in R2

can be precisely and uniquely determined by trilateration; solution to a
system of nonlinear equations. Dimensionless EDM graphs (b) (c) (d)
represent EDMs in various states of completion. Line segments represent
known absolute distances and may cross without vertex at intersection.
(b) Four-point list must always be embeddable in affine subset having
dimension rankV T

NDVN not exceeding 3. To determine relative position of
x2 , x3 , x4 , triangle inequality is necessary and sufficient (§5.14.1). Knowing
all distance information, then (by injectivity of D (§5.6)) point position x1

is uniquely determined to within an isometry in any dimension. (c) When
fifth point is introduced, only distances to x3 , x4 , x5 are required to
determine relative position of x2 in R2. Graph represents first instance
of missing distance information;

√
d12 . (d) Three distances are absent

(
√
d12 ,

√
d13 ,

√
d23 ) from complete set of interpoint distances, yet unique

isometric reconstruction (§5.4.2.2.5) of six points in R2 is certain.
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where
Φij = (ei − ej)(ei − ej)

T ∈ SN
+ (707)

and where the constraint on distance-square ďi1 is equivalently written as
a constraint on the Gram matrix via (720). There are 9 independent affine
equality constraints on that Gram matrix while the sensor is constrained
only by dimensioning to lie in R2. Although trG the objective of
minimization5.12 insures a solution on the boundary of positive semidefinite
cone S4

+ , we claim that the set of feasible Gram matrices forms a line
(§2.5.1.1) in isomorphic R10 tangent (§2.1.7.2) to the positive semidefinite
cone boundary. (confer §4.2.1.3)

By Schur complement (§A.4, §2.9.1.0.1) any feasible G and X provide

G � XTX (753)

which is a convex relaxation of the desired (nonconvex) equality constraint

[

I X
XT G

]

=

[

I
XT

]

[ I X ] (754)

expected positive semidefinite rank-2 under noiseless conditions. But by
(1292), the relaxation admits

(3 ≥) rankG ≥ rankX (755)

(a third dimension corresponding to an intersection of three spheres
(not circles) were there noise). If rank

rank

[

I X⋆

X⋆T G⋆

]

= 2 (756)

of an optimal solution equals 2, then G⋆ =X⋆TX⋆ by Theorem A.4.0.0.4.
As posed, this localization problem does not require affinely independent

(Figure 18, three noncollinear) anchors. Assuming the anchors exhibit
no rotational or reflective symmetry in their affine hull (§5.5.2) and
assuming the sensor x1 lies in that affine hull, then sensor position solution
x⋆

1 =X⋆(: , 1) is unique under noiseless measurement. [239] 2

5.12Trace (trG = 〈I , G〉) minimization is a heuristic for rank minimization. (§7.2.2.1) It
may be interpreted as squashing G which is bounded below by XTX as in (753).
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This preceding transformation of trilateration to a semidefinite program
works all the time ((756) holds) despite relaxation (753) because the optimal
solution set is a unique point.

Proof (sketch). Only the sensor location x1 is unknown. The objective
function together with the equality constraints make a linear system of
equations in Gram matrix variable G

trG = ‖x1‖2 + ‖x̌2‖2 + ‖x̌3‖2 + ‖x̌4‖2
tr(GΦi1) = ďi1 , i= 2, 3, 4

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i= 2, 3, 4

tr(G(eie
T
j + eje

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3, 4

(757)

which is invertible:

svecG =



































svec(I )T

svec(Φ21)
T

svec(Φ31)
T

svec(Φ41)
T

svec(e2e
T
2 )T

svec(e3e
T
3 )T

svec(e4e
T
4 )T

svec
(

(e2e
T
3 + e3e

T
2 )/2

)T
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(
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(
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(758)

That line in the ambient space S4 of G is traced by the right-hand side.
One must show this line to be tangential (§2.1.7.2) to S4

+ in order to prove
uniqueness. Tangency is possible for affine dimension 1 or 2 while its
occurrence depends completely on the known measurement data. �

But as soon as significant noise is introduced or whenever distance data is
incomplete, such problems can remain convex although the set of all optimal
solutions generally becomes a convex set bigger than a single point (but still
containing the noiseless solution).
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5.4.2.2.5 Definition. Isometric reconstruction. (confer §5.5.3)
Isometric reconstruction from an EDM means building a list X correct to
within a rotation, reflection, and translation; in other terms, reconstruction
of relative position, correct to within an isometry, or to within a rigid
transformation. △

How much distance information is needed to uniquely localize a sensor
(to recover actual relative position)? The narrative in Figure 79 helps
dispel any notion of distance data proliferation in low affine dimension
(r<N−2) .5.13 Huang, Liang, and Pardalos [153, §4.2] claim O(2N)
distances is a least lower bound (independent of affine dimension r) for
unique isometric reconstruction; achievable under certain noiseless conditions
on connectivity and point position. Alfakih shows how to ascertain
uniqueness over all affine dimensions via Gale matrix. [7] [2] [3] Figure 75(b)
(page 295, from small completion problem Example 5.3.0.0.2) is an example
in R2 requiring only 2N− 3 = 5 known symmetric entries for unique
isometric reconstruction, although the four-point example in Figure 79(b)
will not yield a unique reconstruction when any one of the distances is left
unspecified.

The list represented by the particular dimensionless EDM graph in
Figure 80, having only 2N− 3 = 9 absolute distances specified, has only
one realization in R2 but has more realizations in higher dimensions. For
sake of reference, we provide the complete corresponding EDM:

D =

















0 50641 56129 8245 18457 26645
50641 0 49300 25994 8810 20612
56129 49300 0 24202 31330 9160
8245 25994 24202 0 4680 5290

18457 8810 31330 4680 0 6658
26645 20612 9160 5290 6658 0

















(759)

We consider paucity of distance information in this next example which
shows it is possible to recover exact relative position given incomplete
noiseless distance information. An ad hoc method for recovery of the
lowest-rank optimal solution under noiseless conditions is introduced:

5.13When affine dimension r reaches N− 2, then all distances-square in the EDM must
be known for unique isometric reconstruction in Rr ; going the other way, when r= 1 then
the condition that the dimensionless EDM graph be connected is necessary and sufficient.
[136, §2.2]
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x5

x2
x3

x1

x4

x6

Figure 80: Incomplete EDM corresponding to this dimensionless EDM
graph provides unique isometric reconstruction in R2. (drawn freehand, no
symmetry intended)

x̌4

x̌5
x̌3

x1

x2

Figure 81: Two sensors • and three anchors ◦ in R2. (Ye) Connecting
line-segments denote known absolute distances. Incomplete EDM
corresponding to this dimensionless EDM graph provides unique isometric
reconstruction in R2.
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−6 −4 −2 0 2 4 6 8
−15

−10

−5

0

5

10

x̌4

x̌5x̌3

x2

x1

Figure 82: Given in red # are two discrete linear trajectories of sensors x1

and x2 in R2 localized by algorithm (760) as indicated by blue bullets • .
Anchors x̌3 , x̌4 , x̌5 corresponding to Figure 81 are indicated by ⊗ . When
targets # and bullets • coincide under these noiseless conditions, localization
is successful. On this run, two visible localization errors are due to rank-3
Gram optimal solutions. These errors can be corrected by choosing a different
normal in objective of minimization.
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5.4.2.2.6 Example. Tandem trilateration in wireless sensor network.
Given three known absolute point-positions in R2 (three anchors x̌3 , x̌4 , x̌5)
and two unknown sensors x1 , x2∈R2, the sensors’ absolute positions are
determinable from their noiseless distances-square (as indicated in Figure 81)
assuming the anchors exhibit no rotational or reflective symmetry in their
affine hull (§5.5.2). This example differs from Example 5.4.2.2.4 in so far
as trilateration of each sensor is now in terms of one unknown position, the
other sensor. We express this localization as a convex optimization problem

(a semidefinite program, §4.1) in terms of list X
∆
= [x1 x2 x̌3 x̌4 x̌5 ]∈R2×5

and Gram matrix G∈ S5 (718) via relaxation (753):

minimize
G∈S5, X∈R2×5

trG

subject to tr(GΦi1) = ďi1 , i= 2, 4, 5

tr(GΦi2) = ďi2 , i= 3, 5

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i= 3, 4, 5

tr(G(eie
T
j + eje

T
i )/2) = x̌T

i x̌j , 3≤ i < j = 4, 5

X(: , 3:5) = [ x̌3 x̌4 x̌5 ]
[

I X
XT G

]

� 0

(760)

where

Φij = (ei − ej)(ei − ej)
T ∈ SN

+ (707)

This problem realization is fragile because of the unknown distances between
sensors and anchors. Yet there is no more information we may include beyond
the 11 independent equality constraints on the Gram matrix (nonredundant
constraints not antithetical) to reduce the feasible set5.14. (By virtue of their
dimensioning, the sensors are already constrained to R2 the affine hull of the
anchors.)

Exhibited in Figure 82 are two mistakes in solution X⋆(: , 1:2) due
to a rank-3 optimal Gram matrix G⋆. The trace objective is a heuristic
minimizing convex envelope of quasiconcave function5.15 rankG . (§2.9.2.6.2,§7.2.2.1) A rank-2 optimal Gram matrix can be found and the errors

5.14 the presumably nonempty convex set of all points G and X satisfying the constraints.
5.15Projection on that nonconvex subset of all N×N -dimensional positive semidefinite
matrices, in an affine subset, whose rank does not exceed 2 is a problem considered difficult
to solve. [264, §4]
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corrected by choosing a different normal for the linear objective function,
now implicitly the identity matrix I ; id est,

trG = 〈G , I 〉 ← 〈G , δ(u)〉 (761)

where vector u ∈R5 is randomly selected. A random search for a good
normal δ(u) in only a few iterations is quite easy and effective because
the problem is small, an optimal solution is known a priori to exist in two
dimensions, a good normal direction is not necessarily unique, and (we
speculate) because the feasible affine-subset slices the positive semidefinite
cone thinly in the Euclidean sense.5.16

2

We explore ramifications of noise and incomplete data throughout; their
individual effect being to expand the optimal solution set, introducing more
solutions and higher-rank solutions. Hence our focus shifts in §4.4 to
discovery of a reliable means for diminishing the optimal solution set by
introduction of a rank constraint.

Now we illustrate how a problem in distance geometry can be solved
without equality constraints representing measured distance; instead, we
have only upper and lower bounds on distances measured:

5.4.2.2.7 Example. Wireless location in a cellular telephone network.
Utilizing measurements of distance, time of flight, angle of arrival, or signal
power, multilateration is the process of localizing (determining absolute
position of) a radio signal source • by inferring geometry relative to multiple
fixed base stations ◦ whose locations are known.

We consider localization of a cellular telephone by distance geometry,
so we assume distance to any particular base station can be inferred from
received signal power. On a large open flat expanse of terrain, signal-power
measurement corresponds well with inverse distance. But it is not uncommon
for measurement of signal power to suffer 20 decibels in loss caused by factors
such as multipath interference (signal reflections), mountainous terrain,
man-made structures, turning one’s head, or rolling the windows up in an
automobile. Consequently, contours of equal signal power are no longer
circular; their geometry is irregular and would more aptly be approximated

5.16The log det rank-heuristic from §7.2.2.4 does not work here because it chooses the
wrong normal. Rank reduction (§4.1.1.1) is unsuccessful here because Barvinok’s upper
bound (§2.9.3.0.1) on rank of G⋆ is 4.
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x1

x̌2

x̌3

x̌4

x̌5x̌6

x̌7

Figure 83: Regions of coverage by base stations ◦ in a cellular telephone
network. The term cellular arises from packing of regions best covered
by neighboring base stations. Illustrated is a pentagonal cell best covered
by base station x̌2 . Like a Voronoi diagram, cell geometry depends on
base-station arrangement. In some US urban environments, it is not unusual
to find base stations spaced approximately 1 mile apart. There can be as
many as 20 base-station antennae capable of receiving signal from any given
cell phone • ; practically, that number is closer to 6.

Figure 84: Some fitted contours of equal signal power in R2 transmitted
from a commercial cellular telephone • over about 1 mile suburban terrain
outside San Francisco in 2005. Data courtesy Polaris Wireless. [241]
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by translated ellipsoids of graduated orientation and eccentricity as in
Figure 84.

Depicted in Figure 83 is one cell phone x1 whose signal power is
automatically and repeatedly measured by 6 base stations ◦ nearby.5.17

Those signal power measurements are transmitted from that cell phone to
base station x̌2 who decides whether to transfer (hand-off or hand-over)
responsibility for that call should the user roam outside its cell.5.18

Due to noise, at least one distance measurement more than the minimum
number of measurements is required for reliable localization in practice;
3 measurements are minimum in two dimensions, 4 in three.5.19 Existence
of noise precludes measured distance from the input data. We instead assign
measured distance to a range estimate specified by individual upper and
lower bounds: di1 is the upper bound on distance-square from the cell phone
to ith base station, while di1 is the lower bound. These bounds become the
input data. Each measurement range is presumed different from the others.

Then convex problem (752) takes the form:

minimize
G∈S7, X∈R2×7

trG

subject to di1 ≤ tr(GΦi1) ≤ di1 , i= 2 . . . 7

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i= 2 . . . 7

tr(G(eie
T
j + eje

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3 . . . 7

X(: , 2:7) = [ x̌2 x̌3 x̌4 x̌5 x̌6 x̌7 ]
[

I X
XT G

]

� 0 (762)

where

Φij = (ei − ej)(ei − ej)
T ∈ SN

+ (707)

This semidefinite program realizes the wireless location problem illustrated

5.17Cell phone signal power is typically encoded logarithmically with 1-decibel increment
and 64-decibel dynamic range.
5.18Because distance to base station is quite difficult to infer from signal power
measurements in an urban environment, localization of a particular cell phone • by
distance geometry would be far easier were the whole cellular system instead conceived so
cell phone x1 also transmits (to base station x̌2) its signal power as received by all other
cell phones within range.
5.19In Example 4.4.1.1.2, we explore how this convex optimization algorithm fares in the
face of measurement noise.
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Figure 85: Example of molecular conformation. [80]

in Figure 83. Location X⋆(: , 1) is taken as solution, although measurement
noise will often cause rankG⋆ to exceed 2. Randomized search for a rank-2
optimal solution is not so easy here as in Example 5.4.2.2.6. We introduce a
method in §4.4 for enforcing the stronger rank-constraint (756). To formulate
this same problem in three dimensions, point list X is simply redimensioned
in the semidefinite program. 2

5.4.2.2.8 Example. (Biswas, Nigam, Ye) Molecular Conformation.
The subatomic measurement technique called nuclear magnetic resonance
spectroscopy (NMR) is employed to ascertain physical conformation of
molecules; e.g., Figure 3, Figure 85. From this technique, distance, angle,
and dihedral angle data can be obtained. Dihedral angles arise consequent to
a phenomenon where atom subsets are physically constrained to Euclidean
planes.

In the rigid covalent geometry approximation, the bond lengths
and angles are treated as completely fixed, so that a given spatial
structure can be described very compactly indeed by a list of
torsion angles alone. . . These are the dihedral angles between
the planes spanned by the two consecutive triples in a chain of
four covalently bonded atoms. [60, §1.1]

Crippen & Havel recommend working exclusively with distance data
because they consider angle data to be mathematically cumbersome. The
present example shows instead how inclusion of dihedral angle data into a
problem statement can be made elegant and convex.
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As before, ascribe position information to the matrix

X = [x1 · · · xN ] ∈ R3×N (65)

and introduce a matrix ℵ holding normals η to planes respecting dihedral
angles ϕ :

ℵ ∆
= [ η1 · · · ηM ] ∈ R3×M (763)

As in the other examples, we preferentially work with Gram matrices G
because of the bridge they provide between other variables; we define

[

Gℵ Z
ZT GX

]

∆
=

[

ℵTℵ ℵTX
XTℵ XTX

]

=

[

ℵT

XT

]

[ℵ X ] ∈ RN+M×N+M (764)

whose rank is 3 by assumption. So our problem’s variables are the two
Gram matrices and the matrix Z of inner products. Then measurements of
distance-square can be expressed as linear constraints on GX as in (762),
dihedral angle ϕ measurements can be expressed as linear constraints on Gℵ
by (738), and the normal-vector conditions can be expressed by vanishing
linear constraints on inner-product matrix Z . Consider three points x
labelled 1 , 2 , 3 in the ℓth plane and its corresponding normal ηℓ . Then
we may have, for example, the independent constraints

ηT
ℓ (x1 − x2) = 0
ηT

ℓ (x2 − x3) = 0
(765)

expressible in terms of constant symmetric matrices A ;

〈Z , Aℓ12〉 = 0
〈Z , Aℓ23〉 = 0

(766)

NMR data is noisy, so measurements are described by given upper and lower
bounds although normals η can be constrained to be exactly unit length;

δ(Gℵ) = 1 (767)
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Then we can express the molecular conformation problem: for 0≤ ϕ≤ π
and constant symmetric matrices B

find
Gℵ∈SM , GX∈SN , Z∈RM×N

GX

subject to di ≤ tr(GX Φi) ≤ di , ∀ i ∈ I1
cosϕj ≤ tr(GℵBj) ≤ cosϕj , ∀ j ∈ I2
〈Z , Ak〉 = 0 , ∀ k ∈ I3
δ(Gℵ) = 1
[

Gℵ Z
ZT GX

]

� 0

rank

[

Gℵ Z
ZT GX

]

= 3

(768)

Ignoring the rank constraint tends to force inner-product matrix Z to zero.
What binds these three variables is the rank constraint; we show how to
satisfy it in §4.4. 2

5.4.3 Inner-product form EDM definition

[p.20] We might, for example, realize a constellation given only
interstellar distance (or, equivalently, distance from Earth and
relative angular measurement; the Earth as vertex to two stars).

Equivalent to (705) is [288, §1-7] [249, §3.2]

dij = dik + dkj − 2
√

dikdkj cos θikj

=
[√

dik

√

dkj

]

[

1 −eıθikj

−e−ıθikj 1

]

[√

dik
√

dkj

]

(769)

called the law of cosines, where ı
∆
=
√
−1 , i, k, j are positive integers, and

θikj is the angle at vertex xk formed by vectors xi − xk and xj − xk ;

cos θikj =
1
2
(dik + dkj − dij)
√

dikdkj

=
(xi − xk)

T (xj − xk)

‖xi − xk‖ ‖xj − xk‖
(770)
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where the numerator forms an inner product of vectors. Distance-square

dij

([√

dik
√

dkj

])

is a convex quadratic function5.20 on R2

+ whereas dij(θikj)

is quasiconvex (§3.3) minimized over domain −π≤θikj≤π by θ
⋆

ikj =0, we
get the Pythagorean theorem when θikj =±π/2, and dij(θikj) is maximized
when θ

⋆

ikj =±π ;

dij =
(√

dik +
√

dkj

)2
, θikj = ±π

dij = dik + dkj , θikj = ±π
2

dij =
(√

dik −
√

dkj

)2
, θikj = 0

(771)

so
|
√

dik −
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj (772)

Hence the triangle inequality, Euclidean metric property 4, holds for any
EDM D .

We may construct an inner-product form of the EDM definition for
matrices by evaluating (769) for k=1: By defining

ΘTΘ
∆
=

















d12

√

d12d13 cos θ213

√

d12d14 cos θ214 · · ·
√

d12d1N cos θ21N
√

d12d13 cos θ213 d13

√

d13d14 cos θ314 · · ·
√

d13d1N cos θ31N
√

d12d14 cos θ214

√

d13d14 cos θ314 d14
. . .

√

d14d1N cos θ41N
...

...
. . . . . .

...
√

d12d1N cos θ21N

√

d13d1N cos θ31N

√

d14d1N cos θ41N · · · d1N

















∈ SN−1

(773)
then any EDM may be expressed

D(Θ)
∆
=

[

0
δ(ΘTΘ)

]

1T + 1
[

0 δ(ΘTΘ)T
]

− 2

[

0 0T

0 ΘTΘ

]

∈ EDMN

=

[

0 δ(ΘTΘ)T

δ(ΘTΘ) δ(ΘTΘ)1T + 1δ(ΘTΘ)T− 2ΘTΘ

]

(774)

EDMN =
{

D(Θ) | Θ ∈ RN−1×N−1
}

(775)

for which all Euclidean metric properties hold. Entries of ΘTΘ result from
vector inner-products as in (770); id est,

5.20

[

1 −eıθikj

−e−ıθikj 1

]

� 0, having eigenvalues {0, 2}. Minimum is attained for
[ √

dik
√

dkj

]

=

{

µ1 , µ ≥ 0 , θikj = 0
0 , −π ≤ θikj ≤ π , θikj 6= 0

. (§D.2.1, [46, exmp.4.5])
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Θ = [x2 − x1 x3 − x1 · · · xN − x1 ] = X
√

2VN ∈ Rn×N−1 (776)

Inner product ΘTΘ is obviously related to a Gram matrix (718),

G =

[

0 0T

0 ΘTΘ

]

, x1 = 0 (777)

For D= D(Θ) and no condition on the list X (confer (726) (731))

ΘTΘ = −V T
NDVN ∈ RN−1×N−1 (778)

5.4.3.1 Relative-angle form

The inner-product form EDM definition is not a unique definition of
Euclidean distance matrix; there are approximately five flavors distinguished
by their argument to operator D . Here is another one:

Like D(X) (709), D(Θ) will make an EDM given any Θ∈Rn×N−1, it is
neither a convex function of Θ (§5.4.3.2), and it is homogeneous in the sense
(712). Scrutinizing ΘTΘ (773) we find that because of the arbitrary choice
k= 1, distances therein are all with respect to point x1 . Similarly, relative
angles in ΘTΘ are between all vector pairs having vertex x1 . Yet picking
arbitrary θi1j to fill ΘTΘ will not necessarily make an EDM; inner product
(773) must be positive semidefinite.

ΘTΘ =
√

δ(d) Ω
√

δ(d)
∆
=











√
d12 0√

d13

. . .

0
√

d1N























1 cos θ213 · · · cos θ21N

cos θ213 1
. . . cos θ31N

...
. . . . . .

...
cos θ21N cos θ31N · · · 1























√
d12 0√

d13

. . .

0
√

d1N











(779)

Expression D(Θ) defines an EDM for any positive semidefinite relative-angle
matrix

Ω = [cos θi1j , i, j = 2 . . . N ] ∈ SN−1 (780)

and any nonnegative distance vector

d = [d1j , j = 2 . . . N ] = δ(ΘTΘ) ∈ RN−1 (781)
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because (§A.3.1.0.5)

Ω � 0 ⇒ ΘTΘ � 0 (782)

Decomposition (779) and the relative-angle matrix inequality Ω� 0 lead to
a different expression of an inner-product form EDM definition (774)

D(Ω , d)
∆
=

[

0
d

]

1T + 1
[

0 dT
]

− 2

√

δ

([

0
d

])[

0 0T

0 Ω

]

√

δ

([

0
d

])

=

[

0 dT

d d1T + 1dT − 2
√

δ(d) Ω
√

δ(d)

]

∈ EDMN

(783)

and another expression of the EDM cone:

EDMN =
{

D(Ω , d) | Ω � 0 ,
√

δ(d) � 0
}

(784)

In the particular circumstance x1 = 0, we can relate interpoint angle
matrix Ψ from the Gram decomposition in (718) to relative-angle matrix
Ω in (779). Thus,

Ψ ≡
[

1 0T

0 Ω

]

, x1 = 0 (785)

5.4.3.2 Inner-product form −V T
ND(Θ)VN convexity

On page 325 we saw that each EDM entry dij is a convex quadratic function

of

[√

dik
√

dkj

]

and a quasiconvex function of θikj . Here the situation for

inner-product form EDM operator D(Θ) (774) is identical to that in §5.4.1
for list-form D(X) ; −D(Θ) is not a quasiconvex function of Θ by the same
reasoning, and from (778)

−V T
ND(Θ)VN = ΘTΘ (786)

is a convex quadratic function of Θ on domain Rn×N−1 achieving its minimum
at Θ = 0.
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5.4.3.3 Inner-product form, discussion

We deduce that knowledge of interpoint distance is equivalent to knowledge
of distance and angle from the perspective of one point, x1 in our chosen
case. The total amount of information N(N−1)/2 in ΘTΘ is unchanged5.21

with respect to EDM D .

5.5 Invariance

When D is an EDM, there exist an infinite number of corresponding N -point
lists X (65) in Euclidean space. All those lists are related by isometric
transformation: rotation, reflection, and translation (offset or shift).

5.5.1 Translation

Any translation common among all the points xℓ in a list will be cancelled in
the formation of each dij . Proof follows directly from (705). Knowing that
translation α in advance, we may remove it from the list constituting the
columns of X by subtracting α1T . Then it stands to reason by list-form
definition (709) of an EDM, for any translation α∈Rn

D(X − α1T ) = D(X) (787)

In words, interpoint distances are unaffected by offset; EDM D is translation
invariant. When α = x1 in particular,

[x2−x1 x3−x1 · · · xN−x1 ] = X
√

2VN ∈ Rn×N−1 (776)

and so

D(X−x11
T ) = D(X−Xe11T ) = D

(

X
[

0
√

2VN
])

= D(X) (788)

5.21The reason for the amount O(N2) information is because of the relative measurements.
The use of a fixed reference in the measurement of angles and distances would reduce the
required information but is antithetical. In the particular case n= 2, for example, ordering
all points xℓ (in a length-N list) by increasing angle of vector xℓ − x1 with respect to

x2 − x1 , θi1j becomes equivalent to
j−1
∑

k=i

θk,1,k+1 ≤ 2π and the amount of information is

reduced to 2N−3 ; rather, O(N).
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5.5.1.0.1 Example. Translating geometric center to origin.
We might choose to shift the geometric center αc of an N -point list {xℓ}
(arranged columnar in X) to the origin; [266] [113]

α = αc
∆
= Xbc

∆
=

1

N
X1 ∈ P ⊆ A (789)

where A represents the list’s affine hull. If we were to associate a point-mass
mℓ with each of the points xℓ in the list, then their center of mass
(or gravity) would be (

∑

xℓmℓ) /
∑

mℓ . The geometric center is the same
as the center of mass under the assumption of uniform mass density across
points. [161] The geometric center always lies in the convex hull P of the list;
id est, αc∈ P because bT

c 1=1 and bc� 0 .5.22 Subtracting the geometric
center from every list member,

X − αc1
T = X − 1

N
X11T = X(I − 1

N
11T ) = XV ∈ Rn×N (790)

So we have (confer (709))

D(X) = D(XV ) = δ(V TXTXV )1T + 1δ(V TXTXV )T− 2V TXTXV ∈ EDMN

(791)
2

5.5.1.1 Gram-form invariance

Following from (791) and the linear Gram-form EDM operator (721):

D(G) = D(V GV ) = δ(V GV )1T + 1δ(V GV )T − 2V GV ∈ EDMN (792)

The Gram-form consequently exhibits invariance to translation by a doublet
(§B.2) u1T + 1uT ;

D(G) = D(G− (u1T + 1uT )) (793)

because, for any u∈RN , D(u1T + 1uT )=0. The collection of all such
doublets forms the nullspace (802) to the operator; the translation-invariant
subspace SN⊥

c (1768) of the symmetric matrices SN . This means matrix G
can belong to an expanse more broad than a positive semidefinite cone; id est,
G∈ SN

+− SN⊥
c . So explains Gram matrix sufficiency in EDM definition (721).

5.22Any b from α=Xb chosen such that bT 1 = 1, more generally, makes an auxiliary
V -matrix. (§B.4.5)
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5.5.2 Rotation/Reflection

Rotation of the list X∈ Rn×N about some arbitrary point α∈Rn, or
reflection through some affine subset containing α , can be accomplished
via Q(X−α1T ) where Q is an orthogonal matrix (§B.5).

We rightfully expect

D
(

Q(X − α1T )
)

= D(QX − β1T ) = D(QX) = D(X) (794)

Because list-form D(X) is translation invariant, we may safely ignore
offset and consider only the impact of matrices that premultiply X .
Interpoint distances are unaffected by rotation or reflection; we say,
EDM D is rotation/reflection invariant. Proof follows from the fact,
QT=Q−1 ⇒ XTQTQX=XTX . So (794) follows directly from (709).

The class of premultiplying matrices for which interpoint distances are
unaffected is a little more broad than orthogonal matrices. Looking at EDM
definition (709), it appears that any matrix Qp such that

XTQT
pQpX = XTX (795)

will have the property
D(QpX) = D(X) (796)

An example is skinny Qp ∈ Rm×n (m>n) having orthonormal columns. We
call such a matrix orthonormal.

5.5.2.1 Inner-product form invariance

Likewise, D(Θ) (774) is rotation/reflection invariant;

D(QpΘ) = D(QΘ) = D(Θ) (797)

so (795) and (796) similarly apply.

5.5.3 Invariance conclusion

In the making of an EDM, absolute rotation, reflection, and translation
information is lost. Given an EDM, reconstruction of point position (§5.12,
the list X) can be guaranteed correct only in affine dimension r and relative
position. Given a noiseless complete EDM, this isometric reconstruction is
unique in so far as every realization of a corresponding list X is congruent :
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5.6 Injectivity of D & unique reconstruction

Injectivity implies uniqueness of isometric reconstruction; hence, we endeavor
to demonstrate it.

EDM operators list-form D(X) (709), Gram-form D(G) (721), and
inner-product form D(Θ) (774) are many-to-one surjections (§5.5) onto the
same range; the EDM cone (§6): (confer (722) (804))

EDMN =
{

D(X) : RN−1×N → SN
h | X∈ RN−1×N

}

=
{

D(G) : SN → SN
h | G ∈ SN

+− SN⊥
c

}

=
{

D(Θ) : RN−1×N−1→ SN
h | Θ ∈ RN−1×N−1

}

(798)

where (§5.5.1.1)

SN⊥
c = {u1T + 1uT | u∈RN} ⊆ SN (1768)

5.6.1 Gram-form bijectivity

Because linear Gram-form EDM operator

D(G) = δ(G)1T + 1δ(G)T − 2G (721)

has no nullspace [58, §A.1] on the geometric center subspace5.23 (§E.7.2.0.2)

SN
c

∆
= {G∈ SN | G1 = 0} (1766)

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T )}
= {V Y V | Y ∈ SN} ⊂ SN (1767)

≡ {VNAV T
N | A ∈ SN−1}

(799)

then D(G) on that subspace is injective.

5.23The equivalence ≡ in (799) follows from the fact: Given B = V Y V = VNAV
T
N ∈ SN

c

with only matrix A∈ SN−1 unknown, then V †NBV
†T
N =A or V †NY V

†T
N =A .
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basis SN⊥
c

∈ basis SN⊥
h

∈ basis SN⊥
h

SN
c

SN
h

dim SN
c = dim SN

h = N(N−1)
2

in RN(N+1)/2

dim SN⊥
c = dim SN⊥

h = N in RN(N+1)/2

basis SN
c = V {Eij}V (confer (50))

Figure 86: Orthogonal complements in SN abstractly oriented in isometrically
isomorphic RN(N+1)/2. Case N= 2 accurately illustrated in R3. Orthogonal
projection of basis for SN⊥

h on SN⊥
c yields another basis for SN⊥

c . (Basis
vectors for SN⊥

c are illustrated lying in a plane orthogonal to SN
c in this

dimension. Basis vectors for each ⊥ space outnumber those for its respective
orthogonal complement; such is not the case in higher dimension.)
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To prove injectivity of D(G) on SN
c : Any matrix Y ∈ SN can be

decomposed into orthogonal components in SN ;

Y = V Y V + (Y − V Y V ) (800)

where V Y V ∈ SN
c and Y −V Y V ∈ SN⊥

c (1768). Because of translation
invariance (§5.5.1.1) and linearity, D(Y−V Y V )=0 hence N (D)⊇ SN⊥

c . It
remains only to show

D(V Y V ) = 0 ⇔ V Y V = 0 (801)
(

⇔ Y = u1T + 1uT for some u∈RN
)

. D(V Y V ) will vanish whenever

2V Y V = δ(V Y V )1T + 1δ(V Y V )T . But this implies R(1) (§B.2) were a
subset of R(V Y V ) , which is contradictory. Thus we have

N (D) = {Y | D(Y )=0} = {Y | V Y V = 0} = SN⊥
c (802)

�

Since G1=0 ⇔ X1=0 (730) simply means list X is geometrically
centered at the origin, and because the Gram-form EDM operator D is
translation invariant and N (D) is the translation-invariant subspace SN⊥

c ,
then EDM definition D(G) (798) on5.24 (confer §6.6.1, §6.7.1, §A.7.4.1)

SN
c ∩ SN

+ = {V Y V � 0 | Y ∈ SN} ≡ {VNAV T
N | A∈ SN−1

+ } ⊂ SN (803)

must be surjective onto EDMN ; (confer (722))

EDMN =
{

D(G) | G ∈ SN
c ∩ SN

+

}

(804)

5.6.1.1 Gram-form operator D inversion

Define the linear geometric centering operator V ; (confer (731))

V(D) : SN→ SN ∆
= −V DV 1

2
(805)

[61, §4.3]5.25 This orthogonal projector V has no nullspace on

SN
h = aff EDMN (1055)

5.24Equivalence ≡ in (803) follows from the fact: Given B = V Y V = VNAV
T
N ∈ SN

+ with

only matrix A unknown, then V †NBV
†T
N = A and A∈ SN−1

+ must be positive semidefinite
by positive semidefiniteness of B and Corollary A.3.1.0.5.
5.25Critchley cites Torgerson (1958) [262, ch.11, §2] for a history and derivation of (805).
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because the projection of −D/2 on SN
c (1766) can be 0 if and only if

D ∈ SN⊥
c ; but SN⊥

c ∩ SN
h = 0 (Figure 86). Projector V on SN

h is therefore
injective hence invertible. Further, −V SN

h V/2 is equivalent to the geometric
center subspace SN

c in the ambient space of symmetric matrices; a surjection,

SN
c = V(SN) = V

(

SN
h ⊕ SN⊥

h

)

= V
(

SN
h

)

(806)

because (62)
V
(

SN
h

)

⊇ V
(

SN⊥
h

)

= V
(

δ2(SN)
)

(807)

Because D(G) on SN
c is injective, and aff D

(

V(EDMN)
)

= D
(

V(aff EDMN)
)

by property (107) of the affine hull, we find for D∈ SN
h (confer (735))

D(−V DV 1
2
) = δ(−V DV 1

2
)1T + 1δ(−V DV 1

2
)T − 2(−V DV 1

2
) (808)

id est,
D = D

(

V(D)
)

(809)

−V DV = V
(

D(−V DV )
)

(810)

or
SN

h = D
(

V(SN
h )
)

(811)

−V SN
h V = V

(

D(−V SN
h V )

)

(812)

These operators V and D are mutual inverses.
The Gram-form D

(

SN
c

)

(721) is equivalent to SN
h ;

D
(

SN
c

)

= D
(

V(SN
h ⊕ SN⊥

h )
)

= SN
h + D

(

V(SN⊥
h )

)

= SN
h (813)

because SN
h ⊇ D

(

V(SN⊥
h )

)

. In summary, for the Gram-form we have the
isomorphisms [62, §2] [61, p.76, p.107] [5, §2.1]5.26 [4, §2] [6, §18.2.1] [1, §2.1]

SN
h = D(SN

c ) (814)

SN
c = V(SN

h ) (815)

and from the bijectivity results in §5.6.1,

EDMN = D(SN
c ∩ SN

+ ) (816)

SN
c ∩ SN

+ = V(EDMN) (817)

5.26In [5, p.6, line 20], delete sentence: Since G is also . . . not a singleton set.

[5, p.10, line 11] x3 =2 (not 1).



5.6. INJECTIVITY OF D & UNIQUE RECONSTRUCTION 335

5.6.2 Inner-product form bijectivity

The Gram-form EDM operator D(G)= δ(G)1T + 1δ(G)T − 2G (721) is an
injective map, for example, on the domain that is the subspace of symmetric
matrices having all zeros in the first row and column

SN
1

∆
= {G∈ SN | Ge1 = 0}

=

{[

0 0T

0 I

]

Y

[

0 0T

0 I

]

| Y ∈ SN

} (1770)

because it obviously has no nullspace there. Since Ge1 = 0 ⇔ Xe1 = 0 (723)
means the first point in the listX resides at the origin, then D(G) on SN

1 ∩ SN
+

must be surjective onto EDMN .
Substituting ΘTΘ← −V T

NDVN (786) into inner-product form EDM
definition D(Θ) (774), it may be further decomposed: (confer (729))

D(D) =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(818)

This linear operator D is another flavor of inner-product form and an injective
map of the EDM cone onto itself. Yet when its domain is instead the entire
symmetric hollow subspace SN

h = aff EDMN , D(D) becomes an injective
map onto that same subspace. Proof follows directly from the fact: linear D
has no nullspace [58, §A.1] on SN

h = aff D(EDMN)= D(aff EDMN) (107).

5.6.2.1 Inversion of D
(

−V T
NDVN

)

Injectivity of D(D) suggests inversion of (confer (726))

VN (D) : SN→ SN−1 ∆
= −V T

NDVN (819)

a linear surjective5.27 mapping onto SN−1 having nullspace5.28 SN⊥
c ;

VN (SN
h ) = SN−1 (820)

5.27Surjectivity of VN (D) is demonstrated via the Gram-form EDM operator D(G) :

Since SN
h = D(SN

c ) (813), then for any Y ∈ SN−1, −V T
ND(V †TN Y V †N /2)VN = Y .

5.28N (VN ) ⊇ SN⊥
c is apparent. There exists a linear mapping

T (VN (D))
∆
= V †TN VN (D)V †N = −V DV 1

2 = V(D)
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injective on domain SN
h because SN⊥

c ∩ SN
h = 0. Revising the argument of

this inner-product form (818), we get another flavor

D
(

−V T
NDVN

)

=

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(821)
and we obtain mutual inversion of operators VN and D , for D∈ SN

h

D = D
(

VN (D)
)

(822)

−V T
NDVN = VN

(

D(−V T
NDVN )

)

(823)

or
SN

h = D
(

VN (SN
h )
)

(824)

−V T
N SN

h VN = VN
(

D(−V T
N SN

h VN )
)

(825)

Substituting ΘTΘ← Φ into inner-product form EDM definition (774),
any EDM may be expressed by the new flavor

D(Φ)
∆
=

[

0
δ(Φ)

]

1T + 1
[

0 δ(Φ)T
]

− 2

[

0 0T

0 Φ

]

∈ EDMN

⇔
Φ � 0

(826)

where this D is a linear surjective operator onto EDMN by definition,
injective because it has no nullspace on domain SN−1

+ . More broadly,
aff D(SN−1

+ )= D(aff SN−1
+ ) (107),

SN
h = D(SN−1)

SN−1 = VN (SN
h )

(827)

demonstrably isomorphisms, and by bijectivity of this inner-product form:

EDMN = D(SN−1
+ ) (828)

SN−1
+ = VN (EDMN) (829)

such that

N (T (VN )) = N (V) ⊇ N (VN ) ⊇ SN⊥
c = N (V)

where the equality SN⊥
c =N (V) is known (§E.7.2.0.2). �
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5.7 Embedding in affine hull

The affine hull A (67) of a point list {xℓ} (arranged columnar in X∈ Rn×N

(65)) is identical to the affine hull of that polyhedron P (75) formed from all
convex combinations of the xℓ ; [46, §2] [230, §17]

A = affX = aff P (830)

Comparing hull definitions (67) and (75), it becomes obvious that the xℓ

and their convex hull P are embedded in their unique affine hull A ;

A ⊇ P ⊇ {xℓ} (831)

Recall: affine dimension r is a lower bound on embedding, equal to
dimension of the subspace parallel to that nonempty affine set A in which
the points are embedded. (§2.3.1) We define dimension of the convex hull
P to be the same as dimension r of the affine hull A [230, §2], but r is not
necessarily equal to the rank of X (850).

For the particular example illustrated in Figure 74, P is the triangle plus
its relative interior while its three vertices constitute the entire list X . The
affine hull A is the unique plane that contains the triangle, so r=2 in that
example while the rank of X is 3. Were there only two points in Figure 74,
then the affine hull would instead be the unique line passing through them;
r would become 1 while the rank would then be 2.

5.7.1 Determining affine dimension

Knowledge of affine dimension r becomes important because we lose any
absolute offset common to all the generating xℓ in Rn when reconstructing
convex polyhedra given only distance information. (§5.5.1) To calculate r , we
first remove any offset that serves to increase dimensionality of the subspace
required to contain polyhedron P ; subtracting any α∈A in the affine hull
from every list member will work,

X − α1T (832)

translating A to the origin:5.29

A− α = aff(X − α1T ) = aff(X)− α (833)

P − α = conv(X − α1T ) = conv(X)− α (834)

5.29The manipulation of hull functions aff and conv follows from their definitions.
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Because (830) and (831) translate,

Rn ⊇ A−α = aff(X − α1T ) = aff(P − α) ⊇ P − α ⊇ {xℓ− α} (835)

where from the previous relations it is easily shown

aff(P − α) = aff(P)− α (836)

Translating A neither changes its dimension or the dimension of the
embedded polyhedron P ; (66)

r
∆
= dimA = dim(A− α)

∆
= dim(P − α) = dimP (837)

For any α ∈ Rn, (833)-(837) remain true. [230, p.4, p.12] Yet when α ∈ A ,
the affine set A− α becomes a unique subspace of Rn in which the {xℓ − α}
and their convex hull P − α are embedded (835), and whose dimension is
more easily calculated.

5.7.1.0.1 Example. Translating first list-member to origin.

Subtracting the first member α
∆
= x1 from every list member will translate

their affine hull A and their convex hull P and, in particular, x1∈ P ⊆ A to
the origin in Rn ; videlicet,

X− x11
T = X−Xe11T = X(I− e11T ) = X

[

0
√

2VN
]

∈ Rn×N (838)

where VN is defined in (715), and e1 in (725). Applying (835) to (838),

Rn ⊇ R(XVN ) = A−x1 = aff(X−x11
T ) = aff(P−x1) ⊇ P−x1 ∋ 0

(839)
where XVN ∈ Rn×N−1. Hence

r = dimR(XVN ) (840)

2

Since shifting the geometric center to the origin (§5.5.1.0.1) translates the
affine hull to the origin as well, then it must also be true

r = dimR(XV ) (841)
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For any matrix whose range is R(V )=N (1T ) we get the same result; e.g.,

r = dimR(XV †TN ) (842)

because

R(XV ) = {Xz | z∈N (1T )} (843)

and R(V ) = R(VN ) = R(V †TN ) (§E). These auxiliary matrices (§B.4.2) are
more closely related;

V = VNV
†
N (1440)

5.7.1.1 Affine dimension r versus rank

Now, suppose D is an EDM as defined by

D(X)
∆
= δ(XTX)1T + 1δ(XTX)T − 2XTX ∈ EDMN (709)

and we premultiply by−V T
N and postmultiply by VN . Then because V T

N 1=0
(716), it is always true that

−V T
NDVN = 2V T

NX
TXVN = 2V T

NGVN ∈ SN−1 (844)

where G is a Gram matrix. Similarly pre- and postmultiplying by V
(confer (731))

−V DV = 2V XTXV = 2V GV ∈ SN (845)

always holds because V 1=0 (1430). Likewise, multiplying inner-product
form EDM definition (774), it always holds:

−V T
NDVN = ΘTΘ ∈ SN−1 (778)

For any matrix A , rankATA = rankA = rankAT . [150, §0.4]5.30 So, by
(843), affine dimension

r = rankXV = rankXVN = rankXV †TN = rank Θ
= rankV DV = rankV GV = rankV T

NDVN = rankV T
NGVN

(846)

5.30For A∈Rm×n, N (ATA) = N (A). [249, §3.3]
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By conservation of dimension, (§A.7.3.0.1)

r + dimN (V T
NDVN ) = N−1 (847)

r + dimN (V DV ) = N (848)

For D∈EDMN

−V T
NDVN ≻ 0 ⇔ r = N−1 (849)

but −V DV ⊁ 0. The general fact5.31 (confer (742))

r ≤ min{n , N−1} (850)

is evident from (838) but can be visualized in the example illustrated in
Figure 74. There we imagine a vector from the origin to each point in the
list. Those three vectors are linearly independent in R3, but affine dimension
r is 2 because the three points lie in a plane. When that plane is translated
to the origin, it becomes the only subspace of dimension r=2 that can
contain the translated triangular polyhedron.

5.7.2 Précis

We collect expressions for affine dimension: for list X∈ Rn×N and Gram
matrix G∈ SN

+

r
∆
= dim(P − α) = dimP = dim convX
= dim(A− α) = dimA = dim affX
= rank(X − x11

T ) = rank(X − αc1
T )

= rank Θ (776)

= rankXVN = rankXV = rankXV †TN
= rankX , Xe1 = 0 or X1=0

= rankV T
NGVN = rankV GV = rankV †NGVN

= rankG , Ge1 = 0 (726) or G1=0 (731)

= rankV T
NDVN = rankV DV = rankV †NDVN = rankVN (V T

NDVN )V T
N

= rank Λ (935)

= N−1− dimN
([

0 1T

1 −D

])

= rank

[

0 1T

1 −D

]

− 2 (858)















D ∈ EDMN

(851)

5.31 rankX ≤ min{n , N}
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5.7.3 Eigenvalues of −V DV versus −V †NDVN
Suppose for D∈EDMN we are given eigenvectors vi∈RN of −V DV and
corresponding eigenvalues λ∈RN so that

−V DV vi = λi vi , i = 1 . . . N (852)

From these we can determine the eigenvectors and eigenvalues of −V †NDVN :
Define

νi
∆
= V †N vi , λi 6= 0 (853)

Then we have:

−V DVNV †N vi = λi vi (854)

−V †NV DVN νi = λiV
†
N vi (855)

−V †NDVN νi = λi νi (856)

the eigenvectors of −V †NDVN are given by (853) while its corresponding
nonzero eigenvalues are identical to those of −V DV although −V †NDVN
is not necessarily positive semidefinite. In contrast, −V T

NDVN is positive
semidefinite but its nonzero eigenvalues are generally different.

5.7.3.0.1 Theorem. EDM rank versus affine dimension r .
[113, §3] [133, §3] [112, §3] For D∈EDMN (confer (1010))

1. r = rank(D)− 1 ⇔ 1TD†1 6= 0
Points constituting a listX generating the polyhedron corresponding to
D lie on the relative boundary of an r-dimensional circumhypersphere
having

diameter =
√

2
(

1TD†1
)−1/2

circumcenter = XD†1

1TD†1

(857)

2. r = rank(D)− 2 ⇔ 1TD†1 = 0
There can be no circumhypersphere whose relative boundary contains
a generating list for the corresponding polyhedron.

3. In Cayley-Menger form [77, §6.2] [60, §3.3] [37, §40] (§5.11.2),

r = N−1− dimN
([

0 1T

1 −D

])

= rank

[

0 1T

1 −D

]

− 2 (858)

Circumhyperspheres exist for r< rank(D)−2. [261, §7] ⋄
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For all practical purposes, (850)

max{0 , rank(D)− 2} ≤ r ≤ min{n , N−1} (859)

5.8 Euclidean metric versus matrix criteria

5.8.1 Nonnegativity property 1

When D=[dij] is an EDM (709), then it is apparent from (844)

2V T
NX

TXVN = −V T
NDVN � 0 (860)

because for any matrix A , ATA�0 .5.32 We claim nonnegativity of the dij

is enforced primarily by the matrix inequality (860); id est,

−V T
NDVN � 0

D ∈ SN
h

}

⇒ dij ≥ 0 , i 6= j (861)

(The matrix inequality to enforce strict positivity differs by a stroke of the
pen. (864))

We now support our claim: If any matrix A∈Rm×m is positive
semidefinite, then its main diagonal δ(A)∈Rm must have all nonnegative
entries. [110, §4.2] Given D∈ SN

h

−V T
NDVN =















d12
1
2 (d12+d13−d23)

1
2 (d1,i+1+d1,j+1−di+1,j+1) · · · 1

2 (d12+d1N−d2N )
1
2 (d12+d13−d23) d13

1
2 (d1,i+1+d1,j+1−di+1,j+1) · · · 1

2 (d13+d1N−d3N )

1
2 (d1,j+1+d1,i+1−dj+1,i+1)

1
2 (d1,j+1+d1,i+1−dj+1,i+1) d1,i+1

. . . 1
2 (d14+d1N−d4N )

...
...

. . .
. . .

...
1
2 (d12+d1N−d2N ) 1

2 (d13+d1N−d3N ) 1
2 (d14+d1N−d4N ) · · · d1N















= 1
2
(1D1,2:N + D2:N,11

T −D2:N,2:N) ∈ SN−1 (862)

5.32For A∈Rm×n, ATA � 0 ⇔ yTATAy = ‖Ay‖2 ≥ 0 for all ‖y‖ = 1. When A is
full-rank skinny-or-square, ATA ≻ 0.
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where row,column indices i,j∈{1 . . . N−1}. [234] It follows:

−V T
NDVN � 0

D ∈ SN
h

}

⇒ δ(−V T
NDVN ) =











d12

d13
...
d1N











� 0 (863)

Multiplication of VN by any permutation matrix Ξ has null effect on its range
and nullspace. In other words, any permutation of the rows or columns of VN
produces a basis for N (1T ); id est, R(ΞrVN )=R(VN Ξc)=R(VN )=N (1T ).
Hence, −V T

NDVN � 0 ⇔ −V T
N ΞT

rDΞrVN � 0 (⇔ −ΞT
c V

T
NDVN Ξc � 0).

Various permutation matrices5.33 will sift the remaining dij similarly
to (863) thereby proving their nonnegativity. Hence −V T

NDVN � 0 is
a sufficient test for the first property (§5.2) of the Euclidean metric,
nonnegativity. �

When affine dimension r equals 1, in particular, nonnegativity symmetry
and hollowness become necessary and sufficient criteria satisfying matrix
inequality (860). (§6.6.0.0.1)

5.8.1.1 Strict positivity

Should we require the points in Rn to be distinct, then entries of D off the
main diagonal must be strictly positive {dij > 0, i 6= j} and only those entries
along the main diagonal of D are 0. By similar argument, the strict matrix
inequality is a sufficient test for strict positivity of Euclidean distance-square;

−V T
NDVN ≻ 0

D ∈ SN
h

}

⇒ dij > 0 , i 6= j (864)

5.33The rule of thumb is: If Ξr(i , 1) = 1, then δ(−V T
NΞT

rDΞrVN )∈RN−1 is some
permutation of the ith row or column of D excepting the 0 entry from the main diagonal.
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5.8.2 Triangle inequality property 4

In light of Kreyszig’s observation [166, §1.1, prob.15] that properties 2
through 4 of the Euclidean metric (§5.2) together imply property 1,
the nonnegativity criterion (861) suggests that the matrix inequality
−V T
NDVN � 0 might somehow take on the role of triangle inequality; id est,

δ(D) = 0
DT = D

−V T
NDVN � 0







⇒
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k (865)

We now show that is indeed the case: Let T be the leading principal
submatrix in S2 of −V T

NDVN (upper left 2×2 submatrix from (862));

T
∆
=

[

d12
1
2
(d12+d13−d23)

1
2
(d12+d13−d23) d13

]

(866)

Submatrix T must be positive (semi)definite whenever −V T
NDVN is.

(§A.3.1.0.4, §5.8.3) Now we have,

−V T
NDVN � 0 ⇒ T � 0 ⇔ λ1 ≥ λ2 ≥ 0

−V T
NDVN ≻ 0 ⇒ T ≻ 0 ⇔ λ1 > λ2 > 0

(867)

where λ1 and λ2 are the eigenvalues of T , real due only to symmetry of T :

λ1 = 1
2

(

d12 + d13 +
√

d 2
23 − 2(d12 + d13)d23 + 2(d 2

12 + d 2
13)
)

∈ R

λ2 = 1
2

(

d12 + d13 −
√

d 2
23 − 2(d12 + d13)d23 + 2(d 2

12 + d 2
13)
)

∈ R
(868)

Nonnegativity of eigenvalue λ1 is guaranteed by only nonnegativity of the dij

which in turn is guaranteed by matrix inequality (861). Inequality between
the eigenvalues in (867) follows from only realness of the dij . Since λ1

always equals or exceeds λ2 , conditions for the positive (semi)definiteness of
submatrix T can be completely determined by examining λ2 the smaller of
its two eigenvalues. A triangle inequality is made apparent when we express
T eigenvalue nonnegativity in terms of D matrix entries; videlicet,
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T � 0 ⇔ detT = λ1λ2 ≥ 0 , d12 , d13 ≥ 0 (c)
⇔

λ2 ≥ 0 (b)
⇔

|
√
d12 −

√
d23 | ≤

√
d13 ≤

√
d12 +

√
d23 (a)

(869)

Triangle inequality (869a) (confer (772) (881)), in terms of three rooted
entries from D , is equivalent to metric property 4

√

d13 ≤
√

d12 +
√

d23
√

d23 ≤
√

d12 +
√

d13
√

d12 ≤
√

d13 +
√

d23

(870)

for the corresponding points x1 , x2 , x3 from some length-N list.5.34

5.8.2.1 Comment

Given D whose dimension N equals or exceeds 3, there are N !/(3!(N− 3)!)
distinct triangle inequalities in total like (772) that must be satisfied, of which
each dij is involved inN−2, and each point xi is in (N−1)!/(2!(N−1− 2)!).
We have so far revealed only one of those triangle inequalities; namely, (869a)
that came from T (866). Yet we claim if −V T

NDVN � 0 then all triangle
inequalities will be satisfied simultaneously;

|
√

dik −
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj , i<k<j (871)

(There are no more.) To verify our claim, we must prove the matrix inequality
−V T
NDVN � 0 to be a sufficient test of all the triangle inequalities; more

efficient, we mention, for larger N :

5.34Accounting for symmetry property 3, the fourth metric property demands three
inequalities be satisfied per one of type (869a). The first of those inequalities in (870)
is self evident from (869a), while the two remaining follow from the left-hand side of
(869a) and the fact for scalars, |a| ≤ b ⇔ a ≤ b and −a ≤ b .
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5.8.2.1.1 Shore. The columns of ΞrVN Ξc hold a basis for N (1T )
when Ξr and Ξc are permutation matrices. In other words, any permutation
of the rows or columns of VN leaves its range and nullspace unchanged;
id est, R(ΞrVN Ξc)=R(VN )=N (1T ) (716). Hence, two distinct matrix
inequalities can be equivalent tests of the positive semidefiniteness of D on
R(VN ) ; id est, −V T

NDVN � 0 ⇔ −(ΞrVN Ξc)
TD(ΞrVN Ξc)� 0. By properly

choosing permutation matrices,5.35 the leading principal submatrix TΞ∈ S2

of −(ΞrVN Ξc)
TD(ΞrVN Ξc) may be loaded with the entries of D needed to

test any particular triangle inequality (similarly to (862)-(869)). Because all
the triangle inequalities can be individually tested using a test equivalent to
the lone matrix inequality −V T

NDVN �0, it logically follows that the lone
matrix inequality tests all those triangle inequalities simultaneously. We
conclude that −V T

NDVN � 0 is a sufficient test for the fourth property of the
Euclidean metric, triangle inequality. �

5.8.2.2 Strict triangle inequality

Without exception, all the inequalities in (869) and (870) can be made
strict while their corresponding implications remain true. The then
strict inequality (869a) or (870) may be interpreted as a strict triangle
inequality under which collinear arrangement of points is not allowed.
[164, §24/6, p.322] Hence by similar reasoning, −V T

NDVN ≻ 0 is a sufficient
test of all the strict triangle inequalities; id est,

δ(D) = 0

DT = D
−V T
NDVN ≻ 0







⇒
√

dij <
√

dik +
√

dkj , i 6=j 6=k (872)

5.8.3 −V T
NDVN nesting

From (866) observe that T =−V T
NDVN |N←3 . In fact, for D∈EDMN , the

leading principal submatrices of −V T
NDVN form a nested sequence (by

inclusion) whose members are individually positive semidefinite [110] [150]
[249] and have the same form as T ; videlicet,5.36

5.35To individually test triangle inequality |
√

dik−
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj for
particular i , k, j , set Ξr(i , 1)= Ξr(k, 2)= Ξr(j, 3)=1 and Ξc = I .
5.36 −V DV |N←1 = 0 ∈ S0

+ (§B.4.1)
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−V T
NDVN |N←1 = [ ∅ ] (o)

−V T
NDVN |N←2 = [d12] ∈ S+ (a)

−V T
NDVN |N←3 =

[

d12
1
2
(d12+d13−d23)

1
2
(d12+d13−d23) d13

]

= T ∈ S2

+ (b)

−V T
NDVN |N←4 =







d12
1
2
(d12+d13−d23)

1
2
(d12+d14−d24)

1
2
(d12+d13−d23) d13

1
2
(d13+d14−d34)

1
2
(d12+d14−d24)

1
2
(d13+d14−d34) d14






(c)

...

−V T
NDVN |N← i =





−V T
NDVN |N← i−1 ν(i)

ν(i)T d1i



 ∈ Si−1
+ (d)

...

−V T
NDVN =





−V T
NDVN |N←N−1 ν(N)

ν(N)T d1N



 ∈ SN−1
+ (e)

(873)

where

ν(i)
∆
=

1

2











d12+d1i−d2i

d13+d1i−d3i
...

d1,i−1+d1i−di−1,i











∈ Ri−2, i > 2 (874)

Hence, the leading principal submatrices of EDM D must also be EDMs.5.37

Bordered symmetric matrices in the form (873d) are known to have
intertwined [249, §6.4] (or interlaced [150, §4.3] [246, §IV.4.1]) eigenvalues;
(confer §5.11.1) that means, for the particular submatrices (873a) and (873b),

5.37In fact, each and every principal submatrix of an EDM D is another EDM. [171, §4.1]
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λ2 ≤ d12 ≤ λ1 (875)

where d12 is the eigenvalue of submatrix (873a) and λ1 , λ2 are the
eigenvalues of T (873b) (866). Intertwining in (875) predicts that should
d12 become 0, then λ2 must go to 0 .5.38 The eigenvalues are similarly
intertwined for submatrices (873b) and (873c);

γ3 ≤ λ2 ≤ γ2 ≤ λ1 ≤ γ1 (876)

where γ1 , γ2 , γ3 are the eigenvalues of submatrix (873c). Intertwining
likewise predicts that should λ2 become 0 (a possibility revealed in §5.8.3.1),
then γ3 must go to 0. Combining results so far for N= 2, 3, 4: (875) (876)

γ3 ≤ λ2 ≤ d12 ≤ λ1 ≤ γ1 (877)

The preceding logic extends by induction through the remaining members
of the sequence (873).

5.8.3.1 Tightening the triangle inequality

Now we apply Schur complement from §A.4 to tighten the triangle inequality
from (865) in case: cardinality N= 4. We find that the gains by doing so
are modest. From (873) we identify:

[

A B
BT C

]

∆
= −V T

NDVN |N←4 (878)

A
∆
= T = −V T

NDVN |N←3 (879)

both positive semidefinite by assumption, where B= ν(4) (874), and
C= d14 . Using nonstrict CC†-form (1311), C� 0 by assumption (§5.8.1)
and CC†= I . So by the positive semidefinite ordering of eigenvalues theorem
(§A.3.1.0.1),

−V T
NDVN |N←4 � 0 ⇔ T � d−1

14 ν(4)ν(4)T ⇒
{

λ1 ≥ d−1
14 ‖ν(4)‖2

λ2 ≥ 0
(880)

where {d−1
14 ‖ν(4)‖2, 0} are the eigenvalues of d−1

14 ν(4)ν(4)T while λ1 , λ2 are
the eigenvalues of T .

5.38If d12 were 0, eigenvalue λ2 becomes 0 (868) because d13 must then be equal to d23 ;
id est, d12 = 0 ⇔ x1 = x2 . (§5.4)
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5.8.3.1.1 Example. Small completion problem, II.
Applying the inequality for λ1 in (880) to the small completion problem on
page 294 Figure 75, the lower bound on

√
d14 (1.236 in (702)) is tightened

to 1.289 . The correct value of
√
d14 to three significant figures is 1.414 .

2

5.8.4 Affine dimension reduction in two dimensions

(confer §5.14.4) The leading principal 2×2 submatrix T of −V T
NDVN has

largest eigenvalue λ1 (868) which is a convex function of D .5.39 λ1 can never
be 0 unless d12 = d13 = d23 = 0. Eigenvalue λ1 can never be negative while
the dij are nonnegative. The remaining eigenvalue λ2 is a concave function
of D that becomes 0 only at the upper and lower bounds of inequality (869a)
and its equivalent forms: (confer (871))

|
√
d12 −

√
d23 | ≤

√
d13 ≤

√
d12 +

√
d23 (a)

⇔
|
√
d12 −

√
d13 | ≤

√
d23 ≤

√
d12 +

√
d13 (b)

⇔
|
√
d13 −

√
d23 | ≤

√
d12 ≤

√
d13 +

√
d23 (c)

(881)

In between those bounds, λ2 is strictly positive; otherwise, it would be
negative but prevented by the condition T � 0.

When λ2 becomes 0, it means triangle △123 has collapsed to a line
segment; a potential reduction in affine dimension r . The same logic is valid
for any particular principal 2×2 submatrix of −V T

NDVN , hence applicable
to other triangles.

5.39The largest eigenvalue of any symmetric matrix is always a convex function of its
entries, while the smallest eigenvalue is always concave. [46, exmp.3.10] In our particular

case, say d
∆
=





d12

d13

d23



∈ R3. Then the Hessian (1537) ∇2λ1(d)� 0 certifies convexity

whereas ∇2λ2(d)� 0 certifies concavity. Each Hessian has rank equal to 1. The respective
gradients ∇λ1(d) and ∇λ2(d) are nowhere 0.
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5.9 Bridge: Convex polyhedra to EDMs

The criteria for the existence of an EDM include, by definition (709) (774),
the properties imposed upon its entries dij by the Euclidean metric. From§5.8.1 and §5.8.2, we know there is a relationship of matrix criteria to those
properties. Here is a snapshot of what we are sure: for i , j , k∈{1 . . . N}
(confer §5.2)

√

dij ≥ 0 , i 6= j
√

dij = 0 , i = j
√

dij =
√

dji
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k
⇐
−V T
NDVN � 0
δ(D) = 0
DT = D

(882)

all implied by D∈ EDMN . In words, these four Euclidean metric properties
are necessary conditions for D to be a distance matrix. At the moment,
we have no converse. As of concern in §5.3, we have yet to establish
metric requirements beyond the four Euclidean metric properties that would
allow D to be certified an EDM or might facilitate polyhedron or list
reconstruction from an incomplete EDM. We deal with this problem in §5.14.
Our present goal is to establish ab initio the necessary and sufficient matrix
criteria that will subsume all the Euclidean metric properties and any further
requirements5.40 for all N>1 (§5.8.3); id est,

−V T
NDVN � 0

D ∈ SN
h

}

⇔ D ∈ EDMN (728)

or for EDM definition (783),

Ω � 0
√

δ(d) � 0

}

⇔ D = D(Ω , d) ∈ EDMN (883)

5.40In 1935, Schoenberg [234, (1)] first extolled matrix product −V T
NDVN (862)

(predicated on symmetry and self-distance) specifically incorporating VN , albeit
algebraically. He showed: nonnegativity −yTV T

NDVN y ≥ 0, for all y∈RN−1, is necessary
and sufficient for D to be an EDM. Gower [112, §3] remarks how surprising it is that such
a fundamental property of Euclidean geometry was obtained so late.
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Figure 87: Elliptope E3 in isometrically isomorphic R6 (projected on R3)
is a convex body that appears to possess some kind of symmetry in this
dimension; it resembles a malformed pillow in the shape of a bulging
tetrahedron. Elliptope relative boundary is not smooth and comprises all
set members (884) having at least one 0 eigenvalue. [174, §2.1] This elliptope
has an infinity of vertices, but there are only four vertices corresponding to
a rank-1 matrix. Those yyT , evident in the illustration, have binary vector
y ∈R3 with entries in {±1}.
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0

Figure 88: Elliptope E2 in isometrically isomorphic R3 is a line segment
illustrated interior to positive semidefinite cone S2

+ (Figure 31).

5.9.1 Geometric arguments

5.9.1.0.1 Definition. Elliptope: [174] [171, §2.3] [77, §31.5]
a unique bounded immutable convex Euclidean body in Sn ; intersection of
positive semidefinite cone Sn

+ with that set of n hyperplanes defined by unity
main diagonal;

En ∆
= Sn

+ ∩ {Φ∈ Sn | δ(Φ)=1} (884)

a.k.a, the set of all correlation matrices of dimension

dim En = n(n−1)/2 in Rn(n+1)/2 (885)

An elliptope En is not a polyhedron, in general, but has some polyhedral faces
and an infinity of vertices.5.41 Of those, 2n−1 vertices are extreme directions
yyT of the positive semidefinite cone where the entries of vector y ∈Rn each
belong to {±1} while the vector exercises every combination. Each of the
remaining vertices has rank belonging to the set {k>0 | k(k + 1)/2≤ n}.
Each and every face of an elliptope is exposed. △

5.41Laurent defines vertex distinctly from the sense herein (§2.6.1.0.1); she defines vertex

as a point with full-dimensional (nonempty interior) normal cone (§E.10.3.2.1). Her
definition excludes point C in Figure 21, for example.
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The elliptope for dimension n= 2 is a line segment in isometrically
isomorphic Rn(n+1)/2 (Figure 88). Obviously, cone(En) 6= Sn

+ . The elliptope
for dimension n= 3 is realized in Figure 87.

5.9.1.0.2 Lemma. Hypersphere. [15, §4] (confer bullet p.304)
Matrix A = [Aij]∈ SN belongs to the elliptope in SN iff there exist N points
p on the boundary of a hypersphere having radius 1 in Rrank A such that

‖pi − pj‖ =
√

2
√

1− Aij , i, j=1 . . . N (886)

⋄

There is a similar theorem for Euclidean distance matrices:

We derive matrix criteria for D to be an EDM, validating (728) using
simple geometry; distance to the polyhedron formed by the convex hull of a
list of points (65) in Euclidean space Rn.

5.9.1.0.3 EDM assertion.
D is a Euclidean distance matrix if and only if D∈ SN

h and distances-square
from the origin

{‖p(y)‖2 = −yTV T
NDVN y | y ∈ S − β} (887)

correspond to points p in some bounded convex polyhedron

P − α = {p(y) | y ∈ S − β} (888)

having N or fewer vertices embedded in an r-dimensional subspace A− α
of Rn, where α ∈ A = aff P and where the domain of linear surjection p(y)
is the unit simplex S⊂RN−1

+ shifted such that its vertex at the origin is
translated to −β in RN−1. When β = 0, then α = x1 . ⋄

In terms of VN , the unit simplex (253) in RN−1 has an equivalent
representation:

S = {s ∈ RN−1 |
√

2VN s � −e1} (889)

where e1 is as in (725). Incidental to the EDM assertion, shifting the
unit-simplex domain in RN−1 translates the polyhedron P in Rn. Indeed,
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there is a map from vertices of the unit simplex to members of the list
generating P ;

p : RN−1

p









































−β
e1 − β
e2 − β

...
eN−1 − β









































→

=

Rn



























x1 − α
x2 − α
x3 − α

...
xN − α



























(890)

5.9.1.0.4 Proof. EDM assertion.
(⇒) We demonstrate that if D is an EDM, then each distance-square ‖p(y)‖2
described by (887) corresponds to a point p in some embedded polyhedron
P − α . Assume D is indeed an EDM; id est, D can be made from some list
X of N unknown points in Euclidean space Rn ; D= D(X) for X∈ Rn×N

as in (709). Since D is translation invariant (§5.5.1), we may shift the affine
hull A of those unknown points to the origin as in (832). Then take any
point p in their convex hull (75);

P − α = {p = (X −Xb1T )a | aT1 = 1, a � 0} (891)

where α = Xb ∈ A ⇔ bT1 = 1. Solutions to aT1 = 1 are:5.42

a ∈
{

e1 +
√

2VN s | s ∈ RN−1
}

(892)

where e1 is as in (725). Similarly, b = e1 +
√

2VN β .

P − α = {p = X(I − (e1 +
√

2VNβ)1T )(e1 +
√

2VN s) |
√

2VN s � −e1}
= {p = X

√
2VN (s− β) |

√
2VN s � −e1}

(893)
that describes the domain of p(s) as the unit simplex

S = {s |
√

2VN s � −e1} ⊂ RN−1
+ (889)

5.42Since R(VN )=N (1T ) and N (1T )⊥R(1) , then over all s∈RN−1, VN s is a
hyperplane through the origin orthogonal to 1. Thus the solutions {a} constitute a
hyperplane orthogonal to the vector 1, and offset from the origin in RN by any particular
solution; in this case, a= e1 .
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Making the substitution s− β ← y

P − α = {p = X
√

2VN y | y ∈ S − β} (894)

Point p belongs to a convex polyhedron P−α embedded in an r-dimensional
subspace of Rn because the convex hull of any list forms a polyhedron, and
because the translated affine hull A− α contains the translated polyhedron
P −α (835) and the origin (when α∈A), and because A has dimension r by
definition (837). Now, any distance-square from the origin to the polyhedron
P − α can be formulated

{pTp = ‖p‖2 = 2yTV T
NX

TXVN y | y ∈ S − β} (895)

Applying (844) to (895) we get (887).
(⇐) To validate the EDM assertion in the reverse direction, we prove: If
each distance-square ‖p(y)‖2 (887) on the shifted unit-simplex S−β⊂RN−1

corresponds to a point p(y) in some embedded polyhedron P − α , then D
is an EDM. The r-dimensional subspace A− α ⊆ Rn is spanned by

p(S − β) = P − α (896)

because A− α = aff(P − α) ⊇ P − α (835). So, outside the domain S − β
of linear surjection p(y) , the simplex complement \S − β ⊂ RN−1 must
contain the domain of the distance-square ‖p(y)‖2 = p(y)Tp(y) to remaining
points in the subspace A− α ; id est, to the polyhedron’s relative exterior
\P − α . For ‖p(y)‖2 to be nonnegative on the entire subspace A− α ,
−V T
NDVN must be positive semidefinite and is assumed symmetric;5.43

−V T
NDVN

∆
= ΘT

pΘp (897)

where5.44 Θp∈Rm×N−1 for some m≥ r . Because p(S − β) is a convex
polyhedron, it is necessarily a set of linear combinations of points from some
length-N list because every convex polyhedron having N or fewer vertices
can be generated that way (§2.12.2). Equivalent to (887) are

{pTp | p ∈ P − α} = {pTp = yT ΘT
pΘp y | y ∈ S − β} (898)

5.43The antisymmetric part
(

−V T
NDVN − (−V T

NDVN )T
)

/2 is annihilated by ‖p(y)‖2. By
the same reasoning, any positive (semi)definite matrix A is generally assumed symmetric
because only the symmetric part (A+AT )/2 survives the test yTAy ≥ 0. [150, §7.1]
5.44AT = A � 0 ⇔ A = RTR for some real matrix R . [249, §6.3]
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Because p ∈ P − α may be found by factoring (898), the list Θp is found
by factoring (897). A unique EDM can be made from that list using
inner-product form definition D(Θ)|Θ=Θp (774). That EDM will be identical
to D if δ(D)=0, by injectivity of D (818). �

5.9.2 Necessity and sufficiency

From (860) we learned that matrix inequality −V T
NDVN � 0 is a necessary

test forD to be an EDM. In §5.9.1, the connection between convex polyhedra
and EDMs was pronounced by the EDM assertion; the matrix inequality
together with D∈ SN

h became a sufficient test when the EDM assertion
demanded that every bounded convex polyhedron have a corresponding
EDM. For all N>1 (§5.8.3), the matrix criteria for the existence of an EDM
in (728), (883), and (704) are therefore necessary and sufficient and subsume
all the Euclidean metric properties and further requirements.

5.9.3 Example revisited

Now we apply the necessary and sufficient EDM criteria (728) to an earlier
problem.

5.9.3.0.1 Example. Small completion problem, III. (confer §5.8.3.1.1)
Continuing Example 5.3.0.0.2 pertaining to Figure 75 where N= 4,
distance-square d14 is ascertainable from the matrix inequality −V T

NDVN � 0.
Because all distances in (701) are known except

√
d14 , we may simply

calculate the smallest eigenvalue of −V T
NDVN over a range of d14 as in

Figure 89. We observe a unique value of d14 satisfying (728) where the
abscissa is tangent to the hypograph of the smallest eigenvalue. Since
the smallest eigenvalue of a symmetric matrix is known to be a concave
function (§5.8.4), we calculate its second partial derivative with respect to
d14 evaluated at 2 and find −1/3. We conclude there are no other satisfying
values of d14 . Further, that value of d14 does not meet an upper or lower
bound of a triangle inequality like (871), so neither does it cause the collapse
of any triangle. Because the smallest eigenvalue is 0, affine dimension r of
any point list corresponding to D cannot exceed N−2. (§5.7.1.1) 2
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1 2 3 4

-0.6

-0.4

-0.2

smallest eigenvalue

d14

Figure 89: Smallest eigenvalue of −V T
NDVN makes it a PSD matrix for only

one value of d14 : 2.
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Figure 90: Some entrywise EDM compositions: (a) α = 2. Concave
nondecreasing in dij . (b) Trajectory convergence in α for dij = 2.
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5.10 EDM-entry composition

Laurent [171, §2.3] applies results from Schoenberg (1938) [235] to show
certain nonlinear compositions of individual EDM entries yield EDMs;
in particular,

D ∈ EDMN ⇔ [1− e−αdij ] ∈ EDMN ∀α> 0

⇔ [e−αdij ] ∈ EN ∀α> 0
(899)

where D= [dij] and EN is the elliptope (884).

5.10.0.0.1 Proof. (Laurent, 2003) [235] (confer [166])

Lemma 2.1. from A Tour d’Horizon . . . on Completion Problems. [171]
The following assertions are equivalent: for D=[dij , i, j=1 . . . N ]∈ SN

h and
EN the elliptope in SN (§5.9.1.0.1),

(i) D ∈ EDMN

(ii) e−αD ∆
= [e−αdij ] ∈ EN for all α > 0

(iii) 11T − e−αD ∆
= [1− e−αdij ] ∈ EDMN for all α > 0 ⋄

1) Equivalence of Lemma 2.1 (i) (ii) is stated in Schoenberg’s Theorem 1
[235, p.527].

2) (ii)⇒ (iii) can be seen from the statement in the beginning of section 3,
saying that a distance space embeds in L2 iff some associated matrix
is PSD. We reformulate it:

Let d=(dij)i,j=0,1...N be a distance space on N+1 points
(i.e., symmetric hollow matrix of order N+1) and let p=(pij)i,j=1...N

be the symmetric matrix of order N related by:

(A) 2pij = d0i + d0j − dij for i, j = 1 . . . N

or equivalently

(B) d0i = pii , dij = pii + pjj − 2pij for i, j = 1 . . . N

Then d embeds in L2 iff p is a positive semidefinite matrix iff d is of
negative type (second half page 525/top of page 526 in [235]).
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(ii) ⇒ (iii): set p= e−αd and define d′ from p using (B) above. Then
d′ is a distance space on N+1 points that embeds in L2 . Thus its
subspace of N points also embeds in L2 and is precisely 1− e−αd.

Note that (iii) ⇒ (ii) cannot be read immediately from this argument
since (iii) involves the subdistance of d′ on N points (and not the full
d′ on N+1 points).

3) Show (iii)⇒ (i) by using the series expansion of the function 1− e−αd :
the constant term cancels, α factors out; there remains a summation
of d plus a multiple of α . Letting α go to 0 gives the result.

This is not explicitly written in Schoenberg, but he also uses such
an argument; expansion of the exponential function then α→ 0 (first
proof on [235, p.526]). �

Schoenberg’s results [235, §6, thm.5] (confer [166, p.108 -109]) also
suggest certain finite positive roots of EDM entries produce EDMs;
specifically,

D ∈ EDMN ⇔ [d
1/α
ij ] ∈ EDMN ∀α> 1 (900)

The special case α= 2 is of interest because it corresponds to absolute
distance; e.g.,

D∈EDMN⇒ ◦
√
D ∈ EDMN (901)

Assuming that points constituting a corresponding list X are distinct
(864), then it follows: for D∈ SN

h

lim
α→∞

[d
1/α
ij ] = lim

α→∞
[1− e−αdij ] = −E ∆

= 11T − I (902)

Negative elementary matrix −E (§B.3) is relatively interior to the EDM cone
(§6.6) and terminal to the respective trajectories (899) and (900) as functions
of α . Both trajectories are confined to the EDM cone; in engineering terms,
the EDM cone is an invariant set [232] to either trajectory. Further, if D is
not an EDM but for some particular αp it becomes an EDM, then for all
greater values of α it remains an EDM.



360 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX

These preliminary findings lead one to speculate whether any concave
nondecreasing composition of individual EDM entries dij on R+ will produce
another EDM; e.g., empirical evidence suggests that given EDM D , for each
fixed α≥ 1 [sic] the composition [log2(1 + d

1/α
ij )] is also an EDM. Figure 90

illustrates that composition’s concavity in dij together with functions from
(899) and (900).

5.10.1 EDM by elliptope

For some κ∈R+ and C∈ SN
+ in the elliptope EN (§5.9.1.0.1), Alfakih asserts

any given EDM D is expressible [7] [77, §31.5]

D = κ(11T − C) ∈ EDMN (903)

This expression exhibits nonlinear combination of variables κ and C . We
therefore propose a different expression requiring redefinition of the elliptope
(884) by parametrization;

En
t

∆
= Sn

+ ∩ {Φ∈ Sn | δ(Φ)= t1} (904)

where, of course, En = En
1 . Then any given EDM D is expressible

D = t11T − E ∈ EDMN (905)

which is linear in variables t∈R+ and E∈EN
t .

5.11 EDM indefiniteness

By the known result in §A.7.2 regarding a 0-valued entry on the main
diagonal of a symmetric positive semidefinite matrix, there can be no positive
nor negative semidefinite EDM except the 0 matrix because EDMN⊆ SN

h

(708) and

SN
h ∩ SN

+ = 0 (906)

the origin. So when D∈ EDMN , there can be no factorization D=ATA
nor −D=ATA . [249, §6.3] Hence eigenvalues of an EDM are neither all
nonnegative or all nonpositive; an EDM is indefinite and possibly invertible.
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5.11.1 EDM eigenvalues, congruence transformation

For any symmetric −D , we can characterize its eigenvalues by congruence
transformation: [249, §6.3]

−W TDW = −
[

V T
N

1T

]

D [VN 1 ] = −
[

V T
NDVN V T

ND1

1TDVN 1TD1

]

∈ SN (907)

Because

W
∆
= [VN 1 ] ∈ RN×N (908)

is full-rank, then (1316)

inertia(−D) = inertia
(

−W TDW
)

(909)

the congruence (907) has the same number of positive, zero, and negative
eigenvalues as −D . Further, if we denote by {γi , i=1 . . . N−1} the
eigenvalues of −V T

NDVN and denote eigenvalues of the congruence −W TDW
by {ζi , i=1 . . . N} and if we arrange each respective set of eigenvalues in
nonincreasing order, then by theory of interlacing eigenvalues for bordered
symmetric matrices [150, §4.3] [249, §6.4] [246, §IV.4.1]

ζN ≤ γN−1 ≤ ζN−1 ≤ γN−2 ≤ · · · ≤ γ2 ≤ ζ2 ≤ γ1 ≤ ζ1 (910)

When D∈EDMN , then γi≥ 0 ∀ i (1253) because −V T
NDVN � 0 as we

know. That means the congruence must have N−1 nonnegative eigenvalues;
ζi ≥ 0, i=1 . . . N−1. The remaining eigenvalue ζN cannot be nonnegative
because then −D would be positive semidefinite, an impossibility; so ζN < 0.
By congruence, nontrivial −D must therefore have exactly one negative
eigenvalue;5.45 [77, §2.4.5]

5.45All the entries of the corresponding eigenvector must have the same sign with respect
to each other [61, p.116] because that eigenvector is the Perron vector corresponding to
the spectral radius; [150, §8.2.6] the predominant characteristic of negative [sic ] matrices.
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D ∈ EDMN ⇒



















λ(−D)i ≥ 0 , i=1 . . . N−1
(

N
∑

i=1

λ(−D)i = 0

)

D ∈ SN
h ∩ RN×N

+

(911)

where the λ(−D)i are nonincreasingly ordered eigenvalues of −D whose
sum must be 0 only because trD= 0 [249, §5.1]. The eigenvalue summation
condition, therefore, can be considered redundant. Even so, all these
conditions are insufficient to determine whether some given H∈ SN

h is an
EDM, as shown by counter-example.5.46

5.11.1.0.1 Exercise. Spectral inequality.
Prove whether it holds: for D=[dij]∈ EDMN

λ(−D)1 ≥ dij ≥ λ(−D)N−1 ∀ i 6= j (912)

H

Terminology: a spectral cone is a convex cone containing all eigenspectra
corresponding to some set of matrices. Any positive semidefinite matrix, for
example, possesses a vector of nonnegative eigenvalues corresponding to an
eigenspectrum contained in a spectral cone that is a nonnegative orthant.

5.11.2 Spectral cones

Denoting the eigenvalues of Cayley-Menger matrix

[

0 1T

1 −D

]

∈ SN+1 by

λ

([

0 1T

1 −D

])

∈ RN+1 (913)

we have the Cayley-Menger form (§5.7.3.0.1) of necessary and sufficient
conditions for D∈ EDMN from the literature: [133, §3]5.47 [53, §3] [77, §6.2]

5.46When N= 3, for example, the symmetric hollow matrix

H =





0 1 1
1 0 5
1 5 0



 ∈ SN
h ∩ RN×N

+

is not an EDM, although λ(−H) = [5 0.3723 −5.3723]T conforms to (911).
5.47Recall: for D∈ SN

h , −V T
NDVN � 0 subsumes nonnegativity property 1 (§5.8.1).
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(confer (728) (704))

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

i

≥ 0 , i= 1 . . . N

D ∈ SN
h











⇔
{

−V T
NDVN � 0

D ∈ SN
h

(914)

These conditions say the Cayley-Menger form has one and only one negative

eigenvalue. When D is an EDM, eigenvalues λ

([

0 1T

1 −D

])

belong to that

particular orthant in RN+1 having the N+1th coordinate as sole negative
coordinate5.48:

[

RN
+

R−

]

= cone {e1 , e2 , · · · eN , −eN+1} (915)

5.11.2.1 Cayley-Menger versus Schoenberg

Connection to the Schoenberg criterion (728) is made when the
Cayley-Menger form is further partitioned:

[

0 1T

1 −D

]

=







[

0 1
1 0

] [

1T

−D1,2:N

]

[1 −D2:N,1 ] −D2:N,2:N






(916)

Matrix D∈ SN
h is an EDM if and only if the Schur complement of

[

0 1
1 0

]

(§A.4) in this partition is positive semidefinite; [15, §1] [159, §3] id est,
(confer (862))

D ∈ EDMN

⇔

−D2:N,2:N − [1 −D2:N,1 ]

[

0 1
1 0

] [

1T

−D1,2:N

]

= −2V T
NDVN � 0

and

D ∈ SN
h

(917)

5.48Empirically, all except one entry of the corresponding eigenvector have the same sign
with respect to each other.
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Positive semidefiniteness of that Schur complement insures nonnegativity
(D ∈ RN×N

+ , §5.8.1), whereas complementary inertia (1318) insures that lone
negative eigenvalue of the Cayley-Menger form.

Now we apply results from chapter 2 with regard to polyhedral cones and
their duals.

5.11.2.2 Ordered eigenspectra

Conditions (914) specify eigenvalue membership to the smallest pointed

polyhedral spectral cone for

[

0 1T

1 −EDMN

]

:

Kλ
∆
= {ζ∈RN+1 | ζ1 ≥ ζ2 ≥ · · · ≥ ζN ≥ 0 ≥ ζN+1 , 1Tζ = 0}

= KM ∩
[

RN
+

R−

]

∩ ∂H

= λ

([

0 1T

1 −EDMN

])

(918)

where
∂H ∆

= {ζ∈RN+1 | 1T ζ= 0} (919)

is a hyperplane through the origin, and KM is the monotone cone
(§2.13.9.4.2, implying ordered eigenspectra) which has nonempty interior but
is not pointed;

KM = {ζ∈RN+1 | ζ1 ≥ ζ2 ≥ · · · ≥ ζN+1} (377)

K∗M = { [ e1− e2 e2− e3 · · · eN− eN+1 ] a | a � 0 } ⊂ RN+1 (378)

So because of the hyperplane,

dim aff Kλ = dim ∂H = N (920)

indicating Kλ has empty interior. Defining

A
∆
=









eT
1 − eT

2

eT
2 − eT

3
...

eT
N− eT

N+1









∈ RN×N+1 , B
∆
=













eT
1

eT
2
...
eT

N

−eT
N+1













∈ RN+1×N+1 (921)
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we have the halfspace-description:

Kλ = {ζ∈RN+1 | Aζ � 0 , Bζ � 0 , 1T ζ = 0} (922)

From this and (385) we get a vertex-description for a pointed spectral cone
having empty interior:

Kλ =

{

VN

([

Â

B̂

]

VN

)†
b | b � 0

}

(923)

where VN ∈ RN+1×N , and where [sic]

B̂ = eT
N ∈ R1×N+1 (924)

and

Â =









eT
1 − eT

2

eT
2 − eT

3
...

eT
N−1− eT

N









∈ RN−1×N+1 (925)

hold those rows of A and B corresponding to conically independent rows in
[

A
B

]

VN .

Conditions (914) can be equivalently restated in terms of a spectral cone
for Euclidean distance matrices:

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈ KM ∩
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(926)

Vertex-description of the dual spectral cone is, (272)

K∗λ = K∗M +

[

RN
+

R−

]∗
+ ∂H∗ ⊆ RN+1

=
{ [

AT BT 1 −1
]

b | b � 0
}

=
{[

ÂT B̂T 1 −1
]

a | a � 0
}

(927)
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From (923) and (386) we get a halfspace-description:

K∗λ = {y ∈RN+1 | (V T
N [ ÂT B̂T ])†V T

N y � 0} (928)

This polyhedral dual spectral cone K∗λ is closed, convex, has nonempty
interior because Kλ is pointed, but is not pointed because Kλ has empty
interior.

5.11.2.3 Unordered eigenspectra

Spectral cones are not unique; eigenspectra ordering can be rendered benign
within a cone by presorting a vector of eigenvalues into nonincreasing
order.5.49 Then things simplify: Conditions (914) now specify eigenvalue
membership to the spectral cone

λ

([

0 1T

1 −EDMN

])

=

[

RN
+

R−

]

∩ ∂H

= {ζ∈RN+1 | Bζ � 0 , 1T ζ = 0}
(929)

where B is defined in (921), and ∂H in (919). From (385) we get a
vertex-description for a pointed spectral cone having empty interior:

λ

([

0 1T

1 −EDMN

])

=
{

VN (B̃VN )† b | b � 0
}

=

{[

I
−1T

]

b | b � 0

} (930)

where VN ∈ RN+1×N and

B̃
∆
=









eT
1

eT
2
...
eT

N









∈ RN×N+1 (931)

holds only those rows of B corresponding to conically independent rows
in BVN .

5.49Eigenspectra ordering (represented by a cone having monotone description such as
(918)) becomes benign in (1138), for example, where projection of a given presorted vector
on the nonnegative orthant in a subspace is equivalent to its projection on the monotone
nonnegative cone in that same subspace; equivalence is a consequence of presorting.
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For presorted eigenvalues, (914) can be equivalently restated

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(932)

Vertex-description of the dual spectral cone is, (272)

λ

([

0 1T

1 −EDMN

])∗
=

[

RN
+

R−

]

+ ∂H∗ ⊆ RN+1

=
{ [

BT 1 −1
]

b | b � 0
}

=
{[

B̃T 1 −1
]

a | a � 0
}

(933)
From (386) we get a halfspace-description:

λ

([

0 1T

1 −EDMN

])∗
= {y ∈RN+1 | (V T

N B̃
T )†V T

N y � 0}
= {y ∈RN+1 | [ I −1 ] y � 0}

(934)

This polyhedral dual spectral cone is closed, convex, has nonempty interior
but is not pointed. (Notice that any nonincreasingly ordered eigenspectrum
belongs to this dual spectral cone.)

5.11.2.4 Dual cone versus dual spectral cone

An open question regards the relationship of convex cones and their duals to
the corresponding spectral cones and their duals. A positive semidefinite
cone, for example, is self-dual. Both the nonnegative orthant and the
monotone nonnegative cone are spectral cones for it. When we consider
the nonnegative orthant, then that spectral cone for the self-dual positive
semidefinite cone is also self-dual.
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5.12 List reconstruction

The traditional term multidimensional scaling5.50 [188] [71] [264] [69]
[191] [61] refers to any reconstruction of a list X∈ Rn×N in Euclidean
space from interpoint distance information, possibly incomplete (§6.4),
ordinal (§5.13.2), or specified perhaps only by bounding-constraints
(§5.4.2.2.7) [265]. Techniques for reconstruction are essentially methods
for optimally embedding an unknown list of points, corresponding to
given Euclidean distance data, in an affine subset of desired or minimum
dimension. The oldest known precursor is called principal component
analysis [115] which analyzes the correlation matrix (§5.9.1.0.1); [39, §22]
a.k.a, Karhunen−Loéve transform in the digital signal processing literature.
Isometric reconstruction (§5.5.3) of point list X is best performed by eigen
decomposition of a Gram matrix; for then, numerical errors of factorization
are easily spotted in the eigenvalues.

We now consider how rotation/reflection and translation invariance factor
into a reconstruction.

5.12.1 x1 at the origin. VN

At the stage of reconstruction, we have D∈EDMN and we wish to find
a generating list (§2.3.2) for P − α by factoring positive semidefinite
−V T
NDVN (897) as suggested in §5.9.1.0.4. One way to factor −V T

NDVN
is via diagonalization of symmetric matrices; [249, §5.6] [150] (§A.5.2, §A.3)

−V T
NDVN

∆
= QΛQT (935)

QΛQT � 0 ⇔ Λ � 0 (936)

where Q∈RN−1×N−1 is an orthogonal matrix containing eigenvectors
while Λ∈ SN−1 is a diagonal matrix containing corresponding nonnegative
eigenvalues ordered by nonincreasing value. From the diagonalization,
identify the list using (844);

−V T
NDVN = 2V T

NX
TXVN

∆
= Q

√
ΛQT

pQp

√
ΛQT (937)

5.50Scaling [262] means making a scale, i.e., a numerical representation of qualitative data.

If the scale is multidimensional, it’s multidimensional scaling. −Jan de Leeuw
When the metric is Euclidean distance, then reconstruction is termed metric

multidimensional scaling.
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where
√

ΛQT
pQp

√
Λ

∆
= Λ =

√
Λ
√

Λ and where Qp ∈ Rn×N−1 is unknown as
is its dimension n . Rotation/reflection is accounted for by Qp yet only its
first r columns are necessarily orthonormal.5.51 Assuming membership to
the unit simplex y∈S (894), then point p = X

√
2VN y = Qp

√
ΛQTy in Rn

belongs to the translated polyhedron

P − x1 (938)

whose generating list constitutes the columns of (838)

[

0 X
√

2VN
]

=
[

0 Qp

√
ΛQT

]

∈ Rn×N

= [0 x2−x1 x3−x1 · · · xN−x1 ]
(939)

The scaled auxiliary matrix VN represents that translation. A simple choice
for Qp has n set to N− 1; id est, Qp = I . Ideally, each member of the
generating list has at most r nonzero entries; r being, affine dimension

rankV T
NDVN = rankQp

√
ΛQT = rank Λ = r (940)

Each member then has at least N−1− r zeros in its higher-dimensional
coordinates because r ≤ N−1. (850) To truncate those zeros, choose n
equal to affine dimension which is the smallest n possible because XVN has
rank r ≤ n (846).5.52 In that case, the simplest choice for Qp is [ I 0 ]
having dimensions r×N−1.

We may wish to verify the list (939) found from the diagonalization of
−V T
NDVN . Because of rotation/reflection and translation invariance (§5.5),

EDM D can be uniquely made from that list by calculating: (709)

5.51Recall r signifies affine dimension. Qp is not necessarily an orthogonal matrix. Qp is
constrained such that only its first r columns are necessarily orthonormal because there
are only r nonzero eigenvalues in Λ when −V T

NDVN has rank r (§5.7.1.1). Remaining
columns of Qp are arbitrary.

5.52 If we write QT =





qT
1
...

qT
N−1



 as rowwise eigenvectors, Λ =











λ1 0
. . .
λr

0 . . .
0 0











in terms of eigenvalues, and Qp =
[

qp1
· · · qpN−1

]

as column vectors, then

Qp

√
ΛQT =

r
∑

i=1

√

λi qpi
qT
i is a sum of r linearly independent rank-one matrices (§B.1.1).

Hence the summation has rank r .
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D(X) = D(X[0
√

2VN ]) = D(Qp[0
√

ΛQT ]) = D([0
√

ΛQT ]) (941)

This suggests a way to find EDM D given −V T
NDVN ; (confer (822))

D =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(729)

5.12.2 0 geometric center. V

Alternatively, we may perform reconstruction using instead the auxiliary
matrix V (§B.4.1), corresponding to the polyhedron

P − αc (942)

whose geometric center has been translated to the origin. Redimensioning
diagonalization factors Q, Λ∈RN×N and unknown Qp ∈ Rn×N , (845)

−V DV = 2V XTXV
∆
= Q

√
ΛQT

pQp

√
ΛQT ∆

= QΛQT (943)

where the geometrically centered generating list constitutes (confer (939))

XV = 1√
2
Qp

√
ΛQT ∈ Rn×N

= [x1− 1
N
X1 x2− 1

N
X1 x3− 1

N
X1 · · · xN− 1

N
X1 ]

(944)

where αc = 1
N
X1. (§5.5.1.0.1) The simplest choice for Qp is [ I 0 ]∈Rr×N .

Now EDM D can be uniquely made from the list found, by calculating:
(709)

D(X) = D(XV ) = D(
1√
2
Qp

√
ΛQT ) = D(

√
ΛQT )

1

2
(945)

This EDM is, of course, identical to (941). Similarly to (729), from −V DV
we can find EDM D ; (confer (809))

D = δ(−V DV 1
2
)1T + 1δ(−V DV 1

2
)T − 2(−V DV 1

2
) (735)



5.12. LIST RECONSTRUCTION 371

(a)

(b)

(c)

(d)

(f) (e)

Figure 91: Map of United States of America showing some state boundaries
and the Great Lakes. All plots made using 5020 connected points. Any
difference in scale in (a) through (d) is an artifact of plotting routine.
(a) shows original map made from decimated (latitude, longitude) data.
(b) Original map data rotated (freehand) to highlight curvature of Earth.
(c) Map isometrically reconstructed from the EDM.
(d) Same reconstructed map illustrating curvature.
(e)(f) Two views of one isotonic reconstruction; problem (954) with no sort
constraint Π d (and no hidden line removal).
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5.13 Reconstruction examples

5.13.1 Isometric reconstruction

5.13.1.0.1 Example. Map of the USA.
The most fundamental application of EDMs is to reconstruct relative point
position given only interpoint distance information. Drawing a map of the
United States is a good illustration of isometric reconstruction from complete
distance data. We obtained latitude and longitude information for the coast,
border, states, and Great Lakes from the usalo atlas data file within the
Matlab Mapping Toolbox; the conversion to Cartesian coordinates (x, y , z)
via:

φ
∆
= π/2− latitude

θ
∆
= longitude

x = sin(φ) cos(θ)
y = sin(φ) sin(θ)
z = cos(φ)

(946)

We used 64% of the available map data to calculate EDM D from N= 5020
points. The original (decimated) data and its isometric reconstruction via
(937) are shown in Figure 91(a)-(d). The Matlab code is in §F.3.1. The
eigenvalues computed for (935) are

λ(−V T
NDVN ) = [199.8 152.3 2.465 0 0 0 · · · ]T (947)

The 0 eigenvalues have absolute numerical error on the order of 2E-13 ;
meaning, the EDM data indicates three dimensions (r = 3) are required for
reconstruction to nearly machine precision. 2

5.13.2 Isotonic reconstruction

Sometimes only comparative information about distance is known (Earth is
closer to the Moon than it is to the Sun). Suppose, for example, the EDM
D for three points is unknown:
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D = [dij] =





0 d12 d13

d12 0 d23

d13 d23 0



 ∈ S3

h (698)

but the comparative data is available:

d13 ≥ d23 ≥ d12 (948)

With the vectorization d = [d12 d13 d23]
T ∈R3, we express the comparative

distance relationship as the nonincreasing sorting

Π d =





0 1 0
0 0 1
1 0 0









d12

d13

d23



 =





d13

d23

d12



 ∈ KM+ (949)

where Π is a given permutation matrix expressing the known sorting action
on the entries of unknown EDM D , and KM+ is the monotone nonnegative
cone (§2.13.9.4.1)

KM+
∆
= {z | z1 ≥ z2 ≥ · · · ≥ zN(N−1)/2 ≥ 0} ⊆ RN(N−1)/2

+ (370)

where N(N−1)/2 = 3 for the present example. From the sorted
vectorization (949) we create the sort-index matrix

O =





0 12 32

12 0 22

32 22 0



 ∈ S3

h ∩ R3×3

+ (950)

generally defined

Oij
∆
= k2 | dij =

(

Ξ Π d
)

k
, j 6= i (951)

where Ξ is a permutation matrix (1507) completely reversing order of vector
entries.

Replacing EDM data with indices-square of a nonincreasing sorting like
this is, of course, a heuristic we invented and may be regarded as a nonlinear
introduction of much noise into the Euclidean distance matrix. For large
data sets, this heuristic makes an otherwise intense problem computationally
tractable; we see an example in relaxed problem (955).
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Figure 92: Largest ten eigenvalues of −V T
NOVN for map of USA, sorted by

nonincreasing value. In the code (§F.3.2), we normalize O by (N(N−1)/2)2.

Any process of reconstruction that leaves comparative distance
information intact is called ordinal multidimensional scaling or isotonic
reconstruction. Beyond rotation, reflection, and translation error, (§5.5)
list reconstruction by isotonic reconstruction is subject to error in absolute
scale (dilation) and distance ratio. Yet Borg & Groenen argue: [39, §2.2]
reconstruction from complete comparative distance information for a large
number of points is as highly constrained as reconstruction from an EDM;
the larger the number, the better.

5.13.2.1 Isotonic map of the USA

To test Borg & Groenen’s conjecture, suppose we make a complete sort-index
matrix O∈ SN

h ∩ RN×N
+ for the map of the USA and then substituteO in place

of EDM D in the reconstruction process of §5.12. Whereas EDM D returned
only three significant eigenvalues (947), the sort-index matrix O is generally
not an EDM (certainly not an EDM with corresponding affine dimension 3)
so returns many more. The eigenvalues, calculated with absolute numerical
error approximately 5E-7 , are plotted in Figure 92:

λ(−V T
NOVN ) = [880.1 463.9 186.1 46.20 17.12 9.625 8.257 1.701 0.7128 0.6460 · · · ]T

(952)
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The extra eigenvalues indicate that affine dimension corresponding to an
EDM nearO is likely to exceed 3. To realize the map, we must simultaneously
reduce that dimensionality and find an EDM D closest to O in some sense
(a problem explored more in §7) while maintaining the known comparative
distance relationship; e.g., given permutation matrix Π expressing the
known sorting action on the entries d of unknown D∈ SN

h , (63)

d
∆
=

1√
2

dvecD =























d12

d13

d23

d14

d24

d34...
dN−1,N























∈ RN(N−1)/2 (953)

we can make the sort-index matrix O input to the optimization problem

minimize
D

‖−V T
N (D −O)VN‖F

subject to rankV T
NDVN ≤ 3

Π d ∈ KM+

D ∈ EDMN

(954)

that finds the EDM D (corresponding to affine dimension not exceeding 3 in
isomorphic dvec EDMN∩ ΠTKM+) closest to O in the sense of Schoenberg
(728).

Analytical solution to this problem, ignoring the sort constraint
Π d ∈KM+ , is known [264]: we get the convex optimization [sic] (§7.1)

minimize
D

‖−V T
N (D −O)VN‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

(955)

Only the three largest nonnegative eigenvalues in (952) need be retained
to make list (939); the rest are discarded. The reconstruction from
EDM D found in this manner is plotted in Figure 91(e)(f) from which it
becomes obvious that inclusion of the sort constraint is necessary for isotonic
reconstruction.
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That sort constraint demands: any optimal solution D⋆ must possess the
known comparative distance relationship that produces the original ordinal
distance data O (951). Ignoring the sort constraint, apparently, violates it.
Yet even more remarkable is how much the map reconstructed using only
ordinal data still resembles the original map of the USA after suffering the
many violations produced by solving relaxed problem (955). This suggests
the simple reconstruction techniques of §5.12 are robust to a significant
amount of noise.

5.13.2.2 Isotonic solution with sort constraint

Because problems involving rank are generally difficult, we will partition
(954) into two problems we know how to solve and then alternate their
solution until convergence:

minimize
D

‖−V T
N (D −O)VN‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

(a)

minimize
σ

‖σ − Π d‖
subject to σ ∈ KM+

(b)

(956)

where the sort-index matrix O (a given constant in (a)) becomes an implicit
vectorized variable o i solving the ith instance of (956b)

o i
∆
= ΠTσ⋆ =

1√
2

dvecOi ∈ RN(N−1)/2 , i∈{1, 2, 3 . . .} (957)

As mentioned in discussion of relaxed problem (955), a closed-form
solution to problem (956a) exists. Only the first iteration of (956a) sees the
original sort-index matrix O whose entries are nonnegative whole numbers;
id est, O0 =O∈ SN

h ∩RN×N
+ (951). Subsequent iterations i take the previous

solution of (956b) as input

Oi = dvec−1(
√

2 o i ) ∈ SN (958)

real successors to the sort-index matrix O .
New problem (956b) finds the unique minimum-distance projection of

Π d on the monotone nonnegative cone KM+ . By defining

Y †T
∆
= [e1− e2 e2− e3 e3− e4 · · · em] ∈ Rm×m (371)
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where m
∆
=N(N−1)/2, we may rewrite (956b) as an equivalent quadratic

program; a convex optimization problem [46, §4] in terms of the
halfspace-description of KM+ :

minimize
σ

(σ − Π d)T (σ − Π d)

subject to Y †σ � 0
(959)

This quadratic program can be converted to a semidefinite program via
Schur-form (§3.1.7.2); we get the equivalent problem

minimize
t∈R , σ

t

subject to

[

tI σ − Π d
(σ − Π d)T 1

]

� 0

Y †σ � 0

(960)

5.13.2.3 Convergence

In §E.10 we discuss convergence of alternating projection on intersecting
convex sets in a Euclidean vector space; convergence to a point in their
intersection. Here the situation is different for two reasons:

Firstly, sets of positive semidefinite matrices having an upper bound on
rank are generally not convex. Yet in §7.1.4.0.1 we prove (956a) is equivalent
to a projection of nonincreasingly ordered eigenvalues on a subset of the
nonnegative orthant:

minimize
D

‖−V T
N (D −O)VN‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

≡
minimize

Υ
‖Υ− Λ‖F

subject to δ(Υ)∈
[

R3

+

0

]

(961)

where −V T
NDVN

∆
=UΥU T ∈ SN−1 and −V T

NOVN
∆
=QΛQT ∈ SN−1 are

ordered diagonalizations (§A.5). It so happens: optimal orthogonal U⋆

always equals Q given. Linear operator T (A) = U⋆TAU⋆, acting on square
matrix A , is a bijective isometry because the Frobenius norm is orthogonally
invariant (40). This isometric isomorphism T thus maps a nonconvex
problem to a convex one that preserves distance.
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Secondly, the second half (956b) of the alternation takes place in a
different vector space; SN

h (versus SN−1). From §5.6 we know these two
vector spaces are related by an isomorphism, SN−1 =VN (SN

h ) (827), but not
by an isometry.

We have, therefore, no guarantee from theory of alternating projection
that the alternation (956) converges to a point, in the set of all EDMs
corresponding to affine dimension not in excess of 3, belonging to
dvec EDMN∩ ΠTKM+ .

5.13.2.4 Interlude

We have not implemented the second half (959) of alternation (956) for
USA map data because memory-demands exceed the capability of our 32-bit
laptop computer.

5.13.2.4.1 Exercise. Convergence of isotonic solution by alternation.
Empirically demonstrate convergence, discussed in §5.13.2.3, on a smaller
data set. H

It would be remiss not to mention another method of solution to this
isotonic reconstruction problem: Once again we assume only comparative
distance data like (948) is available. Given known set of indices I

minimize
D

rankV DV

subject to dij ≤ dkl ≤ dmn ∀(i, j, k , l ,m, n)∈ I
D ∈ EDMN

(962)

this problem minimizes affine dimension while finding an EDM whose
entries satisfy known comparative relationships. Suitable rank heuristics
are discussed in §4.4.1 and §7.2.2 that will transform this to a convex
optimization problem.

Using contemporary computers, even with a rank heuristic in place of the
objective function, this problem formulation is more difficult to compute than
the relaxed counterpart problem (955). That is because there exist efficient
algorithms to compute a selected few eigenvalues and eigenvectors from a
very large matrix. Regardless, it is important to recognize: the optimal
solution set for this problem (962) is practically always different from the
optimal solution set for its counterpart, problem (954).
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5.14 Fifth property of Euclidean metric

We continue now with the question raised in §5.3 regarding the necessity
for at least one requirement more than the four properties of the Euclidean
metric (§5.2) to certify realizability of a bounded convex polyhedron or to
reconstruct a generating list for it from incomplete distance information.
There we saw that the four Euclidean metric properties are necessary for
D∈ EDMN in the case N= 3, but become insufficient when cardinality N
exceeds 3 (regardless of affine dimension).

5.14.1 Recapitulate

In the particular case N= 3, −V T
NDVN � 0 (867) and D∈ S3

h are necessary
and sufficient conditions for D to be an EDM. By (869), triangle inequality is
then the only Euclidean condition bounding the necessarily nonnegative dij ;
and those bounds are tight. That means the first four properties of the
Euclidean metric are necessary and sufficient conditions for D to be an EDM
in the case N= 3 ; for i, j∈{1, 2, 3}
√

dij ≥ 0 , i 6= j
√

dij = 0 , i = j
√

dij =
√

dji
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k
⇔ −V T

NDVN � 0
D ∈ S3

h

⇔ D ∈ EDM3

(963)

Yet those four properties become insufficient when N> 3.

5.14.2 Derivation of the fifth

Correspondence between the triangle inequality and the EDM was developed
in §5.8.2 where a triangle inequality (869a) was revealed within the
leading principal 2×2 submatrix of −V T

NDVN when positive semidefinite.
Our choice of the leading principal submatrix was arbitrary; actually,
a unique triangle inequality like (772) corresponds to any one of the
(N−1)!/(2!(N−1− 2)!) principal 2×2 submatrices.5.53 Assuming D∈ S4

h

and −V T
NDVN ∈ S3, then by the positive (semi)definite principal submatrices

5.53There are fewer principal 2×2 submatrices in −V T
NDVN than there are triangles made

by four or more points because there are N !/(3!(N− 3)!) triangles made by point triples.
The triangles corresponding to those submatrices all have vertex x1 . (confer §5.8.2.1)
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theorem (§A.3.1.0.4) it is sufficient to prove all dij are nonnegative, all
triangle inequalities are satisfied, and det(−V T

NDVN ) is nonnegative. When
N= 4, in other words, that nonnegative determinant becomes the fifth and
last Euclidean metric requirement for D∈EDMN . We now endeavor to
ascribe geometric meaning to it.

5.14.2.1 Nonnegative determinant

By (778) when D∈EDM4, −V T
NDVN is equal to inner product (773),

ΘTΘ =





d12

√

d12d13 cos θ213

√

d12d14 cos θ214
√

d12d13 cos θ213 d13

√

d13d14 cos θ314
√

d12d14 cos θ214

√

d13d14 cos θ314 d14



 (964)

Because Euclidean space is an inner-product space, the more concise
inner-product form of the determinant is admitted;

det(ΘTΘ) = −d12d13d14

(

cos(θ213)
2+cos(θ214)

2+cos(θ314)
2 − 2 cos θ213 cos θ214 cos θ314 − 1

)

(965)
The determinant is nonnegative if and only if

cos θ214 cos θ314 −
√

sin(θ214)2 sin(θ314)2 ≤ cos θ213 ≤ cos θ214 cos θ314 +
√

sin(θ214)2 sin(θ314)2

⇔
cos θ213 cos θ314 −

√

sin(θ213)2 sin(θ314)2 ≤ cos θ214 ≤ cos θ213 cos θ314 +
√

sin(θ213)2 sin(θ314)2

⇔
cos θ213 cos θ214 −

√

sin(θ213)2 sin(θ214)2 ≤ cos θ314 ≤ cos θ213 cos θ214 +
√

sin(θ213)2 sin(θ214)2

(966)

which simplifies, for 0 ≤ θi1ℓ , θℓ1j , θi1j ≤ π and all i 6=j 6=ℓ∈{2, 3, 4}, to

cos(θi1ℓ + θℓ1j) ≤ cos θi1j ≤ cos(θi1ℓ − θℓ1j) (967)

Analogously to triangle inequality (881), the determinant is 0 upon equality
on either side of (967) which is tight. Inequality (967) can be equivalently
written linearly as a “triangle inequality”, but between relative angles
[301, §1.4];

|θi1ℓ − θℓ1j| ≤ θi1j ≤ θi1ℓ + θℓ1j

θi1ℓ + θℓ1j + θi1j ≤ 2π

0 ≤ θi1ℓ , θℓ1j , θi1j ≤ π

(968)
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θ213

-θ214

-θ314

π

Figure 93: The relative-angle inequality tetrahedron (969) bounding EDM4

is regular; drawn in entirety. Each angle θ (770) must belong to this solid
to be realizable.

Generalizing this:

5.14.2.1.1 Fifth property of Euclidean metric - restatement.
Relative-angle inequality. (confer §5.3.1.0.1) [36] [37, p.17, p.107] [171, §3.1]
Augmenting the four fundamental Euclidean metric properties in Rn, for all
i, j, ℓ 6= k∈{1 . . . N} , i<j<ℓ , and for N ≥ 4 distinct points {xk} , the
inequalities

|θikℓ − θℓkj| ≤ θikj ≤ θikℓ + θℓkj (a)

θikℓ + θℓkj + θikj ≤ 2π (b)

0 ≤ θikℓ , θℓkj , θikj ≤ π (c)

(969)

where θikj = θjki is the angle between vectors at vertex xk (as defined
in (770) and illustrated in Figure 76), must be satisfied at each point xk

regardless of affine dimension. ⋄
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Because point labelling is arbitrary, this fifth Euclidean metric
requirement must apply to each of the N points as though each were in turn
labelled x1 ; hence the new index k in (969). Just as the triangle inequality
is the ultimate test for realizability of only three points, the relative-angle
inequality is the ultimate test for only four. For four distinct points, the
triangle inequality remains a necessary although penultimate test; (§5.4.3)

Four Euclidean metric properties (§5.2).
Angle θ inequality (703) or (969).

⇔ −V T
NDVN � 0

D ∈ S4

h

⇔ D = D(Θ) ∈ EDM4

(970)

The relative-angle inequality, for this case, is illustrated in Figure 93.

5.14.2.2 Beyond the fifth metric property

When cardinality N exceeds 4, the first four properties of the Euclidean
metric and the relative-angle inequality together become insufficient
conditions for realizability. In other words, the four Euclidean metric
properties and relative-angle inequality remain necessary but become a
sufficient test only for positive semidefiniteness of all the principal 3× 3
submatrices [sic] in −V T

NDVN . Relative-angle inequality can be considered
the ultimate test only for realizability at each vertex xk of each and every
purported tetrahedron constituting a hyperdimensional body.

When N= 5 in particular, relative-angle inequality becomes the
penultimate Euclidean metric requirement while nonnegativity of then
unwieldy det(ΘTΘ) corresponds (by the positive (semi)definite principal
submatrices theorem in §A.3.1.0.4) to the sixth and last Euclidean metric
requirement. Together these six tests become necessary and sufficient, and
so on.

Yet for all values of N , only assuming nonnegative dij , relative-angle
matrix inequality in (883) is necessary and sufficient to certify realizability;
(§5.4.3.1)

Euclidean metric property 1 (§5.2).
Angle matrix inequality Ω � 0 (779).

⇔ −V T
NDVN � 0

D ∈ SN
h

⇔ D = D(Ω , d) ∈ EDMN

(971)

Like matrix criteria (704), (728), and (883), the relative-angle matrix
inequality and nonnegativity property subsume all the Euclidean metric
properties and further requirements.
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5.14.3 Path not followed

As a means to test for realizability of four or more points, an
intuitively appealing way to augment the four Euclidean metric properties
is to recognize generalizations of the triangle inequality: In the
case N= 4, the three-dimensional analogue to triangle & distance is
tetrahedron & facet-area, while in the case N= 5 the four-dimensional
analogue is polychoron & facet-volume, ad infinitum. For N points, N+ 1
metric properties are required.

5.14.3.1 N = 4

Each of the four facets of a general tetrahedron is a triangle and its
relative interior. Suppose we identify each facet of the tetrahedron by its
area-squared: c1 , c2 , c3 , c4 . Then analogous to metric property 4, we may
write a tight5.54 area inequality for the facets

√
ci ≤

√
cj +

√
ck +

√
cℓ , i 6=j 6=k 6=ℓ∈{1, 2, 3, 4} (972)

which is a generalized “triangle” inequality [166, §1.1] that follows from

√
ci =

√
cj cosϕij +

√
ck cosϕik +

√
cℓ cosϕiℓ (973)

[177] [282, Law of Cosines ] where ϕij is the dihedral angle at the common
edge between triangular facets i and j .

If D is the EDM corresponding to the whole tetrahedron, then
area-squared of the ith triangular facet has a convenient formula in terms
of Di∈EDMN−1 the EDM corresponding to that particular facet: From the
Cayley-Menger determinant5.55 for simplices, [282] [87] [112, §4] [60, §3.3]
the ith facet area-squared for i∈{1 . . . N} is (§A.4.1)

5.54The upper bound is met when all angles in (973) are simultaneously 0 ; that occurs,
for example, if one point is relatively interior to the convex hull of the three remaining.
5.55 whose foremost characteristic is: the determinant vanishes if and only if affine

dimension does not equal penultimate cardinality; id est, det

[

0 1T

1 −D

]

= 0 ⇔ r <N−1

where D is any EDM (§5.7.3.0.1). Otherwise, the determinant is negative.
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ci =
−1

2N−2(N−2)!2
det

[

0 1T

1 −Di

]

(974)

=
(−1)N

2N−2(N−2)!2
detDi

(

1TD−1
i 1
)

(975)

=
(−1)N

2N−2(N−2)!2
1T cof(Di)

T1 (976)

where Di is the ith principal N−1×N−1 submatrix5.56 of D∈EDMN ,
and cof(Di) is the N−1×N−1 matrix of cofactors [249, §4] corresponding
to Di . The number of principal 3× 3 submatrices in D is, of course, equal
to the number of triangular facets in the tetrahedron; four (N !/(3!(N−3)!))
when N= 4.

5.14.3.1.1 Exercise. Sufficiency conditions for an EDM of four points.
Triangle inequality (property 4) and area inequality (972) are conditions
necessary for D to be an EDM. Prove their sufficiency in conjunction with
the remaining three Euclidean metric properties. H

5.14.3.2 N = 5

Moving to the next level, we might encounter a Euclidean body called
polychoron, a bounded polyhedron in four dimensions.5.57 The polychoron
has five (N !/(4!(N−4)!)) facets, each of them a general tetrahedron whose
volume-squared ci is calculated using the same formula; (974) where
D is the EDM corresponding to the polychoron, and Di is the EDM
corresponding to the ith facet (the principal 4× 4 submatrix of D∈EDMN

corresponding to the ith tetrahedron). The analogue to triangle & distance
is now polychoron & facet-volume. We could then write another generalized
“triangle” inequality like (972) but in terms of facet volume; [287, §IV]

√
ci ≤

√
cj +

√
ck +

√
cℓ +

√
cm , i 6=j 6=k 6=ℓ 6=m∈{1 . . . 5} (977)

5.56Every principal submatrix of an EDM remains an EDM. [171, §4.1]
5.57The simplest polychoron is called a pentatope [282]; a regular simplex hence convex.
(A pentahedron is a three-dimensional body having five vertices.)
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.

Figure 94: Length of one-dimensional face a equals height h=a=1 of this
nonsimplicial pyramid in R3 with square base inscribed in a circle of radius R
centered at the origin. [282, Pyramid ]

5.14.3.2.1 Exercise. Sufficiency for an EDM of five points.
For N= 5, triangle (distance) inequality (§5.2), area inequality (972), and
volume inequality (977) are conditions necessary for D to be an EDM.
Prove their sufficiency. H

5.14.3.3 Volume of simplices

There is no known formula for the volume of a bounded general convex
polyhedron expressed either by halfspace or vertex-description. [299, §2.1]
[208, p.173] [168] [169] [123] [124] Volume is a concept germane to R3;
in higher dimensions it is called content. Applying the EDM assertion
(§5.9.1.0.3) and a result given in [46, §8.3.1], a general nonempty simplex
(§2.12.3) in RN−1 corresponding to an EDM D∈ SN

h has content

√
c = content(S)

√

det(−V T
NDVN ) (978)

where the content-squared of the unit simplex S⊂RN−1 is proportional to
its Cayley-Menger determinant;

content(S)2 =
−1

2N−1(N−1)!2
det

[

0 1T

1 −D([0 e1 e2 · · · eN−1 ])

]

(979)

where ei∈RN−1 and the EDM operator used is D(X) (709).
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5.14.3.3.1 Example. Pyramid.
A formula for volume of a pyramid is known;5.58 it is 1

3
the product of its

base area with its height. [164] The pyramid in Figure 94 has volume 1
3
.

To find its volume using EDMs, we must first decompose the pyramid into
simplicial parts. Slicing it in half along the plane containing the line segments
corresponding to radius R and height h we find the vertices of one simplex,

X =





1/2 1/2 −1/2 0
1/2 −1/2 −1/2 0
0 0 0 1



∈ Rn×N (980)

where N= n+ 1 for any nonempty simplex in Rn. The volume of
this simplex is half that of the entire pyramid; id est,

√
c = 1

6
found by

evaluating (978). 2

With that, we conclude digression of path.

5.14.4 Affine dimension reduction in three dimensions

(confer §5.8.4) The determinant of any M×M matrix is equal to the product
of its M eigenvalues. [249, §5.1] When N= 4 and det(ΘTΘ) is 0, that
means one or more eigenvalues of ΘTΘ∈R3×3 are 0. The determinant will
go to 0 whenever equality is attained on either side of (703), (969a), or (969b),
meaning that a tetrahedron has collapsed to a lower affine dimension; id est,
r = rank ΘTΘ = rank Θ is reduced below N−1 exactly by the number of
0 eigenvalues (§5.7.1.1).

In solving completion problems of any size N where one or more entries
of an EDM are unknown, therefore, dimension r of the affine hull required
to contain the unknown points is potentially reduced by selecting distances
to attain equality in (703) or (969a) or (969b).

5.58Pyramid volume is independent of the paramount vertex position as long as its height
remains constant.
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5.14.4.1 Exemplum redux

We now apply the fifth Euclidean metric property to an earlier problem:

5.14.4.1.1 Example. Small completion problem, IV. (confer §5.9.3.0.1)
Returning again to Example 5.3.0.0.2 that pertains to Figure 75 where
N=4, distance-square d14 is ascertainable from the fifth Euclidean metric
property. Because all distances in (701) are known except

√
d14 , then

cos θ123 =0 and θ324 =0 result from identity (770). Applying (703),

cos(θ123 + θ324) ≤ cos θ124 ≤ cos(θ123 − θ324)
0 ≤ cos θ124 ≤ 0

(981)

It follows again from (770) that d14 can only be 2. As explained in this
subsection, affine dimension r cannot exceed N−2 because equality is
attained in (981). 2
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Chapter 6

EDM cone

For N > 3, the cone of EDMs is no longer a circular cone and
the geometry becomes complicated. . .

−Hayden, Wells, Liu, & Tarazaga (1991) [134, §3]

In the subspace of symmetric matrices SN , we know the convex cone of
Euclidean distance matrices EDMN (the EDM cone) does not intersect the
positive semidefinite cone SN

+ (PSD cone) except at the origin, their only
vertex; there can be no positive nor negative semidefinite EDM. (906) [171]

EDMN ∩ SN
+ = 0 (982)

Even so, the two convex cones can be related. In §6.8.1 we prove the new
equality

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

(1074)

© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
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a resemblance to EDM definition (709) where

SN
h

∆
=
{

A ∈ SN | δ(A) = 0
}

(56)

is the symmetric hollow subspace (§2.2.3) and where

SN⊥
c = {u1T + 1uT | u∈RN} (1768)

is the orthogonal complement of the geometric center subspace (§E.7.2.0.2)

SN
c

∆
= {Y ∈ SN | Y 1 = 0} (1766)

6.0.1 gravity

Equality (1074) is equally important as the known isomorphisms (816) (817)
(828) (829) relating the EDM cone EDMN to an N(N−1)/2-dimensional
face of SN

+ (§5.6.1.1), or to SN−1
+ (§5.6.2.1).6.1 Those isomorphisms have

never led to this equality (1074) relating the whole cones EDMN and SN
+ .

Equality (1074) is not obvious from the various EDM matrix definitions
such as (709) or (1000) because inclusion must be proved algebraically in
order to establish equality; EDMN ⊇ SN

h ∩ (SN⊥
c − SN

+ ). We will instead
prove (1074) using purely geometric methods.

6.0.2 highlight

In §6.8.1.7 we show: the Schoenberg criterion for discriminating Euclidean
distance matrices

D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(728)

is a discretized membership relation (§2.13.4) between the EDM cone and its
ordinary dual.

6.1Because both positive semidefinite cones are frequently in play, dimension is notated.
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6.1 Defining EDM cone

We invoke a popular matrix criterion to illustrate correspondence between the
EDM and PSD cones belonging to the ambient space of symmetric matrices:

D ∈ EDMN ⇔
{

−V DV ∈ SN
+

D ∈ SN
h

(733)

where V ∈ SN is the geometric centering matrix (§B.4). The set of all EDMs
of dimension N×N forms a closed convex cone EDMN because any pair of
EDMs satisfies the definition of a convex cone (144); videlicet, for each and
every ζ1 , ζ2 ≥ 0 (§A.3.1.0.2)

ζ1 V D1V + ζ2 V D2V � 0
ζ1D1 + ζ2D2 ∈ SN

h

⇐ V D1V � 0 , V D2V � 0
D1 ∈ SN

h , D2 ∈ SN
h

(983)

and convex cones are invariant to inverse affine transformation [230, p.22].

6.1.0.0.1 Definition. Cone of Euclidean distance matrices.
In the subspace of symmetric matrices, the set of all Euclidean distance
matrices forms a unique immutable pointed closed convex cone called the
EDM cone: for N> 0

EDMN ∆
=
{

D ∈ SN
h | −V DV ∈ SN

+

}

=
⋂

z∈N (1T )

{

D ∈ SN | 〈zzT ,−D〉≥ 0 , δ(D)=0
} (984)

The EDM cone in isomorphic RN(N+1)/2 [sic] is the intersection of an infinite
number (when N>2) of halfspaces about the origin and a finite number
of hyperplanes through the origin in vectorized variable D = [dij] . Hence
EDMN has empty interior with respect to SN because it is confined to the
symmetric hollow subspace SN

h . The EDM cone relative interior comprises

rel int EDMN =
⋂

z∈N (1T )

{

D ∈ SN | 〈zzT ,−D〉> 0 , δ(D)=0
}

=
{

D ∈ EDMN | rank(V DV ) = N−1
}

(985)

while its relative boundary comprises

rel ∂EDMN =
{

D ∈ EDMN | 〈zzT ,−D〉 = 0 for some z∈N (1T )
}

=
{

D ∈ EDMN | rank(V DV ) < N−1
}

(986)

△
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(a) (d)

(c)(b)

d12d13

d23

√
d12

√
d13

√
d23

d12d13

d23

dvec rel ∂EDM3

Figure 95: Relative boundary (tiled) of EDM cone EDM3 drawn truncated
in isometrically isomorphic subspace R3. (a) EDM cone drawn in usual
distance-square coordinates dij . View is from interior toward origin. Unlike
positive semidefinite cone, EDM cone is not self-dual, neither is it proper
in ambient symmetric subspace (dual EDM cone for this example belongs
to isomorphic R6). (b) Drawn in its natural coordinates

√

dij (absolute
distance), cone remains convex (confer §5.10); intersection of three halfspaces
(870) whose partial boundaries each contain origin. Cone geometry becomes
“complicated” (nonpolyhedral) in higher dimension. [134, §3] (c) Two
coordinate systems artificially superimposed. Coordinate transformation
from dij to

√

dij appears a topological contraction. (d) Sitting on
its vertex 0, pointed EDM3 is a circular cone having axis of revolution
dvec(−E)= dvec(11T − I ) (902) (63). Rounded vertex is plot artifact.
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This cone is more easily visualized in the isomorphic vector subspace
RN(N−1)/2 corresponding to SN

h :

In the case N= 1 point, the EDM cone is the origin in R0.

In the case N= 2, the EDM cone is the nonnegative real line in R ; a
halfline in a subspace of the realization in Figure 103.

The EDM cone in the case N= 3 is a circular cone in R3 illustrated in
Figure 95(a)(d); rather, the set of all matrices

D =





0 d12 d13

d12 0 d23

d13 d23 0



 ∈ EDM3 (987)

makes a circular cone in this dimension. In this case, the first four Euclidean
metric properties are necessary and sufficient tests to certify realizability
of triangles; (963). Thus triangle inequality property 4 describes three
halfspaces (870) whose intersection makes a polyhedral cone in R3 of
realizable

√

dij (absolute distance); an isomorphic subspace representation
of the set of all EDMs D in the natural coordinates

◦
√
D

∆
=





0
√
d12

√
d13√

d12 0
√
d23√

d13

√
d23 0



 (988)

illustrated in Figure 95(b).

6.2 Polyhedral bounds

The convex cone of EDMs is nonpolyhedral in dij for N> 2 ; e.g.,
Figure 95(a). Still we found necessary and sufficient bounding polyhedral
relations consistent with EDM cones for cardinality N= 1, 2, 3, 4:

N= 3. Transforming distance-square coordinates dij by taking their positive
square root provides polyhedral cone in Figure 95(b); polyhedral
because an intersection of three halfspaces in natural coordinates
√

dij is provided by triangle inequalities (870). This polyhedral
cone implicitly encompasses necessary and sufficient metric properties:
nonnegativity, self-distance, symmetry, and triangle inequality.
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∂H

dvec rel ∂EDM3

0

(b) (c)

(a)

Figure 96: (a) In isometrically isomorphic subspace R3, intersection of
EDM3 with hyperplane ∂H representing one fixed symmetric entry d23 =κ
(both drawn truncated, rounded vertex is artifact of plot). EDMs in this
dimension corresponding to affine dimension 1 comprise relative boundary of
EDM cone (§6.6). Since intersection illustrated includes a nontrivial subset
of cone’s relative boundary, then it is apparent there exist infinitely many
EDM completions corresponding to affine dimension 1. In this dimension it is
impossible to represent a unique nonzero completion corresponding to affine
dimension 1, for example, using a single hyperplane because any hyperplane
supporting relative boundary at a particular point Γ contains an entire ray
{ζΓ | ζ≥0} belonging to rel ∂EDM3 by Lemma 2.8.0.0.1. (b) d13 =κ .
(c) d12 =κ .
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N= 4. Relative-angle inequality (969) together with four Euclidean metric
properties are necessary and sufficient tests for realizability of
tetrahedra. (970) Albeit relative angles θikj (770) are nonlinear
functions of the dij , relative-angle inequality provides a regular
tetrahedron in R3 [sic] (Figure 93) bounding angles θikj at vertex xk

consistently with EDM4 .6.2

Yet were we to employ the procedure outlined in §5.14.3 for making
generalized triangle inequalities, then we would find all the necessary and
sufficient dij -transformations for generating bounding polyhedra consistent
with EDMs of any higher dimension (N> 3).

6.3
√

EDM cone is not convex

For some applications, like the molecular conformation problem (Figure 3)
or multidimensional scaling, [68] [267] absolute distance

√

dij is the preferred
variable. Taking square root of the entries in all EDMs D of dimension N ,
we get another cone but not a convex cone when N> 3 (Figure 95(b)):
[61, §4.5.2]

√

EDMN ∆
= { ◦
√
D | D∈ EDMN} (989)

where ◦
√
D is defined as in (988). It is a cone simply because any cone

is completely constituted by rays emanating from the origin: (§2.7) Any
given ray {ζΓ∈RN(N−1)/2 | ζ≥0} remains a ray under entrywise square root:

{
√

ζΓ∈RN(N−1)/2 | ζ≥0}. Because of how
√

EDMN is defined, it is obvious
that (confer §5.10)

D∈ EDMN ⇔ ◦
√
D∈

√

EDMN (990)

Were
√

EDMN convex, then given ◦
√
D1 ,

◦
√
D2 ∈

√

EDMN we would

expect their conic combination ◦
√
D1 + ◦

√
D2 to be a member of

√

EDMN .
That is easily proven false by counter-example via (990), for then
( ◦
√
D1 + ◦

√
D2 )◦ ( ◦

√
D1 + ◦

√
D2 ) would need to be a member of EDMN .

Notwithstanding, in §7.2.1 we learn how to transform a nonconvex
proximity problem in the natural coordinates

√

dij to a convex optimization.

6.2Still, property-4 triangle inequalities (870) corresponding to each principal 3×3
submatrix of −V T

NDVN demand that the corresponding
√

dij belong to a polyhedral
cone like that in Figure 95(b).
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(a)

(b)

2 nearest neighbors

3 nearest neighbors

Figure 97: Neighborhood graph (dashed) with dimensionless EDM subgraph
completion (solid) superimposed (but not covering dashed). Local view
of a few dense samples # from relative interior of some arbitrary
Euclidean manifold whose affine dimension appears two-dimensional in this
neighborhood. All line segments measure absolute distance. Dashed line
segments help visually locate nearest neighbors; suggesting, best number of
nearest neighbors can be greater than value of embedding dimension after
topological transformation. (confer [156, §2]) Solid line segments represent
completion of EDM subgraph from available distance data for an arbitrarily
chosen sample and its nearest neighbors. Each distance from EDM subgraph
becomes distance-square in corresponding EDM submatrix.
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6.4 a geometry of completion

Intriguing is the question of whether the list in X∈ Rn×N (65) may
be reconstructed given an incomplete noiseless EDM, and under what
circumstances reconstruction is unique. [1] [2] [3] [4] [6] [15] [153] [159] [170]
[171] [172]

If one or more entries of a particular EDM are fixed, then geometric
interpretation of the feasible set of completions is the intersection of the EDM
cone EDMN in isomorphic subspace RN(N−1)/2 with as many hyperplanes
as there are fixed symmetric entries. (Depicted in Figure 96(a) is an
intersection of the EDM cone EDM3 with a single hyperplane representing
the set of all EDMs having one fixed symmetric entry.) Assuming a
nonempty intersection, then the number of completions is generally infinite,
and those corresponding to particular affine dimension r<N− 1 belong to
some generally nonconvex subset of that intersection (confer §2.9.2.6.2) that
can be as small as a point. Indeed, Trosset remarks: [266, §1] It is not known
how to proceed if one wishes to restrict the dimension of the Euclidean space
in which the configuration of points may be constructed.

6.4.0.0.1 Example. Diffusing, uncompacting, unfurling, unfolding. [281]
A process minimizing affine dimension (§2.1.5) of certain kinds of Euclidean
manifold by topological transformation can be posed as a completion
problem (confer §E.10.2.1.2). Weinberger & Saul, who originated the
technique, specify an applicable manifold in three dimensions by analogy to
an ordinary sheet of paper (confer §2.1.6); imagine, we find it deformed from
flatness in some way introducing neither holes, tears, or self-intersections.
[281, §2.2] The physical process is intuitively described as unfurling,
unfolding, or unraveling. In particular instances, the process is a sort of
flattening by stretching until taut (but not by crushing); e.g., unfurling a
three-dimensional Euclidean body resembling a billowy national flag reduces
that manifold’s affine dimension to r=2.

Data input to the proposed process originates from distances between
neighboring relatively dense samples of a given manifold. Figure 97 realizes
a densely sampled neighborhood; called, neighborhood graph. Essentially,
the algorithmic process preserves local isometry between nearest neighbors
allowing distant neighbors to excurse expansively by “maximizing variance”
(Figure 5). The common number of nearest neighbors to each sample is
a data-dependent algorithmic parameter whose minimum value connects
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the graph. The dimensionless EDM subgraph between each sample and
its nearest neighbors is completed from available data and included as
input; one such EDM subgraph completion is drawn superimposed upon the
neighborhood graph in Figure 97 .6.3 The consequent dimensionless EDM
graph comprising all the subgraphs is incomplete, in general, because the
neighbor number is relatively small; incomplete even though it is a superset
of the neighborhood graph. Remaining distances (those not graphed at all)
are squared then made variables within the algorithm; it is this variability
that admits unfurling.

To demonstrate, consider untying the trefoil knot drawn in Figure 98(a).
A corresponding Euclidean distance matrix D= [dij , i, j=1 . . . N ]
employing only 2 nearest neighbors is banded having the incomplete form

D =





































0 ď12 ď13 ? · · · ? ď1,N−1 ď1N

ď12 0 ď23 ď24
. . . ? ? ď2N

ď13 ď23 0 ď34
. . . ? ? ?

? ď24 ď34 0
. . . . . . ? ?

...
. . . . . . . . . . . . . . . . . . ?

? ? ?
. . . . . . 0 ďN−2,N−1 ďN−2,N

ď1,N−1 ? ? ?
. . . ďN−2,N−1 0 ďN−1,N

ď1N ď2N ? ? ? ďN−2,N ďN−1,N 0





































(991)

where ďij denotes a given fixed distance-square. The unfurling algorithm
can be expressed as an optimization problem; constrained distance-square
maximization:

maximize
D

〈−V , D〉
subject to 〈D , eie

T
j + eje

T
i 〉12 = ďij ∀(i, j)∈ I

rank(V DV ) = 2

D ∈ EDMN

(992)

6.3Local reconstruction of point position from the EDM submatrix corresponding to a
complete dimensionless EDM subgraph is unique to within an isometry (§5.6, §5.12).



6.4. A GEOMETRY OF COMPLETION 399

(a)

(b)

Figure 98: (a) Trefoil knot in R3 from Weinberger & Saul [281].
(b) Topological transformation algorithm employing 4 nearest neighbors and
N= 539 samples reduces affine dimension of knot to r=2. Choosing instead
2 nearest neighbors would make this embedding more circular.
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where ei∈RN is the ith member of the standard basis, where set I indexes
the given distance-square data like that in (991), where V ∈RN×N is the
geometric centering matrix (§B.4.1), and where

〈−V , D〉 = tr(−V DV ) = 2 trG =
1

N

∑

i,j

dij (734)

where G is the Gram matrix producing D assuming G1 = 0.

If we ignore the (rank) constraint on affine dimension, then problem (992)
becomes convex, a corresponding solution D⋆ can be found, and a nearest
rank-2 solution can be found by ordered eigen decomposition of −V D⋆V

followed by spectral projection (§7.1.3) on

[

R2

0

]

⊂ RN . This two-step

process is necessarily suboptimal. Yet because the decomposition for the
trefoil knot reveals only two dominant eigenvalues, the spectral projection
is nearly benign. Such a reconstruction of point position (§5.12) utilizing
4 nearest neighbors is drawn in Figure 98(b); a low-dimensional embedding
of the trefoil knot.

This problem (992) can, of course, be written equivalently in terms of
Gram matrix G , facilitated by (740); videlicet, for Φij as in (707)

maximize
G∈SN

c

〈I , G〉
subject to 〈G , Φij〉 = ďij ∀(i, j)∈ I

rankG = 2

G � 0

(993)

The advantage to converting EDM to Gram is: Gram matrix G is a bridge
between point list X and EDM D ; constraints on any or all of these
three variables may now be introduced. (Example 5.4.2.2.4) Confining G
to the geometric center subspace suffers no loss of generality and serves no
theoretical purpose; numerically, this implicit constraint G1 = 0 keeps G
independent of its translation-invariant subspace SN⊥

c (§5.5.1.1, Figure 105)
so as not to become unbounded. 2
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Figure 99: Trefoil ribbon; courtesy, Kilian Weinberger. Same topological
transformation algorithm with 5 nearest neighbors and N= 1617 samples.
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6.5 EDM definition in 11T

Any EDM D corresponding to affine dimension r has representation

D(VX )
∆
= δ(VXV

T
X )1T + 1δ(VXV

T
X )T − 2VXV

T
X ∈ EDMN (994)

where R(VX ∈RN×r)⊆ N (1T ) = 1⊥,

V T
X VX = δ2(V T

X VX ) and VX is full-rank with orthogonal columns. (995)

Equation (994) is simply the standard EDM definition (709) with a centered
list X as in (791); Gram matrix XTX has been replaced with the
subcompact singular value decomposition (§A.6.2)6.4

VXV
T
X ≡ V TXTXV ∈ SN

c ∩ SN
+ (996)

This means: inner product V T
X VX is an r×r diagonal matrix Σ of nonzero

singular values.
Vector δ(VXV

T
X ) may me decomposed into complementary parts by

projecting it on orthogonal subspaces 1⊥ and R(1) : namely,

P1⊥

(

δ(VXV
T
X )
)

= V δ(VXV
T
X ) (997)

P1

(

δ(VXV
T
X )
)

=
1

N
11T δ(VXV

T
X ) (998)

Of course

δ(VXV
T
X ) = V δ(VXV

T
X ) +

1

N
11T δ(VXV

T
X ) (999)

by (732). Substituting this into EDM definition (994), we get the
Hayden, Wells, Liu, & Tarazaga EDM formula [134, §2]

D(VX , y)
∆
= y1T + 1yT +

λ

N
11T − 2VXV

T
X ∈ EDMN (1000)

where

λ
∆
= 2‖VX‖2F = 1T δ(VXV

T
X )2 and y

∆
= δ(VXV

T
X )− λ

2N
1 = V δ(VXV

T
X )

(1001)

6.4Subcompact SVD: VXV
T
X

∆
= Q
√

Σ
√

ΣQT ≡ V TXTXV . So V T
X is not necessarily XV

(§5.5.1.0.1), although affine dimension r = rank(V T
X ) = rank(XV ). (841)
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and y=0 if and only if 1 is an eigenvector of EDM D . Scalar λ becomes
an eigenvalue when corresponding eigenvector 1 exists.6.5

Then the particular dyad sum from (1000)

y1T + 1yT +
λ

N
11T ∈ SN⊥

c (1002)

must belong to the orthogonal complement of the geometric center subspace
(p.612), whereas VXV

T
X ∈ SN

c ∩ SN
+ (996) belongs to the positive semidefinite

cone in the geometric center subspace.

Proof. We validate eigenvector 1 and eigenvalue λ .
(⇒) Suppose 1 is an eigenvector of EDM D . Then because

V T
X 1 = 0 (1003)

it follows

D1 = δ(VXV
T
X )1T1 + 1δ(VXV

T
X )T1 = N δ(VXV

T
X ) + ‖VX‖2F1

⇒ δ(VXV
T
X ) ∝ 1

(1004)

For some κ∈R+

δ(VXV
T
X )T1 = Nκ = tr(V T

X VX ) = ‖VX‖2F ⇒ δ(VXV
T
X ) =

1

N
‖VX‖2F1 (1005)

so y=0.

(⇐) Now suppose δ(VXV
T
X )=

λ

2N
1 ; id est, y=0. Then

D =
λ

N
11T − 2VXV

T
X ∈ EDMN (1006)

1 is an eigenvector with corresponding eigenvalue λ . �

6.5.1 Range of EDM D

From §B.1.1 pertaining to linear independence of dyad sums: If the transpose
halves of all the dyads in the sum (994)6.6 make a linearly independent set,

6.5 e.g., when X= I in EDM definition (709).
6.6Identifying columns VX

∆
= [ v1 · · · vr ] , then VXV

T
X =

∑

i

viv
T
i is also a sum of dyads.
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VX

N (1T )

1

δ(VXV
T
X )

Figure 100: Example of VX selection to make an EDM corresponding to
cardinality N= 3 and affine dimension r = 1 ; VX is a vector in nullspace
N (1T )⊂ R3. Nullspace of 1T is hyperplane in R3 (drawn truncated) having
normal 1. Vector δ(VXV

T
X ) may or may not be in plane spanned by {1 , VX} ,

but belongs to nonnegative orthant which is strictly supported by N (1T ).



6.5. EDM DEFINITION IN 11T 405

then the nontranspose halves constitute a basis for the range of EDM D .
Saying this mathematically: For D∈EDMN

R(D)=R([ δ(VXV
T
X ) 1 VX ]) ⇐ rank([ δ(VXV

T
X ) 1 VX ])= 2 + r

R(D)=R([1 VX ]) ⇐ otherwise (1007)

To prove this, we need that condition under which the rank equality is
satisfied: We know R(VX )⊥1, but what is the relative geometric orientation
of δ(VXV

T
X ) ? δ(VXV

T
X )� 0 because VXV

T
X � 0, and δ(VXV

T
X )∝1 remains

possible (1004); this means δ(VXV
T
X ) /∈ N (1T ) simply because it has no

negative entries. (Figure 100) If the projection of δ(VXV
T
X ) on N (1T ) does

not belong to R(VX ), then that is a necessary and sufficient condition for
linear independence (l.i.) of δ(VXV

T
X ) with respect to R([1 VX ]) ; id est,

V δ(VXV
T
X ) 6= VX a for any a∈Rr

(I − 1
N
11T )δ(VXV

T
X ) 6= VX a

δ(VXV
T
X )− 1

N
‖VX‖2F1 6= VX a

δ(VXV
T
X )− λ

2N
1 = y 6= VX a ⇔ {1 , δ(VXV

T
X ) , VX} is l.i.

(1008)

On the other hand when this condition is violated (when (1001) y=VX ap

for some particular a∈Rr), then from (1000) we have

R
(

D = y1T + 1yT + λ
N
11T − 2VXV

T
X
)

= R
(

(VX ap + λ
N
1)1T + (1aT

p − 2VX )V T
X
)

= R([VX ap + λ
N
1 1aT

p − 2VX ])

= R([1 VX ]) (1009)

An example of such a violation is (1006) where, in particular, ap = 0. �

Then a statement parallel to (1007) is, for D∈EDMN (Theorem 5.7.3.0.1)

rank(D) = r + 2 ⇔ y /∈R(VX )
(

⇔ 1TD†1 = 0
)

rank(D) = r + 1 ⇔ y∈R(VX )
(

⇔ 1TD†1 6= 0
) (1010)
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-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

VX ∈R3×1
տ

(a)

(b)

dvecD(VX ) ⊂ dvec rel ∂EDM3
←−

Figure 101: (a) Vector VX from Figure 100 spirals in N (1T )⊂R3

decaying toward origin. (Spiral is two-dimensional in vector space R3.)
(b) Corresponding trajectory D(VX ) on EDM cone relative boundary creates
a vortex also decaying toward origin. There are two complete orbits on EDM
cone boundary about axis of revolution for every single revolution of VX
about origin. (Vortex is three-dimensional in isometrically isomorphic R3.)
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6.5.2 Boundary constituents of EDM cone

Expression (994) has utility in forming the set of all EDMs corresponding to
affine dimension r :

{

D∈EDMN | rank(V DV )= r
}

=
{

D(VX ) | VX ∈RN×r, rankVX = r , V T
X VX = δ2(V T

X VX ) , R(VX )⊆ N (1T )
}

(1011)

whereas {D∈EDMN | rank(V DV )≤ r} is the closure of this same set;

{

D∈EDMN | rank(V DV )≤ r
}

=
{

D∈EDMN | rank(V DV )= r
}

(1012)

For example,

rel ∂EDMN =
{

D∈EDMN | rank(V DV )<N−1
}

=
N−2
⋃

r=0

{

D∈EDMN | rank(V DV )= r
} (1013)

None of these are necessarily convex sets, although

EDMN =
N−1
⋃

r=0

{

D∈EDMN | rank(V DV )= r
}

=
{

D∈EDMN | rank(V DV )=N−1
}

rel int EDMN =
{

D∈EDMN | rank(V DV )=N−1
}

(1014)

are pointed convex cones.

When cardinality N = 3 and affine dimension r= 2, for example, the
relative interior rel int EDM3 is realized via (1011). (§6.6)

When N = 3 and r= 1, the relative boundary of the EDM cone
dvec rel ∂EDM3 is realized in isomorphic R3 as in Figure 95(d). This figure
could be constructed via (1012) by spiraling vector VX tightly about the
origin in N (1T ) ; as can be imagined with aid of Figure 100. Vectors close
to the origin in N (1T ) are correspondingly close to the origin in EDMN .
As vector VX orbits the origin in N (1T ) , the corresponding EDM orbits
the axis of revolution while remaining on the boundary of the circular cone
dvec rel ∂EDM3. (Figure 101)
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6.5.3 Faces of EDM cone

6.5.3.0.1 Exercise. Isomorphic faces.
Prove that in high cardinality N , any set of EDMs made via (1011) or (1012)
with particular affine dimension r is isomorphic with any set admitting the
same affine dimension but made in lower cardinality. H

6.5.3.1 Extreme direction of EDM cone

In particular, extreme directions (§2.8.1) of EDMN correspond to affine
dimension r= 1 and are simply represented: for any particular cardinality
N≥ 2 (§2.8.2) and each and every nonzero vector z in N (1T )

Γ
∆
= (z ◦ z)1T + 1(z ◦ z)T − 2zzT ∈ EDMN

= δ(zzT )1T + 1δ(zzT )T − 2zzT
(1015)

is an extreme direction corresponding to a one-dimensional face of the EDM
cone EDMN that is a ray in isomorphic subspace RN(N−1)/2.

Proving this would exercise the fundamental definition (155) of extreme
direction. Here is a sketch: Any EDM may be represented

D(VX )
∆
= δ(VXV

T
X )1T + 1δ(VXV

T
X )T − 2VXV

T
X ∈ EDMN (994)

where matrix VX (995) has orthogonal columns. For the same reason (1272)
that zzT is an extreme direction of the positive semidefinite cone (§2.9.2.4)
for any particular nonzero vector z , there is no conic combination of distinct
EDMs (each conically independent of Γ) equal to Γ . �

6.5.3.1.1 Example. Biorthogonal expansion of an EDM.
(confer §2.13.7.1.1) When matrix D belongs to the EDM cone, nonnegative
coordinates for biorthogonal expansion are the eigenvalues λ∈RN of
−V DV 1

2
: For any D∈ SN

h it holds
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D = δ
(

−V DV 1
2

)

1T + 1δ
(

−V DV 1
2

)T − 2
(

−V DV 1
2

)

(808)

By diagonalization −V DV 1
2

∆
=QΛQT ∈ SN

c (§A.5.2) we may write

D = δ

(

N
∑

i=1

λi qiq
T
i

)

1T + 1δ

(

N
∑

i=1

λi qiq
T
i

)T

− 2
N
∑

i=1

λi qiq
T
i

=
N
∑

i=1

λi

(

δ(qiq
T
i )1T + 1δ(qiq

T
i )T− 2qiq

T
i

)

(1016)

where qi is the ith eigenvector of −V DV 1
2

arranged columnar in orthogonal
matrix

Q = [ q1 q2 · · · qN ] ∈ RN×N (341)

and where {δ(qiqT
i )1T + 1δ(qiq

T
i )T− 2qiq

T
i , i=1 . . . N} are extreme

directions of some pointed polyhedral cone K⊂ SN
h and extreme directions

of EDMN . Invertibility of (1016)

−V DV 1
2

= −V
N
∑

i=1

λi

(

δ(qiq
T
i )1T + 1δ(qiq

T
i )T− 2qiq

T
i

)

V 1
2

=
N
∑

i=1

λi qiq
T
i

(1017)

implies linear independence of those extreme directions. Then the
biorthogonal expansion is expressed

dvecD = Y Y † dvecD = Y λ
(

−V DV 1
2

)

(1018)

where

Y
∆
=
[

dvec
(

δ(qiq
T
i )1T + 1δ(qiq

T
i )T− 2qiq

T
i

)

, i= 1 . . . N
]

∈ RN(N−1)/2×N

(1019)

When D belongs to the EDM cone in the subspace of symmetric hollow
matrices, unique coordinates Y † dvecD for this biorthogonal expansion
must be the nonnegative eigenvalues λ of −V DV 1

2
. This means D

simultaneously belongs to the EDM cone and to the pointed polyhedral cone
dvecK= cone(Y ). 2
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6.5.3.2 Smallest face

Now suppose we are given a particular EDM D(VXp)∈ EDMN corresponding
to affine dimension r and parametrized by VXp in (994). The EDM cone’s
smallest face that contains D(VXp) is

F
(

EDMN ∋D(VXp)
)

=
{

D(VX ) | VX ∈RN×r, rankVX = r , V T
X VX = δ2(V T

X VX ) , R(VX )⊆R(VXp)
}

(1020)

which is isomorphic6.7 with the convex cone EDMr+1, hence of dimension

dimF
(

EDMN ∋D(VXp)
)

= (r + 1)r/2 (1021)

in isomorphic RN(N−1)/2. Not all dimensions are represented; e.g., the EDM
cone has no two-dimensional faces.

When cardinality N= 4 and affine dimension r=2 so that R(VXp) is any
two-dimensional subspace of three-dimensional N (1T ) in R4, for example,
then the corresponding face of EDM4 is isometrically isomorphic with: (1012)

EDM3 = {D∈EDM3 | rank(V DV )≤ 2} ≃ F(EDM4∋D(VXp)) (1022)

Each two-dimensional subspace of N (1T ) corresponds to another
three-dimensional face.

Because each and every principal submatrix of an EDM in EDMN

(§5.14.3) is another EDM [171, §4.1], for example, then each principal
submatrix belongs to a particular face of EDMN .

6.5.3.3 Open question

This result (1021) is analogous to that for the positive semidefinite cone,
although the question remains open whether all faces of EDMN (whose
dimension is less than the dimension of the cone) are exposed like they are
for the positive semidefinite cone. (§2.9.2.3) [261]

6.7The fact that the smallest face is isomorphic with another (perhaps smaller) EDM
cone is implicit in [134, §2].
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6.6 Correspondence to PSD cone SN−1
+

Hayden & Wells et alii [134, §2] assert one-to-one correspondence of EDMs
with positive semidefinite matrices in the symmetric subspace. Because
rank(V DV )≤N−1 (§5.7.1.1), that positive semidefinite cone corresponding
to the EDM cone can only be SN−1

+ . [6, §18.2.1] To clearly demonstrate this
correspondence, we invoke inner-product form EDM definition

D(Φ)
∆
=

[

0
δ(Φ)

]

1T + 1
[

0 δ(Φ)T
]

− 2

[

0 0T

0 Φ

]

∈ EDMN

⇔
Φ � 0

(826)

Then the EDM cone may be expressed

EDMN =
{

D(Φ) | Φ ∈ SN−1
+

}

(1023)

Hayden & Wells’ assertion can therefore be equivalently stated in terms of
an inner-product form EDM operator

D(SN−1
+ ) = EDMN (828)

VN (EDMN) = SN−1
+ (829)

identity (829) holding because R(VN )=N (1T ) (716), linear functions D(Φ)
and VN (D)=−V T

NDVN (§5.6.2.1) being mutually inverse.
In terms of affine dimension r , Hayden & Wells claim particular

correspondence between PSD and EDM cones:

r = N−1: Symmetric hollow matrices −D positive definite on N (1T ) correspond
to points relatively interior to the EDM cone.

r < N−1: Symmetric hollow matrices −D positive semidefinite on N (1T ) , where
−V T
NDVN has at least one 0 eigenvalue, correspond to points on the

relative boundary of the EDM cone.

r = 1: Symmetric hollow nonnegative matrices rank-one on N (1T ) correspond
to extreme directions (1015) of the EDM cone; id est, for some nonzero
vector u (§A.3.1.0.7)

rankV T
NDVN =1

D ∈ SN
h ∩ RN×N

+

}

⇔ D ∈ EDMN

D is an extreme direction
⇔

{

−V T
NDVN ≡ uuT

D ∈ SN
h

(1024)
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6.6.0.0.1 Proof. Case r= 1 is easily proved: From the nonnegativity
development in §5.8.1, extreme direction (1015), and Schoenberg criterion
(728), we need show only sufficiency; id est, prove

rankV T
NDVN =1

D ∈ SN
h ∩ RN×N

+

}

⇒ D ∈ EDMN

D is an extreme direction

Any symmetric matrix D satisfying the rank condition must have the form,
for z,q∈RN and nonzero z∈N (1T ) ,

D = ±(1qT + q1T − 2zzT ) (1025)

because (§5.6.2.1, confer §E.7.2.0.2)

N (VN (D)) = {1qT + q1T | q∈RN} ⊆ SN (1026)

Hollowness demands q= δ(zzT ) while nonnegativity demands choice of
positive sign in (1025). Matrix D thus takes the form of an extreme
direction (1015) of the EDM cone. �

The foregoing proof is not extensible in rank: An EDM
with corresponding affine dimension r has the general form, for
{zi∈N (1T ) , i=1 . . . r} an independent set,

D = 1δ

(

r
∑

i=1

ziz
T
i

)T

+ δ

(

r
∑

i=1

ziz
T
i

)

1T − 2
r
∑

i=1

ziz
T
i ∈ EDMN (1027)

The EDM so defined relies principally on the sum
∑

ziz
T
i having positive

summand coefficients (⇔ −V T
NDVN � 0)6.8. Then it is easy to find a

sum incorporating negative coefficients while meeting rank, nonnegativity,
and symmetric hollowness conditions but not positive semidefiniteness on
subspace R(VN ) ; e.g., from page 362,

−V





0 1 1
1 0 5
1 5 0



V
1

2
= z1z

T
1 − z2z

T
2 (1028)

6.8 (⇐) For ai∈RN−1, let zi =V †TN ai .
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6.6.0.0.2 Example. Extreme rays versus rays on the boundary.

The EDM D =





0 1 4
1 0 1
4 1 0



 is an extreme direction of EDM3 where

u =

[

1
2

]

in (1024). Because −V T
NDVN has eigenvalues {0, 5}, the ray

whose direction is D also lies on the relative boundary of EDM3.

In exception, EDM D= κ

[

0 1
1 0

]

, for any particular κ > 0, is an

extreme direction of EDM2 but −V T
NDVN has only one eigenvalue: {κ}.

Because EDM2 is a ray whose relative boundary (§2.6.1.3.1) is the origin,
this conventional boundary does not include D which belongs to the relative
interior in this dimension. (§2.7.0.0.1) 2

6.6.1 Gram-form correspondence to SN−1
+

With respect to D(G)= δ(G)1T + 1δ(G)T − 2G (721) the linear Gram-form
EDM operator, results in §5.6.1 provide [1, §2.6]

EDMN = D
(

V(EDMN)
)

≡ D
(

VN SN−1
+ V T

N
)

(1029)

VN SN−1
+ V T

N ≡ V
(

D
(

VN SN−1
+ V T

N
))

= V(EDMN)
∆
= −V EDMNV 1

2
= SN

c ∩ SN
+

(1030)
a one-to-one correspondence between EDMN and SN−1

+ .

6.6.2 EDM cone by elliptope

(confer §5.10.1) Defining the elliptope parametrized by scalar t>0

EN
t = SN

+ ∩ {Φ∈ SN | δ(Φ)= t1} (904)

then following Alfakih [7] we have

EDMN = cone{11T − EN
1 } = {t(11T − EN

1 ) | t ≥ 0} (1031)

Identification EN = EN
1 equates the standard elliptope (§5.9.1.0.1, Figure 87)

to our parametrized elliptope.
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dvec rel ∂EDM3

dvec(11T − E3)

EDMN = cone{11T − EN} = {t(11T − EN) | t ≥ 0} (1031)

Figure 102: Three views of translated negated elliptope 11T − E3

1

(confer Figure 87) shrouded by truncated EDM cone. Fractal on EDM
cone relative boundary is numerical artifact belonging to intersection with
elliptope relative boundary. The fractal is trying to convey existence of a
neighborhood about the origin where the translated elliptope boundary and
EDM cone boundary intersect.
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6.6.2.0.1 Expository. Define TE(11T ) to be the tangent cone to the
elliptope E at point 11T ; id est,

TE(11T )
∆
= {t(E − 11T ) | t≥ 0} (1032)

The normal cone K⊥E (11T ) to the elliptope at 11T is a closed convex cone
defined (§E.10.3.2.1, Figure 130)

K⊥E (11T )
∆
= {B | 〈B , Φ− 11T 〉 ≤ 0 , Φ∈E} (1033)

The polar cone of any set K is the closed convex cone (confer (258))

K◦ ∆
= {B | 〈B , A〉≤ 0 , for all A∈K} (1034)

The normal cone is well known to be the polar of the tangent cone,

K⊥E (11T ) = TE(11T )
◦

(1035)

and vice versa; [148, §A.5.2.4]

K⊥E (11T )
◦

= TE(11T ) (1036)

From Deza & Laurent [77, p.535] we have the EDM cone

EDM = −TE(11T ) (1037)

The polar EDM cone is also expressible in terms of the elliptope. From
(1035) we have

EDM
◦

= −K⊥E (11T ) (1038)
⋆

In §5.10.1 we proposed the expression for EDM D

D = t11T − E ∈ EDMN (905)

where t∈R+ and E belongs to the parametrized elliptope EN
t . We further

propose, for any particular t>0

EDMN = cone{t11T − EN
t } (1039)

Proof. Pending.

Relationship of the translated negated elliptope with the EDM cone is
illustrated in Figure 102. We speculate

EDMN = lim
t→∞

t11T − EN
t (1040)
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6.7 Vectorization & projection interpretation

In §E.7.2.0.2 we learn: −V DV can be interpreted as orthogonal projection
[4, §2] of vectorized −D∈ SN

h on the subspace of geometrically centered
symmetric matrices

SN
c = {G∈ SN | G1 = 0} (1766)

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T )}
= {V Y V | Y ∈ SN} ⊂ SN (1767)

≡ {VNAV T
N | A ∈ SN−1}

(799)

because elementary auxiliary matrix V is an orthogonal projector (§B.4.1).
Yet there is another useful projection interpretation:

Revising the fundamental matrix criterion for membership to the EDM
cone (704),6.9

〈zzT ,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1041)

this is equivalent, of course, to the Schoenberg criterion

−V T
NDVN � 0

D ∈ SN
h

}

⇔ D ∈ EDMN (728)

because N (11T ) = R(VN ). When D ∈ EDMN , correspondence (1041)
means −zTDz is proportional to a nonnegative coefficient of orthogonal
projection (§E.6.4.2, Figure 104) of −D in isometrically isomorphic
RN(N+1)/2 on the range of each and every vectorized (§2.2.2.1) symmetric
dyad (§B.1) in the nullspace of 11T ; id est, on each and every member of

T ∆
=
{

svec(zzT ) | z ∈N (11T )=R(VN )
}

⊂ svec ∂SN
+

=
{

svec(VN υυ
TV T
N ) | υ∈RN−1

}

(1042)

whose dimension is
dim T = N(N − 1)/2 (1043)

6.9 N (11T )=N (1T ) and R(zzT )=R(z)
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The set of all symmetric dyads {zzT | z∈RN} constitute the extreme
directions of the positive semidefinite cone (§2.8.1, §2.9) SN

+ , hence lie on
its boundary. Yet only those dyads in R(VN ) are included in the test (1041),
thus only a subset T of all vectorized extreme directions of SN

+ is observed.
In the particularly simple case D∈ EDM2 = {D∈ S2

h | d12≥ 0} , for
example, only one extreme direction of the PSD cone is involved:

zzT =

[

1 −1
−1 1

]

(1044)

Any nonnegative scaling of vectorized zzT belongs to the set T illustrated
in Figure 103 and Figure 104.

6.7.1 Face of PSD cone SN+ containing V

In any case, set T (1042) constitutes the vectorized extreme directions of
an N(N−1)/2-dimensional face of the PSD cone SN

+ containing auxiliary
matrix V ; a face isomorphic with SN−1

+ = Srank V
+ (§2.9.2.3).

To show this, we must first find the smallest face that contains auxiliary
matrix V and then determine its extreme directions. From (190),

F
(

SN
+ ∋V

)

= {W ∈ SN
+ | N (W ) ⊇ N (V )} = {W ∈ SN

+ | N (W ) ⊇ 1}
= {V Y V � 0 | Y ∈ SN} ≡ {VNBV T

N | B∈ SN−1
+ }

≃ Srank V
+ = −V T

N EDMNVN (1045)

where the equivalence ≡ is from §5.6.1 while isomorphic equality ≃ with
transformed EDM cone is from (829). Projector V belongs to F

(

SN
+ ∋V

)

because VNV
†
NV

†T
N V T

N = V . (§B.4.3) Each and every rank-one matrix
belonging to this face is therefore of the form:

VN υυ
TV T
N | υ∈RN−1 (1046)

Because F
(

SN
+ ∋V

)

is isomorphic with a positive semidefinite cone SN−1
+ ,

then T constitutes the vectorized extreme directions of F , the origin
constitutes the extreme points of F , and auxiliary matrix V is some convex
combination of those extreme points and directions by the extremes theorem
(§2.8.1.1.1). �
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d11

√
2d12

d22
svec EDM2

0

−T

svec ∂S2

+

[

d11 d12

d12 d22

]

T ∆
=

{

svec(zzT ) | z ∈N (11T )= κ

[

1
−1

]

, κ∈R

}

⊂ svec ∂S2

+

Figure 103: Truncated boundary of positive semidefinite cone S2

+ in
isometrically isomorphic R3 (via svec (47)) is, in this dimension, constituted
solely by its extreme directions. Truncated cone of Euclidean distance
matrices EDM2 in isometrically isomorphic subspace R . Relative
boundary of EDM cone is constituted solely by matrix 0. Halfline
T = {κ2[ 1 −

√
2 1 ]T | κ∈R} on PSD cone boundary depicts that lone

extreme ray (1044) on which orthogonal projection of −D must be positive
semidefinite if D is to belong to EDM2. aff cone T = svec S2

c . (1049) Dual
EDM cone is halfspace in R3 whose bounding hyperplane has inward-normal
svec EDM2.
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d11

√
2d12

d22
svec S2

h

0

−T

svec ∂S2

+

[

d11 d12

d12 d22

]

D

−D

Projection of vectorized −D on range of vectorized zzT :

Psvec zzT (svec(−D)) =
〈zzT , −D〉
〈zzT , zzT 〉 zz

T

D ∈ EDMN ⇔
{

〈zzT ,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

(1041)

Figure 104: Given-matrix D is assumed to belong to symmetric hollow
subspace S2

h ; a line in this dimension. Negating D , we find its polar along
S2

h . Set T (1042) has only one ray member in this dimension; not orthogonal
to S2

h . Orthogonal projection of −D on T (indicated by half dot) has
nonnegative projection coefficient. Matrix D must therefore be an EDM.
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In fact, the smallest face that contains auxiliary matrix V of the PSD
cone SN

+ is the intersection with the geometric center subspace (1766) (1767);

F
(

SN
+ ∋V

)

= cone
{

VN υυ
TV T
N | υ∈RN−1

}

= SN
c ∩ SN

+

(1047)

In isometrically isomorphic RN(N+1)/2

svecF
(

SN
+ ∋V

)

= cone T (1048)

related to SN
c by

aff cone T = svec SN
c (1049)

6.7.2 EDM criteria in 11T

(confer §6.5) Laurent specifies an elliptope trajectory condition for EDM cone
membership: [171, §2.3]

D ∈ EDMN ⇔ [1− e−αdij ] ∈ EDMN ∀α> 0 (899)

From the parametrized elliptope EN
t in §6.6.2 we propose

D∈EDMN ⇔ ∃ t∈R+

E∈EN
t

}

� D = t11T − E (1050)

Chabrillac & Crouzeix [53, §4] prove a different criterion they attribute
to Finsler (1937) [97]. We apply it to EDMs: for D∈ SN

h (849)

−V T
NDVN ≻ 0 ⇔ ∃κ>0 � −D + κ11T ≻ 0

⇔
D∈EDMN with corresponding affine dimension r=N−1

(1051)

This Finsler criterion has geometric interpretation in terms of the
vectorization & projection already discussed in connection with (1041). With
reference to Figure 103, the offset 11T is simply a direction orthogonal to
T in isomorphic R3. Intuitively, translation of −D in direction 11T is like
orthogonal projection on T in so far as similar information can be obtained.
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When the Finsler criterion (1051) is applied despite lower affine
dimension, the constant κ can go to infinity making the test −D+κ11T � 0
impractical for numerical computation. Chabrillac & Crouzeix invent a
criterion for the semidefinite case, but is no more practical: for D∈ SN

h

D∈EDMN

⇔
∃κp> 0 � ∀κ≥κp , −D − κ11T [sic] has exactly one negative eigenvalue

(1052)

6.8 Dual EDM cone

6.8.1 Ambient SN

We consider finding the ordinary dual EDM cone in ambient space SN where
EDMN is pointed, closed, convex, but has empty interior. The set of all EDMs
in SN is a closed convex cone because it is the intersection of halfspaces about
the origin in vectorized variable D (§2.4.1.1.1, §2.7.2):

EDMN =
⋂

z∈N (1T )
i=1...N

{

D ∈ SN | 〈eie
T
i , D〉 ≥ 0 , 〈eie

T
i , D〉 ≤ 0 , 〈zzT ,−D〉 ≥ 0

}

(1053)

By definition (258), dual cone K∗ comprises each and every vector
inward-normal to a hyperplane supporting convex cone K (§2.4.2.6.1) or
bounding a halfspace containing K . The dual EDM cone in the ambient
space of symmetric matrices is therefore expressible as the aggregate of every
conic combination of inward-normals from (1053):

EDMN∗ = cone{eie
T
i , −eje

T
j | i , j=1 . . . N} − cone{zzT | 11TzzT=0}

= {
N
∑

i=1

ζieie
T
i −

N
∑

j=1

ξj eje
T
j | ζi , ξj ≥ 0} − cone{zzT | 11TzzT=0}

= {δ(u) | u∈RN} − cone
{

VN υυ
TV T
N | υ∈RN−1, (‖v‖= 1)

}

⊂ SN

= {δ2(Y )− VNΨV T
N | Y ∈ SN , Ψ∈ SN−1

+ } (1054)

The EDM cone is not self-dual in ambient SN because its affine hull belongs
to a proper subspace

aff EDMN = SN
h (1055)
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The ordinary dual EDM cone cannot, therefore, be pointed. (§2.13.1.1)
When N= 1, the EDM cone is the point at the origin in R . Auxiliary

matrix VN is empty [ ∅ ] , and dual cone EDM∗ is the real line.
When N = 2, the EDM cone is a nonnegative real line in isometrically

isomorphic R3 ; there S2

h is a real line containing the EDM cone. Dual cone

EDM2∗ is the particular halfspace in R3 whose boundary has inward-normal
EDM2. Diagonal matrices {δ(u)} in (1054) are represented by a hyperplane
through the origin {d | [ 0 1 0 ]d= 0} while the term cone{VN υυTV T

N }
is represented by the halfline T in Figure 103 belonging to the positive
semidefinite cone boundary. The dual EDM cone is formed by translating
the hyperplane along the negative semidefinite halfline −T ; the union of
each and every translation. (confer §2.10.2.0.1)

When cardinality N exceeds 2, the dual EDM cone can no longer be
polyhedral simply because the EDM cone cannot. (§2.13.1.1)

6.8.1.1 EDM cone and its dual in ambient SN

Consider the two convex cones

K1
∆
= SN

h

K2
∆
=

⋂

y∈N (1T )

{

A ∈ SN | 〈yyT ,−A〉 ≥ 0
}

=
{

A ∈ SN | −zTV AV z ≥ 0 ∀ zzT(� 0)
}

=
{

A ∈ SN | −V AV � 0
}

(1056)

so
K1 ∩ K2 = EDMN (1057)

The dual cone K∗1 = SN⊥
h ⊆ SN (62) is the subspace of diagonal matrices.

From (1054) via (272),

K∗2 = − cone
{

VN υυ
TV T
N | υ∈RN−1

}

⊂ SN (1058)

Gaffke & Mathar [99, §5.3] observe that projection on K1 and K2 have
simple closed forms: Projection on subspace K1 is easily performed by
symmetrization and zeroing the main diagonal or vice versa, while projection
of H∈ SN on K2 is

PK2H = H − PSN
+
(V H V ) (1059)
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Proof. First, we observe membership of H−PSN
+
(V H V ) to K2 because

PSN
+
(V H V )−H =

(

PSN
+
(V H V )− V H V

)

+ (V H V −H) (1060)

The term PSN
+
(V H V )− V H V necessarily belongs to the (dual) positive

semidefinite cone by Theorem E.9.2.0.1. V 2 = V , hence

−V
(

H−PSN
+
(V H V )

)

V � 0 (1061)

by Corollary A.3.1.0.5.
Next, we require

〈PK2H−H , PK2H 〉 = 0 (1062)

Expanding,

〈−PSN
+
(V H V ) , H−PSN

+
(V H V )〉 = 0 (1063)

〈PSN
+
(V H V ) , (PSN

+
(V H V )− V H V ) + (V H V −H)〉 = 0 (1064)

〈PSN
+
(V H V ) , (V H V −H)〉 = 0 (1065)

Product V H V belongs to the geometric center subspace; (§E.7.2.0.2)

V H V ∈ SN
c = {Y ∈ SN | N (Y )⊇1} (1066)

Diagonalize V H V
∆
=QΛQT (§A.5) whose nullspace is spanned by

the eigenvectors corresponding to 0 eigenvalues by Theorem A.7.3.0.1.
Projection of V H V on the PSD cone (§7.1) simply zeros negative eigenvalues
in diagonal matrix Λ . Then

N (PSN
+
(V H V )) ⊇ N (V H V ) (⊇ N (V ) ) (1067)

from which it follows:
PSN

+
(V H V ) ∈ SN

c (1068)

so PSN
+
(V H V ) ⊥ (V H V −H) because V H V −H∈ SN⊥

c .

Finally, we must have PK2H−H=−PSN
+
(V H V )∈K∗2 . From §6.7.1

we know dual cone K∗2 =−F
(

SN
+ ∋V

)

is the negative of the positive
semidefinite cone’s smallest face that contains auxiliary matrix V . Thus
PSN

+
(V H V )∈F

(

SN
+ ∋V

)

⇔ N (PSN
+
(V H V ))⊇N (V ) (§2.9.2.3) which was

already established in (1067). �
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svec ∂S2

+

svec S2⊥
c

0

svec S2

c

svec S2

h

EDM2 = S2

h ∩
(

S2⊥
c − S2

+

)

Figure 105: Orthogonal complement S2⊥
c (1768) (§B.2) of geometric center

subspace (a plane in isometrically isomorphic R3 ; drawn is a tiled fragment)
apparently supporting positive semidefinite cone. (Rounded vertex is artifact
of plot.) Line svec S2

c = aff cone T (1049) intersects svec ∂S2

+ , also drawn in
Figure 103; it runs along PSD cone boundary. (confer Figure 86)
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− svec ∂S2

+

svec S2⊥
c

0

svec S2

c

svec S2

h

EDM2 = S2

h ∩
(

S2⊥
c − S2

+

)

Figure 106: EDM cone construction in isometrically isomorphic R3 by adding
polar PSD cone to svec S2⊥

c . Difference svec
(

S2⊥
c − S2

+

)

is halfspace partially

bounded by svec S2⊥
c . EDM cone is nonnegative halfline along svec S2

h in
this dimension.
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From the results in §E.7.2.0.2, we know matrix product V H V is the
orthogonal projection of H∈ SN on the geometric center subspace SN

c . Thus
the projection product

PK2H = H − PSN
+
PSN

c
H (1069)

6.8.1.1.1 Lemma. Projection on PSD cone ∩ geometric center subspace.

PSN
+∩ SN

c
= PSN

+
PSN

c
(1070)

⋄

Proof. For each and every H∈ SN , projection of PSN
c
H on the positive

semidefinite cone remains in the geometric center subspace

SN
c = {G∈ SN | G1 = 0} (1766)

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T )}
= {V Y V | Y ∈ SN} ⊂ SN (1767)

(799)

That is because: eigenvectors of PSN
c
H corresponding to 0 eigenvalues

span its nullspace N (PSN
c
H ). (§A.7.3.0.1) To project PSN

c
H on the positive

semidefinite cone, its negative eigenvalues are zeroed. (§7.1.2) The nullspace
is thereby expanded while eigenvectors originally spanning N (PSN

c
H )

remain intact. Because the geometric center subspace is invariant to
projection on the PSD cone, then the rule for projection on a convex set
in a subspace governs (§E.9.5, projectors do not commute) and statement
(1070) follows directly. �

From the lemma it follows

{PSN
+
PSN

c
H | H∈ SN} = {PSN

+∩ SN
c
H | H∈ SN} (1071)

Then from (1793)

−
(

SN
c ∩ SN

+

)∗
= {H − PSN

+
PSN

c
H | H∈ SN} (1072)

From (272) we get closure of a vector sum

K2 = −
(

SN
c ∩ SN

+

)∗
= SN⊥

c − SN
+ (1073)

therefore the new equality

EDMN = K1 ∩ K2 = SN
h ∩

(

SN⊥
c − SN

+

)

(1074)
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whose veracity is intuitively evident, in hindsight, [61, p.109] from the
most fundamental EDM definition (709). Formula (1074) is not a matrix
criterion for membership to the EDM cone, and it is not an equivalence
between EDM operators. Rather, it is a recipe for constructing the EDM
cone whole from large Euclidean bodies: the positive semidefinite cone,
orthogonal complement of the geometric center subspace, and symmetric
hollow subspace. A realization of this construction in low dimension is
illustrated in Figure 105 and Figure 106.

The dual EDM cone follows directly from (1074) by standard properties
of cones (§2.13.1.1):

EDMN∗ = K∗1 + K∗2 = SN⊥
h − SN

c ∩ SN
+ (1075)

which bears strong resemblance to (1054).

6.8.1.2 nonnegative orthant

That EDMN is a proper subset of the nonnegative orthant is not obvious
from (1074). We wish to verify

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

⊂ RN×N
+ (1076)

While there are many ways to prove this, it is sufficient to show that all
entries of the extreme directions of EDMN must be nonnegative; id est, for
any particular nonzero vector z = [zi , i=1 . . . N ]∈ N (1T ) (§6.5.3.1),

δ(zzT )1T + 1δ(zzT )T − 2zzT ≥ 0 (1077)

where the inequality denotes entrywise comparison. The inequality holds
because the i, j th entry of an extreme direction is squared: (zi− zj)

2.
We observe that the dyad 2zzT ∈ SN

+ belongs to the positive semidefinite
cone, the doublet

δ(zzT )1T + 1δ(zzT )T ∈ SN⊥
c (1078)

to the orthogonal complement (1768) of the geometric center subspace, while
their difference is a member of the symmetric hollow subspace SN

h .
Here is an algebraic method provided by Trosset to prove nonnegativity:

Suppose we are given A∈ SN⊥
c and B= [Bij]∈ SN

+ and A−B∈ SN
h .

Then we have, for some vector u , A= u1T + 1uT = [Aij] = [ui + uj] and
δ(B)= δ(A)= 2u . Positive semidefiniteness of B requires nonnegativity
A−B≥ 0 because

(ei−ej)
TB(ei−ej) = (Bii−Bij)−(Bji−Bjj) = 2(ui+uj)−2Bij ≥ 0 (1079)
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6.8.1.3 Dual Euclidean distance matrix criterion

Conditions necessary for membership of a matrix D∗∈ SN to the dual
EDM cone EDMN∗ may be derived from (1054): D∗∈ EDMN∗ ⇒
D∗= δ(y)− VNAV T

N for some vector y and positive semidefinite matrix
A∈ SN−1

+ . This in turn implies δ(D∗1)= δ(y) . Then, for D∗∈ SN

D∗∈ EDMN∗ ⇔ δ(D∗1)−D∗ � 0 (1080)

where, for any symmetric matrix D∗

δ(D∗1)−D∗ ∈ SN
c (1081)

To show sufficiency of the matrix criterion in (1080), recall Gram-form
EDM operator

D(G) = δ(G)1T + 1δ(G)T − 2G (721)

where Gram matrix G is positive semidefinite by definition, and recall the
self-adjointness property of the main-diagonal linear operator δ (§A.1):

〈D , D∗〉 =
〈

δ(G)1T + 1δ(G)T − 2G , D∗
〉

= 〈G , δ(D∗1)−D∗〉 2 (740)

Assuming 〈G , δ(D∗1)−D∗〉≥ 0 (1285), then we have known membership
relation (§2.13.2.0.1)

D∗∈ EDMN∗ ⇔ 〈D , D∗〉 ≥ 0 ∀D∈EDMN (1082)

�

Elegance of this matrix criterion (1080) for membership to the dual
EDM cone is the lack of any other assumptions except D∗ be symmetric.
(Recall: Schoenberg criterion (728) for membership to the EDM cone requires
membership to the symmetric hollow subspace.)

Linear Gram-form EDM operator (721) has adjoint, for Y ∈ SN

DT(Y )
∆
= (δ(Y 1)− Y ) 2 (1083)

Then we have: [61, p.111]

EDMN∗ = {Y ∈ SN | δ(Y 1)− Y � 0} (1084)

the dual EDM cone expressed in terms of the adjoint operator. A dual EDM
cone determined this way is illustrated in Figure 108.
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6.8.1.3.1 Exercise. Dual EDM spectral cone.
Find a spectral cone as in §5.11.2 corresponding to EDMN∗ . H

6.8.1.4 Nonorthogonal components of dual EDM

Now we tie construct (1075) for the dual EDM cone together with the matrix
criterion (1080) for dual EDM cone membership. For any D∗∈ SN it is
obvious:

δ(D∗1) ∈ SN⊥
h (1085)

any diagonal matrix belongs to the subspace of diagonal matrices (57). We

know when D∗∈ EDMN∗

δ(D∗1)−D∗ ∈ SN
c ∩ SN

+ (1086)

this adjoint expression (1083) belongs to that face (1047) of the positive
semidefinite cone SN

+ in the geometric center subspace. Any nonzero
dual EDM

D∗ = δ(D∗1)− (δ(D∗1)−D∗) ∈ SN⊥
h ⊖ SN

c ∩ SN
+ = EDMN∗ (1087)

can therefore be expressed as the difference of two linearly independent
nonorthogonal components (Figure 86, Figure 107).

6.8.1.5 Affine dimension complementarity

From §6.8.1.3 we have, for some A∈ SN−1
+ (confer (1086))

δ(D∗1)−D∗ = VNAV
T
N ∈ SN

c ∩ SN
+ (1088)

if and only if D∗ belongs to the dual EDM cone. Call rank(VNAV
T
N ) dual

affine dimension. Empirically, we find a complementary relationship in affine
dimension between the projection of some arbitrary symmetric matrix H on
the polar EDM cone, EDMN◦= −EDMN∗, and its projection on the EDM
cone; id est, the optimal solution of 6.10

minimize
D◦∈ SN

‖D◦ − H‖F
subject to D◦ − δ(D◦1) � 0

(1089)

6.10This dual projection can be solved quickly (without semidefinite programming) via
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D◦ = δ(D◦1) + (D◦− δ(D◦1)) ∈ SN⊥
h ⊕ SN

c ∩ SN
+ = EDMN◦

EDMN◦

EDMN◦

D◦− δ(D◦1)δ(D◦1)

D◦

0

SN
c ∩ SN

+

SN⊥
h

Figure 107: Hand-drawn abstraction of polar EDM cone (drawn truncated).
Any member D◦ of polar EDM cone can be decomposed into two linearly
independent nonorthogonal components: δ(D◦1) and D◦− δ(D◦1).
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has dual affine dimension complementary to affine dimension corresponding
to the optimal solution of

minimize
D∈SN

h

‖D −H‖F
subject to −V T

NDVN � 0
(1090)

Precisely,

rank(D◦⋆− δ(D◦⋆ 1)) + rank(V T
ND

⋆VN ) = N−1 (1091)

and rank(D◦⋆− δ(D◦⋆ 1))≤N−1 because vector 1 is always in the nullspace
of rank’s argument. This is similar to the known result for projection on the
self-dual positive semidefinite cone and its polar:

rankP−SN
+
H + rankPSN

+
H = N (1092)

When low affine dimension is a desirable result of projection on the
EDM cone, projection on the polar EDM cone should be performed
instead. Convex polar problem (1089) can be solved for D◦⋆ by
transforming to an equivalent Schur-form semidefinite program (§3.1.7.2).
Interior-point methods for numerically solving semidefinite programs tend
to produce high-rank solutions. (§4.1.1) Then D⋆ = H −D◦⋆∈ EDMN by
Corollary E.9.2.2.1, and D⋆ will tend to have low affine dimension. This
approach breaks when attempting projection on a cone subset discriminated
by affine dimension or rank, because then we have no complementarity
relation like (1091) or (1092) (§7.1.4.1).

Lemma 6.8.1.1.1; rewriting,

minimize
D◦∈ SN

‖(D◦− δ(D◦ 1))− (H− δ(D◦ 1))‖F
subject to D◦− δ(D◦ 1) � 0

which is the projection of affinely transformed optimal solution H− δ(D◦⋆ 1) on SN
c ∩ SN

+ ;

D◦⋆− δ(D◦⋆ 1) = PSN
+
PSN

c
(H− δ(D◦⋆ 1))

Foreknowledge of an optimal solution D◦⋆ as argument to projection suggests recursion.
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6.8.1.6 EDM cone duality

In §5.6.1.1, via Gram-form EDM operator

D(G) = δ(G)1T + 1δ(G)T − 2G ∈ EDMN ⇐ G � 0 (721)

we established clear connection between the EDM cone and that face (1047)
of positive semidefinite cone SN

+ in the geometric center subspace:

EDMN = D(SN
c ∩ SN

+ ) (816)

V(EDMN) = SN
c ∩ SN

+ (817)

where

V(D) = −V DV 1
2

(805)

In §5.6.1 we established

SN
c ∩ SN

+ = VN SN−1
+ V T

N (803)

Then from (1080), (1088), and (1054) we can deduce

δ(EDMN∗1)− EDMN∗ = VN SN−1
+ V T

N = SN
c ∩ SN

+ (1093)

which, by (816) and (817), means the EDM cone can be related to the dual
EDM cone by an equality:

EDMN = D
(

δ(EDMN∗1)− EDMN∗
)

(1094)

V(EDMN) = δ(EDMN∗1)− EDMN∗ (1095)

This means projection −V(EDMN) of the EDM cone on the geometric
center subspace SN

c (§E.7.2.0.2) is an affine transformation of the dual EDM

cone: EDMN∗− δ(EDMN∗1). Secondarily, it means the EDM cone is not
self-dual.
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6.8.1.7 Schoenberg criterion is discretized membership relation

We show the Schoenberg criterion

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

}

⇔ D ∈ EDMN (728)

to be a discretized membership relation (§2.13.4) between a closed convex
cone K and its dual K∗ like

〈y , x〉 ≥ 0 for all y ∈ G(K∗) ⇔ x ∈ K (317)

where G(K∗) is any set of generators whose conic hull constructs closed
convex dual cone K∗ :

The Schoenberg criterion is the same as

〈zzT ,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1041)

which, by (1042), is the same as

〈zzT ,−D〉 ≥ 0 ∀ zzT ∈
{

VN υυ
TV T
N | υ∈RN−1

}

D ∈ SN
h

}

⇔ D ∈ EDMN (1096)

where the zzT constitute a set of generators G for the positive semidefinite
cone’s smallest face F

(

SN
+ ∋V

)

(§6.7.1) that contains auxiliary matrix V .
From the aggregate in (1054) we get the ordinary membership relation,
assuming only D∈ SN [148, p.58],

〈D∗, D〉 ≥ 0 ∀D∗∈ EDMN∗ ⇔ D ∈ EDMN

〈D∗, D〉 ≥ 0 ∀D∗∈ {δ(u) | u∈RN} − cone
{

VN υυ
TV T
N | υ∈RN−1

}

⇔ D ∈ EDMN

(1097)

Discretization yields (317):

〈D∗, D〉 ≥ 0 ∀D∗∈ {eie
T
i , −eje

T
j , −VN υυTV T

N | i , j=1 . . . N , υ∈RN−1} ⇔ D ∈ EDMN

(1098)
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Because
〈

{δ(u) | u∈RN} , D
〉

≥ 0 ⇔ D∈ SN
h , we can restrict observation

to the symmetric hollow subspace without loss of generality. Then for D∈ SN
h

〈D∗, D〉 ≥ 0 ∀D∗ ∈
{

−VN υυTV T
N | υ∈RN−1

}

⇔ D ∈ EDMN (1099)

this discretized membership relation becomes (1096); identical to the
Schoenberg criterion.

Hitherto a correspondence between the EDM cone and a face of a PSD
cone, the Schoenberg criterion is now accurately interpreted as a discretized
membership relation between the EDM cone and its ordinary dual.

6.8.2 Ambient SNh

When instead we consider the ambient space of symmetric hollow matrices
(1055), then still we find the EDM cone is not self-dual for N> 2. The
simplest way to prove this is as follows:

Given a set of generators G= {Γ} (1015) for the pointed closed convex
EDM cone, the discrete membership theorem in §2.13.4.2.1 asserts that
members of the dual EDM cone in the ambient space of symmetric hollow
matrices can be discerned via discretized membership relation:

EDMN∗∩ SN
h

∆
= {D∗∈ SN

h | 〈Γ , D∗〉 ≥ 0 ∀Γ ∈ G(EDMN)}
= {D∗∈ SN

h | 〈δ(zzT )1T + 1δ(zzT )T − 2zzT , D∗〉 ≥ 0 ∀ z∈N (1T )}
= {D∗∈ SN

h | 〈1δ(zzT )T − zzT , D∗〉 ≥ 0 ∀ z∈N (1T )}

(1100)

By comparison

EDMN = {D ∈ SN
h | 〈−zzT , D〉 ≥ 0 ∀ z∈N (1T )} (1101)

the term δ(zzT )TD∗1 foils any hope of self-duality in ambient SN
h . �
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To find the dual EDM cone in ambient SN
h per §2.13.9.4 we prune the

aggregate in (1054) describing the ordinary dual EDM cone, removing any
member having nonzero main diagonal:

EDMN∗∩ SN
h = cone

{

δ2(VN υυ
TV T
N )− VN υυTV T

N | υ∈RN−1
}

= {δ2(VNΨV T
N )− VNΨV T

N | Ψ∈ SN−1
+ }

(1102)

When N= 1, the EDM cone and its dual in ambient Sh each comprise
the origin in isomorphic R0 ; thus, self-dual in this dimension. (confer (84))

When N= 2, the EDM cone is the nonnegative real line in isomorphic R .
(Figure 103) EDM2∗ in S2

h is identical, thus self-dual in this dimension.
This result is in agreement with (1100), verified directly: for all κ∈R ,

z= κ

[

1
−1

]

and δ(zzT ) = κ2

[

1
1

]

⇒ d
∗
12≥ 0.

The first case adverse to self-duality N= 3 may be deduced from
Figure 95; the EDM cone is a circular cone in isomorphic R3 corresponding to
no rotation of the Lorentz cone (147) (the self-dual circular cone). Figure 108
illustrates the EDM cone and its dual in ambient S3

h ; no longer self-dual.

6.9 Theorem of the alternative

In §2.13.2.1.1 we showed how alternative systems of generalized inequality
can be derived from closed convex cones and their duals. This section is,
therefore, a fitting postscript to the discussion of the dual EDM cone.

6.9.0.0.1 Theorem. EDM alternative. [113, §1]
Given D ∈ SN

h

D ∈ EDMN

or in the alternative

∃ z such that

{

1Tz = 1

Dz = 0

(1103)

In words, either N (D) intersects hyperplane {z | 1Tz=1} or D is an EDM;
the alternatives are incompatible. ⋄
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dvec rel ∂EDM3

dvec rel ∂(EDM3∗∩ S3

h)

0

D∗∈ EDMN∗ ⇔ δ(D∗1)−D∗ � 0 (1080)

Figure 108: Ordinary dual EDM cone projected on S3

h shrouds EDM3 ;
drawn tiled in isometrically isomorphic R3. (It so happens: intersection

EDMN∗∩ SN
h (§2.13.9.3) is identical to projection of dual EDM cone on SN

h .)
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When D is an EDM [190, §2]

N (D) ⊂ N (1T ) = {z | 1Tz = 0} (1104)

Because [113, §2] (§E.0.1)
DD†1 = 1

1TD†D = 1T (1105)

then
R(1) ⊂ R(D) (1106)

6.10 postscript

We provided an equality (1074) relating the convex cone of Euclidean distance
matrices to the convex cone of positive semidefinite matrices. Projection on
the positive semidefinite cone constrained by an upper bound on rank is
easy and well known; [85] simply a matter of truncating a list of eigenvalues.
Projection on the positive semidefinite cone with such a rank constraint is,
in fact, a convex optimization problem. (§7.1.4)

Yet, it remains difficult to project on the EDM cone under a constraint
on rank or affine dimension. One thing we can do is invoke the Schoenberg
criterion (728) and then project on a positive semidefinite cone under a
constraint bounding affine dimension from above.

It is our hope that the equality herein relating EDM and PSD cones will
become a step toward understanding projection on the EDM cone under a
rank constraint.
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Chapter 7

Proximity problems

In summary, we find that the solution to problem [(1116.3) p.445]
is difficult and depends on the dimension of the space as the
geometry of the cone of EDMs becomes more complex.

−Hayden, Wells, Liu, & Tarazaga (1991) [134, §3]

A problem common to various sciences is to find the Euclidean distance
matrix (EDM) D∈EDMN closest in some sense to a given complete matrix
of measurements H under a constraint on affine dimension 0≤ r≤N−1
(§2.3.1, §5.7.1.1); rather, r is bounded above by desired affine dimension ρ .

© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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7.0.1 Measurement matrix H

Ideally, we want a given matrix of measurements H∈RN×N to conform
with the first three Euclidean metric properties (§5.2); to belong to the
intersection of the orthant of nonnegative matrices RN×N

+ with the symmetric
hollow subspace SN

h (§2.2.3.0.1). Geometrically, we want H to belong to the
polyhedral cone (§2.12.1.0.1)

K ∆
= SN

h ∩ RN×N
+ (1107)

Yet in practice, H can possess significant measurement uncertainty (noise).
Sometimes realization of an optimization problem demands that its

input, the given matrix H , possess some particular characteristics; perhaps
symmetry and hollowness or nonnegativity. When that H given does not
possess the desired properties, then we must impose them upon H prior to
optimization:� When measurement matrix H is not symmetric or hollow, taking its

symmetric hollow part is equivalent to orthogonal projection on the
symmetric hollow subspace SN

h .� When measurements of distance in H are negative, zeroing negative
entries effects unique minimum-distance projection on the orthant of
nonnegative matrices RN×N

+ in isomorphic RN 2

(§E.9.2.2.3).

7.0.1.1 Order of imposition

Since convex cone K (1107) is the intersection of an orthant with a subspace,
we want to project on that subset of the orthant belonging to the subspace;
on the nonnegative orthant in the symmetric hollow subspace that is, in fact,
the intersection. For that reason alone, unique minimum-distance projection
of H onK (that member of K closest toH in isomorphic RN 2

in the Euclidean
sense) can be attained by first taking its symmetric hollow part, and only
then clipping negative entries of the result to 0 ; id est, there is only one
correct order of projection, in general, on an orthant intersecting a subspace:� project on the subspace, then project the result on the orthant in that

subspace. (confer §E.9.5)
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In contrast, order of projection on an intersection of subspaces is arbitrary.

That order-of-projection rule applies more generally, of course, to
the intersection of any convex set C with any subspace. Consider the
proximity problem7.1 over convex feasible set SN

h ∩ C given nonsymmetric
nonhollow H∈RN×N :

minimize
B∈SN

h

‖B −H‖2F
subject to B ∈ C

(1108)

a convex optimization problem. Because the symmetric hollow subspace
is orthogonal to the antisymmetric antihollow subspace (§2.2.3), then for
B∈ SN

h

tr

(

BT

(

1

2
(H−HT ) + δ2(H)

))

= 0 (1109)

so the objective function is equivalent to

‖B −H‖2F ≡
∥

∥

∥

∥

B −
(

1

2
(H+HT )− δ2(H)

)∥

∥

∥

∥

2

F

+

∥

∥

∥

∥

1

2
(H−HT ) + δ2(H)

∥

∥

∥

∥

2

F
(1110)

This means the antisymmetric antihollow part of given matrix H would
be ignored by minimization with respect to symmetric hollow variable B
under the Frobenius norm; id est, minimization proceeds as though given
the symmetric hollow part of H .

This action of the Frobenius norm (1110) is effectively a Euclidean
projection (minimum-distance projection) of H on the symmetric hollow
subspace SN

h prior to minimization. Thus minimization proceeds inherently
following the correct order for projection on SN

h ∩ C . Therefore we
may either assume H∈ SN

h , or take its symmetric hollow part prior to
optimization.

7.1There are two equivalent interpretations of projection (§E.9): one finds a set normal,
the other, minimum distance between a point and a set. Here we realize the latter view.
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Figure 109: Pseudo-Venn diagram: The EDM cone belongs to the
intersection of the symmetric hollow subspace with the nonnegative orthant;
EDMN⊆ K (708). EDMN cannot exist outside SN

h , but RN×N
+ does.

7.0.1.2 Egregious input error under nonnegativity demand

More pertinent to the optimization problems presented herein where

C ∆
= EDMN⊆ K = SN

h ∩ RN×N
+ (1111)

then should some particular realization of a proximity problem demand
input H be nonnegative, and were we only to zero negative entries of a
nonsymmetric nonhollow input H prior to optimization, then the ensuing
projection on EDMN would be guaranteed incorrect (out of order).

Now comes a surprising fact: Even were we to correctly follow the
order-of-projection rule and provide H ∈ K prior to optimization, then the
ensuing projection on EDMN will be incorrect whenever input H has negative
entries and some proximity problem demands nonnegative input H .
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H SN
h

K = SN
h ∩ RN×N

+

0

EDMN

Figure 110: Pseudo-Venn diagram from Figure 109 showing elbow placed
in path of projection of H on EDMN⊂ SN

h by an optimization problem
demanding nonnegative input matrix H . The first two line segments
leading away from H result from correct order-of-projection required to
provide nonnegative H prior to optimization. Were H nonnegative, then its
projection on SN

h would instead belong to K ; making the elbow disappear.
(confer Figure 121)
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This is best understood referring to Figure 109: Suppose nonnegative
input H is demanded, and then the problem realization correctly projects
its input first on SN

h and then directly on C= EDMN . That demand
for nonnegativity effectively requires imposition of K on input H prior
to optimization so as to obtain correct order of projection (on SN

h first).
Yet such an imposition prior to projection on EDMN generally introduces
an elbow into the path of projection (illustrated in Figure 110) caused by
the technique itself; that being, a particular proximity problem realization
requiring nonnegative input.

Any procedure for imposition of nonnegativity on input H can only be
incorrect in this circumstance. There is no resolution unless input H is
guaranteed nonnegative with no tinkering. Otherwise, we have no choice but
to employ a different problem realization; one not demanding nonnegative
input.

7.0.2 Lower bound

Most of the problems we encounter in this chapter have the general form:

minimize
B

‖B − A‖F
subject to B ∈ C

(1112)

where A∈ Rm×n is given data. This particular objective denotes Euclidean
projection (§E) of vectorized matrix A on the set C which may or may not be
convex. When C is convex, then the projection is unique minimum-distance
because the Frobenius norm when squared is a strictly convex function of
variable B and because the optimal solution is the same regardless of the
square (1466). When C is a subspace, then the direction of projection is
orthogonal to C .

Denoting by A
∆
=UAΣAQ

T
A and B

∆
=UBΣBQ

T
B their full singular value

decompositions (whose singular values are always nonincreasingly ordered
(§A.6)), there exists a tight lower bound on the objective over the manifold
of orthogonal matrices;

‖ΣB − ΣA‖F ≤ inf
UA ,UB ,QA ,QB

‖B − A‖F (1113)

This least lower bound holds more generally for any orthogonally invariant
norm on Rm×n (§2.2.1) including the Frobenius and spectral norm [246, §II.3].
[150, §7.4.51]
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7.0.3 Problem approach

Problems traditionally posed in terms of point position {xi , i=1 . . . N} ,
such as

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖ − hij)

2 (1114)

or

minimize
{xi}

∑

i , j ∈ I
(‖xi − xj‖2 − h2

ij)
2 (1115)

(where I is an abstract set of indices and hij is given data) are everywhere
converted (in this book) to the distance-square variable D or to Gram
matrix G ; the Gram matrix acting as bridge between position and distance.
That conversion is performed regardless of whether known data is complete.
Then the techniques of chapter 5 or chapter 6 are applied to find relative or
absolute position. This approach is taken because we prefer introduction of
rank constraints into convex problems rather than searching an infinitude of
local minima in (1114) or (1115) [70].

7.0.4 Three prevalent proximity problems

There are three statements of the closest-EDM problem prevalent in the
literature, the multiplicity due primarily to choice of projection on the
EDM versus positive semidefinite (PSD) cone and vacillation between the
distance-square variable dij versus absolute distance

√

dij . In their most
fundamental form, the three prevalent proximity problems are (1116.1),
(1116.2), and (1116.3): [258]

(1)

minimize
D

‖−V (D −H)V ‖2F
subject to rankV DV ≤ ρ

D ∈ EDMN

minimize
◦
√

D
‖ ◦
√
D −H‖2F

subject to rankV DV ≤ ρ
◦
√
D ∈

√

EDMN

(2)

(3)

minimize
D

‖D −H‖2F
subject to rankV DV ≤ ρ

D ∈ EDMN

minimize
◦
√

D
‖−V ( ◦

√
D −H)V ‖2F

subject to rankV DV ≤ ρ
◦
√
D ∈

√

EDMN

(4)

(1116)
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where we have made explicit an imposed upper bound ρ on affine dimension

r = rankV T
NDVN = rankV DV (851)

that is benign when ρ=N−1, and where D
∆
= [dij] and ◦

√
D

∆
= [
√

dij ] .
Problems (1116.2) and (1116.3) are Euclidean projections of a vectorized
matrixH on an EDM cone (§6.3), whereas problems (1116.1) and (1116.4) are
Euclidean projections of a vectorized matrix −VHV on a PSD cone. Problem
(1116.4) is not posed in the literature because it has limited theoretical
foundation.7.2

Analytical solution to (1116.1) is known in closed form for any bound ρ
although, as the problem is stated, it is a convex optimization only in the case
ρ=N−1. We show in §7.1.4 how (1116.1) becomes a convex optimization
problem for any ρ when transformed to the spectral domain. When expressed
as a function of point list in a matrix X as in (1114), problem (1116.2)
is a variant of what is known in statistics literature as the stress problem.
[39, p.34] [68] [267] Problems (1116.2) and (1116.3) are convex optimization
problems inD for the case ρ=N−1. Even with the rank constraint removed
from (1116.2), we will see the convex problem remaining inherently minimizes
affine dimension.

Generally speaking, each problem in (1116) produces a different result
because there is no isometry relating them. Of the various auxiliary
V -matrices (§B.4), the geometric centering matrix V (732) appears in the
literature most often although VN (715) is the auxiliary matrix naturally
consequent to Schoenberg’s seminal exposition [234]. Substitution of any
auxiliary matrix or its pseudoinverse into these problems produces another
valid problem.

Substitution of V T
N for left-hand V in (1116.1), in particular, produces a

different result because

minimize
D

‖−V (D −H)V ‖2F
subject to D ∈ EDMN

(1117)

7.2 D∈EDMN ⇒ ◦

√
D∈EDMN , −V ◦

√
DV ∈ SN

+ (§5.10)
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finds D to attain Euclidean distance of vectorized −VHV to the positive
semidefinite cone in ambient isometrically isomorphic RN(N+1)/2, whereas

minimize
D

‖−V T
N (D −H)VN‖2F

subject to D ∈ EDMN
(1118)

attains Euclidean distance of vectorized −V T
NHVN to the positive

semidefinite cone in isometrically isomorphic subspace RN(N−1)/2 ; quite
different projections7.3 regardless of whether affine dimension is constrained.
But substitution of auxiliary matrix V T

W (§B.4.3) or V †N yields the same
result as (1116.1) because V = VWV

T
W = VNV

†
N ; id est,

‖−V (D −H)V ‖2F = ‖−VWV T
W(D −H)VWV

T
W‖2F = ‖−V T

W(D −H)VW‖2F
= ‖−VNV †N (D −H)VNV

†
N‖2F = ‖−V †N (D −H)VN‖2F

(1119)

We see no compelling reason to prefer one particular auxiliary V -matrix
over another. Each has its own coherent interpretations; e.g., §5.4.2, §6.7.
Neither can we say any particular problem formulation produces generally
better results than another.

7.1 First prevalent problem:

Projection on PSD cone

This first problem

minimize
D

‖−V T
N (D −H)VN‖2F

subject to rankV T
NDVN ≤ ρ

D ∈ EDMN











Problem 1 (1120)

7.3The isomorphism T (Y )=V †TN Y V †N onto SN
c = {V XV | X∈ SN} relates the map in

(1118) to that in (1117), but is not an isometry.
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poses a Euclidean projection of −V T
NHVN in subspace SN−1 on a generally

nonconvex subset (when ρ <N−1) of the positive semidefinite cone
boundary ∂SN−1

+ whose elemental matrices have rank no greater than
desired affine dimension ρ (§5.7.1.1). Problem 1 finds the closest EDM D
in the sense of Schoenberg. (728) [234] As it is stated, this optimization
problem is convex only when desired affine dimension is largest ρ=N−1
although its analytical solution is known [188, thm.14.4.2] for all nonnegative
ρ≤N−1 .7.4

We assume only that the given measurement matrix H is symmetric;7.5

H ∈ SN (1121)

Arranging the eigenvalues λi of −V T
NHVN in nonincreasing order for all i ,

λi ≥ λi+1 with vi the corresponding ith eigenvector, then an optimal solution
to Problem 1 is [264, §2]

−V T
ND

⋆VN =

ρ
∑

i=1

max{0, λi} viv
T
i (1122)

where

−V T
NHVN

∆
=

N−1
∑

i=1

λi viv
T
i ∈ SN−1 (1123)

is an eigenvalue decomposition and

D⋆ ∈ EDMN (1124)

is an optimal Euclidean distance matrix.

In §7.1.4 we show how to transform Problem 1 to a convex optimization
problem for any ρ .

7.4 being first pronounced in the context of multidimensional scaling by Mardia [187] in
1978 who attributes the generic result (§7.1.2) to Eckart & Young, 1936 [85].
7.5Projection in Problem 1 is on a rank ρ subset of the positive semidefinite cone SN−1

+

(§2.9.2.1) in the subspace of symmetric matrices SN−1. It is wrong here to zero the main
diagonal of given H because first projecting H on the symmetric hollow subspace places
an elbow in the path of projection in Problem 1. (confer Figure 110)
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7.1.1 Closest-EDM Problem 1, convex case

7.1.1.0.1 Proof. Solution (1122), convex case.
When desired affine dimension is unconstrained, ρ=N−1, the rank function
disappears from (1120) leaving a convex optimization problem; a simple
unique minimum-distance projection on the positive semidefinite cone SN−1

+ :
videlicet

minimize
D∈ SN

h

‖−V T
N (D −H)VN‖2F

subject to −V T
NDVN � 0

(1125)

by (728). Because

SN−1 = −V T
N SN

h VN (820)

then the necessary and sufficient conditions for projection in isometrically
isomorphic RN(N−1)/2 on the self-dual (321) positive semidefinite cone SN−1

+

are:7.6 (§E.9.2.0.1) (1375) (confer (1800))

−V T
ND

⋆VN � 0
−V T
ND

⋆VN
(

−V T
ND

⋆VN + V T
NHVN

)

= 0
−V T
ND

⋆VN + V T
NHVN � 0

(1126)

Symmetric −V T
NHVN is diagonalizable hence decomposable in terms of its

eigenvectors v and eigenvalues λ as in (1123). Therefore (confer (1122))

−V T
ND

⋆VN =
N−1
∑

i=1

max{0, λi}viv
T
i (1127)

satisfies (1126), optimally solving (1125). To see that, recall: these
eigenvectors constitute an orthogonal set and

−V T
ND

⋆VN + V T
NHVN = −

N−1
∑

i=1

min{0, λi}viv
T
i (1128)

�

7.6These conditions for projection on a convex cone are identical to the
Karush-Kuhn-Tucker (KKT) optimality conditions for problem (1125).
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7.1.2 Generic problem

Prior to determination of D⋆, analytical solution (1122) to Problem 1 is
equivalent to solution of a generic rank-constrained projection problem; a
Euclidean projection on a rank ρ subset of a PSD cone (on a generally
nonconvex subset of the PSD cone boundary ∂SN−1

+ when ρ <N−1):

minimize
B∈SN−1

‖B − A‖2F
subject to rankB ≤ ρ

B � 0











Generic 1 (1129)

whose optimal solution (Eckart & Young) [85]

B⋆ ∆
= −V T

ND
⋆VN =

ρ
∑

i=1

max{0, λi} viv
T
i ∈ SN−1 (1122)

is well known given desired affine dimension ρ and

A
∆
= −V T

NHVN =
N−1
∑

i=1

λi viv
T
i ∈ SN−1 (1123)

Once optimal B⋆ is found, the technique of §5.12 can be used to determine
a uniquely corresponding optimal Euclidean distance matrix D⋆ ; a unique
correspondence by injectivity arguments in §5.6.2.

7.1.2.1 Projection on rank ρ subset of PSD cone

Because Problem 1 is the same as

minimize
D∈ SN

h

‖−V T
N (D −H)VN‖2F

subject to rankV T
NDVN ≤ ρ

−V T
NDVN � 0

(1130)

and because (820) provides invertible mapping to the generic problem,
then Problem 1 is truly a Euclidean projection of vectorized −V T

NHVN on
that generally nonconvex subset of symmetric matrices (belonging to the
positive semidefinite cone SN−1

+ ) having rank no greater than desired affine
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dimension ρ ; 7.7 called rank ρ subset: (185) (219)

SN−1
+ \SN−1

+ (ρ+ 1) = {X∈ SN−1
+ | rankX ≤ ρ} (224)

7.1.3 Choice of spectral cone

Spectral projection substitutes projection on a polyhedral cone, containing
a complete set of eigenspectra, in place of projection on a convex set of
diagonalizable matrices; e.g., (1142). In this section we develop a method of
spectral projection for constraining rank of positive semidefinite matrices in
a proximity problem like (1129). We will see why an orthant turns out to be
the best choice of spectral cone, and why presorting is critical.

Define a nonlinear permutation operator π(x) : Rn→Rn that sorts its
vector argument x into nonincreasing order.

7.1.3.0.1 Definition. Spectral projection.
Let R be an orthogonal matrix and Λ a nonincreasingly ordered diagonal
matrix of eigenvalues. Spectral projection means unique minimum-distance
projection of a rotated (R , §B.5.4) nonincreasingly ordered (π) vector (δ)
of eigenvalues

π
(

δ(RTΛR)
)

(1131)

on a polyhedral cone containing all eigenspectra corresponding to a rank ρ
subset of a positive semidefinite cone (§2.9.2.1) or the EDM cone (in
Cayley-Menger form, §5.11.2.3). △

In the simplest and most common case, projection on a positive
semidefinite cone, orthogonal matrix R equals I (§7.1.4.0.1) and diagonal
matrix Λ is ordered during diagonalization (§A.5.2). Then spectral
projection simply means projection of δ(Λ) on a subset of the nonnegative
orthant, as we shall now ascertain:

It is curious how nonconvex Problem 1 has such a simple analytical
solution (1122). Although solution to generic problem (1129) is known since
1936 [85], Trosset [264, §2] first observed its equivalence in 1997 to projection

7.7Recall: affine dimension is a lower bound on embedding (§2.3.1), equal to dimension
of the smallest affine set in which points from a list X corresponding to an EDM D can
be embedded.
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of an ordered vector of eigenvalues (in diagonal matrix Λ) on a subset of the
monotone nonnegative cone (§2.13.9.4.1)

KM+ = {υ | υ1 ≥ υ2 ≥ · · · ≥ υN−1 ≥ 0} ⊆ RN−1
+ (370)

Of interest, momentarily, is only the smallest convex subset of the
monotone nonnegative cone KM+ containing every nonincreasingly ordered
eigenspectrum corresponding to a rank ρ subset of the positive semidefinite
cone SN−1

+ ; id est,

Kρ
M+

∆
= {υ∈Rρ | υ1 ≥ υ2 ≥ · · · ≥ υρ ≥ 0} ⊆ Rρ

+ (1132)

a pointed polyhedral cone, a ρ-dimensional convex subset of the
monotone nonnegative cone KM+⊆RN−1

+ having property, for λ denoting
eigenspectra,

[

Kρ
M+

0

]

= π(λ(rank ρ subset)) ⊆ KN−1
M+

∆
= KM+ (1133)

For each and every elemental eigenspectrum

γ ∈ λ(rank ρ subset)⊆RN−1
+ (1134)

of the rank ρ subset (ordered or unordered in λ), there is a nonlinear
surjection π(γ) onto Kρ

M+ .

7.1.3.0.2 Exercise. Smallest spectral cone.
Prove that there is no convex subset of KM+ smaller than Kρ

M+ containing
every ordered eigenspectrum corresponding to the rank ρ subset of a positive
semidefinite cone (§2.9.2.1). H

7.1.3.0.3 Proposition. (Hardy-Littlewood-Pólya) [129, §X]
[41, §1.2] Any vectors σ and γ in RN−1 satisfy a tight inequality

π(σ)Tπ(γ) ≥ σTγ ≥ π(σ)T Ξπ(γ) (1135)

where Ξ is the order-reversing permutation matrix defined in (1507),
and permutator π(γ) is a nonlinear function that sorts vector γ into
nonincreasing order thereby providing the greatest upper bound and least
lower bound with respect to every possible sorting. ⋄
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7.1.3.0.4 Corollary. Monotone nonnegative sort.
Any given vectors σ, γ∈RN−1 satisfy a tight Euclidean distance inequality

‖π(σ)− π(γ)‖ ≤ ‖σ − γ‖ (1136)

where nonlinear function π(γ) sorts vector γ into nonincreasing order
thereby providing the least lower bound with respect to every possible
sorting. ⋄

Given γ∈RN−1

inf
σ∈R

N−1
+

‖σ−γ‖ = inf
σ∈R

N−1
+

‖π(σ)−π(γ)‖ = inf
σ∈R

N−1
+

‖σ−π(γ)‖ = inf
σ∈K

M+

‖σ−π(γ)‖

(1137)
Yet for γ representing an arbitrary vector of eigenvalues, because

inf
σ∈
�

R
ρ
+

0

�‖σ − γ‖2 ≥ inf
σ∈
�

R
ρ
+

0

�‖σ − π(γ)‖2 = inf
σ∈
�
Kρ

M+
0

�‖σ − π(γ)‖2 (1138)

then projection of γ on the eigenspectra of a rank ρ subset can be tightened
simply by presorting γ into nonincreasing order.

Proof. Simply because π(γ)1:ρ � π(γ1:ρ)

inf
σ∈
�

R
ρ
+

0

�‖σ − γ‖2 = γT
ρ+1:N−1γρ+1:N−1 + inf

σ∈R
N−1
+

‖σ1:ρ − γ1:ρ‖2

= γTγ + inf
σ∈R

N−1
+

σT
1:ρσ1:ρ − 2σT

1:ργ1:ρ

≥ γTγ + inf
σ∈R

N−1
+

σT
1:ρσ1:ρ − 2σT

1:ρπ(γ)1:ρ

inf
σ∈
�

R
ρ
+

0

�‖σ − γ‖2 ≥ inf
σ∈
�

R
ρ
+

0

�‖σ − π(γ)‖2

(1139)

�
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7.1.3.1 Orthant is best spectral cone for Problem 1

This means unique minimum-distance projection of γ on the nearest
spectral member of the rank ρ subset is tantamount to presorting γ into
nonincreasing order. Only then does unique spectral projection on a subset
Kρ
M+ of the monotone nonnegative cone become equivalent to unique spectral

projection on a subset Rρ
+ of the nonnegative orthant (which is simpler);

in other words, unique minimum-distance projection of sorted γ on the
nonnegative orthant in a ρ-dimensional subspace of RN is indistinguishable
from its projection on the subset Kρ

M+ of the monotone nonnegative cone in
that same subspace.

7.1.4 Closest-EDM Problem 1, “nonconvex” case

Trosset’s proof of solution (1122), for projection on a rank ρ subset of the
positive semidefinite cone SN−1

+ , was algebraic in nature. [264, §2] Here we
derive that known result but instead using a more geometric argument via
spectral projection on a polyhedral cone (subsuming the proof in §7.1.1).
In so doing, we demonstrate how nonconvex Problem 1 is transformed to a
convex optimization:

7.1.4.0.1 Proof. Solution (1122), nonconvex case.
As explained in §7.1.2, we may instead work with the more facile generic
problem (1129). With diagonalization of unknown

B
∆
= UΥU T ∈ SN−1 (1140)

given desired affine dimension 0≤ ρ≤N−1 and diagonalizable

A
∆
= QΛQT ∈ SN−1 (1141)

having eigenvalues in Λ arranged in nonincreasing order, by (40) the generic
problem is equivalent to

minimize
B∈SN−1

‖B − A‖2F
subject to rankB ≤ ρ

B � 0

≡

minimize
R , Υ

‖Υ−RTΛR‖2F
subject to rank Υ ≤ ρ

Υ � 0
R−1 = RT

(1142)
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where

R
∆
= QTU ∈ RN−1×N−1 (1143)

in U on the set of orthogonal matrices is a linear bijection. We propose
solving (1142) by instead solving the problem sequence:

minimize
Υ

‖Υ−RTΛR‖2F
subject to rank Υ ≤ ρ

Υ � 0

(a)

minimize
R

‖Υ⋆ −RTΛR‖2F
subject to R−1 = RT

(b)

(1144)

Problem (1144a) is equivalent to: (1) orthogonal projection of RTΛR
on an N− 1-dimensional subspace of isometrically isomorphic RN(N−1)/2

containing δ(Υ)∈RN−1
+ , (2) nonincreasingly ordering the result, (3) unique

minimum-distance projection of the ordered result on

[

Rρ
+

0

]

. (§E.9.5)

Projection on that N−1-dimensional subspace amounts to zeroing RTΛR at
all entries off the main diagonal; thus, the equivalent sequence leading with
a spectral projection:

minimize
Υ

‖ δ(Υ)− π
(

δ(RTΛR)
)

‖2

subject to δ(Υ) ∈
[

Rρ
+

0

]

(a)

minimize
R

‖Υ⋆ −RTΛR‖2F
subject to R−1 = RT

(b)

(1145)

Because any permutation matrix is an orthogonal matrix, it is always
feasible that δ(RTΛR)∈RN−1 be arranged in nonincreasing order; hence, the
permutation operator π . Unique minimum-distance projection of vector

π
(

δ(RTΛR)
)

on the ρ-dimensional subset

[

Rρ
+

0

]

of nonnegative orthant
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RN−1
+ requires: (§E.9.2.0.1)

δ(Υ⋆)ρ+1:N−1 = 0

δ(Υ⋆) � 0

δ(Υ⋆)T
(

δ(Υ⋆)− π(δ(RTΛR))
)

= 0

δ(Υ⋆)− π(δ(RTΛR)) � 0

(1146)

which are necessary and sufficient conditions. Any value Υ⋆ satisfying
conditions (1146) is optimal for (1145a). So

δ(Υ⋆)i =

{

max
{

0 , π
(

δ(RTΛR)
)

i

}

, i=1 . . . ρ

0 , i=ρ+1 . . . N−1
(1147)

specifies an optimal solution. The lower bound on the objective with respect
to R in (1145b) is tight; by (1113)

‖ |Υ⋆| − |Λ| ‖F ≤ ‖Υ⋆ −RTΛR‖F (1148)

where | | denotes absolute entry-value. For selection of Υ⋆ as in (1147), this
lower bound is attained when (confer §C.4.2.2)

R⋆ = I (1149)

which is the known solution. �

7.1.4.1 Significance

Importance of this well-known [85] optimal solution (1122) for projection on
a rank ρ subset of a positive semidefinite cone should not be dismissed:� Problem 1, as stated, is generally nonconvex. This analytical solution

at once encompasses projection on a rank ρ subset (224) of the positive
semidefinite cone (generally, a nonconvex subset of its boundary)
from either the exterior or interior of that cone.7.8 By problem
transformation to the spectral domain, projection on a rank ρ subset
becomes a convex optimization problem.

7.8Projection on the boundary from the interior of a convex Euclidean body is generally
a nonconvex problem.
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a constraint on rank of an EDM in projection problems such as (1116).� This solution is equivalent to projection on a polyhedral cone in
the spectral domain (spectral projection, projection on a spectral
cone §7.1.3.0.1); a necessary and sufficient condition (§A.3.1) for
membership of a symmetric matrix to a rank ρ subset of a positive
semidefinite cone (§2.9.2.1).� Because U⋆ = Q , a minimum-distance projection on a rank ρ subset
of the positive semidefinite cone is a positive semidefinite matrix
orthogonal (in the Euclidean sense) to direction of projection.7.9� For the convex case problem, this solution is always unique. Otherwise,
distinct eigenvalues (multiplicity 1) in Λ guarantees uniqueness of this
solution by the reasoning in §A.5.0.1 .7.10

7.1.5 Problem 1 in spectral norm, convex case

When instead we pose the matrix 2-norm (spectral norm) in Problem 1 (1120)
for the convex case ρ =N−1, then the new problem

minimize
D

‖−V T
N (D −H)VN‖2

subject to D ∈ EDMN
(1150)

is convex although its solution is not necessarily unique;7.11 giving rise to
nonorthogonal projection (§E.1) on the positive semidefinite cone SN−1

+ .
Indeed, its solution set includes the Frobenius solution (1122) for the convex
case whenever −V T

NHVN is a normal matrix. [133, §1] [127] [46, §8.1.1]
Singular value problem (1150) is equivalent to

minimize
µ , D

µ

subject to −µI � −V T
N (D −H)VN � µI

D ∈ EDMN

(1151)

7.9But Theorem E.9.2.0.1 for unique projection on a closed convex cone does not apply
here because the direction of projection is not necessarily a member of the dual PSD cone.
This occurs, for example, whenever positive eigenvalues are truncated.
7.10Uncertainty of uniqueness prevents the erroneous conclusion that a rank ρ subset
(185) were a convex body by the Bunt-Motzkin theorem (§E.9.0.0.1).

7.11For each and every |t|≤ 2, for example,

[

2 0
0 t

]

has the same spectral-norm value.
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where

µ⋆ = max
i

{ ∣

∣λ
(

−V T
N (D⋆ −H)VN

)

i

∣

∣ , i= 1 . . . N−1
}

∈ R+ (1152)

the minimized largest absolute eigenvalue (due to matrix symmetry).
For lack of a unique solution here, we prefer the Frobenius rather than

spectral norm.

7.2 Second prevalent problem:

Projection on EDM cone in
√

dij

Let
◦
√
D

∆
= [
√

dij ] ∈ K = SN
h ∩ RN×N

+ (1153)

be an unknown matrix of absolute distance; id est,

D = [dij]
∆
=

◦
√
D ◦ ◦
√
D ∈ EDMN (1154)

where ◦ denotes Hadamard product. The second prevalent proximity
problem is a Euclidean projection (in the natural coordinates

√

dij ) of matrix
H on a nonconvex subset of the boundary of the nonconvex cone of Euclidean

absolute-distance matrices rel ∂
√

EDMN : (§6.3, confer Figure 95(b))

minimize
◦
√

D
‖ ◦
√
D −H‖2F

subject to rankV T
NDVN ≤ ρ

◦
√
D ∈

√

EDMN















Problem 2 (1155)

where
√

EDMN = { ◦
√
D | D∈ EDMN} (989)

This statement of the second proximity problem is considered difficult to
solve because of the constraint on desired affine dimension ρ (§5.7.2) and
because the objective function

‖ ◦
√
D −H‖2F =

∑

i,j

(
√

dij − hij)
2 (1156)

is expressed in the natural coordinates; projection on a doubly nonconvex
set.
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Our solution to this second problem prevalent in the literature requires
measurement matrix H to be nonnegative;

H = [hij] ∈ RN×N
+ (1157)

If the H matrix given has negative entries, then the technique of solution
presented here becomes invalid. As explained in §7.0.1, projection of H
on K= SN

h ∩ RN×N
+ (1107) prior to application of this proposed solution is

incorrect.

7.2.1 Convex case

When ρ =N− 1, the rank constraint vanishes and a convex problem
emerges:7.12

minimize
◦
√

D
‖ ◦
√
D −H‖2F

subject to ◦
√
D ∈

√

EDMN
⇔

minimize
D

∑

i,j

dij − 2hij

√

dij + h2
ij

subject to D ∈ EDMN (1158)

For any fixed i and j , the argument of summation is a convex function
of dij because (for nonnegative constant hij) the negative square root is
convex in nonnegative dij and because dij + h2

ij is affine (convex). Because
the sum of any number of convex functions in D remains convex [46, §3.2.1]
and because the feasible set is convex in D , we have a convex optimization
problem:

minimize
D

1T(D − 2H◦ ◦
√
D )1 + ‖H‖2F

subject to D ∈ EDMN
(1159)

The objective function being a sum of strictly convex functions is,
moreover, strictly convex in D on the nonnegative orthant. Existence
of a unique solution D⋆ for this second prevalent problem depends upon
nonnegativity of H and a convex feasible set (§3.1.2).7.13

7.12 still thought to be a nonconvex problem as late as 1997 [267] even though discovered
convex by de Leeuw in 1993. [68] [39, §13.6] Yet using methods from §3, it can be easily
ascertained: ‖ ◦

√
D −H‖F is not convex in D .

7.13The transformed problem in variable D no longer describes Euclidean projection on

an EDM cone. Otherwise we might erroneously conclude
√

EDMN were a convex body
by the Bunt-Motzkin theorem (§E.9.0.0.1).
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7.2.1.1 Equivalent semidefinite program, Problem 2, convex case

Convex problem (1158) is numerically solvable for its global minimum using
an interior-point method [46, §11] [299] [214] [204] [290] [9] [98]. We translate
(1158) to an equivalent semidefinite program (SDP) for a pedagogical reason
made clear in §7.2.2.2 and because there exist readily available computer
programs for numerical solution [253] [117] [269] [27] [291] [292] [293].

Substituting a new matrix variable Y
∆
= [yij]∈RN×N

+

hij

√

dij ← yij (1160)

Boyd proposes: problem (1158) is equivalent to the semidefinite program

minimize
D , Y

∑

i,j

dij − 2yij + h2
ij

subject to

[

dij yij

yij h2
ij

]

� 0 , i,j=1 . . . N

D ∈ EDMN

(1161)

To see that, recall dij ≥ 0 is implicit to D∈ EDMN (§5.8.1, (728)). So
when H∈ RN×N

+ is nonnegative as assumed,

[

dij yij

yij h2
ij

]

� 0 ⇔ hij

√

dij ≥
√

y2
ij (1162)

Minimization of the objective function implies maximization of yij that is
bounded above. Hence nonnegativity of yij is implicit to (1161) and, as
desired, yij→hij

√

dij as optimization proceeds. �

If the given matrix H is now assumed symmetric and nonnegative,

H = [hij] ∈ SN ∩ RN×N
+ (1163)

then Y =H◦ ◦
√
D must belong to K= SN

h ∩ RN×N
+ (1107). Because Y ∈ SN

h

(§B.4.2 no.20), then

‖ ◦
√
D−H‖2F =

∑

i,j

dij − 2yij + h2
ij = −N tr(V (D− 2Y )V ) + ‖H‖2F (1164)
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So convex problem (1161) is equivalent to the semidefinite program

minimize
D , Y

− tr(V (D − 2Y )V )

subject to

[

dij yij

yij h2
ij

]

� 0 , j > i = 1 . . . N−1

Y ∈ SN
h

D ∈ EDMN

(1165)

where the constants h2
ij and N have been dropped arbitrarily from the

objective.

7.2.1.2 Gram-form semidefinite program, Problem 2, convex case

There is great advantage to expressing problem statement (1165) in
Gram-form because Gram matrix G is a bidirectional bridge between point
list X and distance matrix D ; e.g., Example 5.4.2.2.4, Example 6.4.0.0.1.
This way, problem convexity can be maintained while simultaneously
constraining point list X , Gram matrix G , and distance matrix D at our
discretion.

Convex problem (1165) may be equivalently written via linear bijective
(§5.6.1) EDM operator D(G) (721);

minimize
G∈SN

c , Y ∈ SN
h

− tr(V (D(G)− 2Y )V )

subject to

[

〈Φij , G〉 yij

yij h2
ij

]

� 0 , j > i = 1 . . . N−1

G � 0

(1166)

where distance-square D= [dij] ∈ SN
h (705) is related to Gram matrix entries

G= [gij] ∈ SN
c ∩ SN

+ by

dij = gii + gjj − 2gij

= 〈Φij , G〉
(720)

where

Φij = (ei − ej)(ei − ej)
T ∈ SN

+ (707)
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Confinement of G to the geometric center subspace provides numerical
stability and no loss of generality (confer (993)); implicit constraint G1 = 0
is otherwise unnecessary.

To include constraints on the list X∈ Rn×N , we would first rewrite (1166)

minimize
G∈SN

c , Y ∈ SN
h

, X∈Rn×N
− tr(V (D(G)− 2Y )V )

subject to

[

〈Φij , G〉 yij

yij h2
ij

]

� 0 , j > i = 1 . . . N−1

[

I X
XT G

]

� 0

X∈ C

(1167)

and then add the constraints, realized here in abstract membership to some
convex set C . This problem realization includes a convex relaxation of the
nonconvex constraint G=XTX and, if desired, more constraints on G could
be added. This technique is discussed in §5.4.2.2.4.

7.2.2 Minimization of affine dimension in Problem 2

When desired affine dimension ρ is diminished, the rank function becomes
reinserted into problem (1161) that is then rendered difficult to solve because
the feasible set {D , Y } loses convexity in SN

h × RN×N . Indeed, the rank
function is quasiconcave (§3.3) on the positive semidefinite cone; (§2.9.2.6.2)
id est, its sublevel sets are not convex.

7.2.2.1 Rank minimization heuristic

A remedy developed in [91] [192] [92] [90] introduces convex envelope (cenv)
of the quasiconcave rank function: (Figure 111)

7.2.2.1.1 Definition. Convex envelope. [147]
The convex envelope of a function f : C→R is defined as the largest convex
function g such that g ≤ f on convex domain C⊆Rn .7.14 △
7.14Provided f 6≡+∞ and there exists an affine function h≤ f on Rn, then the convex
envelope is equal to the convex conjugate (the Legendre-Fenchel transform) of the convex
conjugate of f ; id est, the conjugate-conjugate function f∗∗. [148, §E.1]
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cenv rankX

rankX

Figure 111: Abstraction of convex envelope of rank function. Rank is
a quasiconcave function on the positive semidefinite cone, but its convex
envelope is the smallest convex function enveloping it.� [91] [90] Convex envelope of rank function: for σ a singular value,

cenv(rankA) on {A∈Rm×n | ‖A‖2≤κ} =
1

κ

∑

i

σ(A)i (1168)

cenv(rankA) on {A∈Sn
+ | ‖A‖2≤κ} =

1

κ
tr(A) (1169)

A properly scaled trace thus represents the best convex lower bound on rank
for positive semidefinite matrices. The idea, then, is to substitute the convex
envelope for rank of some variable A∈ SM

+ (§A.6.5)

rankA ← cenv(rankA) ∝ trA =
∑

i

σ(A)i =
∑

i

λ(A)i = ‖λ(A)‖1
(1170)

which is equivalent to the sum of all eigenvalues or singular values.� [90] Convex envelope of the cardinality function is proportional to the
1-norm:

cenv(cardx) on {x∈Rn | ‖x‖∞≤κ} =
1

κ
‖x‖1 (1171)
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7.2.2.2 Applying trace rank-heuristic to Problem 2

Substituting rank envelope for rank function in Problem 2, for D∈ EDMN

(confer (851))

cenv rank(−V T
NDVN ) = cenv rank(−V DV ) ∝ − tr(V DV ) (1172)

and for desired affine dimension ρ≤N− 1 and nonnegative H [sic] we get
a convex optimization problem

minimize
D

‖ ◦
√
D −H‖2F

subject to − tr(V DV ) ≤ κ ρ

D ∈ EDMN

(1173)

where κ ∈R+ is a constant determined by cut-and-try. The equivalent
semidefinite program makes κ variable: for nonnegative and symmetric H

minimize
D , Y , κ

κ ρ+ 2 tr(V Y V )

subject to

[

dij yij

yij h2
ij

]

� 0 , j > i = 1 . . . N−1

− tr(V DV ) ≤ κ ρ

Y ∈ SN
h

D ∈ EDMN

(1174)

which is the same as (1165), the problem with no explicit constraint on affine
dimension. As the present problem is stated, the desired affine dimension ρ
yields to the variable scale factor κ ; ρ is effectively ignored.

Yet this result is an illuminant for problem (1165) and it equivalents
(all the way back to (1158)): When the given measurement matrix H
is nonnegative and symmetric, finding the closest EDM D as in problem
(1158), (1161), or (1165) implicitly entails minimization of affine dimension
(confer §5.8.4, §5.14.4). Those non−rank-constrained problems are each
inherently equivalent to cenv(rank)-minimization problem (1174), in other
words, and their optimal solutions are unique because of the strictly convex
objective function in (1158).

7.2.2.3 Rank-heuristic insight

Minimization of affine dimension by use of this trace rank-heuristic (1172)
tends to find the list configuration of least energy; rather, it tends to optimize
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compaction of the reconstruction by minimizing total distance. (734) It is best
used where some physical equilibrium implies such an energy minimization;
e.g., [266, §5].

For this Problem 2, the trace rank-heuristic arose naturally in the
objective in terms of V . We observe: V (in contrast to V T

N ) spreads energy
over all available distances (§B.4.2 no.20, confer no.22) although the rank
function itself is insensitive to choice of auxiliary matrix.

7.2.2.4 Rank minimization heuristic beyond convex envelope

Fazel, Hindi, and Boyd [92] [295] [93] propose a rank heuristic more potent
than trace (1170) for problems of rank minimization;

rankY ← log det(Y + εI) (1175)

the concave surrogate function log det in place of quasiconcave rankY
(§2.9.2.6.2) when Y ∈ Sn

+ is variable and where ε is a small positive constant.
They propose minimization of the surrogate by substituting a sequence
comprising infima of a linearized surrogate about the current estimate Yi ;
id est, from the first-order Taylor series expansion about Yi on some open
interval of ‖Y ‖ (§D.1.7)

log det(Y + εI) ≈ log det(Yi + εI) + tr
(

(Yi + εI)−1(Y − Yi)
)

(1176)

we make the surrogate sequence of infima over bounded convex feasible set C

arg inf
Y ∈C

rankY ← lim
i→∞

Yi+1 (1177)

where, for i= 0 . . .

Yi+1 = arg inf
Y ∈C

tr
(

(Yi + εI)−1Y
)

(1178)

Choosing Y0 = I , the first step becomes equivalent to finding the infimum of
trY ; the trace rank-heuristic (1170). The intuition underlying (1178) is the
new term in the argument of trace; specifically, (Yi + εI)−1 weights Y so that
relatively small eigenvalues of Y found by the infimum are made even smaller.
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To see that, substitute the nonincreasingly ordered diagonalizations

Yi + εI
∆
= Q(Λ + εI )QT (a)

Y
∆
= UΥU T (b)

(1179)

into (1178). Then from (1481) we have,

inf
Υ∈U⋆TCU⋆

δ((Λ + εI )−1)
T
δ(Υ) = inf

Υ∈UTCU
inf

RT=R−1
tr
(

(Λ + εI )−1RT ΥR
)

≤ inf
Y ∈C

tr((Yi + εI)−1Y )
(1180)

where R
∆
= QTU in U on the set of orthogonal matrices is a bijection. The

role of ε is, therefore, to limit the maximum weight; the smallest entry on
the main diagonal of Υ gets the largest weight. �

7.2.2.5 Applying log det rank-heuristic to Problem 2

When the log det rank-heuristic is inserted into Problem 2, problem (1174)
becomes the problem sequence in i

minimize
D , Y , κ

κ ρ+ 2 tr(V Y V )

subject to

[

djl yjl

yjl h2
jl

]

� 0 , l > j = 1 . . . N−1

− tr((−V DiV + εI )−1V DV ) ≤ κ ρ

Y ∈ SN
h

D ∈ EDMN

(1181)

where Di+1
∆
=D⋆∈ EDMN , and D0

∆
=11T − I .

7.2.2.6 Tightening this log det rank-heuristic

Like the trace method, this log det technique for constraining rank offers
no provision for meeting a predetermined upper bound ρ . Yet since the
eigenvalues of the sum are simply determined, λ(Yi + εI) = δ(Λ + εI ) , we
may certainly force selected weights to ε−1 by manipulating diagonalization
(1179a). Empirically we find this sometimes leads to better results, although
affine dimension of a solution cannot be guaranteed.
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7.2.2.7 Cumulative summary of rank heuristics

We have studied the perturbation method of rank reduction in §4.3, as
well as the trace heuristic (convex envelope method §7.2.2.1.1) and log det
heuristic in §7.2.2.4. There is another good contemporary method called
LMIRank [210] based on alternating projection (§E.10) that does not solve
the ball packing problem presented in §5.4.2.2.3, so it is not evaluated further
herein. None of these exceed performance of the convex iteration method for
constraining rank developed in §4.4:

7.2.2.7.1 Example. Rank regularization enforcing affine dimension.
We apply the convex iteration method from §4.4.1 to numerically solve an
instance of Problem 2; a method empirically superior to the foregoing convex
envelope and log det heuristics.

Unidimensional scaling, [70] a historically practical application of
multidimensional scaling (§5.12), entails solution of an optimization problem
having local minima whose multiplicity varies as the factorial of point-list
cardinality. Geometrically, it means finding a list constrained to lie in one
affine dimension. In terms of point list, the nonconvex problem is: given
nonnegative symmetric matrix H = [hij] ∈ SN∩ RN×N

+ (1163) whose entries
hij are all known, (1114)

minimize
{xi∈R}

N
∑

i , j=1

(‖xi − xj‖ − hij)
2 (1182)

called a raw stress problem [39, p.34] which has an implicit constraint on
dimensional embedding of points {xi ∈ R , i = 1 . . . N}. This problem has
proven NP-hard ; e.g., [52].

As always, we first transform variables to distance-square D∈ SN
h ; so we

begin with convex problem (1165) on page 461

minimize
D , Y

− tr(V (D − 2Y )V )

subject to

[

dij yij

yij h2
ij

]

� 0 , j > i = 1 . . . N−1

Y ∈ SN
h

D ∈ EDMN

rankV T
NDVN = 1

(1183)
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that becomes equivalent to (1182) by making explicit the constraint on affine
dimension via rank. The iteration is formed by moving the dimensional
constraint to the objective:

minimize
D , Y

−〈V (D − 2Y )V , I 〉 − w〈V T
NDVN , W 〉

subject to

[

dij yij

yij h2
ij

]

� 0 , j > i = 1 . . . N−1

Y ∈ SN
h

D ∈ EDMN

(1184)

where w (≈ 10) is a positive scalar just large enough to make 〈V T
NDVN , W 〉

vanish to within some numerical precision, and where direction matrix W is
an optimal solution to semidefinite program (1480a)

minimize
W

−〈V T
ND

⋆VN , W 〉
subject to 0 � W � I

trW = N − 1

(1185)

known in closed form. Semidefinite programs (1184) and (1185) are iterated
until convergence in the sense defined on page 257. This iteration is not
a projection method. Convex problem (1184) is neither a relaxation of
unidimensional scaling problem (1183); instead, problem (1184) is a convex
equivalent to (1183) at convergence of the iteration.

Jan de Leeuw provided us with some test data

H =

















0.000000 5.235301 5.499274 6.404294 6.486829 6.263265
5.235301 0.000000 3.208028 5.840931 3.559010 5.353489
5.499274 3.208028 0.000000 5.679550 4.020339 5.239842
6.404294 5.840931 5.679550 0.000000 4.862884 4.543120
6.486829 3.559010 4.020339 4.862884 0.000000 4.618718
6.263265 5.353489 5.239842 4.543120 4.618718 0.000000

















(1186)
and a globally optimal solution

X⋆ = [−4.981494 −2.121026 −1.038738 4.555130 0.764096 2.822032 ]

= [ x⋆
1 x⋆

2 x⋆
3 x⋆

4 x⋆
5 x⋆

6 ]
(1187)
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found by searching 6! local minima of (1182) [70]. By iterating convex
problems (1184) and (1185) about twenty times (initial W= 0) we find the
global infimum 98.12812 of stress problem (1182), and by (939) we find a
corresponding one-dimensional point list that is a rigid transformation in R
of X⋆.

Here we found the infimum to accuracy of the given data, but that ceases
to hold as problem size increases. Because of machine numerical precision
and an interior-point method of solution, we speculate, accuracy degrades
quickly as problem size increases beyond this. 2

7.3 Third prevalent problem:

Projection on EDM cone in dij

Reformulating Problem 2 (p.458) in terms of EDM D changes the problem
considerably:

minimize
D

‖D −H‖2F
subject to rankV T

NDVN ≤ ρ

D ∈ EDMN











Problem 3 (1188)

This third prevalent proximity problem is a Euclidean projection of given
matrix H on a generally nonconvex subset (ρ <N−1) of ∂EDMN the
boundary of the convex cone of Euclidean distance matrices relative
to subspace SN

h (Figure 95(d)). Because coordinates of projection are
distance-square andH presumably now holds distance-square measurements,
numerical solution to Problem 3 is generally different than that of Problem 2.

For the moment, we need make no assumptions regarding measurement
matrix H .

7.3.1 Convex case

minimize
D

‖D −H‖2F
subject to D ∈ EDMN

(1189)

When the rank constraint disappears (for ρ =N−1), this third problem
becomes obviously convex because the feasible set is then the entire EDM
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cone and because the objective function

‖D −H‖2F =
∑

i,j

(dij − hij)
2 (1190)

is a strictly convex quadratic in D ;7.15

minimize
D

∑

i,j

d
2
ij − 2hij dij + h2

ij

subject to D ∈ EDMN
(1191)

Optimal solution D⋆ is therefore unique, as expected, for this simple
projection on the EDM cone.

7.3.1.1 Equivalent semidefinite program, Problem 3, convex case

In the past, this convex problem was solved numerically by means of
alternating projection. (Example 7.3.1.1.1) [106] [99] [134, §1] We translate
(1191) to an equivalent semidefinite program because we have a good solver:

Assume the given measurement matrix H to be nonnegative and
symmetric;7.16

H = [hij] ∈ SN ∩ RN×N
+ (1163)

We then propose: Problem (1191) is equivalent to the semidefinite program,
for

∂
∆
= [d

2
ij] = D ◦D (1192)

7.15For nonzero Y ∈ SN
h and some open interval of t∈R (§3.2.3.0.2, §D.2.3)

d2

dt2
‖(D + t Y )−H‖2F = 2 trY TY > 0 �

7.16If that H given has negative entries, then the technique of solution presented here
becomes invalid. Projection of H on K (1107) prior to application of this proposed
technique, as explained in §7.0.1, is incorrect.
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a matrix of distance-square squared,

minimize
∂ , D

− tr(V (∂ − 2H ◦D)V )

subject to

[

∂ij dij

dij 1

]

� 0 , j > i = 1 . . . N−1

D ∈ EDMN

∂ ∈ SN
h

(1193)

where
[

∂ij dij

dij 1

]

� 0 ⇔ ∂ij ≥ d
2
ij (1194)

Symmetry of input H facilitates trace in the objective (§B.4.2 no.20), while
its nonnegativity causes ∂ij→d

2
ij as optimization proceeds.

7.3.1.1.1 Example. Alternating projection on nearest EDM.
By solving (1193) we confirm the result from an example given by Glunt,
Hayden, et alii [106, §6] who found an analytical solution to convex
optimization problem (1189) for particular cardinality N= 3 by using the
alternating projection method of von Neumann (§E.10):

H =





0 1 1
1 0 9
1 9 0



 , D⋆ =







0 19
9

19
9

19
9

0 76
9

19
9

76
9

0






(1195)

The original problem (1189) of projecting H on the EDM cone is transformed
to an equivalent iterative sequence of projections on the two convex cones
(1056) from §6.8.1.1. Using ordinary alternating projection, input H goes to
D⋆ with an accuracy of four decimal places in about 17 iterations. Affine
dimension corresponding to this optimal solution is r= 1.

Obviation of semidefinite programming’s computational expense is the
principal advantage of this alternating projection technique. 2

7.3.1.2 Schur-form semidefinite program, Problem 3 convex case

Semidefinite program (1193) can be reformulated by moving the objective
function in

minimize
D

‖D −H‖2F
subject to D ∈ EDMN

(1189)
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to the constraints. This makes an equivalent second-order cone program: for
any measurement matrix H

minimize
t∈R , D

t

subject to ‖D −H‖2F ≤ t

D ∈ EDMN

(1196)

We can transform this problem to an equivalent Schur-form semidefinite
program; (§3.1.7.2)

minimize
t∈R , D

t

subject to

[

tI vec(D −H)
vec(D −H)T 1

]

� 0

D ∈ EDMN

(1197)

characterized by great sparsity and structure. The advantage of this SDP
is lack of conditions on input H ; e.g., negative entries would invalidate any
solution provided by (1193). (§7.0.1.2)

7.3.1.3 Gram-form semidefinite program, Problem 3 convex case

Further, this problem statement may be equivalently written in terms of a
Gram matrix via linear bijective (§5.6.1) EDM operator D(G) (721);

minimize
G∈SN

c , t∈R

t

subject to

[

tI vec(D(G)−H)

vec(D(G)−H)T 1

]

� 0

G � 0

(1198)

To include constraints on the list X∈ Rn×N , we would rewrite this:

minimize
G∈SN

c , t∈R , X∈Rn×N
t

subject to

[

tI vec(D(G)−H)

vec(D(G)−H)T 1

]

� 0

[

I X
XT G

]

� 0

X∈ C

(1199)

where C is some abstract convex set. This technique is discussed in §5.4.2.2.4.
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7.3.1.4 Dual interpretation, projection on EDM cone

From §E.9.1.1 we learn that projection on a convex set has a dual form. In
the circumstance K is a convex cone and point x exists exterior to the cone
or on its boundary, distance to the nearest point Px in K is found as the
optimal value of the objective

‖x− Px‖ = maximize
a

aTx

subject to ‖a‖ ≤ 1

a ∈ K◦
(1784)

where K◦ is the polar cone.
Applying this result to (1189), we get a convex optimization for any given

symmetric matrix H exterior to or on the EDM cone boundary:

minimize
D

‖D −H‖2F
subject to D ∈ EDMN

≡
maximize

A◦
〈A◦, H 〉

subject to ‖A◦‖F ≤ 1

A◦∈ EDMN◦
(1200)

Then from (1786) projection of H on cone EDMN is

D⋆ = H − A◦⋆〈A◦⋆, H 〉 (1201)

Critchley proposed, instead, projection on the polar EDM cone in his 1980
thesis [61, p.113]: In that circumstance, by projection on the algebraic
complement (§E.9.2.2.1),

D⋆ = A⋆〈A⋆, H 〉 (1202)

which is equal to (1201) when A⋆ solves

maximize
A

〈A , H 〉
subject to ‖A‖F = 1

A ∈ EDMN

(1203)

This projection of symmetric H on polar cone EDMN◦ can be made a convex
problem, of course, by relaxing the equality constraint (‖A‖F ≤ 1).
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7.3.2 Minimization of affine dimension in Problem 3

When the desired affine dimension ρ is diminished, Problem 3 (1188) is
difficult to solve [134, §3] because the feasible set in RN(N−1)/2 loses convexity.
By substituting rank envelope (1172) into Problem 3, then for any given H
we get a convex problem

minimize
D

‖D −H‖2F
subject to − tr(V DV ) ≤ κ ρ

D ∈ EDMN

(1204)

where κ ∈R+ is a constant determined by cut-and-try. Given κ , problem
(1204) is a convex optimization having unique solution in any desired
affine dimension ρ ; an approximation to Euclidean projection on that
nonconvex subset of the EDM cone containing EDMs with corresponding
affine dimension no greater than ρ .

The SDP equivalent to (1204) does not move κ into the variables as on
page 464: for nonnegative symmetric input H and distance-square squared
variable ∂ as in (1192),

minimize
∂ , D

− tr(V (∂ − 2H ◦D)V )

subject to

[

∂ij dij

dij 1

]

� 0 , j > i = 1 . . . N−1

− tr(V DV ) ≤ κ ρ

D ∈ EDMN

∂ ∈ SN
h

(1205)

That means we will not see equivalence of this cenv(rank)-minimization
problem to the non−rank-constrained problems (1191) and (1193) like we
saw for its counterpart (1174) in Problem 2.

Another approach to affine dimension minimization is to project instead
on the polar EDM cone; discussed in §6.8.1.5.
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7.3.3 Constrained affine dimension, Problem 3

When one desires affine dimension diminished further below what can be
achieved via cenv(rank)-minimization as in (1205), spectral projection can be
considered a natural means in light of its successful application to projection
on a rank ρ subset of the positive semidefinite cone in §7.1.4.

Yet it is wrong here to zero eigenvalues of −V DV or −V GV or a
variant to reduce affine dimension, because that particular method comes
from projection on a positive semidefinite cone (1142); zeroing those
eigenvalues here in Problem 3 would place an elbow in the projection
path (confer Figure 110) thereby producing a result that is necessarily
suboptimal. Problem 3 is instead a projection on the EDM cone whose
associated spectral cone is considerably different. (§5.11.2.3) Proper choice
of spectral cone is demanded by diagonalization of that variable argument to
the objective:

7.3.3.1 Cayley-Menger form

We use Cayley-Menger composition of the Euclidean distance matrix to solve
a problem that is the same as Problem 3 (1188): (§5.7.3.0.1)

minimize
D

∥

∥

∥

∥

[

0 1T

1 −D

]

−
[

0 1T

1 −H

]∥

∥

∥

∥

2

F

subject to rank

[

0 1T

1 −D

]

≤ ρ + 2

D ∈ EDMN

(1206)

a projection of H on a generally nonconvex subset (when ρ <N−1) of the
Euclidean distance matrix cone boundary rel ∂EDMN ; id est, projection
from the EDM cone interior or exterior on a subset of its relative boundary
(§6.6, (986)).

Rank of an optimal solution is intrinsically bounded above and below;

2 ≤ rank

[

0 1T

1 −D⋆

]

≤ ρ + 2 ≤ N + 1 (1207)

Our proposed strategy for low-rank solution is projection on that subset

of a spectral cone λ

([

0 1T

1 −EDMN

])

(§5.11.2.3) corresponding to affine
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dimension not in excess of that ρ desired; id est, spectral projection on




Rρ+1
+

0
R−



 ∩ ∂H ⊂ RN+1 (1208)

where
∂H = {λ ∈ RN+1 | 1Tλ= 0} (919)

is a hyperplane through the origin. This pointed polyhedral cone (1208), to
which membership subsumes the rank constraint, has empty interior.

Given desired affine dimension 0≤ ρ≤N−1 and diagonalization (§A.5)
of unknown EDM D

[

0 1T

1 −D

]

∆
= UΥU T ∈ SN+1

h (1209)

and given symmetric H in diagonalization
[

0 1T

1 −H

]

∆
= QΛQT ∈ SN+1 (1210)

having eigenvalues arranged in nonincreasing order, then by (932) problem
(1206) is equivalent to

minimize
Υ , R

∥

∥δ(Υ)− π
(

δ(RTΛR)
)∥

∥

2

subject to δ(Υ) ∈





Rρ+1
+

0
R−



 ∩ ∂H

δ(QRΥRTQT ) = 0

R−1 = RT

(1211)

where π is the permutation operator from §7.1.3 arranging its vector
argument in nonincreasing order,7.17 where

R
∆
= QTU ∈RN+1×N+1 (1212)

in U on the set of orthogonal matrices is a bijection, and where ∂H insures
one negative eigenvalue. Hollowness constraint δ(QRΥRTQT ) = 0 makes
problem (1211) difficult by making the two variables dependent.

7.17Recall, any permutation matrix is an orthogonal matrix.
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Our plan is to instead divide problem (1211) into two and then alternate
their solution:

minimize
Υ

∥

∥δ(Υ)− π
(

δ(RTΛR)
)∥

∥

2

subject to δ(Υ) ∈





Rρ+1
+

0
R−



 ∩ ∂H
(a)

minimize
R

‖RΥRT − Λ‖2F
subject to δ(QRΥRTQT ) = 0

R−1 = RT

(b)

(1213)

We justify disappearance of the hollowness constraint in convex
optimization problem (1213a): From the arguments in §7.1.3 with
regard to π the permutation operator, cone membership constraint

δ(Υ)∈





Rρ+1
+

0
R−



∩ ∂H from (1213a) is equivalent to

δ(Υ) ∈





Rρ+1
+

0
R−



 ∩ ∂H ∩ KM (1214)

where KM is the monotone cone (§2.13.9.4.2). Membership of δ(Υ) to the
polyhedral cone of majorization (Theorem A.1.2.0.1)

K∗λδ = ∂H ∩ K∗M+ (1229)

where K∗M+ is the dual monotone nonnegative cone (§2.13.9.4.1), is a
condition (in absence of a hollowness constraint) that would insure existence

of a symmetric hollow matrix

[

0 1T

1 −D

]

. Curiously, intersection of

this feasible superset





Rρ+1
+

0
R−



∩ ∂H ∩ KM from (1214) with the cone of

majorization K∗λδ is a benign operation; id est,

∂H ∩ K∗M+ ∩ KM = ∂H ∩ KM (1215)
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verifiable by observing conic dependencies (§2.10.3) among the aggregate of
halfspace-description normals. The cone membership constraint in (1213a)
therefore inherently insures existence of a symmetric hollow matrix. �

Optimization (1213b) would be a Procrustes problem (§C.4) were it
not for the hollowness constraint; it is, instead, a minimization over the
intersection of the nonconvex manifold of orthogonal matrices with another
nonconvex set in variable R specified by the hollowness constraint.

We solve problem (1213b) by a method introduced in §4.4.3.0.4: Define
R = [ r1 · · · rN+1 ]∈RN+1×N+1 and make the assignment

G =











r1
...

rN+1

1











[ rT
1 · · · rT

N+1 1 ]

∈ S(N+1)2+1

=











R11 · · · R1,N+1 r1
...

. . .
...

RT
1,N+1 RN+1,N+1 rN+1

rT
1 · · · rT

N+1 1











∆
=











r1r
T
1 · · · r1r

T
N+1 r1

...
. . .

...
rN+1r

T
1 rN+1r

T
N+1 rN+1

rT
1 · · · rT

N+1 1











(1216)

where Rij
∆
= rir

T
j ∈ RN+1×N+1. Then (1213b) is equivalently expressed:

minimize
Rij , ri

∥

∥

∥

∥

N+1
∑

i=1

ΥiiRii − Λ

∥

∥

∥

∥

2

F

subject to trRii = 1 , i=1 . . . N+1
trRij = 0 , i<j = 2 . . . N+1

G =











R11 · · · R1,N+1 r1
...

. . .
...

RT
1,N+1 RN+1,N+1 rN+1

rT
1 · · · rT

N+1 1











(� 0)

δ

(

Q
N+1
∑

i=1

ΥiiRii Q
T

)

= 0

rankG = 1

(1217)
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The rank constraint is regularized by method of convex iteration developed
in §4.4. Problem (1217) is partitioned into two convex problems:

minimize
Rij , ri

∥

∥

∥

∥

N+1
∑

i=1

ΥiiRii − Λ

∥

∥

∥

∥

2

F

+ 〈G , W 〉
subject to trRii = 1 , i=1 . . . N+1

trRij = 0 , i<j = 2 . . . N+1

G =











R11 · · · R1,N+1 r1
...

. . .
...

RT
1,N+1 RN+1,N+1 rN+1

rT
1 · · · rT

N+1 1











� 0

δ

(

Q
N+1
∑

i=1

ΥiiRii Q
T

)

= 0

(1218)

and
minimize

W∈ S(N+1)2+1

〈G⋆, W 〉

subject to 0 � W � I

trW = (N + 1)2

(1219)

then iterated until a rank-1 G matrix is found.

7.4 Conclusion

There has been little progress in spectral projection since the discovery
by Eckart & Young in 1936 [85] of a formula for projection on a rank ρ
subset of the positive semidefinite cone (§2.9.2.1). The only closed-form
spectral method presently available for solving proximity problems, having a
constraint on rank, is based on their discovery (Problem 1, §7.1, §5.13).

One recourse is intentional misapplication of Eckart & Young’s result by
introducing spectral projection on a positive semidefinite cone into Problem 3
via D(G) (721), for example. [52] Since Problem 3 instead demands spectral
projection on the EDM cone, any solution acquired that way is necessarily
suboptimal.

A second recourse is problem redesign: A presupposition to all proximity
problems in this chapter is that matrix H is given. We considered H having
various properties such as nonnegativity, symmetry, hollowness, or lack
thereof. It was assumed that if H did not already belong to the EDM cone,
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then we wanted an EDM closest to H in some sense; id est, input-matrix H
was assumed corrupted somehow. For practical problems, it withstands
reason that such a proximity problem could instead be reformulated so that
some or all entries of H were unknown but bounded above and below by
known limits; the norm objective is thereby eliminated as in the development
beginning on page 265. That redesign (the art, p.8), in terms of the
Gram-matrix bridge between point-list X and EDM D , at once encompasses
proximity and completion problems.

A third recourse is to apply the method of convex iteration just like we
did in §7.2.2.7.1. This technique is applicable to any semidefinite problem
requiring a rank constraint; it places a regularization term in the objective
that enforces the rank constraint.

The importance and application of solving rank-constrained problems
are enormous, a conclusion generally accepted gratis by the mathematics
and engineering communities. Rank-constrained semidefinite programs
arise in many vital feedback and control problems [122], optics [54],
and communications [209] [186]. Rank-constrained problems also appear
naturally in combinatorial optimization. (§4.4.3.0.7)



Appendix A

Linear algebra

A.1 Main-diagonal δ operator, λ , trace, vec

We introduce notation δ denoting the main-diagonal linear self-adjoint
operator. When linear function δ operates on a square matrix A∈RN×N ,
δ(A) returns a vector composed of all the entries from the main diagonal in
the natural order;

δ(A) ∈ RN (1220)

Operating on a vector y∈RN , δ naturally returns a diagonal matrix;

δ(y) ∈ SN (1221)

Operating recursively on a vector Λ∈RN or diagonal matrix Λ∈SN ,
δ(δ(Λ)) returns Λ itself;

δ2(Λ) ≡ δ(δ(Λ))
∆
= Λ (1222)

Defined in this manner, main-diagonal linear operator δ is self-adjoint
[166, §3.10, §9.5-1];A.1 videlicet, (§2.2)

δ(A)Ty = 〈δ(A) , y〉 = 〈A , δ(y)〉 = tr
(

AT δ(y)
)

(1223)

A.1Linear operator T : Rm×n→RM×N is self-adjoint when, for each and every
X1 , X2∈Rm×n

〈T (X1) , X2〉 = 〈X1 , T (X2)〉© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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A.1.1 Identities

This δ notation is efficient and unambiguous as illustrated in the following
examples where A ◦B denotes Hadamard product [150] [110, §1.1.4] of
matrices of like size, ⊗ the Kronecker product (§D.1.2.1), y a vector, X a
matrix, ei the ith member of the standard basis for Rn, SN

h the symmetric
hollow subspace, σ a vector of (nonincreasingly) ordered singular values, and
λ(A) denotes a vector of nonincreasingly ordered eigenvalues of matrix A :

1. δ(A) = δ(AT )

2. tr(A) = tr(AT ) = δ(A)T1

3. 〈I , A〉 = trA

4. δ(cA) = c δ(A) , c∈R

5. tr(c
√
ATA ) = c tr

√
ATA = c1Tσ(A) , c∈R

6. tr(cA) = c tr(A) = c1Tλ(A) , c∈R

7. δ(A+B) = δ(A) + δ(B)

8. tr(A+B) = tr(A) + tr(B)

9. δ(AB) = (A ◦BT )1 = (BT ◦ A)1

10. δ(AB)T = 1T(AT ◦B) = 1T(B ◦ AT )

11. δ(uvT ) =







u1v1
...

uN vN






= u ◦ v , u,v∈RN

12. tr(ATB) = tr(ABT ) = tr(BAT ) = tr(BTA)

= 1T(A ◦B)1 = 1T δ(ABT ) = δ(ATB)T1 = δ(BAT )T1 = δ(BTA)T1

13. D = [dij] ∈ SN
h , H = [hij] ∈ SN

h , V = I − 1
N
11T ∈ SN (confer §B.4.2 no.20)

N tr(−V (D ◦H)V ) = tr(DTH) = 1T(D ◦H)1 = tr(11T(D ◦H)) =
∑

i,j

dij hij

14. tr(ΛA) = δ(Λ)T δ(A) , δ2(Λ)
∆
= Λ ∈ SN
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15. yTBδ(A) = tr
(

Bδ(A)yT
)

= tr
(

δ(BTy)A
)

= tr
(

Aδ(BTy)
)

= δ(A)TBTy = tr
(

y δ(A)TBT
)

= tr
(

AT δ(BTy)
)

= tr
(

δ(BTy)AT
)

16. δ2(ATA) =
∑

i

eie
T
iA

TAeie
T
i

17. δ
(

δ(A)1T
)

= δ
(

1 δ(A)T
)

= δ(A)

18. δ(A1)1 = δ(A11T ) = A1 , δ(y)1 = δ(y1T ) = y

19. δ(I1) = δ(1) = I

20. δ(eie
T
j 1) = δ(ei) = eie

T
i

21. vec(AXB) = (BT ⊗ A) vecX

22. vec(BXA) = (AT ⊗B) vecX

23. tr(AXBXT ) = vec(X)T vec(AXB) = vec(X)T (BT⊗A) vecX [116]

24.
tr(AXTBX) = vec(X)T vec(BXA) = vec(X)T (AT ⊗B) vecX

= δ
(

vec(X) vec(X)T (AT ⊗B)
)T

1

25. For ζ=[ζi]∈Rk and x=[xi]∈Rk,
∑

i

ζi/xi = ζT δ(x)−11

26. For any permutation matrix Ξ and dimensionally compatible vector y
or matrix A

δ(Ξ y) = Ξ δ(y) ΞT (1224)

δ(ΞAΞT ) = Ξ δ(A) (1225)

So given any permutation matrix Ξ and any dimensionally compatible
matrix B , for example,

δ2(B) = Ξ δ2(ΞTB Ξ)ΞT (1226)

27. π(δ(A)) = λ(I ◦A) where π is the presorting function
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A.1.2 Majorization

A.1.2.0.1 Theorem. (Schur) Majorization. [301, §7.4] [150, §4.3]
[151, §5.5] Let λ∈RN denote a given vector of eigenvalues and let
δ∈RN denote a given vector of main diagonal entries, both arranged in
nonincreasing order. Then

∃A∈ SN � λ(A)=λ and δ(A)= δ ⇐ λ− δ ∈ K∗λδ (1227)

and conversely
A∈ SN ⇒ λ(A)− δ(A) ∈ K∗λδ (1228)

The difference belongs to the pointed polyhedral cone of majorization (empty
interior, confer (271))

K∗λδ
∆
= K∗M+ ∩ {ζ1 | ζ ∈R}∗ (1229)

where K∗M+ is the dual monotone nonnegative cone (376), and where the

dual of the line is a hyperplane; ∂H= {ζ1 | ζ ∈R}∗= 1⊥ . ⋄

Majorization cone K∗λδ is naturally consequent to the definition of
majorization; id est, vector y∈RN majorizes vector x if and only if

k
∑

i=1

xi ≤
k
∑

i=1

yi ∀ 1 ≤ k ≤ N (1230)

and
1Tx = 1Ty (1231)

Under these circumstances, rather, vector x is majorized by vector y .
In the particular circumstance δ(A)=0, we get:

A.1.2.0.2 Corollary. Symmetric hollow majorization.
Let λ∈RN denote a given vector of eigenvalues arranged in nonincreasing
order. Then

∃A∈ SN
h � λ(A)=λ ⇐ λ ∈ K∗λδ (1232)

and conversely
A∈ SN

h ⇒ λ(A) ∈ K∗λδ (1233)

where K∗λδ is defined in (1229). ⋄
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A.2 Semidefiniteness: domain of test

The most fundamental necessary, sufficient, and definitive test for positive
semidefiniteness of matrix A∈Rn×n is: [151, §1]

xTAx ≥ 0 for each and every x ∈ Rn such that ‖x‖= 1 (1234)

Traditionally, authors demand evaluation over broader domain; namely,
over all x ∈Rn which is sufficient but unnecessary. Indeed, that standard
textbook requirement is far over-reaching because if xTAx is nonnegative for
particular x= xp , then it is nonnegative for any αxp where α∈R . Thus,
only normalized x in Rn need be evaluated.

Many authors add the further requirement that the domain be complex;
the broadest domain. By so doing, only Hermitian matrices (AH = A where
superscript H denotes conjugate transpose)A.2 are admitted to the set of
positive semidefinite matrices (1237); an unnecessary prohibitive condition.

A.2.1 Symmetry versus semidefiniteness

We call (1234) the most fundamental test of positive semidefiniteness. Yet
some authors instead say, for real A and complex domain (x∈Cn), the
complex test xHAx≥ 0 is most fundamental. That complex broadening of the
domain of test causes nonsymmetric real matrices to be excluded from the set
of positive semidefinite matrices. Yet admitting nonsymmetric real matrices
or not is a matter of preferenceA.3 unless that complex test is adopted, as we
shall now explain.

Any real square matrix A has a representation in terms of its symmetric
and antisymmetric parts; id est,

A =
(A+AT )

2
+

(A−AT )

2
(44)

Because, for all real A , the antisymmetric part vanishes under real test,

xT (A−AT )

2
x = 0 (1235)

A.2Hermitian symmetry is the complex analogue; the real part of a Hermitian matrix
is symmetric while its imaginary part is antisymmetric. A Hermitian matrix has real
eigenvalues and real main diagonal.
A.3Golub & Van Loan [110, §4.2.2], for example, admit nonsymmetric real matrices.
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only the symmetric part of A , (A+AT )/2, has a role determining positive
semidefiniteness. Hence the oft-made presumption that only symmetric
matrices may be positive semidefinite is, of course, erroneous under (1234).
Because eigenvalue-signs of a symmetric matrix translate unequivocally to
its semidefiniteness, the eigenvalues that determine semidefiniteness are
always those of the symmetrized matrix. (§A.3) For that reason, and
because symmetric (or Hermitian) matrices must have real eigenvalues,
the convention adopted in the literature is that semidefinite matrices are
synonymous with symmetric semidefinite matrices. Certainly misleading
under (1234), that presumption is typically bolstered with compelling
examples from the physical sciences where symmetric matrices occur within
the mathematical exposition of natural phenomena.A.4 [96, §52]

Perhaps a better explanation of this pervasive presumption of symmetry
comes from Horn & Johnson [150, §7.1] whose perspectiveA.5 is the complex
matrix, thus necessitating the complex domain of test throughout their
treatise. They explain, if A∈Cn×n

. . . and if xHAx is real for all x ∈ Cn, then A is Hermitian.
Thus, the assumption that A is Hermitian is not necessary in the
definition of positive definiteness. It is customary, however.

Their comment is best explained by noting, the real part of xHAx comes
from the Hermitian part (A+AH)/2 of A ;

Re(xHAx) = xHA+AH

2
x (1236)

rather,
xHAx ∈ R ⇔ AH = A (1237)

because the imaginary part of xHAx comes from the anti-Hermitian part
(A−AH)/2 ;

Im(xHAx) = xHA−AH

2
x (1238)

that vanishes for nonzero x if and only if A =AH . So the Hermitian
symmetry assumption is unnecessary, according to Horn & Johnson, not

A.4Symmetric matrices are certainly pervasive in the our chosen subject as well.
A.5A totally complex perspective is not necessarily more advantageous. The positive

semidefinite cone, for example, is not self-dual (§2.13.5) in the ambient space of Hermitian
matrices. [145, §II]
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because nonHermitian matrices could be regarded positive semidefinite,
rather because nonHermitian (includes nonsymmetric real) matrices are not
comparable on the real line under xHAx . Yet that complex edifice is
dismantled in the test of real matrices (1234) because the domain of test
is no longer necessarily complex; meaning, xTAx will certainly always be
real, regardless of symmetry, and so real A will always be comparable.

In summary, if we limit the domain of test to x in Rn as in (1234),
then nonsymmetric real matrices are admitted to the realm of semidefinite
matrices because they become comparable on the real line. One important
exception occurs for rank-one matrices Ψ=uvT where u and v are real
vectors: Ψ is positive semidefinite if and only if Ψ=uuT . (§A.3.1.0.7)

We might choose to expand the domain of test to x in Cn so that only
symmetric matrices would be comparable. The alternative to expanding
domain of test is to assume all matrices of interest to be symmetric; that
is commonly done, hence the synonymous relationship with semidefinite
matrices.

A.2.1.0.1 Example. Nonsymmetric positive definite product.
Horn & Johnson assert and Zhang agrees:

If A,B∈Cn×n are positive definite, then we know that the
product AB is positive definite if and only if AB is Hermitian.
[150, §7.6, prob.10] [301, §6.2, §3.2]

Implicitly in their statement, A and B are assumed individually Hermitian
and the domain of test is assumed complex.

We prove that assertion to be false for real matrices under (1234) that
adopts a real domain of test.

AT = A =









3 0 −1 0
0 5 1 0
−1 1 4 1

0 0 1 4









, λ(A) =









5.9
4.5
3.4
2.0









(1239)

BT = B =









4 4 −1 −1
4 5 0 0
−1 0 5 1
−1 0 1 4









, λ(B) =









8.8
5.5
3.3
0.24









(1240)
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(AB)T 6= AB =









13 12 −8 −4
19 25 5 1
−5 1 22 9
−5 0 9 17









, λ(AB) =









36.
29.
10.
0.72









(1241)

1
2
(AB + (AB)T ) =









13 15.5 −6.5 −4.5
15.5 25 3 0.5
−6.5 3 22 9
−4.5 0.5 9 17









, λ
(

1
2
(AB + (AB)T )

)

=









36.
30.
10.

0.014









(1242)

Whenever A∈ Sn
+ and B∈ Sn

+ , then λ(AB)=λ(
√
AB
√
A) will always

be a nonnegative vector by (1268) and Corollary A.3.1.0.5. Yet positive
definiteness of the product AB is certified instead by the nonnegative
eigenvalues λ

(

1
2
(AB + (AB)T )

)

in (1242) (§A.3.1.0.1) despite the fact AB
is not symmetric.A.6 Horn & Johnson and Zhang resolve the anomaly by
choosing to exclude nonsymmetric matrices and products; they do so by
expanding the domain of test to Cn. 2

A.3 Proper statements

of positive semidefiniteness

Unlike Horn & Johnson and Zhang, we never adopt the complex domain
of test in regard to real matrices. So motivated is our consideration of
proper statements of positive semidefiniteness under real domain of test.
This restriction, ironically, complicates the facts when compared to the
corresponding statements for the complex case (found elsewhere, [150] [301]).

We state several fundamental facts regarding positive semidefiniteness of
real matrix A and the product AB and sum A+B of real matrices under
fundamental real test (1234); a few require proof as they depart from the
standard texts, while those remaining are well established or obvious.

A.6It is a little more difficult to find a counter-example in R2×2 or R3×3 ; which may
have served to advance any confusion.
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A.3.0.0.1 Theorem. Positive (semi)definite matrix.
A∈ SM is positive semidefinite if and only if for each and every real vector
x of unit norm, ‖x‖= 1 ,A.7 we have xTAx≥ 0 (1234);

A � 0 ⇔ tr(xxTA) = xTAx ≥ 0 (1243)

Matrix A∈ SM is positive definite if and only if for each and every ‖x‖= 1
we have xTAx> 0 ;

A ≻ 0 ⇔ tr(xxTA) = xTAx > 0 (1244)

⋄

Proof. Statements (1243) and (1244) are each a particular instance
of dual generalized inequalities (§2.13.2) with respect to the positive
semidefinite cone; videlicet, [270]

A � 0 ⇔ 〈xxT , A〉 ≥ 0 ∀xxT(� 0)

A ≻ 0 ⇔ 〈xxT , A〉 > 0 ∀xxT(� 0) , xxT 6= 0
(1245)

Relations (1243) and (1244) remain true when xxT is replaced with “for each
and every” X∈ SM

+ [46, §2.6.1] (§2.13.5) of unit norm ‖X‖= 1 as in

A � 0 ⇔ tr(XA) ≥ 0 ∀X∈ SM
+

A ≻ 0 ⇔ tr(XA) > 0 ∀X∈ SM
+ , X 6= 0

(1246)

but this condition is far more than what is necessary. By the discrete
membership theorem in §2.13.4.2.1, the extreme directions xxT of the positive
semidefinite cone constitute a minimal set of generators necessary and
sufficient for discretization of dual generalized inequalities (1246) certifying
membership to that cone. �

A.7The traditional condition requiring all x∈RM for defining positive (semi)definiteness
is actually far more than what is necessary. The set of norm-1 vectors is necessary and
sufficient to establish positive semidefiniteness; actually, any particular norm and any
nonzero norm-constant will work.
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A.3.1 Semidefiniteness, eigenvalues, nonsymmetric

When A∈Rn×n, let λ
(

1
2
(A+AT )

)

∈ Rn denote eigenvalues of the
symmetrized matrixA.8 arranged in nonincreasing order.� By positive semidefiniteness of A∈Rn×n we mean,A.9 [200, §1.3.1]

(confer §A.3.1.0.1)

xTAx ≥ 0 ∀x∈Rn ⇔ A+AT � 0 ⇔ λ(A+AT ) � 0 (1247)� (§2.9.0.1)
A � 0 ⇒ AT = A (1248)

A � B ⇔ A−B � 0 ; A � 0 or B � 0 (1249)

xTAx≥ 0 ∀x ; AT = A (1250)� Matrix symmetry is not intrinsic to positive semidefiniteness;

AT = A , λ(A) � 0 ⇒ xTAx ≥ 0 ∀x (1251)

λ(A) � 0 ⇐ AT = A , xTAx ≥ 0 ∀x (1252)� If AT = A then
λ(A) � 0 ⇔ A � 0 (1253)

meaning, matrix A belongs to the positive semidefinite cone in the
subspace of symmetric matrices if and only if its eigenvalues belong to
the nonnegative orthant.

〈A , A〉 = 〈λ(A) , λ(A)〉 (1254)� For µ∈R , A∈Rn×n, and vector λ(A)∈Cn holding the ordered
eigenvalues of A

λ(µI + A) = µ1 + λ(A) (1255)

Proof: A=MJM−1 and µI + A = M(µI + J )M−1 where J is
the Jordan form for A ; [249, §5.6, App.B] id est, δ(J ) = λ(A) , so
λ(µI + A) = δ(µI + J ) because µI + J is also a Jordan form. �

A.8The symmetrization of A is (A+AT )/2. λ
(

1
2 (A+AT )

)

= λ(A+AT )/2.
A.9Strang agrees [249, p.334] it is not λ(A) that requires observation. Yet he is mistaken

by proposing the Hermitian part alone xH(A+AH)x be tested, because the anti-Hermitian
part does not vanish under complex test unless A is Hermitian. (1238)
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By similar reasoning,

λ(I + µA) = 1 + λ(µA) (1256)

For vector σ(A) holding the singular values of any matrix A

σ(I + µATA) = π(|1 + µσ(ATA)|) (1257)

σ(µI + ATA) = π(|µ1 + σ(ATA)|) (1258)

where π is the nonlinear permutation operator sorting its vector
argument into nonincreasing order.� For A∈ SM and each and every ‖w‖= 1 [150, §7.7, prob.9]

wTAw ≤ µ ⇔ A � µI ⇔ λ(A) � µ1 (1259)� [150, §2.5.4] (confer (36))

A is normal ⇔ ‖A‖2F = λ(A)Tλ(A) (1260)� For A∈Rm×n

ATA � 0 , AAT � 0 (1261)

because, for dimensionally compatible vector x , xTATAx = ‖Ax‖22 ,
xTAATx = ‖ATx‖22 .� For A∈Rn×n and c∈R

tr(cA) = c tr(A) = c1Tλ(A) (§A.1.1 no.6)

For m a nonnegative integer, (1637)

det(Am) =
n
∏

i=1

λ(A)m
i (1262)

tr(Am) =
n
∑

i=1

λ(A)m
i (1263)
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rankA = rank δ(λ(A)) = rank Λ (1264)

meaning, rank is equal to the number of nonzero eigenvalues in vector

λ(A)
∆
= δ(Λ) (1265)

by the 0 eigenvalues theorem (§A.7.3.0.1).� (Fan) For A ,B∈ Sn [41, §1.2] (confer (1520))

tr(AB) ≤ λ(A)Tλ(B) (1266)

with equality (Theobald) when A and B are simultaneously
diagonalizable [150] with the same ordering of eigenvalues.� For A∈Rm×n and B∈Rn×m

tr(AB) = tr(BA) (1267)

and η eigenvalues of the product and commuted product are identical,
including their multiplicity; [150, §1.3.20] id est,

λ(AB)1:η = λ(BA)1:η , η
∆
=min{m, n} (1268)

Any eigenvalues remaining are zero. By the 0 eigenvalues theorem
(§A.7.3.0.1),

rank(AB) = rank(BA) , AB and BA diagonalizable (1269)� For any compatible matrices A ,B [150, §0.4]

min{rankA , rankB} ≥ rank(AB) (1270)� For A,B∈ Sn
+ (218)

rankA+ rankB ≥ rank(A +B) ≥ min{rankA , rankB} ≥ rank(AB)
(1271)� For A,B∈ Sn

+ linearly independent (§B.1.1),

rankA+ rankB = rank(A +B) > min{rankA , rankB} ≥ rank(AB)
(1272)
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rank(AAT ) = rank(ATA) = rankA (1273)� For A∈Rm×n having no nullspace, and for any B∈Rn×k

rank(AB) = rank(B) (1274)

Proof. For any compatible matrix C , N (CAB)⊇ N (AB)⊇ N (B)
is obvious. By assumption ∃A† � A†A= I . Let C =A† , then
N (AB)=N (B) and the stated result follows by conservation of
dimension (1369). �� For A∈ Sn and any nonsingular matrix Y

inertia(A) = inertia(YAY T ) (1275)

a.k.a, Sylvester’s law of inertia. (1316) [77, §2.4.3]� For A,B∈Rn×n square, [150, §0.3.5]

det(AB) = det(BA) (1276)

det(AB) = detA detB (1277)

Yet for A∈Rm×n and B∈Rn×m [55, p.72]

det(I + AB) = det(I +BA) (1278)� For A,B∈ Sn, product AB is symmetric if and only if AB is
commutative;

(AB)T = AB ⇔ AB = BA (1279)

Proof. (⇒) Suppose AB=(AB)T . (AB)T=BTAT=BA .
AB=(AB)T⇒ AB=BA .
(⇐) Suppose AB=BA . BA=BTAT=(AB)T . AB=BA⇒
AB=(AB)T . �

Commutativity alone is insufficient for symmetry of the product.
[249, p.26]
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simultaneously diagonalizable. [150, §1.3.12] A product of diagonal
matrices is always commutative.� For A,B∈Rn×n and AB = BA

xTAx ≥ 0 , xTBx ≥ 0 ∀x ⇒ λ(A+AT )i λ(B+BT )i ≥ 0 ∀ i < xTABx ≥ 0 ∀x
(1280)

the negative result arising because of the schism between the product
of eigenvalues λ(A + AT )i λ(B + BT )i and the eigenvalues of the
symmetrized matrix product λ(AB + (AB)T )i . For example, X2 is
generally not positive semidefinite unless matrix X is symmetric; then
(1261) applies. Simply substituting symmetric matrices changes the
outcome:� For A,B∈ Sn and AB = BA

A � 0 , B � 0 ⇒ λ(AB)i =λ(A)i λ(B)i≥ 0 ∀ i ⇔ AB � 0 (1281)

Positive semidefiniteness of A and B is sufficient but not a necessary
condition for positive semidefiniteness of the product AB .

Proof. Because all symmetric matrices are diagonalizable, (§A.5.2)
[249, §5.6] we have A=SΛST and B=T∆T T , where Λ and ∆ are
real diagonal matrices while S and T are orthogonal matrices. Because
(AB)T =AB , then T must equal S , [150, §1.3] and the eigenvalues
of A are ordered in the same way as those of B ; id est, λ(A)i =δ(Λ)i

and λ(B)i =δ(∆)i correspond to the same eigenvector.
(⇒) Assume λ(A)i λ(B)i≥ 0 for i=1 . . . n . AB=SΛ∆ST is
symmetric and has nonnegative eigenvalues contained in diagonal
matrix Λ∆ by assumption; hence positive semidefinite by (1247). Now
assume A,B� 0. That, of course, implies λ(A)i λ(B)i≥ 0 for all i
because all the individual eigenvalues are nonnegative.
(⇐) Suppose AB=SΛ∆ST � 0. Then Λ∆� 0 by (1247),
and so all products λ(A)i λ(B)i must be nonnegative; meaning,
sgn(λ(A))= sgn(λ(B)). We may, therefore, conclude nothing about
the semidefiniteness of A and B . �
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AB = BA ⇒ λ(AB)i =λ(A)i λ(B)i ≥ 0 ∀ i ⇒ AB � 0 (1282)

AB = BA ⇒ λ(AB)i ≥ 0 , λ(A)i λ(B)i ≥ 0 ∀ i ⇔ AB � 0 (1283)� For A,B∈ Sn [301, §6.2]

A � 0 ⇒ trA ≥ 0 (1284)

A � 0 , B � 0 ⇒ trA trB ≥ tr(AB)≥ 0 (1285)

Because A� 0 , B � 0 ⇒ λ(AB) = λ(
√
AB
√
A)� 0 by (1268) and

Corollary A.3.1.0.5, then we have tr(AB)≥ 0.

A � 0 ⇔ tr(AB)≥ 0 ∀B � 0 (322)� For A,B,C∈ Sn (Löwner)

A � B , B � C ⇒ A � C (1286)

A � B ⇔ A+ C � B + C (1287)

A � B , A � B ⇒ A = B (1288)� For A,B∈Rn×n

xTAx ≥ xTBx ∀x ⇒ trA ≥ trB (1289)

Proof. xTAx≥xTBx ∀x ⇔ λ((A−B) + (A−B)T )/2� 0 ⇒
tr (A+AT− (B+BT ))/2 = tr(A−B)≥ 0. There is no converse. �� For A,B∈ Sn [301, §6.2, prob.1] (Theorem A.3.1.0.4)

A � B ⇒ trA ≥ trB (1290)

A � B ⇒ δ(A)� δ(B) (1291)

There is no converse, and restriction to the positive semidefinite cone
does not improve the situation. The all-strict versions hold. From
[301, §6.2]

A � B � 0 ⇒ rankA ≥ rankB (1292)

A � B � 0 ⇒ detA ≥ detB ≥ 0 (1293)

A ≻ B � 0 ⇒ detA > detB ≥ 0 (1294)� For A,B∈ int Sn
+ [27, §4.2] [150, §7.7.4]

A � B ⇔ A−1� B−1 (1295)
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A � B � 0 ⇒
√
A �

√
B (1296)� For A,B∈ Sn and AB = BA [301, §6.2, prob.3]

A � B � 0 ⇒ Ak � Bk , k=1, 2, . . . (1297)

A.3.1.0.1 Theorem. Positive semidefinite ordering of eigenvalues.
For A ,B∈RM×M , place the eigenvalues of each symmetrized matrix into
the respective vectors λ

(

1
2
(A+AT )

)

, λ
(

1
2
(B +BT )

)

∈RM . Then, [249, §6]

xTAx ≥ 0 ∀x ⇔ λ
(

A+AT
)

� 0 (1298)

xTAx > 0 ∀x 6= 0 ⇔ λ
(

A+AT
)

≻ 0 (1299)

because xT(A−AT )x=0. (1235) Now arrange the entries of λ
(

1
2
(A+AT )

)

and λ
(

1
2
(B +BT )

)

in nonincreasing order so λ
(

1
2
(A+AT )

)

1
holds the

largest eigenvalue of symmetrized A while λ
(

1
2
(B +BT )

)

1
holds the largest

eigenvalue of symmetrized B , and so on. Then [150, §7.7, prob.1, prob.9]
for κ ∈R

xTAx ≥ xTBx ∀x ⇒ λ
(

A+AT
)

� λ
(

B +BT
)

xTAx ≥ xTI x κ ∀x ⇔ λ
(

1
2
(A+AT )

)

� κ1
(1300)

Now let A ,B ∈ SM have diagonalizations A=QΛQT and B=UΥU T with
λ(A)= δ(Λ) and λ(B)= δ(Υ) arranged in nonincreasing order. Then

A � B ⇔ λ(A−B) � 0 (1301)

A � B ⇒ λ(A) � λ(B) (1302)

A � B : λ(A) � λ(B) (1303)

STAS � B ⇐ λ(A) � λ(B) (1304)

where S=QU T . [301, §7.5] ⋄
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A.3.1.0.2 Theorem. (Weyl) Eigenvalues of sum. [150, §4.3]
For A ,B∈RM×M , place the eigenvalues of each symmetrized matrix into
the respective vectors λ

(

1
2
(A+AT )

)

, λ
(

1
2
(B +BT )

)

∈RM in nonincreasing
order so λ

(

1
2
(A+AT )

)

1
holds the largest eigenvalue of symmetrized A while

λ
(

1
2
(B +BT )

)

1
holds the largest eigenvalue of symmetrized B , and so on.

Then, for any k∈{1 . . . M}

λ
(

A+AT
)

k
+ λ

(

B +BT
)

M
≤ λ

(

(A+AT ) + (B +BT )
)

k
≤ λ

(

A+AT
)

k
+ λ

(

B +BT
)

1

(1305)

⋄

Weyl’s theorem establishes positive semidefiniteness of a sum of positive
semidefinite matrices. Because SM

+ is a convex cone (§2.9.0.0.1), then
by (144)

A ,B � 0 ⇒ ζA+ ξB � 0 for all ζ , ξ ≥ 0 (1306)

A.3.1.0.3 Corollary. Eigenvalues of sum and difference. [150, §4.3]
For A∈ SM and B∈ SM

+ , place the eigenvalues of each matrix into the
respective vectors λ(A) , λ(B)∈RM in nonincreasing order so λ(A)1 holds
the largest eigenvalue of A while λ(B)1 holds the largest eigenvalue of B ,
and so on. Then, for any k∈{1 . . . M}

λ(A−B)k ≤ λ(A)k ≤ λ(A+B)k (1307)

⋄

When B is rank-one positive semidefinite, the eigenvalues interlace; id est,
for B = qqT

λ(A)k−1 ≤ λ(A− qqT )k ≤ λ(A)k ≤ λ(A+ qqT )k ≤ λ(A)k+1 (1308)
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A.3.1.0.4 Theorem. Positive (semi)definite principal submatrices.A.10� A∈SM is positive semidefinite if and only if all M principal submatrices
of dimension M−1 are positive semidefinite and detA is nonnegative.� A ∈ SM is positive definite if and only if any one principal submatrix
of dimension M−1 is positive definite and detA is positive. ⋄

If any one principal submatrix of dimension M−1 is not positive definite,
conversely, then A can neither be. Regardless of symmetry, if A∈RM×M is
positive (semi)definite, then the determinant of each and every principal
submatrix is (nonnegative) positive. [200, §1.3.1]

A.3.1.0.5 Corollary. Positive (semi)definite symmetric products.
[150, p.399]� If A∈ SM is positive definite and any particular dimensionally

compatible matrix Z has no nullspace, then ZTAZ is positive definite.� If matrix A∈ SM is positive (semi)definite then, for any matrix Z of
compatible dimension, ZTAZ is positive semidefinite.� A∈ SM is positive (semi)definite if and only if there exists a nonsingular
Z such that ZTAZ is positive (semi)definite.� If A ∈ SM is positive semidefinite and singular it remains possible,
for some skinny Z∈RM×N with N<M , that ZTAZ becomes positive
definite.A.11 ⋄

A.10A recursive condition for positive (semi)definiteness, this theorem is a synthesis of
facts from [150, §7.2] [249, §6.3] (confer [200, §1.3.1]). Principal submatrices are formed
by discarding any subset of rows and columns having the same indices. There are
M !/(1!(M − 1)!) principal 1×1 submatrices, M !/(2!(M−2)!) principal 2×2 submatrices,
and so on, totaling 2M− 1 principal submatrices including A itself. By loading y in yTAy
with various patterns of ones and zeros, it follows that any principal submatrix must be
positive (semi)definite whenever A is.
A.11Using the interpretation in §E.6.4.3, this means coefficients of orthogonal projection of
vectorized A on a subset of extreme directions from SM

+ determined by Z can be positive.
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We can deduce from these, given nonsingular matrix Z and any particular
dimensionally compatible Y : matrix A∈ SM is positive semidefinite if and

only if

[

ZT

Y T

]

A [Z Y ] is positive semidefinite. In other words, from the

Corollary it follows: for dimensionally compatible Z� A � 0 ⇔ ZTAZ � 0 and ZT has a left inverse

Products such as Z†Z and ZZ† are symmetric and positive semidefinite
although, given A� 0, Z†AZ and ZAZ† are neither necessarily symmetric
or positive semidefinite.

A.3.1.0.6 Theorem. Symmetric projector semidefinite. [17, §III]
[18, §6] [163, p.55] For symmetric idempotent matrices P and R

P ,R � 0

P � R ⇔ R(P ) ⊇ R(R) ⇔ N (P ) ⊆ N (R)
(1309)

Projector P is never positive definite [251, §6.5, prob.20] unless it is the
identity matrix. ⋄

A.3.1.0.7 Theorem. Symmetric positive semidefinite.
Given real matrix Ψ with rank Ψ = 1

Ψ � 0 ⇔ Ψ = uuT (1310)

where u is some real vector; id est, symmetry is necessary and sufficient for
positive semidefiniteness of a rank-1 matrix. ⋄

Proof. Any rank-one matrix must have the form Ψ = uvT . (§B.1)
Suppose Ψ is symmetric; id est, v= u . For all y∈RM , yTuuTy ≥ 0.
Conversely, suppose uvT is positive semidefinite. We know that can hold if
and only if uvT + vuT � 0 ⇔ for all normalized y∈RM , 2 yTu vTy ≥ 0 ;
but that is possible only if v= u . �

The same does not hold true for matrices of higher rank, as Example A.2.1.0.1
shows.
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A.4 Schur complement

Consider the Schur-form partitioned matrix G : Given AT = A and
CT = C , then [44]

G =

[

A B
BT C

]

� 0

⇔ A � 0 , BT(I−AA†) = 0 , C−BTA†B � 0
⇔ C � 0 , B(I−CC†) = 0 , A−BC†BT � 0

(1311)

where A† denotes the Moore-Penrose (pseudo)inverse (§E). In the first
instance, I − AA† is a symmetric projection matrix orthogonally projecting
on N (AT ). (1678) It is apparently required

R(B) ⊥ N (AT ) (1312)

which precludes A= 0 when B is any nonzero matrix. Note that A≻ 0 ⇒
A†=A−1 ; thereby, the projection matrix vanishes. Likewise, in the second
instance, I − CC† projects orthogonally on N (CT ). It is required

R(BT ) ⊥ N (CT ) (1313)

which precludes C=0 for B nonzero. Again, C ≻ 0 ⇒ C†=C−1. So we
get, for A or C nonsingular,

G =

[

A B
BT C

]

� 0

⇔
A ≻ 0 , C−BTA−1B � 0

or

C ≻ 0 , A−BC−1BT � 0

(1314)

When A is full-rank then, for all B of compatible dimension, R(B) is in
R(A). Likewise, when C is full-rank, R(BT ) is in R(C). Thus the flavor,
for A and C nonsingular,

G =

[

A B
BT C

]

≻ 0

⇔ A ≻ 0 , C−BTA−1B ≻ 0
⇔ C ≻ 0 , A−BC−1BT ≻ 0

(1315)

where C −BTA−1B is called the Schur complement of A in G , while the
Schur complement of C in G is A−BC−1BT . [103, §4.8]
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Origin of the term Schur complement is from complementary inertia:
[77, §2.4.4] Define

inertia
(

G∈ SM
) ∆

= {p , z , n} (1316)

where p , z , n respectively represent number of positive, zero, and negative
eigenvalues of G ; id est,

M = p + z + n (1317)

Then, when A is invertible,

inertia(G) = inertia(A) + inertia(C −BTA−1B) (1318)

and when C is invertible,

inertia(G) = inertia(C) + inertia(A−BC−1BT ) (1319)

When A=C=0, denoting by σ(B)∈Rm
+ the nonincreasingly ordered

singular values of matrix B∈Rm×m, then we have the eigenvalues
[41, §1.2, prob.17]

λ(G) = λ

([

0 B
BT 0

])

=

[

σ(B)
−Ξσ(B)

]

(1320)

and
inertia(G) = inertia(BTB) + inertia(−BTB) (1321)

where Ξ is the order-reversing permutation matrix defined in (1507).

A.4.0.0.1 Example. Nonnegative polynomial. [27, p.163]
Schur-form positive semidefiniteness is necessary and sufficient for quadratic
polynomial nonnegativity; videlicet, for all compatible x

[xT 1 ]
[

A b
bT c

] [

x
1

]

≥ 0 ⇔ xTAx+ 2bTx+ c ≥ 0 (1322)

2

A.4.0.0.2 Example. Sparse Schur conditions.
Setting matrix A to the identity simplifies the Schur conditions. One
consequence relates the definiteness of three quantities:
[

I B
BT C

]

� 0 ⇔ C − BTB � 0 ⇔
[

I 0
0T C−BTB

]

� 0 (1323)

2
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A.4.0.0.3 Exercise. Eigenvalues λ of sparse Schur-form.
Prove: given C−BTB = 0, for B∈Rm×n and C∈ Sn

λ

([

I B
BT C

])

i

=











1 + λ(C)i , 1 ≤ i ≤ n

1 , n < i ≤ m

0 , otherwise

(1324)

H

A.4.0.0.4 Theorem. Rank of partitioned matrices.
When symmetric matrix A is invertible and C is symmetric,

rank

[

A B
BT C

]

= rank

[

A 0
0T C−BTA−1B

]

= rankA + rank(C−BTA−1B)

(1325)

equals rank of a block on the main diagonal plus rank of its Schur complement
[301, §2.2, prob.7]. Similarly, when symmetric matrix C is invertible and A
is symmetric,

rank

[

A B
BT C

]

= rank

[

A−BC−1BT 0
0T C

]

= rank(A−BC−1BT ) + rankC

(1326)

⋄

Proof. The first assertion (1325) holds if and only if [150, §0.4.6(c)]

∃ nonsingular X,Y � X

[

A B
BT C

]

Y =

[

A 0
0T C−BTA−1B

]

(1327)

Let [150, §7.7.6]

Y = XT =

[

I −A−1B
0T I

]

(1328)

�

A.4.0.0.5 Lemma. Rank of Schur-form block. [92] [90]
Matrix B∈Rm×n has rankB≤ ρ if and only if there exist matrices A∈ Sm

and C∈ Sn such that

rank

[

A 0
0T C

]

≤ 2ρ and G =

[

A B
BT C

]

� 0 (1329)

⋄
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Schur-form positive semidefiniteness alone implies rankA≥ rankB and
rankC≥ rankB . But, even in absence of semidefiniteness, we must always
have rankG≥ rankA , rankB, rankC by fundamental linear algebra.

A.4.1 Determinant

G =

[

A B
BT C

]

(1330)

We consider again a matrix G partitioned like (1311), but not necessarily
positive (semi)definite, where A and C are symmetric.� When A is invertible,

detG = detA det(C −BTA−1B) (1331)

When C is invertible,

detG = detC det(A−BC−1BT ) (1332)� When B is full-rank and skinny, C= 0, and A � 0, then [46, §10.1.1]

detG 6= 0 ⇔ A+BBT ≻ 0 (1333)

When B is a (column) vector, then for all C∈R and all A of dimension
compatible with G

detG = det(A)C −BTAT
cofB (1334)

while for C 6= 0

detG = C det(A− 1

C
BBT ) (1335)

where Acof is the matrix of cofactors [249, §4] corresponding to A .� When B is full-rank and fat, A= 0, and C � 0, then

detG 6= 0 ⇔ C +BTB ≻ 0 (1336)

When B is a row vector, then for A 6= 0 and all C of dimension
compatible with G

detG = A det(C − 1

A
BTB) (1337)

while for all A∈R

detG = det(C)A−BCT
cofB

T (1338)

where Ccof is the matrix of cofactors corresponding to C .
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A.5 eigen decomposition

When a square matrix X∈Rm×m is diagonalizable, [249, §5.6] then

X = SΛS−1 = [ s1 · · · sm ] Λ





wT
1...

wT
m



 =
m
∑

i=1

λi siw
T
i (1339)

where si∈Cm are linearly independent (right-)eigenvectorsA.12 constituting
the columns of S∈Cm×m defined by

XS = SΛ (1340)

wT
i ∈Cm are linearly independent left-eigenvectors of X constituting the rows

of S−1 defined by [150]
S−1X = ΛS−1 (1341)

and where {λi∈C} are eigenvalues (populating diagonal matrix Λ∈Cm×m)
corresponding to both left and right eigenvectors; id est, λ(X) = λ(XT ).

There is no connection between diagonalizability and invertibility of X .
[249, §5.2] Diagonalizability is guaranteed by a full set of linearly independent
eigenvectors, whereas invertibility is guaranteed by all nonzero eigenvalues.

distinct eigenvalues ⇒ l.i. eigenvectors ⇔ diagonalizable
not diagonalizable ⇒ repeated eigenvalue

(1342)

A.5.0.0.1 Theorem. Real eigenvector. Eigenvectors of a real matrix
corresponding to real eigenvalues must be real. ⋄

Proof. Ax = λx . Given λ=λ∗, xHAx = λxHx = λ‖x‖2 = xTAx∗ ⇒
x = x∗, where xH=x∗T . The converse is equally simple. �

A.5.0.1 Uniqueness

From the fundamental theorem of algebra it follows: eigenvalues, including
their multiplicity, for a given square matrix are unique; meaning, there is no
other set of eigenvalues for that matrix. (Conversely, many different matrices
may share the same unique set of eigenvalues.)

Uniqueness of eigenvectors, in contrast, disallows multiplicity of the same
direction.
A.12Eigenvectors must, of course, be nonzero. The prefix eigen is from the German; in
this context meaning, something akin to “characteristic”. [246, p.14]



A.5. EIGEN DECOMPOSITION 505

A.5.0.1.1 Definition. Unique eigenvectors.
When eigenvectors are unique, we mean: unique to within a real nonzero
scaling, and their directions are distinct. △

If S is a matrix of eigenvectors of X as in (1339), for example, then −S
is certainly another matrix of eigenvectors decomposing X with the same
eigenvalues.

For any square matrix, the eigenvector corresponding to a distinct
eigenvalue is unique; [246, p.220]

distinct eigenvalues ⇒ eigenvectors unique (1343)

Eigenvectors corresponding to a repeated eigenvalue are not unique for a
diagonalizable matrix;

repeated eigenvalue ⇒ eigenvectors not unique (1344)

Proof follows from the observation: any linear combination of distinct
eigenvectors of diagonalizable X , corresponding to a particular eigenvalue,
produces another eigenvector. For eigenvalue λ whose multiplicityA.13

dimN (X−λI ) exceeds 1, in other words, any choice of independent
vectors from N (X−λI ) (of the same multiplicity) constitutes eigenvectors
corresponding to λ . �

Caveat diagonalizability insures linear independence which implies
existence of distinct eigenvectors. We may conclude, for diagonalizable
matrices,

distinct eigenvalues ⇔ eigenvectors unique (1345)

A.5.1 eigenmatrix

The (right-)eigenvectors {si} are naturally orthogonal to the left-eigenvectors
{wi} except, for i = 1 . . . m , wT

i si = 1 ; called a biorthogonality condition
[275, §2.2.4] [150] because neither set of left or right eigenvectors is necessarily
an orthogonal set. Consequently, each dyad from a diagonalization is an
independent (§B.1.1) nonorthogonal projector because

A.13For a diagonalizable matrix, algebraic multiplicity is the same as geometric multiplicity.

[246, p.15]
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siw
T
i siw

T
i = siw

T
i (1346)

(whereas the dyads of singular value decomposition are not inherently
projectors (confer (1350))).

The dyads of eigen decomposition can be termed eigenmatrices because

X siw
T
i = λi siw

T
i (1347)

A.5.2 Symmetric matrix diagonalization

The set of normal matrices is, precisely, that set of all real matrices having
a complete orthonormal set of eigenvectors; [301, §8.1] [251, prob.10.2.31]
id est, any matrix X for which XXT =XTX ; [110, §7.1.3] [246, p.3]
e.g., orthogonal and circulant matrices [118]. All normal matrices are
diagonalizable. A symmetric matrix is a special normal matrix whose
eigenvalues must be real and whose eigenvectors can be chosen to make a
real orthonormal set; [251, §6.4] [249, p.315] id est, for X∈ Sm

X = SΛST = [ s1 · · · sm ] Λ





sT
1...
sT

m



 =
m
∑

i=1

λi sis
T
i (1348)

where δ2(Λ) = Λ∈ Sm (§A.1) and S−1 = ST ∈ Rm×m (orthogonal matrix,§B.5) because of symmetry: SΛS−1 = S−TΛST .
Because the arrangement of eigenvectors and their corresponding

eigenvalues is arbitrary, we almost always arrange eigenvalues in
nonincreasing order as is the convention for singular value decomposition.
Then to diagonalize a symmetric matrix that is already a diagonal matrix,
orthogonal matrix S becomes a permutation matrix.

A.5.2.1 Positive semidefinite matrix square root

When X∈ Sm
+ , its unique positive semidefinite matrix square root is defined

√
X

∆
= S
√

ΛST ∈ Sm
+ (1349)

where the square root of nonnegative diagonal matrix
√

Λ is taken entrywise
and positive. Then X=

√
X
√
X .
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A.6 Singular value decomposition, SVD

A.6.1 Compact SVD

[110, §2.5.4] For any A∈Rm×n

A = UΣQT = [u1 · · · uη ] Σ





qT
1...
qT
η



 =
η
∑

i=1

σi uiq
T
i

U ∈Rm×η, Σ ∈Rη×η, Q ∈Rn×η

(1350)

where U and Q are always skinny-or-square each having orthonormal
columns, and where

η
∆
= min{m, n} (1351)

Square matrix Σ is diagonal (§A.1.1)

δ2(Σ) = Σ ∈Rη×η (1352)

holding the singular values {σi∈R} of A which are always arranged in
nonincreasing order by convention and are related to eigenvalues byA.14

σ(A)i = σ(AT )i =







√

λ(ATA)i =
√

λ(AAT )i = λ
(√
ATA

)

i
= λ

(√
AAT

)

i
> 0 , 1 ≤ i ≤ ρ

0 , ρ < i ≤ η
(1353)

of which the last η−ρ are 0 ,A.15 where

ρ
∆
= rankA = rank Σ (1354)

A point sometimes lost: Any real matrix may be decomposed in terms of
its real singular values σ(A)∈ Rη and real matrices U and Q as in (1350),
where [110, §2.5.3]

R{ui |σi 6=0} = R(A)
R{ui |σi =0} ⊆ N (AT )
R{qi |σi 6=0} = R(AT )
R{qi |σi =0} ⊆ N (A)

(1355)

A.14When A is normal, σ(A) = |λ(A)|. [301, §8.1]
A.15For η= n , σ(A) =

√

λ(ATA) = λ
(

√

ATA
)

where λ denotes eigenvalues.

For η=m , σ(A) =
√

λ(AAT ) = λ
(

√

AAT
)

.
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A.6.2 Subcompact SVD

Some authors allow only nonzero singular values. In that case the compact
decomposition can be made smaller; it can be redimensioned in terms of rank
ρ because, for any A∈Rm×n

ρ = rankA = rank Σ = max {i∈{1 . . . η} | σi 6= 0} ≤ η (1356)� There are η singular values. For any flavor SVD, rank is equivalent to
the number of nonzero singular values on the main diagonal of Σ .

Now

A = UΣQT = [u1 · · · uρ ] Σ





qT
1...
qT
ρ



 =
ρ
∑

i=1

σi uiq
T
i

U ∈Rm×ρ, Σ ∈Rρ×ρ, Q ∈Rn×ρ

(1357)

where the main diagonal of diagonal matrix Σ has no 0 entries, and

R{ui} = R(A)
R{qi} = R(AT )

(1358)

A.6.3 Full SVD

Another common and useful expression of the SVD makes U and Q
square; making the decomposition larger than compact SVD. Completing
the nullspace bases in U and Q from (1355) provides what is called the
full singular value decomposition of A ∈ Rm×n [249, App.A]. Orthonormal
matrices U and Q become orthogonal matrices (§B.5):

R{ui |σi 6=0} = R(A)
R{ui |σi =0} = N (AT )
R{qi |σi 6=0} = R(AT )
R{qi |σi =0} = N (A)

(1359)
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For any matrix A having rank ρ (= rank Σ)

A = UΣQT = [u1 · · · um ] Σ





qT
1...
qT
n



 =
η
∑

i=1

σi uiq
T
i

=
[

m×ρ basisR(A) m×m−ρ basisN (AT )
]











σ1

σ2

. . .















(

n×ρ basisR(AT )
)T

(n×n−ρ basisN (A))T





U ∈Rm×m, Σ ∈Rm×n, Q ∈ Rn×n (1360)

where upper limit of summation η is defined in (1351). Matrix Σ is no
longer necessarily square, now padded with respect to (1352) by m−η
zero rows or n−η zero columns; the nonincreasingly ordered (possibly 0)
singular values appear along its main diagonal as for compact SVD (1353).

An important geometrical interpretation of SVD is given in Figure 112
for m= n= 2 : The image of the unit sphere under any m× n matrix
multiplication is an ellipse. Considering the three factors of the SVD
separately, note that QT is a pure rotation of the circle. Figure 112 shows
how the axes q1 and q2 are first rotated by QT to coincide with the coordinate
axes. Second, the circle is stretched by Σ in the directions of the coordinate
axes to form an ellipse. The third step rotates the ellipse by U into its
final position. Note how q1 and q2 are rotated to end up as u1 and u2 , the
principal axes of the final ellipse. A direct calculation shows that Aqj = σj uj .
Thus qj is first rotated to coincide with the j th coordinate axis, stretched by
a factor σj , and then rotated to point in the direction of uj . All of this
is beautifully illustrated for 2×2 matrices by the Matlab code eigshow.m

(see [248]).

A direct consequence of the geometric interpretation is that the largest
singular value σ1 measures the “magnitude” of A (its 2-norm):

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 = σ1 (1361)

This means that ‖A‖2 is the length of the longest principal semiaxis of the
ellipse.
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u1

u2

q1

q1

q1

q2

q2

q2

U

QT

Σ

Figure 112: Geometrical interpretation of full SVD [199]: Image of circle
{x∈R2 | ‖x‖2 =1} under matrix multiplication Ax is, in general, an ellipse.

For the example illustrated, U
∆
=[u1 u2 ]∈R2×2, Q

∆
=[ q1 q2 ]∈R2×2.
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Expressions for U , Q , and Σ follow readily from (1360),

AATU = UΣΣT and ATAQ = QΣT Σ (1362)

demonstrating that the columns of U are the eigenvectors of AAT and the
columns of Q are the eigenvectors of ATA . −Neil Muller et alii [199]

A.6.4 Pseudoinverse by SVD

Matrix pseudoinverse (§E) is nearly synonymous with singular value
decomposition because of the elegant expression, given A = UΣQT

A† = QΣ†TU T ∈ Rn×m (1363)

that applies to all three flavors of SVD, where Σ† simply inverts nonzero
entries of matrix Σ .

Given symmetric matrix A∈ Sn and its diagonalization A = SΛST

(§A.5.2), its pseudoinverse simply inverts all nonzero eigenvalues;

A† = SΛ†ST (1364)

A.6.5 SVD of symmetric matrices

A.6.5.0.1 Definition. Step function. (confer §4.3.2.0.1)
Define the signum-like quasilinear function ψ : Rn→ Rn that takes value 1
corresponding to a 0-valued entry in its argument:

ψ(a)
∆
=

[

lim
xi→ai

xi

|xi|
=

{

1 , ai ≥ 0
−1 , ai < 0

, i=1 . . . n

]

∈ Rn (1365)

△

Eigenvalue signs of a symmetric matrix having diagonalization
A = SΛST (1348) can be absorbed either into real U or real Q from the full
SVD; [263, p.34] (confer §C.4.2.1)

A = SΛST = Sδ(ψ(δ(Λ))) |Λ|ST ∆
= U ΣQT ∈ Sn (1366)

or
A = SΛST = S|Λ| δ(ψ(δ(Λ)))ST ∆

= UΣQT ∈ Sn (1367)

where Σ = |Λ| , denoting entrywise absolute value of diagonal matrix Λ .



512 APPENDIX A. LINEAR ALGEBRA

A.7 Zeros

A.7.1 zero norm

For any given norm, by definition,

‖x‖
ℓ
= 0 ⇔ x = 0 (1368)

A.7.2 0 entry

If a positive semidefinite matrix A= [Aij] ∈ Rn×n has a 0 entry Aii on its
main diagonal, then Aij + Aji = 0 ∀ j . [200, §1.3.1]

Any symmetric positive semidefinite matrix having a 0 entry on its main
diagonal must be 0 along the entire row and column to which that 0 entry
belongs. [110, §4.2.8] [150, §7.1, prob.2]

A.7.3 0 eigenvalues theorem

This theorem is simple, powerful, and widely applicable:

A.7.3.0.1 Theorem. Number of 0 eigenvalues.
For any matrix A∈Rm×n

rank(A) + dimN (A) = n (1369)

by conservation of dimension. [150, §0.4.4]
For any square matrix A∈Rm×m, the number of 0 eigenvalues is at least

equal to dimN (A)

dimN (A) ≤ number of 0 eigenvalues ≤ m (1370)

while the eigenvectors corresponding to those 0 eigenvalues belong to N (A).
[249, §5.1]A.16

A.16We take as given the well-known fact that the number of 0 eigenvalues cannot be less
than the dimension of the nullspace. We offer an example of the converse:

A =









1 0 1 0
0 0 1 0
0 0 0 0
1 0 0 0
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For diagonalizable matrix A (§A.5), the number of 0 eigenvalues is
precisely dimN (A) while the corresponding eigenvectors span N (A). The
real and imaginary parts of the eigenvectors remaining span R(A).

(TRANSPOSE.)

Likewise, for any matrix A∈Rm×n

rank(AT ) + dimN (AT ) = m (1371)

For any square A∈Rm×m, the number of 0 eigenvalues is at least equal
to dimN (AT ) = dimN (A) while the left-eigenvectors (eigenvectors of AT )
corresponding to those 0 eigenvalues belong to N (AT ).

For diagonalizable A , the number of 0 eigenvalues is precisely
dimN (AT ) while the corresponding left-eigenvectors span N (AT ). The real
and imaginary parts of the left-eigenvectors remaining span R(AT ). ⋄

Proof. First we show, for a diagonalizable matrix, the number of 0
eigenvalues is precisely the dimension of its nullspace while the eigenvectors
corresponding to those 0 eigenvalues span the nullspace:

Any diagonalizable matrix A∈Rm×m must possess a complete set of
linearly independent eigenvectors. If A is full-rank (invertible), then all
m=rank(A) eigenvalues are nonzero. [249, §5.1]

Suppose rank(A)< m . Then dimN (A) = m−rank(A). Thus there is
a set of m−rank(A) linearly independent vectors spanning N (A). Each
of those can be an eigenvector associated with a 0 eigenvalue because
A is diagonalizable ⇔ ∃ m linearly independent eigenvectors. [249, §5.2]
Eigenvectors of a real matrix corresponding to 0 eigenvalues must be real.A.17

Thus A has at least m−rank(A) eigenvalues equal to 0.

Now suppose A has more than m−rank(A) eigenvalues equal to 0.
Then there are more than m−rank(A) linearly independent eigenvectors
associated with 0 eigenvalues, and each of those eigenvectors must be in
N (A). Thus there are more than m−rank(A) linearly independent vectors
in N (A) ; a contradiction.

dimN (A) = 2, λ(A) = [ 0 0 0 1 ]T ; three eigenvectors in the nullspace but only two are
independent. The right-hand side of (1370) is tight for nonzero matrices; e.g., (§B.1) dyad
uvT ∈ Rm×m has m 0-eigenvalues when u∈ v⊥.
A.17Let ∗ denote complex conjugation. Suppose A=A∗ and Asi = 0. Then si = s∗i ⇒
Asi =As

∗
i ⇒ As∗i = 0. Conversely, As∗i = 0 ⇒ Asi =As

∗
i ⇒ si = s∗i .
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Therefore diagonalizable A has rank(A) nonzero eigenvalues and exactly
m−rank(A) eigenvalues equal to 0 whose corresponding eigenvectors span
N (A).

By similar argument, the left-eigenvectors corresponding to 0 eigenvalues
span N (AT ).

Next we show when A is diagonalizable, the real and imaginary parts of
its eigenvectors (corresponding to nonzero eigenvalues) span R(A) :

The right-eigenvectors of a diagonalizable matrix A∈Rm×m are linearly
independent if and only if the left-eigenvectors are. So, matrix A has
a representation in terms of its right- and left-eigenvectors; from the
diagonalization (1339), assuming 0 eigenvalues are ordered last,

A =
m
∑

i=1

λi siw
T
i =

k≤m
∑

i=1
λi 6=0

λi siw
T
i (1372)

From the linearly independent dyads theorem (§B.1.1.0.2), the dyads {siw
T
i }

must be independent because each set of eigenvectors are; hence rankA=k ,
the number of nonzero eigenvalues. Complex eigenvectors and eigenvalues
are common for real matrices, and must come in complex conjugate pairs for
the summation to remain real. Assume that conjugate pairs of eigenvalues
appear in sequence. Given any particular conjugate pair from (1372), we get
the partial summation

λi siw
T
i + λ∗i s

∗
iw
∗T
i = 2Re(λi siw

T
i )

= 2
(

Re si Re(λiw
T
i )− Im si Im(λiw

T
i )
) (1373)

whereA.18 λ∗i
∆
= λi+1 , s∗i

∆
= si+1 , and w∗i

∆
= wi+1 . Then (1372) is

equivalently written

A = 2
∑

i
λ∈C

λi 6=0

Re s2i Re(λ2iw
T
2i)− Im s2i Im(λ2iw

T
2i) +

∑

j
λ∈R

λj 6=0

λj sjw
T
j (1374)

The summation (1374) shows: A is a linear combination of real and imaginary
parts of its right-eigenvectors corresponding to nonzero eigenvalues. The k
vectors {Re si∈Rm, Im si∈Rm | λi 6=0, i∈{1 . . . m}} must therefore span
the range of diagonalizable matrix A .

The argument is similar regarding the span of the left-eigenvectors. �

A.18The complex conjugate of w is denoted w∗, while its conjugate transpose is denoted
by wH = w∗T .
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A.7.4 0 trace and matrix product

For X,A∈SM
+ [27, §2.6.1, exer.2.8] [269, §3.1]

tr(XA) = 0 ⇔ XA = AX = 0 (1375)

Proof. (⇐) Suppose XA =AX= 0. Then tr(XA)=0 is obvious.
(⇒) Suppose tr(XA)=0. tr(XA)= tr(

√
AX
√
A) whose argument is

positive semidefinite by Corollary A.3.1.0.5. Trace of any square matrix is
equivalent to the sum of its eigenvalues. Eigenvalues of a positive semidefinite
matrix can total 0 if and only if each and every nonnegative eigenvalue
is 0. The only feasible positive semidefinite matrix, having all 0 eigenvalues,
resides at the origin; (confer (1399)) id est,

√
AX
√
A =

(√
X
√
A
)T√

X
√
A = 0 (1376)

implying
√
X
√
A = 0 which in turn implies

√
X(
√
X
√
A)
√
A =XA= 0.

Arguing similarly yields AX= 0. �

Diagonalizable matrices A and X are simultaneously diagonalizable if
and only if they are commutative under multiplication; [150, §1.3.12] id est,
iff they share a complete set of eigenvectors.

A.7.4.1 an equivalence in nonisomorphic spaces

Identity (1375) leads to an unusual equivalence relating convex geometry to
traditional linear algebra: The convex sets, given A� 0

{X | 〈X , A〉 = 0} ∩ {X� 0} ≡ {X | N (X) ⊇ R(A)} ∩ {X� 0} (1377)

(one expressed in terms of a hyperplane, the other in terms of nullspace and
range) are equivalent only when symmetric matrix A is positive semidefinite.

We might apply this equivalence to the geometric center subspace, for
example,

SM
c = {Y ∈ SM | Y 1 = 0}

= {Y ∈ SM | N (Y ) ⊇ 1} = {Y ∈ SM | R(Y ) ⊆ N (1T )}
(1766)

from which we derive (confer (803))

SM
c ∩ SM

+ ≡ {X� 0 | 〈X , 11T 〉 = 0} (1378)
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A.7.5 Zero definite

The domain over which an arbitrary real matrix A is zero definite can exceed
its left and right nullspaces. For any positive semidefinite matrix A∈RM×M

(for A+AT � 0)
{x | xTAx = 0} = N (A+AT ) (1379)

because ∃R � A+AT=RTR , ‖Rx‖=0⇔Rx=0, and N (A+AT )=N (R).
Then given any particular vector xp , xT

pAxp = 0 ⇔ xp∈ N (A+AT ). For
any positive definite matrix A (for A+AT ≻ 0)

{x | xTAx = 0} = 0 (1380)

Further, [301, §3.2, prob.5]

{x | xTAx = 0} = RM ⇔ AT = −A (1381)

while
{x | xHAx = 0} = CM ⇔ A = 0 (1382)

The positive semidefinite matrix

A =

[

1 2
0 1

]

(1383)

for example, has no nullspace. Yet

{x | xTAx = 0} = {x | 1Tx = 0} ⊂ R2 (1384)

which is the nullspace of the symmetrized matrix. Symmetric matrices are
not spared from the excess; videlicet,

B =

[

1 2
2 1

]

(1385)

has eigenvalues {−1, 3}, no nullspace, but is zero definite onA.19

X ∆
= {x∈R2 | x2 = (−2±

√
3)x1} (1386)

A.19These two lines represent the limit in the union of two generally distinct hyperbolae;
id est, for matrix B and set X as defined

lim
ε→0+

{x∈R2 | xTBx = ε} = X
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A.7.5.0.1 Proposition. (Sturm) Dyad-decompositions. [254, §5.2]

Let positive semidefinite matrix X∈ SM
+ have rank ρ . Then given symmetric

matrix A∈ SM , 〈A , X 〉= 0 if and only if there exists a dyad-decomposition

X =

ρ
∑

j=1

xjx
T
j (1387)

satisfying
〈A , xjx

T
j 〉 = 0 for each and every j ∈ {1 . . . ρ} (1388)

⋄

The dyad-decomposition of X proposed is generally not that obtained
from a standard diagonalization by eigen decomposition, unless ρ=1 or
the given matrix A is diagonalizable simultaneously (§A.7.4) with X .
That means, elemental dyads in decomposition (1387) constitute a generally
nonorthogonal set. Sturm & Zhang give a simple procedure for constructing
the dyad-decomposition; (§F.5) matrix A may be regarded as a parameter.

A.7.5.0.2 Example. Dyad.
The dyad uvT ∈ RM×M (§B.1) is zero definite on all x for which either
xTu=0 or xTv=0 ;

{x | xTuvTx = 0} = {x | xTu=0} ∪ {x | vTx=0} (1389)

id est, on u⊥ ∪ v⊥. Symmetrizing the dyad does not change the outcome:

{x | xT(uvT + vuT )x/2 = 0} = {x | xTu=0} ∪ {x | vTx=0} (1390)

2
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Appendix B

Simple matrices

Mathematicians also attempted to develop algebra of vectors but
there was no natural definition of the product of two vectors
that held in arbitrary dimensions. The first vector algebra that
involved a noncommutative vector product (that is, v×w need not
equal w×v) was proposed by Hermann Grassmann in his book
Ausdehnungslehre (1844). Grassmann’s text also introduced the
product of a column matrix and a row matrix, which resulted in
what is now called a simple or a rank-one matrix. In the late
19th century the American mathematical physicist Willard Gibbs
published his famous treatise on vector analysis. In that treatise
Gibbs represented general matrices, which he called dyadics, as
sums of simple matrices, which Gibbs called dyads. Later the
physicist P. A. M. Dirac introduced the term “bra-ket” for what
we now call the scalar product of a “bra” (row) vector times a
“ket” (column) vector and the term “ket-bra” for the product of a
ket times a bra, resulting in what we now call a simple matrix, as
above. Our convention of identifying column matrices and vectors
was introduced by physicists in the 20th century.

−Marie A. Vitulli [277]
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B.1 Rank-one matrix (dyad)

Any matrix formed from the unsigned outer product of two vectors,

Ψ = uvT ∈ RM×N (1391)

where u∈RM and v ∈RN , is rank-one and called a dyad. Conversely, any
rank-one matrix must have the form Ψ . [150, prob.1.4.1] Product −uvT is
a negative dyad. For matrix products ABT , in general, we have

R(ABT ) ⊆ R(A) , N (ABT ) ⊇ N (BT ) (1392)

with equality when B=A [249, §3.3, §3.6]B.1 or respectively when B is
invertible and N (A)=0. Yet for all nonzero dyads we have

R(uvT ) = R(u) , N (uvT ) = N (vT ) ≡ v⊥ (1393)

where dim v⊥=N−1.

It is obvious a dyad can be 0 only when u or v is 0;

Ψ = uvT = 0 ⇔ u = 0 or v = 0 (1394)

The matrix 2-norm for Ψ is equivalent to the Frobenius norm;

‖Ψ‖2 = ‖uvT‖F = ‖uvT‖2 = ‖u‖ ‖v‖ (1395)

When u and v are normalized, the pseudoinverse is the transposed dyad.
Otherwise,

Ψ† = (uvT )† =
vuT

‖u‖2 ‖v‖2 (1396)

B.1Proof. R(AAT ) ⊆ R(A) is obvious.

R(AAT ) = {AAT y | y ∈ Rm}
⊇ {AAT y | ATy ∈ R(AT )} = R(A) by (120) �
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R(v)

N (Ψ)=N (vT )

r r

N (uT )

R(Ψ) = R(u)

RN = R(v)⊕ N (uvT ) N (uT )⊕ R(uvT ) = RM

0 0

Figure 113: The four fundamental subspaces [251, §3.6] of any dyad

Ψ = uvT∈RM×N . Ψ(x)
∆
= uvTx is a linear mapping from RN to RM . The

map from R(v) to R(u) is bijective. [249, §3.1]

When dyad uvT∈RN×N is square, uvT has at least N−1 0-eigenvalues
and corresponding eigenvectors spanning v⊥. The remaining eigenvector u
spans the range of uvT with corresponding eigenvalue

λ = vTu = tr(uvT ) ∈ R (1397)

Determinant is a product of the eigenvalues; so, it is always true that

det Ψ = det(uvT ) = 0 (1398)

When λ= 1, the square dyad is a nonorthogonal projector projecting on
its range (Ψ2 =Ψ , §E.6.2.1); a projector dyad. It is quite possible that
u∈ v⊥ making the remaining eigenvalue instead 0 ;B.2 λ= 0 together with
the first N−1 0-eigenvalues; id est, it is possible uvT were nonzero while
all its eigenvalues are 0. The matrix

[

1
−1

]

[ 1 1 ]
=

[

1 1
−1 −1

]

(1399)

for example, has two 0-eigenvalues. In other words, eigenvector u may
simultaneously be a member of the nullspace and range of the dyad.
The explanation is, simply, because u and v share the same dimension,
dimu=M= dim v=N :

B.2A dyad is not always diagonalizable (§A.5) because its eigenvectors are not necessarily
independent.
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Proof. Figure 113 shows the four fundamental subspaces for the dyad.
Linear operator Ψ : RN→RM provides a map between vector spaces that
remain distinct when M=N ;

u ∈ R(uvT )

u ∈ N (uvT ) ⇔ vTu = 0

R(uvT ) ∩ N (uvT ) = ∅
(1400)

�

B.1.0.1 rank-one modification

If A∈RN×N is any nonsingular matrix and 1+vTA−1u 6=0, then [162, App.6]
[301, §2.3, prob.16] [103, §4.11.2] (Sherman-Morrison)

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(1401)

B.1.0.2 dyad symmetry

In the specific circumstance that v= u , then uuT ∈ RN×N is symmetric,
rank-one, and positive semidefinite having exactly N−1 0-eigenvalues. In
fact, (Theorem A.3.1.0.7)

uvT � 0 ⇔ v = u (1402)

and the remaining eigenvalue is almost always positive;

λ = uTu = tr(uuT ) > 0 unless u=0 (1403)

The matrix
[

Ψ u
uT 1

]

(1404)

for example, is rank-1 positive semidefinite if and only if Ψ = uuT .

B.1.1 Dyad independence

Now we consider a sum of dyads like (1391) as encountered in diagonalization
and singular value decomposition:

R
(

k
∑

i=1

siw
T
i

)

=
k
∑

i=1

R
(

siw
T
i

)

=
k
∑

i=1

R(si) ⇐ wi ∀ i are l.i. (1405)
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range of summation is the vector sum of ranges.B.3 (Theorem B.1.1.1.1)
Under the assumption the dyads are linearly independent (l.i.), then the
vector sums are unique (p.676): for {wi} l.i. and {si} l.i.

R
(

k
∑

i=1

siw
T
i

)

= R
(

s1w
T
1

)

⊕ . . . ⊕R
(

skw
T
k

)

= R(s1)⊕ . . . ⊕R(sk) (1406)

B.1.1.0.1 Definition. Linearly independent dyads. [155, p.29, thm.11]
[256, p.2] The set of k dyads

{

siw
T
i | i=1 . . . k

}

(1407)

where si∈CM and wi∈CN , is said to be linearly independent iff

rank

(

SW T ∆
=

k
∑

i=1

siw
T
i

)

= k (1408)

where S
∆
= [s1 · · · sk] ∈ CM×k and W

∆
= [w1 · · · wk] ∈ CN×k. △

As defined, dyad independence does not preclude existence of a nullspace
N (SW T ) , nor does it imply SW T is full-rank. In absence of an assumption
of independence, generally, rankSW T ≤ k . Conversely, any rank-k matrix
can be written in the form SW T by singular value decomposition. (§A.6)

B.1.1.0.2 Theorem. Linearly independent (l.i.) dyads.
Vectors {si ∈ CM , i= 1 . . . k} are l.i. and vectors {wi ∈ CN , i= 1 . . . k} are
l.i. if and only if dyads {siw

T
i ∈ CM×N , i=1 . . . k} are l.i. ⋄

Proof. Linear independence of k dyads is identical to definition (1408).
(⇒) Suppose {si} and {wi} are each linearly independent sets. Invoking
Sylvester’s rank inequality, [150, §0.4] [301, §2.4]

rankS+rankW− k ≤ rank(SW T ) ≤ min{rankS , rankW} (≤ k) (1409)

Then k≤ rank(SW T )≤k that implies the dyads are independent.
(⇐) Conversely, suppose rank(SW T )=k . Then

k≤min{rankS , rankW} ≤ k (1410)

implying the vector sets are each independent. �

B.3Move of range R to inside the summation depends on linear independence of {wi}.



524 APPENDIX B. SIMPLE MATRICES

B.1.1.1 Biorthogonality condition, Range and Nullspace of Sum

Dyads characterized by a biorthogonality condition W TS= I are
independent; id est, for S∈CM×k and W ∈ CN×k, if W TS= I then
rank(SW T )=k by the linearly independent dyads theorem because
(confer §E.1.1)

W TS= I ⇔ rankS=rankW =k≤M=N (1411)

To see that, we need only show: N (S)=0 ⇔ ∃ B � BS=I .B.4

(⇐) Assume BS=I . Then N (BS)=0={x | BSx = 0} ⊇ N (S). (1392)
(⇒) If N (S)=0 then S must be full-rank skinny-or-square.

∴ ∃ A,B,C �

[

B
C

]

[S A ] = I (id est, [S A ] is invertible) ⇒ BS= I .

Left inverse B is given as W T here. Because of reciprocity with S , it
immediately follows: N (W )=0 ⇔ ∃ S � STW = I . �

Dyads produced by diagonalization, for example, are independent because
of their inherent biorthogonality. (§A.5.1) The converse is generally false;
id est, linearly independent dyads are not necessarily biorthogonal.

B.1.1.1.1 Theorem. Nullspace and range of dyad sum.
Given a sum of dyads represented by SW T where S∈CM×k and W ∈ CN×k

N (SW T ) = N (W T ) ⇐ ∃ B � BS = I

R(SW T ) = R(S) ⇐ ∃ Z � W TZ = I
(1412)

⋄

Proof. (⇒) N (SW T )⊇N (W T ) and R(SW T )⊆R(S) are obvious.
(⇐) Assume the existence of a left inverse B∈Rk×N and a right inverse
Z∈RN×k .B.5

N (SW T ) = {x | SW Tx = 0} ⊆ {x | BSW Tx = 0} = N (W T ) (1413)

R(SW T ) = {SW Tx | x∈RN} ⊇ {SW TZy | Zy∈RN} = R(S) (1414)

�

B.4Left inverse is not unique, in general.
B.5By counter-example, the theorem’s converse cannot be true; e.g., S = W = [1 0 ] .
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R([u v ])

N (Π)= v⊥ ∩ u⊥
r r

v⊥ ∩ u⊥

R(Π)=R([u v])

RN = R([u v ])⊕ N
([

vT

uT

])

N
([

vT

uT

])

⊕ R([u v ]) = RN

0 0

Figure 114: Four fundamental subspaces [251, §3.6] of a doublet
Π = uvT + vuT ∈ SN . Π(x) = (uvT + vuT )x is a linear bijective mapping
from R([u v ]) to R([u v ]).

B.2 Doublet

Consider a sum of two linearly independent square dyads, one a transposition
of the other:

Π = uvT + vuT =
[u v ]

[

vT

uT

]

= SW T ∈ SN (1415)

where u , v∈RN . Like the dyad, a doublet can be 0 only when u or v is 0;

Π = uvT + vuT = 0 ⇔ u = 0 or v = 0 (1416)

By assumption of independence, a nonzero doublet has two nonzero
eigenvalues

λ1
∆
= uTv + ‖uvT‖ , λ2

∆
= uTv − ‖uvT‖ (1417)

where λ1> 0>λ2 , with corresponding eigenvectors

x1
∆
=

u

‖u‖ +
v

‖v‖ , x2
∆
=

u

‖u‖ −
v

‖v‖ (1418)

spanning the doublet range. Eigenvalue λ1 cannot be 0 unless u and v have
opposing directions, but that is antithetical since then the dyads would no
longer be independent. Eigenvalue λ2 is 0 if and only if u and v share the
same direction, again antithetical. Generally we have λ1> 0 and λ2< 0, so
Π is indefinite.
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N (uT )

N (E)=R(u)

r r

R(v)

R(E) = N (vT )

RN = N (uT )⊕ N (E) R(v)⊕ R(E) = RN

0 0

Figure 115: vTu = 1/ζ . The four fundamental subspaces [251, §3.6] of

elementary matrix E as a linear mapping E(x)=

(

I − uvT

vTu

)

x .

By the nullspace and range of dyad sum theorem, doublet Π has
N−2 zero-eigenvalues remaining and corresponding eigenvectors spanning

N
([

vT

uT

])

. We therefore have

R(Π) = R([u v ]) , N (Π) = v⊥ ∩ u⊥ (1419)

of respective dimension 2 and N−2.

B.3 Elementary matrix

A matrix of the form
E = I − ζ uvT ∈ RN×N (1420)

where ζ ∈ R is finite and u,v ∈ RN , is called an elementary matrix or a
rank-one modification of the identity. [152] Any elementary matrix in RN×N

has N−1 eigenvalues equal to 1 corresponding to real eigenvectors that
span v⊥. The remaining eigenvalue

λ = 1− ζ vTu (1421)

corresponds to eigenvector u .B.6 From [162, App.7.A.26] the determinant:

detE = 1− tr
(

ζ uvT
)

= λ (1422)

B.6Elementary matrix E is not always diagonalizable because eigenvector u need not be
independent of the others; id est, u∈ v⊥ is possible.
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If λ 6= 0 then E is invertible; [103]

E−1 = I +
ζ

λ
uvT (1423)

Eigenvectors corresponding to 0 eigenvalues belong to N (E) , and
the number of 0 eigenvalues must be at least dimN (E) which, here,
can be at most one. (§A.7.3.0.1) The nullspace exists, therefore, when
λ=0 ; id est, when vTu=1/ζ , rather, whenever u belongs to the
hyperplane {z∈RN | vTz=1/ζ}. Then (when λ=0) elementary matrix
E is a nonorthogonal projector projecting on its range (E2 =E , §E.1)
and N (E)=R(u) ; eigenvector u spans the nullspace when it exists. By
conservation of dimension, dimR(E)=N−dimN (E). It is apparent from
(1420) that v⊥ ⊆R(E) , but dim v⊥=N−1. Hence R(E)≡ v⊥ when the
nullspace exists, and the remaining eigenvectors span it.

In summary, when a nontrivial nullspace of E exists,

R(E) = N (vT ), N (E) = R(u), vTu = 1/ζ (1424)

illustrated in Figure 115, which is opposite to the assignment of subspaces
for a dyad (Figure 113). Otherwise, R(E)= RN .

When E=ET , the spectral norm is

‖E‖2 = max{1 , |λ|} (1425)

B.3.1 Householder matrix

An elementary matrix is called a Householder matrix when it has the defining
form, for nonzero vector u [110, §5.1.2] [103, §4.10.1] [249, §7.3] [150, §2.2]

H = I − 2
uuT

uTu
∈ SN (1426)

which is a symmetric orthogonal (reflection) matrix (H−1 =HT=H
(§B.5.2)). Vector u is normal to an N−1-dimensional subspace u⊥ through
which this particular H effects pointwise reflection; e.g., Hu⊥ = u⊥ while
Hu=−u .

Matrix H has N−1 orthonormal eigenvectors spanning that reflecting
subspace u⊥ with corresponding eigenvalues equal to 1. The remaining
eigenvector u has corresponding eigenvalue −1 ; so

detH = −1 (1427)
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Due to symmetry of H , the matrix 2-norm (the spectral norm) is equal to the
largest eigenvalue-magnitude. A Householder matrix is thus characterized,

HT = H , H−1 = HT , ‖H‖2 = 1 , H � 0 (1428)

For example, the permutation matrix

Ξ =





1 0 0
0 0 1
0 1 0



 (1429)

is a Householder matrix having u=[ 0 1 −1 ]T/
√

2 . Not all permutation
matrices are Householder matrices, although all permutation matrices are
orthogonal matrices [249, §3.4] because they are made by permuting rows
and columns of the identity matrix. Neither are all symmetric permutation

matrices Householder matrices; e.g., Ξ =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









(1507) is not a

Householder matrix.

B.4 Auxiliary V -matrices

B.4.1 Auxiliary projector matrix V

It is convenient to define a matrix V that arises naturally as a consequence of
translating the geometric center αc (§5.5.1.0.1) of some list X to the origin.
In place of X − αc1

T we may write XV as in (790) where

V
∆
= I − 1

N
11T ∈ SN (732)

is an elementary matrix called the geometric centering matrix.
Any elementary matrix in RN×N has N−1 eigenvalues equal to 1. For the

particular elementary matrix V , the N th eigenvalue equals 0. The number
of 0 eigenvalues must equal dimN (V ) = 1, by the 0 eigenvalues theorem
(§A.7.3.0.1), because V =V T is diagonalizable. Because

V 1 = 0 (1430)
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the nullspace N (V )=R(1) is spanned by the eigenvector 1. The remaining
eigenvectors span R(V ) ≡ 1⊥ = N (1T ) that has dimension N−1.

Because
V 2 = V (1431)

and V T = V , elementary matrix V is also a projection matrix (§E.3)
projecting orthogonally on its range N (1T ) which is a hyperplane containing
the origin in RN

V = I − 1(1T1)−11T (1432)

The {0, 1} eigenvalues also indicate diagonalizable V is a projection
matrix. [301, §4.1, thm.4.1] Symmetry of V denotes orthogonal projection;
from (1683),

V T = V , V † = V , ‖V ‖2 = 1 , V � 0 (1433)

Matrix V is also circulant [118].

B.4.1.0.1 Example. Relationship of auxiliary to Householder matrix.
Let H∈ SN be a Householder matrix (1426) defined by

u =









1
...
1

1 +
√
N









∈ RN (1434)

Then we have [106, §2]

V = H

[

I 0
0T 0

]

H (1435)

Let D∈ SN
h and define

−HDH ∆
= −

[

A b
bT c

]

(1436)

where b is a vector. Then because H is nonsingular (§A.3.1.0.5) [133, §3]

−V DV = −H
[

A 0
0T 0

]

H � 0 ⇔ −A � 0 (1437)

and affine dimension is r= rankA when D is a Euclidean distance matrix.
2
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B.4.2 Schoenberg auxiliary matrix VN

1. VN =
1√
2

[

−1T

I

]

∈ RN×N−1

2. V T
N 1 = 0

3. I − e11T =
[

0
√

2VN
]

4.
[

0
√

2VN
]

VN = VN

5.
[

0
√

2VN
]

V = V

6. V
[

0
√

2VN
]

=
[

0
√

2VN
]

7.
[

0
√

2VN
] [

0
√

2VN
]

=
[

0
√

2VN
]

8.
[

0
√

2VN
]†

=

[

0 0T

0 I

]

V

9.
[

0
√

2VN
]†
V =

[

0
√

2VN
]†

10.
[

0
√

2VN
] [

0
√

2VN
]†

= V

11.
[

0
√

2VN
]† [

0
√

2VN
]

=

[

0 0T

0 I

]

12.
[

0
√

2VN
]

[

0 0T

0 I

]

=
[

0
√

2VN
]

13.

[

0 0T

0 I

]

[

0
√

2VN
]

=

[

0 0T

0 I

]

14. [VN
1√
2
1 ]−1 =

[

V †N
√

2
N

1T

]

15. V †N =
√

2
[

− 1
N
1 I− 1

N
11T

]

∈ RN−1×N ,
(

I− 1
N
11T ∈ SN−1

)

16. V †N1 = 0

17. V †NVN = I
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18. V T = V = VNV
†
N = I − 1

N
11T ∈ SN

19. −V †N (11T − I )VN = I ,
(

11T − I ∈ EDMN
)

20. D = [dij] ∈ SN
h (734)

tr(−V DV ) = tr(−V D) = tr(−V †NDVN ) = 1
N
1TD 1 = 1

N
tr(11TD) = 1

N

∑

i,j

dij

Any elementary matrix E∈ SN of the particular form

E = k1 I − k2 11T (1438)

where k1 , k2∈R ,B.7 will make tr(−ED) proportional to
∑

dij .

21. D = [dij] ∈ SN

tr(−V DV ) = 1
N

∑

i,j
i6=j

dij − N−1
N

∑

i

dii = 1TD1 1
N
− trD

22. D = [dij] ∈ SN
h

tr(−V T
NDVN ) =

∑

j

d1j

23. For Y ∈ SN

V (Y − δ(Y 1))V = Y − δ(Y 1)

B.4.3 Orthonormal auxiliary matrix VW

The skinny matrix

VW
∆
=























−1√
N

−1√
N

· · · −1√
N

1 + −1
N+
√

N
−1

N+
√

N
· · · −1

N+
√

N

−1
N+
√

N

. . . . . . −1
N+
√

N

...
. . . . . .

...

−1
N+
√

N
−1

N+
√

N
· · · 1 + −1

N+
√

N























∈ RN×N−1 (1439)

B.7If k1 is 1−ρ while k2 equals −ρ∈R , then all eigenvalues of E for −1/(N−1)<ρ< 1
are guaranteed positive and therefore E is guaranteed positive definite. [225]
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has R(VW)=N (1T ) and orthonormal columns. [4] We defined three
auxiliary V -matrices: V , VN (715), and VW sharing some attributes listed
in Table B.4.4. For example, V can be expressed

V = VWV
T
W = VNV

†
N (1440)

but V T
WVW = I means V is an orthogonal projector (1680) and

V †W = V T
W , ‖VW‖2 = 1 , V T

W1 = 0 (1441)

B.4.4 Auxiliary V -matrix Table

dimV rankV R(V ) N (V T ) V TV V V T V V †

V N×N N−1 N (1T ) R(1) V V V

VN N×(N−1) N−1 N (1T ) R(1) 1
2
(I + 11T ) 1

2

[

N−1 −1T

−1 I

]

V

VW N×(N−1) N−1 N (1T ) R(1) I V V

B.4.5 More auxiliary matrices

Mathar shows [190, §2] that any elementary matrix (§B.3) of the form

VM = I − b1T ∈ RN×N (1442)

such that bT1 = 1 (confer [112, §2]), is an auxiliary V -matrix having

R(V T
M) = N (bT ) , R(VM) = N (1T )

N (VM) = R(b) , N (V T
M) = R(1)

(1443)

Given X∈ Rn×N , the choice b= 1
N
1 (VM=V ) minimizes ‖X(I − b1T )‖F .

[114, §3.2.1]
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B.5 Orthogonal matrix

B.5.1 Vector rotation

The property Q−1 = QT completely defines an orthogonal matrix Q∈Rn×n

employed to effect vector rotation; [249, §2.6, §3.4] [251, §6.5] [150, §2.1]
for x ∈ Rn

‖Qx‖ = ‖x‖ (1444)

The orthogonal matrix Q is a normal matrix further characterized:

Q−1 = QT , ‖Q‖2 = 1 (1445)

Applying characterization (1445) to QT we see it too is an orthogonal matrix.
Hence the rows and columns of Q respectively form an orthonormal set.

All permutation matrices Ξ , for example, are orthogonal matrices. The
largest magnitude entry of any orthogonal matrix is 1; for each and every
j∈ 1 . . . n

‖Q(j , :)‖∞ ≤ 1
‖Q(: , j)‖∞ ≤ 1

(1446)

Each and every eigenvalue of a (real) orthogonal matrix has magnitude 1

λ(Q) ∈ Cn , |λ(Q)| = 1 (1447)

while only the identity matrix can be simultaneously positive definite and
orthogonal.

A unitary matrix is a complex generalization of the orthogonal matrix.
The conjugate transpose defines it: U−1 = UH . An orthogonal matrix is
simply a real unitary matrix.

B.5.2 Reflection

A matrix for pointwise reflection is defined by imposing symmetry upon
the orthogonal matrix; id est, a reflection matrix is completely defined
by Q−1 = QT = Q . The reflection matrix is an orthogonal matrix,
characterized:

QT = Q , Q−1 = QT , ‖Q‖2 = 1 (1448)

The Householder matrix (§B.3.1) is an example of a symmetric orthogonal
(reflection) matrix.
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Figure 116: Gimbal : a mechanism imparting three degrees of dimensional
freedom to a Euclidean body suspended at the device’s center. Each ring is
free to rotate about one axis. (Courtesy of The MathWorks Inc.)

Reflection matrices have eigenvalues equal to ±1 and so detQ=±1. It
is natural to expect a relationship between reflection and projection matrices
because all projection matrices have eigenvalues belonging to {0, 1}. In
fact, any reflection matrix Q is related to some orthogonal projector P by
[152, §1, prob.44]

Q = I − 2P (1449)

Yet P is, generally, neither orthogonal or invertible. (§E.3.2)

λ(Q) ∈ Rn , |λ(Q)| = 1 (1450)

Reflection is with respect toR(P )⊥. Matrix 2P−I represents antireflection.

Every orthogonal matrix can be expressed as the product of a rotation and
a reflection. The collection of all orthogonal matrices of particular dimension
does not form a convex set.

B.5.3 Rotation of range and rowspace

Given orthogonal matrixQ , column vectors of a matrixX are simultaneously
rotated by the product QX . In three dimensions (X∈R3×N), the precise
meaning of rotation is best illustrated in Figure 116 where the gimbal aids
visualization of rotation achievable about the origin.
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B.5.3.0.1 Example. One axis of revolution.

Partition an n+1-dimensional Euclidean space Rn+1 ∆
=

[

Rn

R

]

and define an

n-dimensional subspace

R ∆
= {λ∈Rn+1 | 1Tλ= 0} (1451)

(a hyperplane through the origin). We want an orthogonal matrix that
rotates a list in the columns of matrix X∈ Rn+1×N through the dihedral
angle between Rn and R (§2.4.3)

�(Rn, R) = arccos

( 〈en+1 , 1〉
‖en+1‖ ‖1‖

)

= arccos

(

1√
n+1

)

radians (1452)

The vertex-description of the nonnegative orthant in Rn+1 is

{[ e1 e2 · · · en+1 ] a | a � 0} = {a � 0} = Rn+1
+ ⊂ Rn+1 (1453)

Consider rotation of these vertices via orthogonal matrix

Q
∆
= [1 1√

n+1
ΞVW ]Ξ ∈ Rn+1×n+1 (1454)

where permutation matrix Ξ∈Sn+1 is defined in (1507), and VW ∈Rn+1×n

is the orthonormal auxiliary matrix defined in §B.4.3. This particular
orthogonal matrix is selected because it rotates any point in subspace Rn

about one axis of revolution onto R ; e.g., rotation Qen+1 aligns the last
standard basis vector with subspace normal R⊥=1. The rotated standard
basis vectors remaining are orthonormal spanning R . 2

Another interpretation of product QX is rotation/reflection of R(X).
Rotation of X as in QXQT is the simultaneous rotation/reflection of range
and rowspace.B.8

Proof. Any matrix can be expressed as a singular value decomposition
X= UΣW T (1350) where δ2(Σ) = Σ , R(U)⊇R(X) , and R(W )⊇R(XT ).

�

B.8The product QTAQ can be regarded as a coordinate transformation; e.g., given
linear map y=Ax : Rn→Rn and orthogonal Q , the transformation Qy=AQx is a
rotation/reflection of the range and rowspace (119) of matrix A where Qy∈R(A) and
Qx∈R(AT ) (120).
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B.5.4 Matrix rotation

Orthogonal matrices are also employed to rotate/reflect like vectors other
matrices: [sic] [110, §12.4.1] Given orthogonal matrix Q , the product QTA

will rotate A∈Rn×n in the Euclidean sense in Rn2

because the Frobenius
norm is orthogonally invariant (§2.2.1);

‖QTA‖F =
√

tr(ATQQTA) = ‖A‖F (1455)

(likewise for AQ). Were A symmetric, such a rotation would depart from
Sn. One remedy is to instead form the product QTAQ because

‖QTAQ‖F =
√

tr(QTATQQTAQ) = ‖A‖F (1456)

Matrix A is orthogonally equivalent to B if B=STAS for some
orthogonal matrix S . Every square matrix, for example, is orthogonally
equivalent to a matrix having equal entries along the main diagonal.
[150, §2.2, prob.3]

B.5.4.1 bijection

Any product of orthogonal matrices AQ remains orthogonal. Given
any other dimensionally compatible orthogonal matrix U , the mapping
g(A)= U TAQ is a linear bijection on the domain of orthogonal matrices.
[175, §2.1]



Appendix C

Some analytical optimal results

C.1 properties of infima�
inf ∅ ∆

= ∞ (1457)

sup ∅ ∆
= −∞ (1458)� Given f(x) : X →R defined on arbitrary set X [148, §0.1.2]

inf
x∈X

f(x) = − sup
x∈X
−f(x)

sup
x∈X

f(x) = − inf
x∈X
−f(x)

(1459)

arg inf
x∈X

f(x) = arg sup
x∈X
−f(x)

arg sup
x∈X

f(x) = arg inf
x∈X
−f(x)

(1460)� Given f(x) : X →R and g(x) : X →R defined on arbitrary set X
[148, §0.1.2]

inf
x∈X

(f(x) + g(x)) ≥ inf
x∈X

f(x) + inf
x∈X

g(x) (1461)© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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538 APPENDIX C. SOME ANALYTICAL OPTIMAL RESULTS� Given f(x) : X ∪ Y→R and arbitrary sets X and Y [148, §0.1.2]

X ⊂ Y ⇒ inf
x∈X

f(x) ≥ inf
x∈Y

f(x) (1462)

inf
x∈X∪Y

f(x) = min{ inf
x∈X

f(x) , inf
x∈Y

f(x)} (1463)

inf
x∈X∩Y

f(x) ≥ max{ inf
x∈X

f(x) , inf
x∈Y

f(x)} (1464)� Over some convex set C given vector constant y or matrix constant Y

arg inf
x∈C
‖x− y‖2 = arg inf

x∈C
‖x− y‖22 (1465)

arg inf
X∈C
‖X − Y ‖F = arg inf

X∈C
‖X − Y ‖2F (1466)

C.2 diagonal, trace, singular and eigen values� For A∈Rm×n and σ(A) denoting its singular values, [46, §A.1.6]
[91, §1] (confer (36))

∑

i

σ(A)i = tr
√
ATA = sup

‖X‖2≤1

tr(XTA) = maximize
X∈R

m×n
tr(XTA)

subject to

[

I X
XT I

]

� 0

= 1
2

minimize
X∈S

m
, Y ∈S

n
trX + trY

subject to

[

X A
AT Y

]

� 0

(1467)



C.2. DIAGONAL, TRACE, SINGULAR AND EIGEN VALUES 539� For X∈ Sm, Y ∈ Sn, A∈ C⊆Rm×n for set C convex, and σ(A)
denoting the singular values of A [91, §3]

minimize
A

∑

i

σ(A)i

subject to A ∈ C
≡

1
2
minimize

A , X , Y
trX + trY

subject to

[

X A
AT Y

]

� 0

A ∈ C

(1468)

� For A∈SN
+ and β∈R

β trA = maximize
X∈ SN

tr(XA)

subject to X � βI
(1469)

But the following statement is numerically stable, preventing an
unbounded solution in direction of a 0 eigenvalue:

maximize
X∈ SN

sgn(β) tr(XA)

subject to X � |β|I
X � −|β|I

(1470)

where β trA = tr(X⋆A). If β≥ 0 , then X�−|β|I ← X� 0.� For A∈SN having eigenvalues λ(A)∈RN , its smallest and largest
eigenvalue is respectively [9, §4.1] [31, §I.6.15] [150, §4.2] [175, §2.1]

min
i
{λ(A)i} = inf

‖x‖=1
xTAx = minimize

X∈ SN
+

tr(XA) = maximize
t∈R

t

subject to trX = 1 subject to A � t I
(1471)

max
i
{λ(A)i} = sup

‖x‖=1

xTAx = maximize
X∈ SN

+

tr(XA) = minimize
t∈R

t

subject to trX = 1 subject to A � t I
(1472)

The smallest eigenvalue of any symmetric matrix is always a concave
function of its entries, while the largest eigenvalue is always convex.
[46, exmp.3.10] For v1 a normalized eigenvector of A corresponding to
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the largest eigenvalue, and vN a normalized eigenvector corresponding
to the smallest eigenvalue,

vN = arg inf
‖x‖=1

xTAx (1473)

v1 = arg sup
‖x‖=1

xTAx (1474)� For A∈SN having eigenvalues λ(A)∈RN , consider the unconstrained
nonconvex optimization that is a projection on the rank-1 subset
(§2.9.2.1) of the boundary of positive semidefinite cone SN

+ : Defining

λ1
∆
= max

i
{λ(A)i} and corresponding eigenvector v1

minimize
x

‖xxT − A‖2F = minimize
x

tr(xxT(xTx)− 2AxxT + ATA)

=

{

‖λ(A)‖2 , λ1 ≤ 0

‖λ(A)‖2 − λ2
1 , λ1 > 0

(1475)

arg minimize
x

‖xxT − A‖2F =

{

0 , λ1 ≤ 0

v1

√
λ1 , λ1 > 0

(1476)

Proof. This is simply the Eckart & Young solution from §7.1.2:

x⋆x⋆T =

{

0 , λ1 ≤ 0

λ1 v1v
T
1 , λ1 > 0

(1477)

Given nonincreasingly ordered diagonalization A=QΛQT where
Λ = δ(λ(A)) (§A.5), then (1475) has minimum value

minimize
x

‖xxT−A‖2F =































‖QΛQT‖2F = ‖δ(Λ)‖2 , λ1 ≤ 0

∥

∥

∥

∥

∥

∥

∥

Q













λ1
0

. . .
0






− Λ






QT

∥

∥

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

∥







λ1

0...
0






− δ(Λ)

∥

∥

∥

∥

∥

∥

∥

2

, λ1 > 0

(1478)

�
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C.2.0.0.1 Exercise. Rank-1 approximation.
Given symmetric matrix A∈SN , prove:

v1 = arg minimize
x

‖xxT − A‖2F
subject to ‖x‖ = 1

(1479)

where v1 is a normalized eigenvector of A corresponding to its largest
eigenvalue. H� (Fan) For B∈ SN whose eigenvalues λ(B)∈RN are arranged in
nonincreasing order, and for 1≤k≤N [9, §4.1] [158] [150, §4.3.18]
[269, §2] [175, §2.1]

N
∑

i=N−k+1

λ(B)i = inf
U∈RN×k

U T U=I

tr(UU TB) = minimize
X∈ SN

+

tr(XB)

subject to X � I

trX = k

(a)

= maximize
µ∈R , Z∈SN

+

(k −N)µ+ tr(B − Z)

subject to µI + Z � B

(b)

k
∑

i=1

λ(B)i = sup
U∈RN×k

U T U=I

tr(UU TB) = maximize
X∈ SN

+

tr(XB)

subject to X � I

trX = k

(c)

= minimize
µ∈R , Z∈SN

+

kµ+ trZ

subject to µI + Z � B

(d)

(1480)

Given ordered diagonalization B=QΛQT , (§A.5.2) then optimal
U for the infimum is U⋆ =Q(: , N− k+1:N)∈RN×k whereas
U⋆ =Q(: , 1:k)∈RN×k for the supremum. In both cases, X⋆ = U⋆U⋆T .
Optimization (a) searches the convex hull of the outer product UU T

of all N×k orthonormal matrices. (§2.3.2.0.1)



542 APPENDIX C. SOME ANALYTICAL OPTIMAL RESULTS� For B∈ SN whose eigenvalues λ(B)∈RN are arranged in nonincreasing
order, and for diagonal matrix Υ∈ Sk whose diagonal entries are
arranged in nonincreasing order where 1≤k≤N , we utilize the
main-diagonal δ operator’s self-adjointness property (1223): [10, §4.2]

k
∑

i=1

Υii λ(B)N−i+1 = inf
U∈RN×k

U T U=I

tr(ΥU TBU) = inf
U∈RN×k

U T U=I

δ(Υ)T δ(U TBU)

= minimize
Vi∈SN

tr

(

B
k
∑

i=1

(Υii−Υi+1,i+1)Vi

)

subject to trVi = i , i=1 . . . k
I � Vi � 0 , i=1 . . . k

(1481)

where Υk+1,k+1
∆
= 0. We speculate,

k
∑

i=1

Υii λ(B)i = sup
U∈RN×k

U T U=I

tr(ΥU TBU) = sup
U∈RN×k

U T U=I

δ(Υ)T δ(U TBU) (1482)

Alizadeh shows: [9, §4.2]

k
∑

i=1

Υii λ(B)i = minimize
µ∈Rk , Zi∈SN

k
∑

i=1

iµi + trZi

subject to µiI + Zi − (Υii−Υi+1,i+1)B � 0 , i=1 . . . k

Zi � 0 , i=1 . . . k

= maximize
Vi∈SN

tr

(

B
k
∑

i=1

(Υii−Υi+1,i+1)Vi

)

subject to trVi = i , i=1 . . . k
I � Vi � 0 , i=1 . . . k (1483)

where Υk+1,k+1
∆
= 0.� The largest eigenvalue magnitude µ of A∈ SN

max
i
{ |λ(A)i| } = minimize

µ∈R

µ

subject to −µI � A � µI
(1484)
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is minimized over convex set C by semidefinite program: (confer §7.1.5)

minimize
A

‖A‖2
subject to A ∈ C

≡
minimize

µ , A
µ

subject to −µI � A � µI

A ∈ C
(1485)

id est,

µ⋆ ∆
= max

i
{ |λ(A⋆)i| , i= 1 . . . N } ∈ R+ (1486)� For B∈ SN whose eigenvalues λ(B)∈RN are arranged in nonincreasing

order, let Πλ(B) be a permutation of eigenvalues λ(B) such
that their absolute value becomes arranged in nonincreasing
order: |Πλ(B)|1 ≥ |Πλ(B)|2 ≥ · · · ≥ |Πλ(B)|N . Then, for 1≤k≤N
[9, §4.3]C.1

k
∑

i=1

|Πλ(B)|i = minimize
µ∈R , Z∈SN

+

kµ+ trZ

subject to µI + Z +B � 0
µI + Z −B � 0

= maximize
V ,W∈ SN

+

〈B , V −W 〉

subject to I � V , W
tr(V +W )=k

(1487)

For diagonal matrix Υ∈ Sk whose diagonal entries are arranged in
nonincreasing order where 1≤k≤N

k
∑

i=1

Υii|Πλ(B)|i = minimize
µ∈Rk , Zi∈SN

k
∑

i=1

iµi + trZi

subject to µiI + Zi + (Υii−Υi+1,i+1)B � 0 , i=1 . . . k

µiI + Zi − (Υii−Υi+1,i+1)B � 0 , i=1 . . . k

Zi � 0 , i=1 . . . k

= maximize
Vi ,Wi∈SN

tr

(

B
k
∑

i=1

(Υii−Υi+1,i+1)(Vi −Wi)

)

subject to tr(Vi +Wi) = i , i=1 . . . k
I � Vi � 0 , i=1 . . . k
I � Wi � 0 , i=1 . . . k (1488)

where Υk+1,k+1
∆
= 0.

C.1We eliminate a redundant positive semidefinite variable from Alizadeh’s minimization.
There exist typographical errors in [216, (6.49) (6.55)] for this minimization.



544 APPENDIX C. SOME ANALYTICAL OPTIMAL RESULTS� For A ,B∈ SN whose eigenvalues λ(A) , λ(B)∈RN are respectively
arranged in nonincreasing order, and for nonincreasingly ordered
diagonalizations A = WAΥW T

A and B = WBΛW T
B [149] [175, §2.1]

λ(A)Tλ(B) = sup
U∈RN×N

U T U=I

tr(ATUTBU) ≥ tr(ATB) (1506)

(confer (1511)) where optimal U is

U⋆ = WBW
T

A ∈ RN×N (1503)

We can push that upper bound higher using a result in §C.4.2.1:

|λ(A)|T |λ(B)| = sup
U∈CN×N

U HU=I

Re tr(ATUHBU) (1489)

For step function ψ as defined in (1365), optimal U becomes

U⋆ = WB

√

δ(ψ(δ(Λ)))
H√

δ(ψ(δ(Υ)))W T
A ∈ CN×N (1490)

C.3 Orthogonal Procrustes problem

Given matrices A ,B∈Rn×N , their product having full singular value
decomposition (§A.6.3)

ABT ∆
= UΣQT ∈ Rn×n (1491)

then an optimal solution R⋆ to the orthogonal Procrustes problem

minimize
R

‖A−RTB‖F
subject to RT = R−1

(1492)

maximizes tr(ATRTB) over the nonconvex manifold of orthogonal matrices:
[150, §7.4.8]

R⋆ = QUT ∈ Rn×n (1493)

A necessary and sufficient condition for optimality

ABTR⋆ � 0 (1494)

holds whenever R⋆ is an orthogonal matrix. [114, §4]
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Solution to problem (1492) can reveal rotation/reflection (§5.5.2, §B.5)
of one list in the columns of A with respect to another list B . Solution
is unique if rankBVN = n . [77, §2.4.1] The optimal value for objective of
minimization is

tr
(

ATA+BTB − 2ABTR⋆
)

= tr(ATA) + tr(BTB)− 2 tr(UΣUT )

= ‖A‖2F + ‖B‖2F − 2δ(Σ)T1
(1495)

while the optimal value for corresponding trace maximization is

sup
RT=R−1

tr(ATRTB) = tr(ATR⋆TB) = δ(Σ)T1 ≥ tr(ATB) (1496)

The same optimal solution R⋆ solves

maximize
R

‖A+RTB‖F
subject to RT = R−1

(1497)

C.3.1 Effect of translation

Consider the impact of dc offset in known lists A ,B∈Rn×N on problem
(1492). Rotation of B there is with respect to the origin, so better results
may be obtained if offset is first accounted. Because the geometric centers
of the lists AV and BV are the origin, instead we solve

minimize
R

‖AV − RTBV ‖F
subject to RT = R−1

(1498)

where V ∈ SN is the geometric centering matrix (§B.4.1). Now we define the
full singular value decomposition

AV BT ∆
= UΣQT ∈ Rn×n (1499)

and an optimal rotation matrix

R⋆ = QUT ∈ Rn×n (1493)

The desired result is an optimally rotated offset list

R⋆TBV + A(I − V ) ≈ A (1500)

which most closely matches the list in A . Equality is attained when the lists
are precisely related by a rotation/reflection and an offset. When R⋆TB=A
or B1=A1=0, this result (1500) reduces to R⋆TB ≈A .
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C.3.1.1 Translation of extended list

Suppose an optimal rotation matrix R⋆∈ Rn×n were derived as before
from matrix B∈Rn×N , but B is part of a larger list in the columns of
[C B ]∈Rn×M+N where C∈Rn×M . In that event, we wish to apply
the rotation/reflection and translation to the larger list. The expression
supplanting the approximation in (1500) makes 1T of compatible dimension;

R⋆T [C−B11T 1
N

BV ] + A11T 1
N

(1501)

id est, C−B11T 1
N
∈Rn×M and A11T 1

N
∈Rn×M+N .

C.4 Two-sided orthogonal Procrustes

C.4.0.1 Minimization

Given symmetric A ,B∈ SN , each having diagonalization (§A.5.2)

A
∆
= QAΛAQ

T
A , B

∆
= QBΛBQ

T
B (1502)

where eigenvalues are arranged in their respective diagonal matrix Λ in
nonincreasing order, then an optimal solution [86]

R⋆ = QBQ
T
A ∈ RN×N (1503)

to the two-sided orthogonal Procrustes problem

minimize
R

‖A−RTBR‖F
subject to RT = R−1

=
minimize

R
tr
(

ATA− 2ATRTBR +BTB
)

subject to RT = R−1 (1504)

maximizes tr(ATRTBR) over the nonconvex manifold of orthogonal matrices.
Optimal product R⋆TBR⋆ has the eigenvectors of A but the eigenvalues of B .
[114, §7.5.1] The optimal value for the objective of minimization is, by (40)

‖QAΛAQ
T
A−R⋆TQBΛBQ

T
BR

⋆‖F = ‖QA(ΛA−ΛB)QT
A‖F = ‖ΛA−ΛB‖F (1505)

while the corresponding trace maximization has optimal value

sup
RT=R−1

tr(ATRTBR) = tr(ATR⋆TBR⋆) = tr(ΛAΛB) ≥ tr(ATB) (1506)
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C.4.0.2 Maximization

Any permutation matrix is an orthogonal matrix. Defining a row- and
column-swapping permutation matrix (a reflection matrix, B.5.2)

Ξ = ΞT =













0 1
·

·
1

1 0













(1507)

then an optimal solution R⋆ to the maximization problem [sic]

maximize
R

‖A−RTBR‖F
subject to RT = R−1

(1508)

minimizes tr(ATRTBR) : [149] [175, §2.1]

R⋆ = QBΞQT
A ∈ RN×N (1509)

The optimal value for the objective of maximization is

‖QAΛAQ
T
A − R⋆TQBΛBQ

T
BR

⋆‖F = ‖QAΛAQ
T
A − QAΞTΛBΞQT

A‖F
= ‖ΛA − ΞΛBΞ‖F

(1510)

while the corresponding trace minimization has optimal value

inf
RT=R−1

tr(ATRTBR) = tr(ATR⋆TBR⋆) = tr(ΛAΞΛBΞ) (1511)

C.4.1 Procrustes’ relation to linear programming

Although these two-sided Procrustes problems are nonconvex, a connection
with linear programming [64] was discovered by Anstreicher & Wolkowicz
[10, §3] [175, §2.1]: Given A ,B∈ SN , this semidefinite program in S and T

minimize
R

tr(ATRTBR) = maximize
S , T∈SN

tr(S + T )

subject to RT = R−1 subject to AT ⊗B − I ⊗ S − T ⊗ I � 0

(1512)
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(where ⊗ signifies Kronecker product (§D.1.2.1)) has optimal objective
value (1511). These two problems are strong duals (§2.13.1.0.3). Given
ordered diagonalizations (1502), make the observation:

inf
R

tr(ATRTBR) = inf
R̂

tr(ΛAR̂
TΛBR̂) (1513)

because R̂
∆
=QT

BRQA on the set of orthogonal matrices (which includes the
permutation matrices) is a bijection. This means, basically, diagonal matrices
of eigenvalues ΛA and ΛB may be substituted for A and B , so only the main
diagonals of S and T come into play;

maximize
S,T∈SN

1Tδ(S + T )

subject to δ(ΛA ⊗ (ΞΛBΞ)− I ⊗ S − T ⊗ I) � 0
(1514)

a linear program in δ(S) and δ(T ) having the same optimal objective value
as the semidefinite program (1512).

We relate their results to Procrustes problem (1504) by manipulating
signs (1459) and permuting eigenvalues:

maximize
R

tr(ATRTBR) = minimize
S , T∈SN

1Tδ(S + T )

subject to RT = R−1 subject to δ(I ⊗ S + T ⊗ I − ΛA ⊗ ΛB) � 0

= minimize
S , T∈SN

tr(S + T )

subject to I ⊗ S + T ⊗ I − AT ⊗B � 0

(1515)

This formulation has optimal objective value identical to that in (1506).

C.4.2 Two-sided orthogonal Procrustes via SVD

By making left- and right-side orthogonal matrices independent, we can push
the upper bound on trace (1506) a little further: Given real matrices A ,B
each having full singular value decomposition (§A.6.3)

A
∆
= UAΣAQ

T
A ∈ Rm×n , B

∆
= UBΣBQ

T
B ∈ Rm×n (1516)

then a well-known optimal solution R⋆, S⋆ to the problem

minimize
R , S

‖A− SBR‖F
subject to RH = R−1

SH = S−1

(1517)
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maximizes Re tr(ATSBR) : [236] [213] [38] [144] optimal orthogonal matrices

S⋆ = UAU
H

B ∈ Rm×m , R⋆ = QBQ
H
A ∈ Rn×n (1518)

[sic] are not necessarily unique [150, §7.4.13] because the feasible set is not
convex. The optimal value for the objective of minimization is, by (40)

‖UAΣAQ
H
A − S⋆UBΣBQ

H
B R

⋆‖F = ‖UA(ΣA−ΣB)QH
A ‖F = ‖ΣA−ΣB‖F (1519)

while the corresponding trace maximization has optimal value [31, §III.6.12]

sup
RH=R−1

SH=S−1

| tr(ATSBR) | = sup
RH=R−1

SH=S−1

Re tr(ATSBR) = Re tr(ATS⋆BR⋆) = tr(ΣT
A ΣB) ≥ tr(ATB)

(1520)

for which it is necessary

ATS⋆BR⋆ � 0 , BR⋆ATS⋆ � 0 (1521)

The lower bound on inner product of singular values in (1520) is due to
von Neumann. Equality is attained if UH

A UB = I and QH
B QA = I .

C.4.2.1 Symmetric matrices

Now optimizing over the complex manifold of unitary matrices (§B.5.1),
the upper bound on trace (1506) is thereby raised: Suppose we are given
diagonalizations for (real) symmetric A ,B (§A.5)

A = WAΥW T
A ∈ Sn , δ(Υ) ∈ KM (1522)

B = WBΛW T
B ∈ Sn , δ(Λ) ∈ KM (1523)

having their respective eigenvalues in diagonal matrices Υ,Λ ∈ Sn arranged
in nonincreasing order (membership to the monotone cone KM (377)). Then
by splitting eigenvalue signs, we invent a symmetric SVD-like decomposition

A
∆
= UAΣAQ

H
A ∈ Sn , B

∆
= UBΣBQ

H
B ∈ Sn (1524)

where UA , UB , QA , QB∈Cn×n are unitary matrices defined by (confer §A.6.5)

UA
∆
= WA

√

δ(ψ(δ(Υ))) , QA
∆
= WA

√

δ(ψ(δ(Υ)))
H
, ΣA = |Υ| (1525)

UB
∆
= WB

√

δ(ψ(δ(Λ))) , QB
∆
= WB

√

δ(ψ(δ(Λ)))
H
, ΣB = |Λ| (1526)
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where step function ψ is defined in (1365). In this circumstance,

S⋆ = UAU
H

B = R⋆T ∈ Cn×n (1527)

optimal matrices (1518) now unitary are related by transposition. The
optimal value of objective (1519) is

‖UAΣAQ
H
A − S⋆UBΣBQ

H
B R

⋆‖F = ‖ |Υ| − |Λ| ‖F (1528)

while the corresponding optimal value of trace maximization (1520) is

sup
RH=R−1

SH=S−1

Re tr(ATSBR) = tr(|Υ| |Λ|) (1529)

C.4.2.2 Diagonal matrices

Now suppose A and B are diagonal matrices

A = Υ = δ2(Υ) ∈ Sn , δ(Υ) ∈ KM (1530)

B = Λ = δ2(Λ) ∈ Sn , δ(Λ) ∈ KM (1531)

both having their respective main diagonal entries arranged in nonincreasing
order:

minimize
R , S

‖Υ− SΛR‖F
subject to RH = R−1

SH = S−1

(1532)

Then we have a symmetric decomposition from unitary matrices as in (1524)
where

UA
∆
=
√

δ(ψ(δ(Υ))) , QA
∆
=
√

δ(ψ(δ(Υ)))
H
, ΣA = |Υ| (1533)

UB
∆
=
√

δ(ψ(δ(Λ))) , QB
∆
=
√

δ(ψ(δ(Λ)))
H
, ΣB = |Λ| (1534)

Procrustes solution (1518) again sees the transposition relationship

S⋆ = UAU
H

B = R⋆T ∈ Cn×n (1527)

but both optimal unitary matrices are now themselves diagonal. So,

S⋆ΛR⋆ = δ(ψ(δ(Υ)))Λδ(ψ(δ(Λ))) = δ(ψ(δ(Υ)))|Λ| (1535)



Appendix D

Matrix calculus

From too much study, and from extreme passion, cometh madnesse.

−Isaac Newton [105, §5]

D.1 Directional derivative, Taylor series

D.1.1 Gradients

Gradient of a differentiable real function f(x) : RK→R with respect to its
vector domain is defined

∇f(x) =













∂f(x)
∂x1

∂f(x)
∂x2...

∂f(x)
∂xK













∈ RK (1536)

while the second-order gradient of the twice differentiable real function with
respect to its vector domain is traditionally called the Hessian ;

∇2f(x) =















∂2f(x)
∂2x1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xK

∂2f(x)
∂x2∂x1

∂2f(x)
∂2x2

· · · ∂2f(x)
∂x2∂xK

...
...

. . .
...

∂2f(x)
∂xK∂x1

∂2f(x)
∂xK∂x2

· · · ∂2f(x)
∂2xK















∈ SK (1537)
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The gradient of vector-valued function v(x) : R→RN on real domain is
a row-vector

∇v(x) ∆
=
[

∂v1(x)
∂x

∂v2(x)
∂x

· · · ∂vN (x)
∂x

]

∈ RN (1538)

while the second-order gradient is

∇2v(x)
∆
=
[

∂2v1(x)
∂x2

∂2v2(x)
∂x2 · · · ∂2vN (x)

∂x2

]

∈ RN (1539)

Gradient of vector-valued function h(x) : RK→RN on vector domain is

∇h(x) ∆
=















∂h1(x)
∂x1

∂h2(x)
∂x1

· · · ∂hN (x)

∂x1

∂h1(x)
∂x2

∂h2(x)
∂x2

· · · ∂hN (x)

∂x2
...

...
...

∂h1(x)
∂xK

∂h2(x)
∂xK

· · · ∂hN (x)

∂xK















= [∇h1(x) ∇h2(x) · · · ∇hN(x) ] ∈ RK×N

(1540)

while the second-order gradient has a three-dimensional representation
dubbed cubix ;D.1

∇2h(x)
∆
=















∇∂h1(x)
∂x1

∇∂h2(x)
∂x1

· · · ∇∂hN (x)

∂x1

∇∂h1(x)
∂x2

∇∂h2(x)
∂x2

· · · ∇∂hN (x)

∂x2
...

...
...

∇∂h1(x)
∂xK

∇∂h2(x)
∂xK

· · · ∇∂hN (x)

∂xK















= [∇2h1(x) ∇2h2(x) · · · ∇2hN(x) ] ∈ RK×N×K

(1541)

where the gradient of each real entry is with respect to vector x as in (1536).

D.1The word matrix comes from the Latin for womb ; related to the prefix matri- derived
from mater meaning mother.
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The gradient of real function g(X) : RK×L→R on matrix domain is

∇g(X)
∆
=















∂g(X)
∂X11

∂g(X)
∂X12

· · · ∂g(X)
∂X1L

∂g(X)
∂X21

∂g(X)
∂X22

· · · ∂g(X)
∂X2L

...
...

...
∂g(X)
∂XK1

∂g(X)
∂XK2

· · · ∂g(X)
∂XKL















∈ RK×L

=

[

∇X(:,1) g(X)

∇X(:,2) g(X)
. . .

∇X(:,L) g(X)
]

∈ RK×1×L

(1542)

where the gradient ∇X(:,i) is with respect to the ith column of X . The
strange appearance of (1542) in RK×1×L is meant to suggest a third dimension
perpendicular to the page (not a diagonal matrix). The second-order gradient
has representation

∇2g(X)
∆
=















∇∂g(X)
∂X11

∇∂g(X)
∂X12

· · · ∇∂g(X)
∂X1L

∇∂g(X)
∂X21

∇∂g(X)
∂X22

· · · ∇∂g(X)
∂X2L

...
...

...

∇∂g(X)
∂XK1

∇∂g(X)
∂XK2

· · · ∇∂g(X)
∂XKL















∈ RK×L×K×L

=

[

∇∇X(:,1) g(X)

∇∇X(:,2) g(X)
. . .

∇∇X(:,L) g(X)
]

∈ RK×1×L×K×L

(1543)

where the gradient ∇ is with respect to matrix X .
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Gradient of vector-valued function g(X) : RK×L→RN on matrix domain
is a cubix

∇g(X)
∆
=

[

∇X(:,1) g1(X) ∇X(:,1) g2(X) · · · ∇X(:,1) gN(X)

∇X(:,2) g1(X) ∇X(:,2) g2(X) · · · ∇X(:,2) gN(X)
. . . . . . . . .

∇X(:,L) g1(X) ∇X(:,L) g2(X) · · · ∇X(:,L) gN(X)
]

= [∇g1(X) ∇g2(X) · · · ∇gN(X) ] ∈ RK×N×L (1544)

while the second-order gradient has a five-dimensional representation;

∇2g(X)
∆
=

[

∇∇X(:,1) g1(X) ∇∇X(:,1) g2(X) · · · ∇∇X(:,1) gN(X)

∇∇X(:,2) g1(X) ∇∇X(:,2) g2(X) · · · ∇∇X(:,2) gN(X)
. . . . . . . . .

∇∇X(:,L) g1(X) ∇∇X(:,L) g2(X) · · · ∇∇X(:,L) gN(X)
]

= [∇2g1(X) ∇2g2(X) · · · ∇2gN(X) ] ∈ RK×N×L×K×L (1545)

The gradient of matrix-valued function g(X) : RK×L→RM×N on matrix
domain has a four-dimensional representation called quartix

∇g(X)
∆
=











∇g11(X) ∇g12(X) · · · ∇g1N(X)

∇g21(X) ∇g22(X) · · · ∇g2N(X)
...

...
...

∇gM1(X) ∇gM2(X) · · · ∇gMN(X)











∈ RM×N×K×L (1546)

while the second-order gradient has six-dimensional representation

∇2g(X)
∆
=











∇2g11(X) ∇2g12(X) · · · ∇2g1N(X)

∇2g21(X) ∇2g22(X) · · · ∇2g2N(X)
...

...
...

∇2gM1(X) ∇2gM2(X) · · · ∇2gMN(X)











∈ RM×N×K×L×K×L

(1547)
and so on.
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D.1.2 Product rules for matrix-functions

Given dimensionally compatible matrix-valued functions of matrix variable
f(X) and g(X)

∇X

(

f(X)Tg(X)
)

= ∇X(f) g + ∇X(g) f (1548)

while [39, §8.3] [237]

∇X tr
(

f(X)Tg(X)
)

= ∇X

(

tr
(

f(X)Tg(Z)
)

+ tr
(

g(X) f(Z)T
)

)∣

∣

∣

Z←X
(1549)

These expressions implicitly apply as well to scalar-, vector-, or matrix-valued
functions of scalar, vector, or matrix arguments.

D.1.2.0.1 Example. Cubix.
Suppose f(X) : R2×2→R2 = XTa and g(X) : R2×2→R2 = Xb . We wish
to find

∇X

(

f(X)Tg(X)
)

= ∇X a
TX2b (1550)

using the product rule. Formula (1548) calls for

∇X a
TX2b = ∇X(XTa)Xb + ∇X(Xb)XTa (1551)

Consider the first of the two terms:

∇X(f) g = ∇X(XTa)Xb

=
[

∇(XTa)1 ∇(XTa)2

]

Xb
(1552)

The gradient of XTa forms a cubix in R2×2×2.

∂(XTa)1
∂X11

I

I

I

I

I

I

∂(XTa)2
∂X11

I

I

I

I

I

I

∂(XTa)1
∂X12

∂(XTa)2
∂X12

∂(XTa)1
∂X21

I

I

I

I

I

I

∂(XTa)2
∂X21

I

I

I

I

I

I

∂(XTa)1
∂X22

∂(XTa)2
∂X22

∇X(XTa)Xb =































































(Xb)1

(Xb)2






∈ R2×1×2

(1553)
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Because gradient of the product (1550) requires total change with respect
to change in each entry of matrix X , the Xb vector must make an inner
product with each vector in the second dimension of the cubix (indicated by
dotted line segments);

∇X(XTa)Xb =











a1 0
0 a1

a2 0
0 a2











[

b1X11 + b2X12

b1X21 + b2X22

]

∈ R2×1×2

=

[

a1(b1X11 + b2X12) a1(b1X21 + b2X22)
a2(b1X11 + b2X12) a2(b1X21 + b2X22)

]

∈ R2×2

= abTXT

(1554)

where the cubix appears as a complete 2×2×2 matrix. In like manner for
the second term ∇X(g) f

∇X(Xb)XTa =











b1 0
b2 0

0 b1
0 b2











[

X11a1 + X21a2

X12a1 + X22a2

]

∈ R2×1×2

= XTabT ∈ R2×2

(1555)

The solution
∇X a

TX2b = abTXT +XTabT (1556)

can be found from Table D.2.1 or verified using (1549). 2

D.1.2.1 Kronecker product

A partial remedy for venturing into hyperdimensional representations, such
as the cubix or quartix, is to first vectorize matrices as in (30). This device
gives rise to the Kronecker product of matrices ⊗ ; a.k.a, direct product
or tensor product. Although it sees reversal in the literature, [245, §2.1] we
adopt the definition: for A∈Rm×n and B∈Rp×q

B ⊗ A ∆
=











B11A B12A · · · B1qA
B21A B22A · · · B2qA

...
...

...
Bp1A Bp2A · · · BpqA











∈ Rpm×qn (1557)
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One advantage to vectorization is existence of a traditional
two-dimensional matrix representation for the second-order gradient of
a real function with respect to a vectorized matrix. For example, from§A.1.1 no.23 (§D.2.1) for square A ,B∈Rn×n [116, §5.2] [10, §3]

∇2
vec X tr(AXBXT ) = ∇2

vec X vec(X)T (BT⊗A) vecX = B⊗AT +BT⊗A ∈ Rn2×n2

(1558)

To disadvantage is a large new but known set of algebraic rules and the
fact that its mere use does not generally guarantee two-dimensional matrix
representation of gradients.

Another application of the Kronecker product is to reverse order of
appearance in a matrix product: Suppose we wish to weight the columns
of a matrix S∈RM×N , for example, by respective entries wi from the
main-diagonal in

W
∆
=





w1 0
. . .

0T wN



∈ SN (1559)

The conventional way of accomplishing that is to multiply S by diagonal
matrix W on the right-hand side:D.2

SW = S





w1 0
. . .

0T wN



=
[

S(: , 1)w1 · · · S(: , N)wN

]

∈ RM×N (1560)

To reverse product order such that diagonal matrix W instead appears to
the left of S : (Sze Wan)

SW = (δ(W )T ⊗ I)









S(: , 1) 0 0

0 S(: , 2)
. . .

. . . . . . 0
0 0 S(: , N)









∈ RM×N (1561)

where I∈ SM . For any matrices of like size, S , Y ∈ RM×N

S◦Y =
[

δ(Y (: , 1)) · · · δ(Y (: , N))
]









S(: , 1) 0 0

0 S(: , 2)
. . .

. . . . . . 0
0 0 S(: , N)









∈ RM×N

(1562)

D.2Multiplying on the left by W ∈ SM would instead weight the rows of S .
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which converts a Hadamard product into a standard matrix product.
Hadamard product can be extracted from within the Kronecker product.
[150, p.475]

D.1.3 Chain rules for composite matrix-functions

Given dimensionally compatible matrix-valued functions of matrix variable
f(X) and g(X) [161, §15.7]

∇X g
(

f(X)T
)

= ∇Xf
T ∇f g (1563)

∇2
X g
(

f(X)T
)

= ∇X

(

∇Xf
T ∇f g

)

= ∇2
Xf ∇f g + ∇Xf

T ∇2
f g ∇Xf (1564)

D.1.3.1 Two arguments

∇X g
(

f(X)T , h(X)T
)

= ∇Xf
T ∇f g + ∇Xh

T ∇h g (1565)

D.1.3.1.1 Example. Chain rule for two arguments. [30, §1.1]

g
(

f(x)T , h(x)T
)

= (f(x) + h(x))TA (f(x) + h(x)) (1566)

f(x) =

[

x1

εx2

]

, h(x) =

[

εx1

x2

]

(1567)

∇x g
(

f(x)T , h(x)T
)

=

[

1 0
0 ε

]

(A+AT )(f + h) +

[

ε 0
0 1

]

(A+AT )(f + h)

(1568)

∇x g
(

f(x)T , h(x)T
)

=

[

1 + ε 0
0 1 + ε

]

(A+AT )

([

x1

εx2

]

+

[

εx1

x2

])

(1569)

lim
ε→0
∇x g

(

f(x)T , h(x)T
)

= (A+AT )x (1570)

from Table D.2.1. 2

These formulae remain correct when gradient produces hyperdimensional
representation:
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D.1.4 First directional derivative

Assume that a differentiable function g(X) : RK×L→RM×N has continuous
first- and second-order gradients ∇g and ∇2g over dom g which is an open
set. We seek simple expressions for the first and second directional derivatives

in direction Y∈RK×L,
→Y

dg ∈ RM×N and
→Y

dg2 ∈ RM×N respectively.

Assuming that the limit exists, we may state the partial derivative of the
mnth entry of g with respect to the klth entry of X ;

∂gmn(X)

∂Xkl

= lim
∆t→0

gmn(X + ∆t eke
T
l )− gmn(X)

∆t
∈ R (1571)

where ek is the kth standard basis vector in RK while el is the lth standard
basis vector in RL. The total number of partial derivatives equals KLMN
while the gradient is defined in their terms; the mnth entry of the gradient is

∇gmn(X) =















∂gmn(X)
∂X11

∂gmn(X)
∂X12

· · · ∂gmn(X)
∂X1L

∂gmn(X)
∂X21

∂gmn(X)
∂X22

· · · ∂gmn(X)
∂X2L

...
...

...
∂gmn(X)

∂XK1

∂gmn(X)
∂XK2

· · · ∂gmn(X)
∂XKL















∈ RK×L (1572)

while the gradient is a quartix

∇g(X) =











∇g11(X) ∇g12(X) · · · ∇g1N(X)

∇g21(X) ∇g22(X) · · · ∇g2N(X)
...

...
...

∇gM1(X) ∇gM2(X) · · · ∇gMN(X)











∈ RM×N×K×L (1573)

By simply rotating our perspective of the four-dimensional representation of
gradient matrix, we find one of three useful transpositions of this quartix
(connoted T1):
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∇g(X)T1 =













∂g(X)
∂X11

∂g(X)
∂X12

· · · ∂g(X)
∂X1L

∂g(X)
∂X21

∂g(X)
∂X22

· · · ∂g(X)
∂X2L...

...
...

∂g(X)
∂XK1

∂g(X)
∂XK2

· · · ∂g(X)
∂XKL













∈ RK×L×M×N (1574)

When the limit for ∆t∈R exists, it is easy to show by substitution of
variables in (1571)

∂gmn(X)

∂Xkl

Ykl = lim
∆t→0

gmn(X + ∆t Ykl eke
T
l )− gmn(X)

∆t
∈ R (1575)

which may be interpreted as the change in gmn at X when the change in Xkl

is equal to Ykl , the klth entry of any Y ∈ RK×L. Because the total change
in gmn(X) due to Y is the sum of change with respect to each and every
Xkl , the mnth entry of the directional derivative is the corresponding total
differential [161, §15.8]

dgmn(X)|dX→Y =
∑

k,l

∂gmn(X)

∂Xkl

Ykl = tr
(

∇gmn(X)T Y
)

(1576)

=
∑

k,l

lim
∆t→0

gmn(X + ∆t Ykl eke
T
l )− gmn(X)

∆t
(1577)

= lim
∆t→0

gmn(X + ∆t Y )− gmn(X)

∆t
(1578)

=
d

dt

∣

∣

∣

∣

t=0

gmn(X+ t Y ) (1579)

where t∈R . Assuming finite Y , equation (1578) is called the Gâteaux
differential [29, App.A.5] [148, §D.2.1] [268, §5.28] whose existence is implied
by the existence of the Fréchet differential, the sum in (1576). [182, §7.2] Each
may be understood as the change in gmn at X when the change in X is equal
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in magnitude and direction to Y .D.3 Hence the directional derivative,

→Y

dg(X)
∆
=











dg11(X) dg12(X) · · · dg1N(X)

dg21(X) dg22(X) · · · dg2N(X)
...

...
...

dgM1(X) dgM2(X) · · · dgMN(X)











∣

∣

∣

∣

∣

∣

∣

∣

∣

dX→Y

∈ RM×N

=











tr
(

∇g11(X)T Y
)

tr
(

∇g12(X)T Y
)

· · · tr
(

∇g1N(X)T Y
)

tr
(

∇g21(X)T Y
)

tr
(

∇g22(X)T Y
)

· · · tr
(

∇g2N(X)T Y
)

...
...

...
tr
(

∇gM1(X)T Y
)

tr
(

∇gM2(X)T Y
)

· · · tr
(

∇gMN(X)T Y
)











=



















∑

k,l

∂g11(X)
∂Xkl

Ykl

∑

k,l

∂g12(X)
∂Xkl

Ykl · · ·
∑

k,l

∂g1N (X)

∂Xkl
Ykl

∑

k,l

∂g21(X)
∂Xkl

Ykl

∑

k,l

∂g22(X)
∂Xkl

Ykl · · ·
∑

k,l

∂g2N (X)

∂Xkl
Ykl

...
...

...
∑

k,l

∂gM1(X)
∂Xkl

Ykl

∑

k,l

∂gM2(X)
∂Xkl

Ykl · · ·
∑

k,l

∂gMN (X)

∂Xkl
Ykl



















(1580)

from which it follows
→Y

dg(X) =
∑

k,l

∂g(X)

∂Xkl

Ykl (1581)

Yet for all X∈ dom g , any Y∈RK×L, and some open interval of t∈R

g(X+ t Y ) = g(X) + t
→Y

dg(X) + o(t2) (1582)

which is the first-order Taylor series expansion about X . [161, §18.4]
[104, §2.3.4] Differentiation with respect to t and subsequent t-zeroing
isolates the second term of expansion. Thus differentiating and zeroing
g(X+ t Y ) in t is an operation equivalent to individually differentiating and
zeroing every entry gmn(X+ t Y ) as in (1579). So the directional derivative
of g(X) : RK×L→RM×N in any direction Y ∈ RK×L evaluated at X∈ dom g
becomes

D.3Although Y is a matrix, we may regard it as a vector in RKL.
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→Y

dg(X) =
d

dt

∣

∣

∣

∣

t=0

g(X+ t Y ) ∈ RM×N (1583)

[204, §2.1, §5.4.5] [27, §6.3.1] which is simplest. In case of a real function
g(X) : RK×L→R

→Y

dg(X) = tr
(

∇g(X)T Y
)

(1605)

In case g(X) : RK→R
→Y

dg(X) = ∇g(X)T Y (1608)

Unlike gradient, directional derivative does not expand dimension;
directional derivative (1583) retains the dimensions of g . The derivative
with respect to t makes the directional derivative resemble ordinary calculus

(§D.2); e.g., when g(X) is linear,
→Y

dg(X) = g(Y ). [182, §7.2]

D.1.4.1 Interpretation of directional derivative

In the case of any differentiable real function f(X) : RK×L→R , the
directional derivative of f(X) at X in any direction Y yields the slope of
f along the line {X+ t Y | t ∈ R} through its domain evaluated at t= 0.
For higher-dimensional functions, by (1580), this slope interpretation can be
applied to each entry of the directional derivative.

Figure 117, for example, shows a plane slice of a real convex bowl-shaped
function f(x) along a line {α+ t y | t ∈R} through its domain. The slice
reveals a one-dimensional real function of t ; f(α+ t y). The directional
derivative at x= α in direction y is the slope of f(α+ t y) with respect
to t at t= 0. In the case of a real function having vector argument
h(X) : RK→R , its directional derivative in the normalized direction of its
gradient is the gradient magnitude. (1608) For a real function of real variable,
the directional derivative evaluated at any point in the function domain is just
the slope of that function there scaled by the real direction. (confer §3.1.8)

D.1.4.1.1 Theorem. Directional derivative optimality condition.
[182, §7.4] Suppose f(X) : RK×L→R is minimized on convex set C⊆Rp×k

by X⋆, and the directional derivative of f exists there. Then for all X∈ C
→X−X⋆

df(X)≥ 0 (1584)

⋄
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(f(α), α)

∂H

υ T

f(x)

f(α+ t y)

υ
∆
=







∇xf(α)

1
2

→∇xf(α)

df (α)




























Figure 117: Convex quadratic bowl in R2×R ; f(x)= xTx : R2→R
versus x on some open disc in R2. Plane slice ∂H is perpendicular to
function domain. Slice intersection with domain connotes bidirectional
vector y . Slope of tangent line T at point (α , f(α)) is value of directional
derivative ∇xf(α)Ty (1608) at α in slice direction y . Negative gradient
−∇xf(x)∈R2 is direction of steepest descent. [283] [161, §15.6] [104] When
vector υ∈R3 entry υ3 is half directional derivative in gradient direction at α

and when

[

υ1

υ2

]

= ∇xf(α) , then −υ points directly toward bowl bottom.
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D.1.4.1.2 Example. Simple bowl.
Bowl function (Figure 117)

f(x) : RK→ R
∆
= (x− a)T (x− a)− b (1585)

has function offset −b ∈R , axis of revolution at x= a , and positive definite
Hessian (1537) everywhere in its domain (an open hyperdisc in RK ); id est,
strictly convex quadratic f(x) has unique global minimum equal to −b at
x= a . A vector −υ based anywhere in dom f × R pointing toward the
unique bowl-bottom is specified:

υ ∝
[

x− a
f(x) + b

]

∈ RK× R (1586)

Such a vector is

υ =







∇xf(x)

1
2

→∇xf(x)

df(x)






(1587)

since the gradient is

∇xf(x) = 2(x− a) (1588)

and the directional derivative in the direction of the gradient is (1608)

→∇xf(x)

df(x) = ∇xf(x)T ∇xf(x) = 4(x− a)T (x− a) = 4(f(x) + b) (1589)

2

D.1.5 Second directional derivative

By similar argument, it so happens: the second directional derivative is
equally simple. Given g(X) : RK×L→RM×N on open domain,

∇∂gmn(X)

∂Xkl

=
∂∇gmn(X)

∂Xkl

=















∂2gmn(X)
∂Xkl∂X11

∂2gmn(X)
∂Xkl∂X12

· · · ∂2gmn(X)
∂Xkl∂X1L

∂2gmn(X)
∂Xkl∂X21

∂2gmn(X)
∂Xkl∂X22

· · · ∂2gmn(X)
∂Xkl∂X2L

...
...

...
∂2gmn(X)
∂Xkl∂XK1

∂2gmn(X)
∂Xkl∂XK2

· · · ∂2gmn(X)
∂Xkl∂XKL















∈ RK×L (1590)
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∇2gmn(X) =















∇∂gmn(X)
∂X11

∇∂gmn(X)
∂X12

· · · ∇∂gmn(X)
∂X1L

∇∂gmn(X)
∂X21

∇∂gmn(X)
∂X22

· · · ∇∂gmn(X)
∂X2L

...
...

...

∇∂gmn(X)
∂XK1

∇∂gmn(X)
∂XK2

· · · ∇∂gmn(X)
∂XKL















∈ RK×L×K×L

=













∂∇gmn(X)
∂X11

∂∇gmn(X)
∂X12

· · · ∂∇gmn(X)
∂X1L

∂∇gmn(X)
∂X21

∂∇gmn(X)
∂X22

· · · ∂∇gmn(X)
∂X2L...

...
...

∂∇gmn(X)
∂XK1

∂∇gmn(X)
∂XK2

· · · ∂∇gmn(X)
∂XKL













(1591)

Rotating our perspective, we get several views of the second-order gradient:

∇2g(X) =











∇2g11(X) ∇2g12(X) · · · ∇2g1N(X)

∇2g21(X) ∇2g22(X) · · · ∇2g2N(X)
...

...
...

∇2gM1(X) ∇2gM2(X) · · · ∇2gMN(X)











∈ RM×N×K×L×K×L (1592)

∇2g(X)T1 =













∇∂g(X)
∂X11

∇∂g(X)
∂X12

· · · ∇∂g(X)
∂X1L

∇∂g(X)
∂X21

∇∂g(X)
∂X22

· · · ∇∂g(X)
∂X2L...

...
...

∇∂g(X)
∂XK1

∇∂g(X)
∂XK2

· · · ∇∂g(X)
∂XKL













∈ RK×L×M×N×K×L (1593)

∇2g(X)T2 =













∂∇g(X)
∂X11

∂∇g(X)
∂X12

· · · ∂∇g(X)
∂X1L

∂∇g(X)
∂X21

∂∇g(X)
∂X22

· · · ∂∇g(X)
∂X2L...

...
...

∂∇g(X)
∂XK1

∂∇g(X)
∂XK2

· · · ∂∇g(X)
∂XKL













∈ RK×L×K×L×M×N (1594)

Assuming the limits exist, we may state the partial derivative of the mnth

entry of g with respect to the klth and ij th entries of X ;

∂2gmn(X)
∂Xkl ∂Xij

= lim
∆τ,∆t→0

gmn(X+∆t ekeT
l +∆τ eie

T
j )−gmn(X+∆t ekeT

l )−(gmn(X+∆τ eie
T
j )−gmn(X))

∆τ ∆t

(1595)
Differentiating (1575) and then scaling by Yij

∂2gmn(X)
∂Xkl ∂Xij

YklYij = lim
∆t→0

∂gmn(X+∆t Ykl ekeT
l )−∂gmn(X)

∂Xij ∆t
Yij

= lim
∆τ,∆t→0

gmn(X+∆t Ykl ekeT
l +∆τ Yij eie

T
j )−gmn(X+∆t Ykl ekeT

l )−(gmn(X+∆τ Yij eie
T
j )−gmn(X))

∆τ ∆t

(1596)
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which can be proved by substitution of variables in (1595). The mnth

second-order total differential due to any Y∈RK×L is

d2gmn(X)|dX→Y =
∑

i,j

∑

k,l

∂2gmn(X)

∂Xkl ∂Xij

YklYij = tr
(

∇X tr
(

∇gmn(X)T Y
)T
Y
)

(1597)

=
∑

i,j

lim
∆t→0

∂gmn(X + ∆t Y )− ∂gmn(X)

∂Xij ∆t
Yij (1598)

= lim
∆t→0

gmn(X + 2∆t Y )− 2gmn(X + ∆t Y ) + gmn(X)

∆t2
(1599)

=
d2

dt2

∣

∣

∣

∣

t=0

gmn(X+ t Y ) (1600)

Hence the second directional derivative,

→Y

dg2(X)
∆
=











d2g11(X) d2g12(X) · · · d2g1N(X)

d2g21(X) d2g22(X) · · · d2g2N(X)
...

...
...

d2gM1(X) d2gM2(X) · · · d2gMN(X)











∣

∣

∣

∣

∣

∣

∣

∣

∣

dX→Y

∈ RM×N

=

















tr
(

∇tr
(

∇g11(X)T Y
)T
Y
)

tr
(

∇tr
(

∇g12(X)T Y
)T
Y
)

· · · tr
(

∇tr
(

∇g1N(X)T Y
)T
Y
)

tr
(

∇tr
(

∇g21(X)T Y
)T
Y
)

tr
(

∇tr
(

∇g22(X)T Y
)T
Y
)

· · · tr
(

∇tr
(

∇g2N(X)T Y
)T
Y
)

...
...

...

tr
(

∇tr
(

∇gM1(X)T Y
)T
Y
)

tr
(

∇tr
(

∇gM2(X)T Y
)T
Y
)

· · · tr
(

∇tr
(

∇gMN(X)T Y
)T
Y
)

















=



















∑

i,j

∑

k,l

∂2g11(X)
∂Xkl ∂Xij

YklYij

∑

i,j

∑

k,l

∂2g12(X)
∂Xkl ∂Xij

YklYij · · ·
∑

i,j

∑

k,l

∂2g1N (X)

∂Xkl ∂Xij
YklYij

∑

i,j

∑

k,l

∂2g21(X)
∂Xkl ∂Xij

YklYij

∑

i,j

∑

k,l

∂2g22(X)
∂Xkl ∂Xij

YklYij · · ·
∑

i,j

∑

k,l

∂2g2N (X)

∂Xkl ∂Xij
YklYij

...
...

...
∑

i,j

∑

k,l

∂2gM1(X)
∂Xkl ∂Xij

YklYij

∑

i,j

∑

k,l

∂2gM2(X)
∂Xkl ∂Xij

YklYij · · ·
∑

i,j

∑

k,l

∂2gMN (X)

∂Xkl ∂Xij
YklYij



















(1601)
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from which it follows

→Y

dg2(X) =
∑

i,j

∑

k,l

∂2g(X)

∂Xkl ∂Xij

YklYij =
∑

i,j

∂

∂Xij

→Y

dg(X)Yij (1602)

Yet for all X∈ dom g , any Y∈RK×L, and some open interval of t∈R

g(X+ t Y ) = g(X) + t
→Y

dg(X) +
1

2!
t2
→Y

dg2(X) + o(t3) (1603)

which is the second-order Taylor series expansion about X . [161, §18.4]
[104, §2.3.4] Differentiating twice with respect to t and subsequent t-zeroing
isolates the third term of the expansion. Thus differentiating and zeroing
g(X+ t Y ) in t is an operation equivalent to individually differentiating and
zeroing every entry gmn(X+ t Y ) as in (1600). So the second directional
derivative of g(X) : RK×L→RM×N becomes [204, §2.1, §5.4.5] [27, §6.3.1]

→Y

dg2(X) =
d2

dt2

∣

∣

∣

∣

t=0

g(X+ t Y ) ∈ RM×N (1604)

which is again simplest. (confer (1583)) Directional derivative retains the
dimensions of g .

D.1.6 directional derivative expressions

In the case of a real function g(X) : RK×L→R , all the directional derivatives
are in R :

→Y

dg(X) = tr
(

∇g(X)T Y
)

(1605)

→Y

dg2(X) = tr
(

∇X tr
(

∇g(X)T Y
)T
Y
)

= tr

(

∇X

→Y

dg(X)T Y

)

(1606)

→Y

dg3(X) = tr

(

∇X tr
(

∇X tr
(

∇g(X)T Y
)T
Y
)T

Y

)

= tr

(

∇X

→Y

dg2(X)T Y

)

(1607)
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In the case g(X) : RK→R has vector argument, they further simplify:

→Y

dg(X) = ∇g(X)T Y (1608)

→Y

dg2(X) = Y T∇2g(X)Y (1609)

→Y

dg3(X) = ∇X

(

Y T∇2g(X)Y
)T
Y (1610)

and so on.

D.1.7 Taylor series

Series expansions of the differentiable matrix-valued function g(X) , of
matrix argument, were given earlier in (1582) and (1603). Assuming g(X)
has continuous first-, second-, and third-order gradients over the open set
dom g , then for X∈ dom g and any Y ∈ RK×L the complete Taylor series
on some open interval of µ∈R is expressed

g(X+µY ) = g(X) + µ
→Y

dg(X) +
1

2!
µ2
→Y

dg2(X) +
1

3!
µ3
→Y

dg3(X) + o(µ4) (1611)

or on some open interval of ‖Y ‖

g(Y ) = g(X) +
→Y−X

dg(X) +
1

2!

→Y−X

dg2(X) +
1

3!

→Y−X

dg3(X) + o(‖Y ‖4) (1612)

which are third-order expansions about X . The mean value theorem from
calculus is what insures finite order of the series. [161] [30, §1.1] [29, App.A.5]
[148, §0.4]

D.1.7.0.1 Exercise. log det . (confer [46, p.644])
Find the first two terms of the Taylor series expansion (1612) for log detX .

H
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D.1.8 Correspondence of gradient to derivative

From the foregoing expressions for directional derivative, we derive a
relationship between the gradient with respect to matrixX and the derivative
with respect to real variable t :

D.1.8.1 first-order

Removing from (1583) the evaluation at t= 0 ,D.4 we find an expression for
the directional derivative of g(X) in direction Y evaluated anywhere along
a line {X+ t Y | t ∈R} intersecting dom g

→Y

dg(X+ t Y ) =
d

dt
g(X+ t Y ) (1613)

In the general case g(X) : RK×L→RM×N , from (1576) and (1579) we find

tr
(

∇X gmn(X+ t Y )T Y
)

=
d

dt
gmn(X+ t Y ) (1614)

which is valid at t = 0, of course, when X ∈ dom g . In the important case
of a real function g(X) : RK×L→R , from (1605) we have simply

tr
(

∇X g(X+ t Y )T Y
)

=
d

dt
g(X+ t Y ) (1615)

When, additionally, g(X) : RK→R has vector argument,

∇X g(X+ t Y )T Y =
d

dt
g(X+ t Y ) (1616)

D.4Justified by replacing X with X+ t Y in (1576)-(1578); beginning,

dgmn(X+ t Y )|dX→Y =
∑

k , l

∂gmn(X+ t Y )

∂Xkl
Ykl
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D.1.8.1.1 Example. Gradient.
g(X) = wTXTXw , X∈ RK×L, w∈RL. Using the tables in §D.2,

tr
(

∇X g(X+ t Y )T Y
)

= tr
(

2wwT(XT + t Y T )Y
)

(1617)

= 2wT(XTY + t Y TY )w (1618)

Applying the equivalence (1615),

d

dt
g(X+ t Y ) =

d

dt
wT(X+ t Y )T (X+ t Y )w (1619)

= wT
(

XTY + Y TX + 2t Y TY
)

w (1620)

= 2wT(XTY + t Y TY )w (1621)

which is the same as (1618); hence, equivalence is demonstrated.
It is easy to extract ∇g(X) from (1621) knowing only (1615):

tr
(

∇X g(X+ t Y )T Y
)

= 2wT(XTY + t Y TY )w
= 2 tr

(

wwT(XT + t Y T )Y
)

tr
(

∇X g(X)T Y
)

= 2 tr
(

wwTXTY
)

⇔
∇X g(X) = 2XwwT

(1622)

2

D.1.8.2 second-order

Likewise removing the evaluation at t= 0 from (1604),

→Y

dg2(X+ t Y ) =
d2

dt2
g(X+ t Y ) (1623)

we can find a similar relationship between the second-order gradient and the
second derivative: In the general case g(X) : RK×L→RM×N from (1597) and
(1600),

tr
(

∇X tr
(

∇X gmn(X+ t Y )T Y
)T
Y
)

=
d2

dt2
gmn(X+ t Y ) (1624)

In the case of a real function g(X) : RK×L→R we have, of course,

tr
(

∇X tr
(

∇X g(X+ t Y )T Y
)T
Y
)

=
d2

dt2
g(X+ t Y ) (1625)



D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 571

From (1609), the simpler case, where the real function g(X) : RK→R has
vector argument,

Y T∇2
Xg(X+ t Y )Y =

d2

dt2
g(X+ t Y ) (1626)

D.1.8.2.1 Example. Second-order gradient.
Given real function g(X) = log detX having domain int SK

+ , we want to
find ∇2g(X)∈RK×K×K×K . From the tables in §D.2,

h(X)
∆
= ∇g(X) = X−1∈ int SK

+ (1627)

so ∇2g(X)=∇h(X). By (1614) and (1582), for Y ∈ SK

tr
(

∇hmn(X)T Y
)

=
d

dt

∣

∣

∣

∣

t=0

hmn(X+ t Y ) (1628)

=

(

d

dt

∣

∣

∣

∣

t=0

h(X+ t Y )

)

mn

(1629)

=

(

d

dt

∣

∣

∣

∣

t=0

(X+ t Y )−1

)

mn

(1630)

= −
(

X−1Y X−1
)

mn
(1631)

Setting Y to a member of {eke
T
l ∈ RK×K | k, l=1 . . . K} , and employing a

property (32) of the trace function we find

∇2g(X)mnkl = tr
(

∇hmn(X)T eke
T
l

)

= ∇hmn(X)kl = −
(

X−1eke
T
l X

−1
)

mn

(1632)

∇2g(X)kl = ∇h(X)kl = −
(

X−1eke
T
l X

−1
)

∈ RK×K (1633)

2

From all these first- and second-order expressions, we may generate new
ones by evaluating both sides at arbitrary t (in some open interval) but only
after the differentiation.
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D.2 Tables of gradients and derivatives

[116] [50]� When proving results for symmetric matrices algebraically, it is critical
to take gradients ignoring symmetry and to then substitute symmetric
entries afterward.� a , b∈Rn, x, y∈Rk, A ,B∈ Rm×n, X,Y ∈ RK×L, t , µ∈R ,
i, j, k, ℓ,K, L ,m, n ,M,N are integers, unless otherwise noted.� xµ means δ(δ(x)µ) for µ∈R ; id est, entrywise vector exponentiation.

δ is the main-diagonal linear operator (1220). x0 ∆
= 1, X0 ∆

= I if square.� d
dx

∆
=







d
dx1...
d

dxk






,
→y

dg(x) ,
→y

dg2(x) (directional derivatives §D.1), log x ,

sgnx , x/y (Hadamard quotient),
√
x (entrywise square root),

etcetera, are maps f : Rk→ Rk that maintain dimension; e.g., (§A.1.1)

d

dx
x−1 ∆

= ∇x 1T δ(x)−11 (1634)� For A a scalar or matrix, we have the Taylor series [55, §3.6]

eA ∆
=

∞
∑

k=0

1

k!
Ak (1635)

Further, [249, §5.4]

eA ≻ 0 ∀A ∈ Sm (1636)� For all square A and integer k

detkA = detAk (1637)
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D.2.1 algebraic

∇x x = ∇x x
T = I ∈ Rk×k ∇XX = ∇XX

T ∆
= I ∈ RK×L×K×L (identity)

∇x(Ax− b) = AT

∇x

(

xTA− bT
)

= A

∇x(Ax− b)T
(Ax− b) = 2AT(Ax− b)

∇2
x (Ax− b)T

(Ax− b) = 2ATA

∇x

(

xTAx+ 2xTBy + yTCy
)

= (A+AT )x+ 2By

∇2
x

(

xTAx+ 2xTBy + yTCy
)

= A+AT

∇X aTXb = ∇X bTXTa = abT

∇X aTX2b = XTabT + abTXT

∇X aTX−1b = −X−TabTX−T

∇X(X−1)kl =
∂X−1

∂Xkl
= −X−1eke

T
l X
−1, confer (1574)(1633)

∇x a
TxTxb = 2xaT b ∇X aTXTXb = X(abT + baT )

∇x a
TxxT b = (abT + baT )x ∇X aTXXT b = (abT + baT )X

∇x a
TxTxa = 2xaTa ∇X aTXTXa = 2XaaT

∇x a
TxxTa = 2aaTx ∇X aTXXTa = 2aaTX

∇x a
TyxT b = baTy ∇X aTYXT b = baTY

∇x a
TyTxb = ybTa ∇X aTY TXb = Y abT

∇x a
TxyT b = abTy ∇X aTXY T b = abTY

∇x a
TxTyb = yaT b ∇X aTXTY b = Y baT
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algebraic continued

d
dt

(X+ t Y ) = Y

d
dt
BT (X+ t Y )−1A = −BT (X+ t Y )−1Y (X+ t Y )−1A

d
dt
BT (X+ t Y )−TA = −BT (X+ t Y )−T Y T (X+ t Y )−TA

d
dt
BT (X+ t Y )µA = ... , −1 ≤ µ ≤ 1, X , Y ∈ SM

+

d2

dt2
BT (X+ t Y )−1A = 2BT (X+ t Y )−1Y (X+ t Y )−1Y (X+ t Y )−1A

d
dt

(

(X+ t Y )TA(X+ t Y )
)

= Y TAX +XTAY + 2 t Y TAY

d2

dt2

(

(X+ t Y )TA(X+ t Y )
)

= 2Y TAY

d
dt
((X+ t Y )A(X+ t Y )) = YAX +XAY + 2 t YAY

d2

dt2
((X+ t Y )A(X+ t Y )) = 2YAY

D.2.2 trace Kronecker

∇vec X tr(AXBXT ) = ∇vec X vec(X)T (BT ⊗ A) vecX = (B ⊗AT + BT ⊗A) vecX

∇2
vec X tr(AXBXT ) = ∇2

vec X vec(X)T (BT ⊗ A) vecX = B ⊗AT + BT ⊗A
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D.2.3 trace

∇x µ x = µI ∇X trµX = ∇X µ trX = µI

∇x 1T δ(x)−11 = d
dxx
−1 = −x−2 ∇X trX−1 = −X−2T

∇x 1T δ(x)−1y = −δ(x)−2y ∇X tr(X−1 Y ) = ∇X tr(Y X−1) = −X−TY TX−T

d
dxx

µ = µxµ−1 ∇X trXµ = µXµ−1 , X∈ SM

∇X trXj = jX(j−1)T

∇x(b− aTx)−1 = (b− aTx)−2a ∇X tr
(

(B −AX)−1
)

=
(

(B −AX)−2A
)T

∇x(b− aTx)µ = −µ(b− aTx)µ−1a

∇x x
Ty = ∇x y

Tx = y ∇X tr(XTY ) = ∇X tr(Y XT ) = ∇X tr(Y TX) = ∇X tr(XY T ) = Y

∇X tr(AXBXT ) = ∇X tr(XBXTA) = ATXBT + AXB
∇X tr(AXBX) = ∇X tr(XBXA) = ATXTBT +BTXTAT

∇X tr(AXAXAX) = ∇X tr(XAXAXA) = 3(AXAXA)T

∇X tr(Y Xk) = ∇X tr(Xk Y ) =
k−1
∑

i=0

(

XiY Xk−1−i
)T

∇X tr(Y TXXTY ) = ∇X tr(XTY Y TX) = 2 Y Y TX
∇X tr(Y TXTXY ) = ∇X tr(XY Y TXT ) = 2XY Y T

∇X tr
(

(X + Y )T (X + Y )
)

= 2(X + Y )
∇X tr((X + Y )(X + Y )) = 2(X + Y )T

∇X tr(ATXB) = ∇X tr(XTABT ) = ABT

∇X tr(ATX−1B) = ∇X tr(X−TABT ) = −X−TABTX−T

∇X aTXb = ∇X tr(baTX) = ∇X tr(XbaT ) = abT

∇X bTXTa = ∇X tr(XTabT ) = ∇X tr(abTXT ) = abT

∇X aTX−1b = ∇X tr(X−TabT ) = −X−TabTX−T

∇X aTX
µ
b = ...
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trace continued

d
dt

tr g(X+ t Y ) = tr d
dt
g(X+ t Y ) [151, p.491]

d
dt

tr(X+ t Y ) = trY

d
dt

trj(X+ t Y ) = j trj−1(X+ t Y ) trY

d
dt

tr(X+ t Y )j = j tr((X+ t Y )j−1 Y ) (∀ j)

d
dt

tr((X+ t Y )Y ) = trY 2

d
dt

tr
(

(X+ t Y )k Y
)

= d
dt

tr(Y (X+ t Y )k) = k tr
(

(X+ t Y )k−1Y 2
)

, k∈{0, 1, 2}

d
dt

tr
(

(X+ t Y )k Y
)

= d
dt

tr(Y (X+ t Y )k) = tr
k−1
∑

i=0

(X+ t Y )iY (X+ t Y )k−1−iY

d
dt

tr((X+ t Y )−1Y ) = − tr((X+ t Y )−1Y (X+ t Y )−1Y )
d
dt

tr
(

BT (X+ t Y )−1A
)

= − tr
(

BT (X+ t Y )−1Y (X+ t Y )−1A
)

d
dt

tr
(

BT (X+ t Y )−TA
)

= − tr
(

BT (X+ t Y )−T Y T (X+ t Y )−TA
)

d
dt

tr
(

BT (X+ t Y )−kA
)

= ... , k>0
d
dt

tr
(

BT (X+ t Y )µA
)

= ... , −1 ≤ µ ≤ 1, X , Y ∈ SM
+

d2

dt2
tr
(

BT (X+ t Y )−1A
)

= 2 tr
(

BT (X+ t Y )−1Y (X+ t Y )−1Y (X+ t Y )−1A
)

d
dt

tr
(

(X+ t Y )TA(X+ t Y )
)

= tr
(

Y TAX +XTAY + 2 t Y TAY
)

d2

dt2
tr
(

(X+ t Y )TA(X+ t Y )
)

= 2 tr
(

Y TAY
)

d
dt

tr((X+ t Y )A(X+ t Y )) = tr(YAX +XAY + 2 t YAY )

d2

dt2
tr((X+ t Y )A(X+ t Y )) = 2 tr(YAY )
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D.2.4 log determinant

x≻ 0, detX> 0 on some neighborhood of X , and det(X+ t Y )> 0 on
some open interval of t ; otherwise, log( ) would be discontinuous.

d
dx

log x = x−1 ∇X log detX = X−T

∇2
X log det(X)kl =

∂X−T

∂Xkl

= −
(

X−1eke
T
l X

−1
)T

, confer (1591)(1633)

d
dx

log x−1 = −x−1 ∇X log detX−1 = −X−T

d
dx

log xµ = µx−1 ∇X log detµX = µX−T

∇X log detX
µ

= µX−T

∇X log detXk = ∇X log detkX = kX−T

∇X log detµ(X+ t Y ) = µ(X+ t Y )−T

∇x log(aTx+ b) = a 1
aTx+b

∇X log det(AX+B) = AT(AX+B)−T

∇X log det(I ± ATXA) = ±A(I ± ATXA)−TAT

∇X log det(X+ t Y )k = ∇X log detk(X+ t Y ) = k(X+ t Y )−T

d
dt

log det(X+ t Y ) = tr ((X+ t Y )−1Y )

d2

dt2
log det(X+ t Y ) = − tr ((X+ t Y )−1Y (X+ t Y )−1Y )

d
dt

log det(X+ t Y )−1 = − tr ((X+ t Y )−1Y )

d2

dt2
log det(X+ t Y )−1 = tr ((X+ t Y )−1Y (X+ t Y )−1Y )

d
dt

log det(δ(A(x+ t y) + a)2 + µI)

= tr
(

(δ(A(x+ t y) + a)2 + µI)−12δ(A(x+ t y) + a)δ(Ay)
)
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D.2.5 determinant

∇X detX = ∇X detXT = det(X)X−T

∇X detX−1 = − det(X−1)X−T = − det(X)−1X−T

∇X detµX = µ detµ(X)X−T

∇X detX
µ

= µ det(X
µ
)X−T

∇X detXk = k detk−1(X)
(

tr(X)I −XT
)

, X∈ R2×2

∇X detXk = ∇X detkX = k det(Xk)X−T = k detk(X)X−T

∇X detµ(X+ t Y ) = µ detµ(X+ t Y )(X+ t Y )−T

∇X det(X+ t Y )k = ∇X detk(X+ t Y ) = k detk(X+ t Y )(X+ t Y )−T

d
dt

det(X+ t Y ) = det(X+ t Y ) tr((X+ t Y )−1Y )

d2

dt2
det(X+ t Y ) = det(X+ t Y )(tr2((X+ t Y )−1Y )− tr((X+ t Y )−1Y (X+ t Y )−1Y ))

d
dt

det(X+ t Y )−1 = − det(X+ t Y )−1 tr((X+ t Y )−1Y )

d2

dt2
det(X+ t Y )−1 = det(X+ t Y )−1(tr2((X+ t Y )−1Y ) + tr((X+ t Y )−1Y (X+ t Y )−1Y ))

d
dt

detµ(X+ t Y ) = µ detµ(X+ t Y ) tr((X+ t Y )−1Y )
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D.2.6 logarithmic

Matrix logarithm.

d
dt

log(X+ t Y )µ = µY (X+ t Y )−1 = µ(X+ t Y )−1Y , XY = Y X

d
dt

log(I− t Y )µ = −µY (I− t Y )−1 = −µ(I− t Y )−1Y [151, p.493]

D.2.7 exponential

Matrix exponential. [55, §3.6, §4.5] [249, §5.4]

∇Xe
tr(Y TX) = ∇X det eY TX = etr(Y

TX)Y (∀X,Y )

∇X tr eY X = eY TXT

Y T = Y T eXT Y T

log-sum-exp & geometric mean [46, p.74]...

d j

dt j
etr(X+ t Y ) = etr(X+ t Y ) trj(Y )

d
dt
etY = etY Y = Y etY

d
dt
eX+ t Y = eX+ t Y Y = Y eX+ t Y , XY = Y X

d2

dt2
eX+ t Y = eX+ t Y Y 2 = Y eX+ t Y Y = Y 2eX+ t Y , XY = Y X
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Appendix E

Projection

For any A∈Rm×n, the pseudoinverse [150, §7.3, prob.9] [182, §6.12, prob.19]
[110, §5.5.4] [249, App.A]

A†
∆
= lim

t→0+
(ATA+ t I )−1AT = lim

t→0+
AT(AAT + t I )−1 ∈ Rn×m (1638)

is a unique matrix solving minimize
X

‖AX − I‖2F . For any t > 0

I − A(ATA+ t I )−1AT = t(AAT + t I )−1 (1639)

Equivalently, pseudoinverse A† is that unique matrix satisfying the
Moore-Penrose conditions : [152, §1.3] [282]

1. AA†A = A 3. (AA†)T = AA†

2. A†AA† = A† 4. (A†A)T = A†A

which are necessary and sufficient to establish the pseudoinverse whose
principal action is to injectively map R(A) onto R(AT ). Taken rowwise,
these conditions are respectively necessary and sufficient for AA† to be the
orthogonal projector on R(A) , and for A†A to be the orthogonal projector
on R(AT ).

Range and nullspace of the pseudoinverse [195] [246, §III.1, exer.1]

R(A†) = R(AT ) , R(A†T ) = R(A) (1640)

N (A†) = N (AT ) , N (A†T ) = N (A) (1641)

can be derived by singular value decomposition (§A.6).© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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http://www.convexoptimization.com
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The following relations reliably hold without qualification:

a. AT † = A†T

b. A†† = A
c. (AAT )† = A†TA†

d. (ATA)† = A†A†T

e. (AA†)† = AA†

f . (A†A)† = A†A

Yet for arbitrary A,B it is generally true that (AB)† 6= B†A† :

E.0.0.0.1 Theorem. Pseudoinverse of product. [119] [42] [176, exer.7.23]
For A∈Rm×n and B∈Rn×k

(AB)† = B†A† (1642)

if and only if

R(ATAB) ⊆ R(B) and R(BBTAT ) ⊆ R(AT ) (1643)
⋄

UT = U † for orthonormal (including the orthogonal) matrices U . So, for
orthonormal matrices U,Q and arbitrary A

(UAQT )† = QA†U T (1644)

E.0.0.0.2 Exercise. Kronecker inverse.
Prove:

(A ⊗B)† = A† ⊗ B† (1645)
H

E.0.1 Logical deductions

When A is invertible, A†=A−1 ; so A†A =AA†= I . Otherwise, for
A∈Rm×n [103, §5.3.3.1] [176, §7] [219]

g. A†A = I , A† = (ATA)−1AT , rankA = n
h. AA†= I , A† = AT(AAT )−1 , rankA = m
i . A†Aω = ω , ω ∈ R(AT )
j. AA†υ = υ , υ ∈ R(A)
k. A†A = AA† , A normal
l. Ak† = A†k , A normal, k an integer
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Equivalent to the corresponding Moore-Penrose condition:

1. AT = ATAA† or AT = A†AAT

2. A†T = A†TA†A or A†T = AA†A†T

When A is symmetric, A† is symmetric and (§A.6)

A � 0 ⇔ A† � 0 (1646)

E.0.1.0.1 Example. Solution to classical linear equation Ax = b .
In §2.5.1.1, the solution set to matrix equation Ax= b was represented
as an intersection of hyperplanes. Regardless of rank of A or its shape
(fat or skinny), interpretation as a hyperplane intersection describing a
possibly empty affine set generally holds. If matrix A is rank deficient or
fat, there is an infinity of solutions x when b∈R(A). A unique solution
occurs when the hyperplanes intersect at a single point.

For any shape of matrix A of any rank, and given any vector b that may
or may not be in R(A) , we wish to find a best Euclidean solution x⋆ to

Ax = b (1647)

(more generally, Ax ≈ b given arbitrary matrices) by solving

minimize
x

‖Ax− b‖2 (1648)

Necessary and sufficient condition for optimal solution to this unconstrained
optimization is the so-called normal equation that results from zeroing the
convex objective’s gradient: (§D.2.1)

ATAx = AT b (1649)

normal because error vector b−Ax is perpendicular to R(A) ; id est,
AT (b−Ax)=0. Given any matrix A and any vector b , the normal equation
is solvable exactly; always so, because R(ATA)=R(AT ) and AT b∈R(AT ).

When A is skinny-or-square full-rank, normal equation (1649) can be
solved exactly by inversion:

x⋆ = (ATA)−1AT b ≡ A†b (1650)
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For matrix A of arbitrary rank and shape, on the other hand, ATA might
not be invertible. Yet the normal equation can always be solved exactly by:
(1638)

x⋆ = lim
t→0+

(ATA+ t I )−1AT b = A†b (1651)

invertible for any positive value of t by (1255). The exact inversion (1650)
and this pseudoinverse solution (1651) each solve

lim
t→0+

minimize
x

‖Ax− b‖2 + t ‖x‖2 (1652)

simultaneously providing least squares solution to (1648) and the classical
least norm solutionE.1 [249, App.A.4] (confer §E.5.0.0.5)

arg minimize
x

‖x‖2
subject to Ax = AA†b

(1653)

where AA†b is the orthogonal projection of vector b on R(A). 2

E.1 Idempotent matrices

Projection matrices are square and defined by idempotence, P 2 =P ;
[249, §2.6] [152, §1.3] equivalent to the condition, P be diagonalizable
[150, §3.3, prob.3] with eigenvalues φi ∈ {0, 1}. [301, §4.1, thm.4.1]
Idempotent matrices are not necessarily symmetric. The transpose of an
idempotent matrix remains idempotent; P TP T = P T . Solely excepting
P = I , all projection matrices are neither orthogonal (§B.5) or invertible.
[249, §3.4] The collection of all projection matrices of particular dimension
does not form a convex set.

Suppose we wish to project nonorthogonally (obliquely ) on the range
of any particular matrix A∈Rm×n. All idempotent matrices projecting
nonorthogonally on R(A) may be expressed:

P = A(A† +BZT ) ∈ Rm×m (1654)

E.1This means: optimal solutions of lesser norm than the so-called least norm solution
(1653) can be obtained (at expense of approximation Ax ≈ b hence, of perpendicularity)
by ignoring the limiting operation and introducing finite positive values of t into (1652).
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where R(P )=R(A) ,E.2 B∈Rn×k for k∈{1 . . . m} is otherwise arbitrary,
and Z∈Rm×k is any matrix whose range is in N (AT ) ; id est,

ATZ = A†Z = 0 (1655)

Evidently, the collection of nonorthogonal projectors projecting on R(A) is
an affine subset

Pk =
{

A(A† +BZT ) | B∈Rn×k
}

(1656)

When matrix A in (1654) is skinny full-rank (A†A= I ) or has orthonormal
columns (ATA= I ), either property leads to a biorthogonal characterization
of nonorthogonal projection:

E.1.1 Biorthogonal characterization

Any nonorthogonal projector P 2 =P ∈Rm×m projecting on nontrivial R(U)
can be defined by a biorthogonality condition QTU= I ; the biorthogonal
decomposition of P being (confer (1654))

P = UQT , QTU = I (1657)

whereE.3 (§B.1.1.1)

R(P )=R(U) , N (P )=N (QT ) (1658)

and where generally (confer (1683))E.4

P T 6= P , P † 6= P , ‖P‖2 6= 1 , P � 0 (1659)

and P is not nonexpansive (1684).

E.2Proof. R(P )⊆R(A) is obvious [249, §3.6]. By (119) and (120),

R(A† +BZT ) = {(A† +BZT )y | y ∈ Rm}
⊇ {(A† +BZT )y | y ∈ R(A)} = R(AT )

R(P ) = {A(A† +BZT )y | y ∈ Rm}
⊇ {A(A† +BZT )y | (A† +BZT )y ∈ R(AT )} = R(A) �

E.3Proof. Obviously, R(P ) ⊆ R(U). Because QTU = I

R(P ) = {UQTx | x ∈ Rm}
⊇ {UQTUy | y ∈ Rk} = R(U) �

E.4Orthonormal decomposition (1680) (confer §E.3.4) is a special case of biorthogonal
decomposition (1657) characterized by (1683). So, these characteristics (1659) are not
necessary conditions for biorthogonality.
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(⇐) To verify assertion (1657) we observe: because idempotent matrices
are diagonalizable (§A.5), [150, §3.3, prob.3] they must have the form (1339)

P = SΦS−1 =
m
∑

i=1

φi siw
T
i =

k≤m
∑

i=1

siw
T
i (1660)

that is a sum of k= rankP independent projector dyads (idempotent
dyads, §B.1.1, §E.6.2.1) where φi ∈ {0, 1} are the eigenvalues of P
[301, §4.1, thm.4.1] in diagonal matrix Φ∈Rm×m arranged in nonincreasing
order, and where si , wi∈Rm are the right- and left-eigenvectors of P ,
respectively, which are independent and real.E.5 Therefore

U
∆
= S(: , 1:k) =

[

s1 · · · sk

]

∈ Rm×k (1661)

is the full-rank matrix S∈Rm×m having m− k columns truncated
(corresponding to 0 eigenvalues), while

QT ∆
= S−1(1 :k , :) =





wT
1...

wT
k



 ∈ Rk×m (1662)

is matrix S−1 having the corresponding m− k rows truncated. By the
0 eigenvalues theorem (§A.7.3.0.1), R(U)=R(P ) , R(Q)=R(P T ) , and

R(P ) = span {si | φi = 1 ∀ i}
N (P ) = span {si | φi = 0 ∀ i}
R(P T ) = span {wi | φi = 1 ∀ i}
N (P T ) = span {wi | φi = 0 ∀ i}

(1663)

Thus biorthogonality QTU= I is a necessary condition for idempotence, and
so the collection of nonorthogonal projectors projecting on R(U) is the affine
subset Pk =UQT

k where Qk = {Q | QTU= I , Q∈Rm×k}.
(⇒) Biorthogonality is a sufficient condition for idempotence;

P 2 =
k
∑

i=1

siw
T
i

k
∑

j=1

sjw
T
j = P (1664)

id est, if the cross-products are annihilated, then P 2 =P . �

E.5Eigenvectors of a real matrix corresponding to real eigenvalues must be real.
(§A.5.0.0.1)
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x

Px

cone(Q)

cone(U)

T

T ⊥ R(Q)

Figure 118: Nonorthogonal projection of x∈R3 on R(U)= R2 under
biorthogonality condition; id est, Px=UQTx such that QTU= I . Any
point along imaginary line T connecting x to Px will be projected
nonorthogonally on Px with respect to horizontal plane constituting R2 in
this example. Extreme directions of cone(U) correspond to two columns
of U ; likewise for cone(Q). For purpose of illustration, we truncate each
conic hull by truncating coefficients of conic combination at unity. Conic hull
cone(Q) is headed upward at an angle, out of plane of page. Nonorthogonal
projection would fail were N (QT ) in R(U) (were T parallel to a line
in R(U)).
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Nonorthogonal projection of x on R(P ) has expression like a
biorthogonal expansion,

Px = UQTx =
k
∑

i=1

wT
i x si (1665)

When the domain is restricted to the range of P , say x=Uξ for
ξ∈Rk, then x= Px= UQTUξ= Uξ and expansion is unique because the
eigenvectors are linearly independent. Otherwise, any component of x
in N (P )=N (QT ) will be annihilated. The direction of nonorthogonal
projection is orthogonal to R(Q)⇔ QTU= I ; id est, for Px∈R(U)

Px− x ⊥ R(Q) in Rm (1666)

E.1.1.0.1 Example. Illustration of nonorthogonal projector.
Figure 118 shows cone(U) , the conic hull of the columns of

U =





1 1
−0.5 0.3

0 0



 (1667)

from nonorthogonal projector P =UQT . Matrix U has a limitless number
of left inverses because N (UT ) is nontrivial. Similarly depicted is left inverse
QT from (1654)

Q = U †T + ZBT =





0.3750 0.6250
−1.2500 1.2500

0 0



+





0
0
1



 [ 0.5 0.5 ]

=





0.3750 0.6250
−1.2500 1.2500

0.5000 0.5000





(1668)

where Z∈N (UT ) and matrix B is selected arbitrarily; id est, QTU= I
because U is full-rank.

Direction of projection on R(U) is orthogonal to R(Q). Any point along
line T in the figure, for example, will have the same projection. Were matrix
Z instead equal to 0, then cone(Q) would become the relative dual to
cone(U) (sharing the same affine hull; §2.13.8, confer Figure 43(a)) In that
case, projection Px=UU †x of x on R(U) becomes orthogonal projection
(and unique minimum-distance). 2
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E.1.2 Idempotence summary

Nonorthogonal subspace-projector P is a linear operator defined by
idempotence or biorthogonal decomposition (1657), but characterized not
by symmetry nor positive semidefiniteness nor nonexpansivity (1684).

E.2 I−P , Projection on algebraic complement

It follows from the diagonalizability of idempotent matrices that I − P must
also be a projection matrix because it too is idempotent, and because it may
be expressed

I − P = S(I − Φ)S−1 =
m
∑

i=1

(1− φi)siw
T
i (1669)

where (1− φi) ∈ {1, 0} are the eigenvalues of I − P (1256) whose
eigenvectors si , wi are identical to those of P in (1660). A consequence of
that complementary relationship of eigenvalues is the fact, [259, §2] [255, §2]
for subspace projector P = P 2∈Rm×m

R(P ) = span {si | φi = 1 ∀ i} = span {si | (1− φi) = 0 ∀ i} = N (I − P )
N (P ) = span {si | φi = 0 ∀ i} = span {si | (1− φi) = 1 ∀ i} = R(I − P )
R(P T ) = span {wi | φi = 1 ∀ i} = span {wi | (1− φi) = 0 ∀ i} = N (I − P T )
N (P T ) = span {wi | φi = 0 ∀ i} = span {wi | (1− φi) = 1 ∀ i} = R(I − P T )

(1670)

that is easy to see from (1660) and (1669). Idempotent I−P therefore
projects vectors on its range, N (P ). Because all eigenvectors of a real
idempotent matrix are real and independent, the algebraic complement of
R(P ) [166, §3.3] is equivalent to N (P ) ;E.6 id est,

R(P )⊕N (P ) = R(P T )⊕N (P T ) = R(P T )⊕N (P ) = R(P )⊕N (P T ) = Rm

(1671)

because R(P )⊕ R(I−P )= Rm. For idempotent P ∈Rm×m, consequently,

rankP + rank(I − P ) = m (1672)

E.6The same phenomenon occurs with symmetric (nonidempotent) matrices, for example.
When the summands in A ⊕B= Rm are orthogonal vector spaces, the algebraic
complement is the orthogonal complement.
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E.2.0.0.1 Theorem. Rank/Trace. [301, §4.1, prob.9] (confer (1688))

P 2 = P
⇔

rankP = trP and rank(I − P ) = tr(I − P )

(1673)

⋄

E.2.1 Universal projector characteristic

Although projection is not necessarily orthogonal and R(P ) 6⊥ R(I − P ) in
general, still for any projector P and any x∈Rm

Px + (I − P )x = x (1674)

must hold where R(I − P ) = N (P ) is the algebraic complement of R(P ).
The algebraic complement of closed convex cone K , for example, is the
negative dual cone −K∗ . (1792)

E.3 Symmetric idempotent matrices

When idempotent matrix P is symmetric, P is an orthogonal projector. In
other words, the direction of projection of point x∈Rm on subspace R(P )
is orthogonal to R(P ) ; id est, for P 2 =P ∈ Sm and projection Px∈R(P )

Px− x ⊥ R(P ) in Rm (1675)

Perpendicularity is a necessary and sufficient condition for orthogonal
projection on a subspace. [73, §4.9]

A condition equivalent to (1675) is: Norm of direction x−Px is the
infimum over all nonorthogonal projections of x on R(P ) ; [182, §3.3] for
P 2 =P ∈ Sm, R(P )=R(A) , matrices A ,B , Z and positive integer k as
defined for (1654), and given x∈Rm

‖x− Px‖2 = ‖x− AA†x‖2 = inf
B∈R

n×k
‖x− A(A† +BZT )x‖2 (1676)

The infimum is attained for R(B)⊆N (A) over any affine subset of
nonorthogonal projectors (1656) indexed by k .
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Proof is straightforward: The vector 2-norm is a convex function. Setting
gradient of the norm-square to 0, applying §D.2,

(

ATABZT − AT(I − AA†)
)

xxTA = 0
⇔

ATABZTxxTA = 0

(1677)

because AT = ATAA†. Projector P =AA† is therefore unique; the
minimum-distance projector is the orthogonal projector, and vice versa.

�

We get P =AA† so this projection matrix must be symmetric. Then for
any matrix A∈Rm×n, symmetric idempotent P projects a given vector x
in Rm orthogonally on R(A). Under either condition (1675) or (1676), the
projection Px is unique minimum-distance; for subspaces, perpendicularity
and minimum-distance conditions are equivalent.

E.3.1 Four subspaces

We summarize the orthogonal projectors projecting on the four fundamental
subspaces: for A∈Rm×n

A†A : Rn on R(A†A) = R(AT )
AA† : Rm on R(AA†) = R(A)
I−A†A : Rn on R(I−A†A) = N (A)
I−AA† : Rm on R(I−AA†) = N (AT )

(1678)

For completeness:E.7 (1670)

N (A†A) = N (A)
N (AA†) = N (AT )
N (I−A†A) = R(AT )
N (I−AA†) = R(A)

(1679)

E.7Proof is by singular value decomposition (§A.6.2): N (A†A)⊆N (A) is obvious.
Conversely, suppose A†Ax=0. Then xTA†Ax=xTQQTx=‖QTx‖2 =0 where A=UΣQT

is the subcompact singular value decomposition. Because R(Q)=R(AT ) , then x∈N (A)
that implies N (A†A)⊇N (A). �
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E.3.2 Orthogonal characterization

Any symmetric projector P 2 =P ∈ Sm projecting on nontrivial R(Q) can
be defined by the orthonormality condition QTQ = I . When skinny matrix
Q∈Rm×k has orthonormal columns, then Q†= QT by the Moore-Penrose
conditions. Hence, any P having an orthonormal decomposition (§E.3.4)

P = QQT , QTQ = I (1680)

where [249, §3.3] (1392)

R(P ) = R(Q) , N (P ) =N (QT ) (1681)

is an orthogonal projector projecting on R(Q) having, for Px∈R(Q)
(confer (1666))

Px− x ⊥ R(Q) in Rm (1682)

From (1680), orthogonal projector P is obviously positive semidefinite
(§A.3.1.0.6); necessarily,

P T = P , P † = P , ‖P‖2 = 1 , P � 0 (1683)

and ‖Px‖= ‖QQTx‖= ‖QTx‖ because ‖Qy‖= ‖y‖ ∀ y∈Rk. All orthogonal
projectors are therefore nonexpansive because

√

〈Px , x〉 = ‖Px‖ = ‖QTx‖ ≤ ‖x‖ ∀x∈Rm (1684)

the Bessel inequality, [73] [166] with equality when x∈R(Q).
From the diagonalization of idempotent matrices (1660) on page 586

P = SΦST =
m
∑

i=1

φi sis
T
i =

k≤m
∑

i=1

sis
T
i (1685)

orthogonal projection of point x on R(P ) has expression like an orthogonal
expansion [73, §4.10]

Px = QQTx =
k
∑

i=1

sT
i x si (1686)

where
Q = S(: , 1:k) =

[

s1 · · · sk

]

∈ Rm×k (1687)

and where the si [sic] are orthonormal eigenvectors of symmetric
idempotent P . When the domain is restricted to the range of P , say
x=Qξ for ξ∈Rk, then x= Px=QQTQξ=Qξ and expansion is unique.
Otherwise, any component of x in N (QT ) will be annihilated.
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E.3.2.0.1 Theorem. Symmetric rank/trace. (confer (1673) (1260))

P T = P , P 2 = P
⇔

rankP = trP = ‖P‖2F and rank(I − P ) = tr(I − P ) = ‖I − P‖2F
(1688)⋄

Proof. We take as given Theorem E.2.0.0.1 establishing idempotence.
We have left only to show trP =‖P‖2F ⇒ P T = P , established in [301, §7.1].

�

E.3.3 Summary, symmetric idempotent

In summary, orthogonal projector P is a linear operator defined
[148, §A.3.1] by idempotence and symmetry, and characterized by
positive semidefiniteness and nonexpansivity. The algebraic complement
(§E.2) to R(P ) becomes the orthogonal complement R(I − P ) ; id est,
R(P )⊥ R(I − P ).

E.3.4 Orthonormal decomposition

When Z = 0 in the general nonorthogonal projector A(A† + BZT ) (1654),
an orthogonal projector results (for any matrix A) characterized principally
by idempotence and symmetry. Any real orthogonal projector may, in
fact, be represented by an orthonormal decomposition such as (1680).
[152, §1, prob.42]

To verify that assertion for the four fundamental subspaces (1678),
we need only to express A by subcompact singular value decomposition
(§A.6.2): From pseudoinverse (1363) of A = UΣQT ∈ Rm×n

AA† = UΣΣ†U T = UU T , A†A = QΣ†ΣQT = QQT

I − AA† = I − UU T = U⊥U⊥T , I − A†A = I −QQT = Q⊥Q⊥T

(1689)

where U⊥∈Rm×m−rank A holds columnar an orthonormal basis for the
orthogonal complement of R(U) , and likewise for Q⊥∈Rn×n−rank A.
Existence of an orthonormal decomposition is sufficient to establish
idempotence and symmetry of an orthogonal projector (1680). �
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E.3.5 Unifying trait of all projectors: direction

Relation (1689) shows: orthogonal projectors simultaneously possess
a biorthogonal decomposition (confer §E.1.1) (for example, AA† for
skinny-or-square A full-rank) and an orthonormal decomposition (UU T

whence Px= UU Tx).

E.3.5.1 orthogonal projector, orthonormal decomposition

Consider orthogonal expansion of x∈R(U) :

x = UUTx =
n
∑

i=1

uiu
T
i x (1690)

a sum of one-dimensional orthogonal projections (§E.6.3), where

U
∆
= [u1 · · · un ] and UTU = I (1691)

and where the subspace projector has two expressions, (1689)

AA†
∆
= UU T (1692)

where A ∈ Rm×n has rank n . The direction of projection of x on uj for
some j∈{1 . . . n} , for example, is orthogonal to uj but parallel to a vector
in the span of all the remaining vectors constituting the columns of U ;

uT
j (uju

T
j x− x) = 0

uju
T
j x− x = uju

T
j x− UUTx ∈ R({ui | i=1 . . . n , i 6=j})

(1693)

E.3.5.2 orthogonal projector, biorthogonal decomposition

We get a similar result for the biorthogonal expansion of x∈R(A). Define

A
∆
= [ a1 a2 · · · an ] ∈ Rm×n (1694)

and the rows of the pseudoinverse

A†
∆
=











a∗T1

a∗T2...
a∗Tn











∈ Rn×m (1695)
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under the biorthogonality condition A†A= I . In the biorthogonal expansion
(§2.13.8)

x = AA†x =
n
∑

i=1

aia
∗T
i x (1696)

the direction of projection of x on aj for some particular j∈{1 . . . n} , for
example, is orthogonal to a∗j and parallel to a vector in the span of all the
remaining vectors constituting the columns of A ;

a∗Tj (aj a
∗T
j x− x) = 0

aj a
∗T
j x− x = aj a

∗T
j x− AA†x ∈ R({ai | i=1 . . . n , i 6=j})

(1697)

E.3.5.3 nonorthogonal projector, biorthogonal decomposition

Because the result in §E.3.5.2 is independent of matrix symmetry
AA†=(AA†)T , we must get the same result for any nonorthogonal projector
characterized by a biorthogonality condition; namely, for nonorthogonal
projector P = UQT (1657) under biorthogonality condition QTU= I , in
the biorthogonal expansion of x∈R(U)

x = UQTx =
k
∑

i=1

uiq
T
i x (1698)

where

U
∆
=
[

u1 · · · uk

]

∈ Rm×k

QT ∆
=





qT
1...
qT
k



 ∈ Rk×m
(1699)

the direction of projection of x on uj is orthogonal to qj and parallel to a
vector in the span of the remaining ui :

qT
j (uj q

T
j x− x) = 0

uj q
T
j x− x = uj q

T
j x− UQTx ∈ R({ui | i=1 . . . k , i 6=j})

(1700)



596 APPENDIX E. PROJECTION

E.4 Algebra of projection on affine subsets

Let PAx denote projection of x on affine subset A ∆
=R+ α where R is a

subspace and α ∈A . Then, because R is parallel to A , it holds:

PAx = PR+αx = (I − PR)(α) + PRx

= PR(x− α) + α
(1701)

Subspace projector PR is a linear operator (PA is not), and PR(x+ y)=PRx
whenever y⊥R and PR is an orthogonal projector.

E.4.0.0.1 Theorem. Orthogonal projection on affine subset. [73, §9.26]
Let A=R+ α be an affine subset where α ∈A , and let R⊥ be the
orthogonal complement of subspace R . Then PAx is the orthogonal
projection of x∈Rn on A if and only if

PAx ∈ A , 〈PAx− x , a− α〉 = 0 ∀ a ∈ A (1702)

or if and only if
PAx ∈ A , PAx− x ∈ R⊥ (1703)

⋄

E.5 Projection examples

E.5.0.0.1 Example. Orthogonal projection on orthogonal basis.
Orthogonal projection on a subspace can instead be accomplished by
orthogonally projecting on the individual members of an orthogonal basis for
that subspace. Suppose, for example, matrix A∈Rm×n holds an orthonormal

basis for R(A) in its columns; A
∆
= [ a1 a2 · · · an ] . Then orthogonal

projection of vector x∈Rn on R(A) is a sum of one-dimensional orthogonal
projections

Px = AA†x = A(ATA)−1ATx = AATx =
n
∑

i=1

aia
T
i x (1704)

where each symmetric dyad aia
T
i is an orthogonal projector projecting on

R(ai). (§E.6.3) Because ‖x − Px‖ is minimized by orthogonal projection,
Px is considered to be the best approximation (in the Euclidean sense) to
x from the set R(A) . [73, §4.9] 2
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E.5.0.0.2 Example. Orthogonal projection on span of nonorthogonal basis.
Orthogonal projection on a subspace can also be accomplished by projecting
nonorthogonally on the individual members of any nonorthogonal basis for
that subspace. This interpretation is in fact the principal application of the
pseudoinverse we discussed. Now suppose matrix A holds a nonorthogonal
basis for R(A) in its columns,

A = [ a1 a2 · · · an ] ∈ Rm×n (1694)

and define the rows a∗Ti of its pseudoinverse A† as in (1695). Then
orthogonal projection of vector x∈Rn on R(A) is a sum of one-dimensional
nonorthogonal projections

Px = AA†x =
n
∑

i=1

aia
∗T
i x (1705)

where each nonsymmetric dyad aia
∗T
i is a nonorthogonal projector projecting

onR(ai) , (§E.6.1) idempotent because of biorthogonality condition A†A= I .
The projection Px is regarded as the best approximation to x from the

set R(A) , as it was in Example E.5.0.0.1. 2

E.5.0.0.3 Example. Biorthogonal expansion as nonorthogonal projection.
Biorthogonal expansion can be viewed as a sum of components, each a
nonorthogonal projection on the range of an extreme direction of a pointed
polyhedral cone K ; e.g., Figure 119.

Suppose matrix A∈Rm×n holds a nonorthogonal basis for R(A) in
its columns as in (1694), and the rows of pseudoinverse A† are defined
as in (1695). Assuming the most general biorthogonality condition
(A† +BZT )A= I with BZT defined as for (1654), then biorthogonal
expansion of vector x is a sum of one-dimensional nonorthogonal projections;
for x∈R(A)

x = A(A† +BZT )x = AA†x =
n
∑

i=1

aia
∗T
i x (1706)

where each dyad aia
∗T
i is a nonorthogonal projector projecting on R(ai).

(§E.6.1) The extreme directions of K=cone(A) are {a1 , . . . , an} the linearly
independent columns of A while the extreme directions {a∗1 , . . . , a∗n}
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x

z

y

0

a1 ⊥ a∗2

a2 ⊥ a∗1

x = y + z = Pa1x+ Pa2x

a1

a2

a∗1

a∗2

K

K∗

K∗

Figure 119: (confer Figure 49) Biorthogonal expansion of point x∈ aff K
is found by projecting x nonorthogonally on range of extreme directions of
polyhedral cone K⊂R2. Direction of projection on extreme direction a1 is
orthogonal to extreme direction a∗1 of dual cone K∗ and parallel to a2 (§E.3.5);
similarly, direction of projection on a2 is orthogonal to a∗2 and parallel to
a1 . Point x is sum of nonorthogonal projections: x on R(a1) and x on
R(a2). Expansion is unique because extreme directions of K are linearly
independent. Were a1 orthogonal to a2 , then K would be identical to K∗
and nonorthogonal projections would become orthogonal.
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of relative dual cone K∗∩aff K=cone(A†T ) (§2.13.9.4) correspond to the
linearly independent (§B.1.1.1) rows of A†. Directions of nonorthogonal
projection are determined by the pseudoinverse; id est, direction of
projection aia

∗T
i x−x on R(ai) is orthogonal to a∗i .E.8

Because the extreme directions of this cone K are linearly independent,
the component projections are unique in the sense:� there is only one linear combination of extreme directions of K that

yields a particular point x∈R(A) whenever

R(A) = aff K = R(a1)⊕ R(a2)⊕ . . . ⊕ R(an) (1707)

2

E.5.0.0.4 Example. Nonorthogonal projection on elementary matrix.
Suppose PY is a linear nonorthogonal projector projecting on subspace Y ,
and suppose the range of a vector u is linearly independent of Y ; id est,
for some other subspace M containing Y suppose

M = R(u)⊕ Y (1708)

Assuming PMx= Pux+ PYx holds, then it follows for vector x∈M

Pux = x− PYx , PYx = x− Pux (1709)

nonorthogonal projection of x on R(u) can be determined from
nonorthogonal projection of x on Y , and vice versa.

Such a scenario is realizable were there some arbitrary basis for Y
populating a full-rank skinny-or-square matrix A

A
∆
= [ basisY u ] ∈ Rn+1 (1710)

Then PM=AA† fulfills the requirements, with Pu =A(: , n + 1)A†(n + 1 , :)
and PY=A(: , 1 : n)A†(1 : n , :). Observe, PM is an orthogonal projector
whereas PY and Pu are nonorthogonal projectors.

Now suppose, for example, PY is an elementary matrix (§B.3); in
particular,

PY = I − e11T =
[

0
√

2VN
]

∈ RN×N (1711)

E.8This remains true in high dimension although only a little more difficult to visualize
in R3 ; confer , Figure 50.



600 APPENDIX E. PROJECTION

where Y=N (1T ) . We have M= RN , A= [
√

2VN e1 ] , and u= e1 .
Thus Pu = e11

T is a nonorthogonal projector projecting on R(u) in a
direction parallel to a vector in Y (§E.3.5), and PYx= x− e11Tx is a
nonorthogonal projection of x on Y in a direction parallel to u . 2

E.5.0.0.5 Example. Projecting the origin on a hyperplane.
(confer §2.4.2.0.2) Given the hyperplane representation having b∈R and
nonzero normal a∈Rm

∂H = {y | aTy = b} ⊂ Rm (94)

orthogonal projection of the origin P0 on that hyperplane is the unique
optimal solution to a minimization problem: (1676)

‖P0− 0‖2 = inf
y∈∂H

‖y − 0‖2
= inf

ξ∈R
m−1
‖Zξ + x‖2 (1712)

where x is any solution to aTy=b , and where the columns of Z∈Rm×m−1

constitute a basis for N (aT ) so that y = Zξ + x ∈ ∂H for all ξ∈Rm−1.

The infimum can be found by setting the gradient (with respect to ξ) of
the strictly convex norm-square to 0. We find the minimizing argument

ξ⋆ = −(ZTZ)−1ZTx (1713)

so

y⋆ =
(

I − Z(ZTZ)−1ZT
)

x (1714)

and from (1678)

P0 = y⋆ = a(aTa)−1aTx =
a

‖a‖
aT

‖a‖ x
∆
= AA†x = a

b

‖a‖2 (1715)

In words, any point x in the hyperplane ∂H projected on its normal a
(confer (1740)) yields that point y⋆ in the hyperplane closest to the origin.

2
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E.5.0.0.6 Example. Projection on affine subset.
The technique of Example E.5.0.0.5 is extensible. Given an intersection of
hyperplanes

A = {y | Ay = b} ⊂ Rm (1716)

where each row of A∈Rm×n is nonzero and b∈R(A) , then the orthogonal
projection Px of any point x∈Rn on A is the solution to a minimization
problem:

‖Px− x‖2 = inf
y∈A

‖y − x‖2
= inf

ξ∈R
n−rank A

‖Zξ + yp − x‖2 (1717)

where yp is any solution to Ay = b , and where the columns of
Z∈Rn×n−rank A constitute a basis for N (A) so that y = Zξ + yp ∈ A for
all ξ∈Rn−rank A.

The infimum is found by setting the gradient of the strictly convex
norm-square to 0. The minimizing argument is

ξ⋆ = −(ZTZ)−1ZT (yp − x) (1718)

so

y⋆ =
(

I − Z(ZTZ)−1ZT
)

(yp − x) + x (1719)

and from (1678),

Px = y⋆ = x− A†(Ax− b)
= (I − A†A)x+ A†Ayp

(1720)

which is a projection of x on N (A) then translated perpendicularly with
respect to the nullspace until it meets the affine subset A . 2

E.5.0.0.7 Example. Projection on affine subset, vertex-description.
Suppose now we instead describe the affine subset A in terms of some given
minimal set of generators arranged columnar in X∈ Rn×N (65); id est,

A ∆
= affX = {Xa | aT1=1} ⊆ Rn (1721)

Here minimal set means XVN = [x2−x1 x3−x1 · · · xN−x1 ]/
√

2 (776) is
full-rank (§2.4.2.2) where VN ∈RN×N−1 is the Schoenberg auxiliary matrix
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(§B.4.2). Then the orthogonal projection Px of any point x∈Rn on A is
the solution to a minimization problem:

‖Px− x‖2 = inf
aT 1=1

‖Xa− x‖2
= inf

ξ∈R
N−1
‖X(VN ξ + ap)− x‖2 (1722)

where ap is any solution to aT1=1. We find the minimizing argument

ξ⋆ = −(V T
NX

TXVN )−1V T
NX

T(Xap − x) (1723)

and so the orthogonal projection is [153, §3]

Px = Xa⋆ = (I −XVN (XVN )†)Xap + XVN (XVN )†x (1724)

a projection of point x on R(XVN ) then translated perpendicularly with
respect to that range until it meets the affine subset A . 2

E.5.0.0.8 Example. Projecting on hyperplane, halfspace, slab.
Given the hyperplane representation having b ∈R and nonzero normal
a∈Rm

∂H = {y | aTy = b} ⊂ Rm (94)

the orthogonal projection of any point x∈Rm on that hyperplane is

Px = x− a(aTa)−1(aTx− b) (1725)

Orthogonal projection of x on the halfspace parametrized by b ∈R and
nonzero normal a∈Rm

H− = {y | aTy ≤ b} ⊂ Rm (86)

is the point
Px = x− a(aTa)−1max{0 , aTx− b} (1726)

Orthogonal projection of x on the convex slab (Figure 9), for c < b

B ∆
= {y | c ≤ aTy ≤ b} ⊂ Rm (1727)

is the point [99, §5.1]

Px = x− a(aTa)−1
(

max{0 , aTx− b} − max{0 , c− aTx}
)

(1728)

2
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E.6 Vectorization interpretation,

projection on a matrix

E.6.1 Nonorthogonal projection on a vector

Nonorthogonal projection of vector x on the range of vector y is
accomplished using a normalized dyad P0 (§B.1); videlicet,

〈z, x〉
〈z, y〉 y =

zTx

zTy
y =

yzT

zTy
x

∆
= P0x (1729)

where 〈z, x〉/〈z, y〉 is the coefficient of projection on y . Because P 2
0 =P0

and R(P0)=R(y) , rank-one matrix P0 is a nonorthogonal projector
projecting on R(y) . The direction of nonorthogonal projection is orthogonal
to z ; id est,

P0x− x ⊥ R(P T
0 ) (1730)

E.6.2 Nonorthogonal projection on vectorized matrix

Formula (1729) is extensible. Given X,Y,Z∈Rm×n, we have the
one-dimensional nonorthogonal projection of X in isomorphic Rmn on the
range of vectorized Y : (§2.2)

〈Z , X 〉
〈Z , Y 〉 Y , 〈Z , Y 〉 6= 0 (1731)

where 〈Z , X 〉/〈Z , Y 〉 is the coefficient of projection. The inequality
accounts for the fact: projection on R(vecY ) is in a direction orthogonal to
vecZ .

E.6.2.1 Nonorthogonal projection on dyad

Now suppose we have nonorthogonal projector dyad

P0 =
yzT

zTy
∈ Rm×m (1732)

Analogous to (1729), for X∈ Rm×m

P0XP0 =
yzT

zTy
X

yzT

zTy
=

zTXy

(zTy)2
yzT =

〈zyT , X 〉
〈zyT , yzT 〉 yz

T (1733)
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is a nonorthogonal projection of matrix X on the range of vectorized dyad
P0 ; from which it follows:

P0XP0 =
zTXy

zTy

yzT

zTy
=

〈

zyT

zTy
, X

〉

yzT

zTy
= 〈P T

0 , X 〉P0 =
〈P T

0 , X 〉
〈P T

0 , P0〉
P0

(1734)

Yet this relationship between matrix product and vector inner-product only
holds for a dyad projector. When nonsymmetric projector P0 is rank-one as
in (1732), therefore,

R(vecP0XP0) = R(vecP0) in Rm2

(1735)

and
P0XP0 −X ⊥ P T

0 in Rm2

(1736)

E.6.2.1.1 Example. λ as coefficients of nonorthogonal projection.
Any diagonalization (§A.5)

X = SΛS−1 =
m
∑

i=1

λi siw
T
i ∈ Rm×m (1339)

may be expressed as a sum of one-dimensional nonorthogonal projections

of X , each on the range of a vectorized eigenmatrix Pj
∆
= sjw

T
j ;

X =
m
∑

i, j=1

〈(Seie
T
jS
−1)T , X 〉Seie

T
jS
−1

=
m
∑

j=1

〈(sjw
T
j )T , X 〉 sjw

T
j +

m
∑

i, j=1

j 6= i

〈(Seie
T
jS
−1)T , SΛS−1〉Seie

T
jS
−1

=
m
∑

j=1

〈(sjw
T
j )T , X 〉 sjw

T
j

∆
=

m
∑

j=1

〈P T
j , X 〉Pj =

m
∑

j=1

sjw
T
j Xsjw

T
j =

m
∑

j=1

PjXPj

=
m
∑

j=1

λj sjw
T
j

(1737)

This biorthogonal expansion of matrix X is a sum of nonorthogonal
projections because the term outside the projection coefficient 〈 〉 is not
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identical to the inside-term. (§E.6.4) The eigenvalues λj are coefficients of
nonorthogonal projection of X , while the remainingM(M−1)/2 coefficients
(for i 6=j) are zeroed by projection. When Pj is rank-one as in (1737),

R(vecPjXPj) = R(vec sjw
T
j ) = R(vecPj) in Rm2

(1738)

and
PjXPj −X ⊥ P T

j in Rm2

(1739)

Were matrix X symmetric, then its eigenmatrices would also be. So the
one-dimensional projections would become orthogonal. (§E.6.4.1.1) 2

E.6.3 Orthogonal projection on a vector

The formula for orthogonal projection of vector x on the range of vector y
(one-dimensional projection) is basic analytic geometry; [11, §3.3] [249, §3.2]
[275, §2.2] [288, §1-8]

〈y, x〉
〈y, y〉 y =

yTx

yTy
y =

yyT

yTy
x

∆
= P1x (1740)

where 〈y, x〉/〈y, y〉 is the coefficient of projection on R(y) . An equivalent
description is: Vector P1x is the orthogonal projection of vector x on
R(P1)=R(y). Rank-one matrix P1 is a projection matrix because P 2

1 =P1 .
The direction of projection is orthogonal

P1x− x ⊥ R(P1) (1741)

because P T
1 = P1 .

E.6.4 Orthogonal projection on a vectorized matrix

From (1740), given instead X, Y ∈Rm×n, we have the one-dimensional
orthogonal projection of matrix X in isomorphic Rmn on the range of
vectorized Y : (§2.2)

〈Y , X 〉
〈Y , Y 〉 Y (1742)

where 〈Y , X 〉/〈Y , Y 〉 is the coefficient of projection.
For orthogonal projection, the term outside the vector inner-products 〈 〉

must be identical to the terms inside in three places.
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E.6.4.1 Orthogonal projection on dyad

There is opportunity for insight when Y is a dyad yzT (§B.1): Instead given
X∈ Rm×n, y∈Rm, and z∈Rn

〈yzT , X 〉
〈yzT , yzT 〉 yz

T =
yTXz

yTy zTz
yzT (1743)

is the one-dimensional orthogonal projection of X in isomorphic Rmn on
the range of vectorized yzT . To reveal the obscured symmetric projection
matrices P1 and P2 we rewrite (1743):

yTXz

yTy zTz
yzT =

yyT

yTy
X

zzT

zTz
∆
= P1XP2 (1744)

So for projector dyads, projection (1744) is the orthogonal projection in Rmn

if and only if projectors P1 and P2 are symmetric;E.9 in other words,� for orthogonal projection on the range of a vectorized dyad yzT , the
term outside the vector inner-products 〈 〉 in (1743) must be identical
to the terms inside in three places.

When P1 and P2 are rank-one symmetric projectors as in (1744), (30)

R(vecP1XP2) = R(vec yzT ) in Rmn (1745)

and
P1XP2 −X ⊥ yzT in Rmn (1746)

When y=z then P1 =P2 =P T
2 and

P1XP1 = 〈P1 , X 〉P1 =
〈P1 , X 〉
〈P1 , P1〉

P1 (1747)

E.9For diagonalizable X∈ Rm×m (§A.5), its orthogonal projection in isomorphic Rm2

on
the range of vectorized yzT ∈ Rm×m becomes:

P1XP2 =
m
∑

i=1

λiP1 siw
T
i P2

When R(P1) =R(wj) and R(P2) =R(sj) , the j th dyad term from the diagonalization
is isolated but only, in general, to within a scale factor because neither set of left or
right eigenvectors is necessarily orthonormal unless X is normal [301, §3.2]. Yet when
R(P2)=R(sk) , k 6=j∈{1 . . . m} , then P1XP2 =0.
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meaning, P1XP1 is equivalent to orthogonal projection of matrix X on
the range of vectorized projector dyad P1 . Yet this relationship between
matrix product and vector inner-product does not hold for general symmetric
projector matrices.

E.6.4.1.1 Example. Eigenvalues λ as coefficients of orthogonal projection.
Let C represent any convex subset of subspace SM , and let C1 be any element
of C . Then C1 can be expressed as the orthogonal expansion

C1 =
M
∑

i=1

M
∑

j=1
j≥ i

〈Eij , C1〉Eij ∈ C ⊂ SM (1748)

where Eij∈ SM is a member of the standard orthonormal basis for SM

(50). This expansion is a sum of one-dimensional orthogonal projections
of C1 ; each projection on the range of a vectorized standard basis matrix.
Vector inner-product 〈Eij , C1〉 is the coefficient of projection of svec C1 on
R(svecEij).

When C1 is any member of a convex set C whose dimension is L ,
Carathéodory’s theorem [77] [230] [148] [29] [30] guarantees that no more
than L+1 affinely independent members from C are required to faithfully
represent C1 by their linear combination.E.10

Dimension of SM is L=M(M+1)/2 in isometrically isomorphic
RM(M+1)/2. Yet because any symmetric matrix can be diagonalized, (§A.5.2)
C1∈ SM is a linear combination of itsM eigenmatrices qiq

T
i (§A.5.1) weighted

by its eigenvalues λi ;

C1 = QΛQT =
M
∑

i=1

λi qiq
T
i (1749)

where Λ∈ SM is a diagonal matrix having δ(Λ)i =λi , and Q=[ q1 · · · qM ]
is an orthogonal matrix in RM×M containing corresponding eigenvectors.

To derive eigen decomposition (1749) from expansion (1748), M standard
basis matrices Eij are rotated (§B.5) into alignment with theM eigenmatrices

E.10Carathéodory’s theorem guarantees existence of a biorthogonal expansion for any
element in aff C when C is any pointed closed convex cone.
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qiq
T
i of C1 by applying a similarity transformation; [249, §5.6]

{QEijQ
T} =

{

qiq
T
i , i = j = 1 . . . M

1√
2

(

qiq
T
j + qjq

T
i

)

, 1 ≤ i < j ≤M

}

(1750)

which remains an orthonormal basis for SM . Then remarkably

C1 =
M
∑

i, j=1

j≥ i

〈QEijQ
T , C1〉QEijQ

T

=
M
∑

i=1

〈qiqT
i , C1〉 qiqT

i +
M
∑

i, j=1

j > i

〈QEijQ
T , QΛQT 〉QEijQ

T

=
M
∑

i=1

〈qiqT
i , C1〉 qiqT

i

∆
=

M
∑

i=1

〈Pi , C1〉Pi =
M
∑

i=1

qiq
T
i C1qiqT

i =
M
∑

i=1

Pi C1Pi

=
M
∑

i=1

λi qiq
T
i

(1751)

this orthogonal expansion becomes the diagonalization; still a sum of
one-dimensional orthogonal projections. The eigenvalues

λi = 〈qiqT
i , C1〉 (1752)

are clearly coefficients of projection of C1 on the range of each vectorized
eigenmatrix. (confer §E.6.2.1.1) The remaining M(M−1)/2 coefficients
(i 6=j) are zeroed by projection. When Pi is rank-one symmetric as in (1751),

R(svecPi C1Pi) = R(svec qiq
T
i ) = R(svecPi) in RM(M+1)/2 (1753)

and
Pi C1Pi − C1 ⊥ Pi in RM(M+1)/2 (1754)

2

E.6.4.2 Positive semidefiniteness test as orthogonal projection

For any given X∈ Rm×m the familiar quadratic construct yTXy≥ 0,
over broad domain, is a fundamental test for positive semidefiniteness.
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(§A.2) It is a fact that yTXy is always proportional to a coefficient of
orthogonal projection; letting z in formula (1743) become y∈Rm, then
P2 =P1 = yyT/yTy= yyT/‖yyT‖2 (confer (1395)) and formula (1744) becomes

〈yyT , X 〉
〈yyT , yyT 〉 yy

T =
yTXy

yTy

yyT

yTy
=

yyT

yTy
X

yyT

yTy
∆
= P1XP1 (1755)

By (1742), product P1XP1 is the one-dimensional orthogonal projection of

X in isomorphic Rm2

on the range of vectorized P1 because, for rankP1 =1
and P 2

1 =P1∈ Sm (confer (1734))

P1XP1 =
yTXy

yTy

yyT

yTy
=

〈

yyT

yTy
, X

〉

yyT

yTy
= 〈P1 , X 〉P1 =

〈P1 , X 〉
〈P1 , P1〉

P1

(1756)

The coefficient of orthogonal projection 〈P1 , X 〉= yTXy/(yTy) is also known
as Rayleigh’s quotient.E.11 When P1 is rank-one symmetric as in (1755),

R(vecP1XP1) = R(vecP1) in Rm2

(1757)

and
P1XP1 −X ⊥ P1 in Rm2

(1758)

E.11When y becomes the j th eigenvector sj of diagonalizable X , for example, 〈P1 , X 〉
becomes the j th eigenvalue: [145, §III]

〈P1 , X 〉|y=sj
=

sT
j

(

m
∑

i=1

λi siw
T
i

)

sj

sT
j sj

= λj

Similarly for y = wj , the j th left-eigenvector,

〈P1 , X 〉|y=wj
=

wT
j

(

m
∑

i=1

λi siw
T
i

)

wj

wT
jwj

= λj

A quandary may arise regarding the potential annihilation of the antisymmetric part of
X when sT

jXsj is formed. Were annihilation to occur, it would imply the eigenvalue thus
found came instead from the symmetric part of X . The quandary is resolved recognizing
that diagonalization of real X admits complex eigenvectors; hence, annihilation could only
come about by forming Re(sH

j Xsj) = sH
j (X +XT )sj/2 [150, §7.1] where (X +XT )/2 is

the symmetric part of X, and sH
j denotes the conjugate transpose.
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The test for positive semidefiniteness, then, is a test for nonnegativity of
the coefficient of orthogonal projection of X on the range of each and every
vectorized extreme direction yyT (§2.8.1) from the positive semidefinite cone
in the ambient space of symmetric matrices.

E.6.4.3 PXP � 0

In some circumstances, it may be desirable to limit the domain of test
yTXy≥ 0 for positive semidefiniteness; e.g., ‖y‖= 1. Another example
of limiting domain-of-test is central to Euclidean distance geometry: For
R(V )=N (1T ) , the test −V DV � 0 determines whether D∈ SN

h is a
Euclidean distance matrix. The same test may be stated: For D∈ SN

h (and
optionally ‖y‖=1)

D ∈ EDMN ⇔ −yTDy = 〈yyT , −D〉 ≥ 0 ∀ y ∈ R(V ) (1759)

The test −V DV � 0 is therefore equivalent to a test for nonnegativity of the
coefficient of orthogonal projection of −D on the range of each and every
vectorized extreme direction yyT from the positive semidefinite cone SN

+ such
that R(yyT ) = R(y)⊆ R(V ). (The validity of this result is independent of
whether V is itself a projection matrix.)

E.7 on vectorized matrices of higher rank

E.7.1 PXP misinterpretation for higher-rank P

For a projection matrix P of rank greater than 1, PXP is generally not
commensurate with 〈P,X 〉

〈P,P 〉P as is the case for projector dyads (1756). Yet

for a symmetric idempotent matrix P of any rank we are tempted to say
“ PXP is the orthogonal projection of X∈ Sm on R(vecP ) ”. The fallacy
is: vecPXP does not necessarily belong to the range of vectorized P ; the
most basic requirement for projection on R(vecP ) .

E.7.2 Orthogonal projection on matrix subspaces

With A1∈ Rm×n, B1∈Rn×k, Z1∈Rm×k, A2∈Rp×n, B2∈Rn×k, Z2∈Rp×k as
defined for nonorthogonal projector (1654), and defining

P1
∆
= A1A

†
1 ∈ Sm , P2

∆
= A2A

†
2 ∈ Sp (1760)
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then, given compatible X

‖X−P1XP2‖F = inf
B1 , B2∈R

n×k
‖X−A1(A

†
1+B1Z

T
1 )X(A†T2 +Z2B

T
2 )AT

2 ‖F (1761)

As for all subspace projectors, range of the projector is the subspace on which
projection is made: {P1Y P2 | Y ∈ Rm×p}. Altogether, for projectors P1 and
P2 of any rank, this means projection P1XP2 is unique minimum-distance,
orthogonal

P1XP2 −X ⊥ {P1Y P2 | Y ∈ Rm×p} in Rmp (1762)

and P1 and P2 must each be symmetric (confer (1744)) to attain the infimum.

E.7.2.0.1 Proof. Minimum Frobenius norm (1761).

Defining P
∆
=A1(A

†
1 +B1Z

T
1 ) ,

inf
B1 , B2

‖X − A1(A
†
1 +B1Z

T
1 )X(A†T2 + Z2B

T
2 )AT

2 ‖2F
= inf

B1 , B2

‖X − PX(A†T2 + Z2B
T
2 )AT

2 ‖2F
= inf

B1 , B2

tr
(

(XT − A2(A
†
2 +B2Z

T
2 )XTP T )(X − PX(A†T2 + Z2B

T
2 )AT

2 )
)

= inf
B1 , B2

tr
(

XTX−XTPX(A†T2 +Z2B
T
2 )AT

2−A2(A
†
2+B2Z

T
2 )XTP TX

+A2(A
†
2+B2Z

T
2 )XTP TPX(A†T2 +Z2B

T
2 )AT

2

)

(1763)

Necessary conditions for a global minimum are ∇B1=0 and ∇B2=0. Terms
not containing B2 in (1763) will vanish from gradient ∇B2 ; (§D.2.3)

∇B2 tr
(

−XTPXZ2B
T
2A

T
2−A2B2Z

T
2X

TP TX+A2A
†
2X

TP TPXZ2B
T
2A

T
2

+A2B2Z
T
2X

TP TPXA†T2 A
T
2+A2B2Z

T
2X

TP TPXZ2B
T
2A

T
2

)

= −2AT
2X

TPXZ2 + 2AT
2A2A

†
2X

TP TPXZ2 + 2AT
2A2B2Z

T
2X

TP TPXZ2

= AT
2

(

−XT + A2A
†
2X

TP T + A2B2Z
T
2X

TP T
)

PXZ2

= 0 ⇔
R(B1)⊆ N (A1) and R(B2)⊆ N (A2)

(1764)

(or Z2 = 0) because AT = ATAA†. Symmetry requirement (1760) is implicit.

Were instead P T ∆
= (A†T2 + Z2B

T
2 )AT

2 and the gradient with respect to B1

observed, then similar results are obtained. The projector is unique.
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Perpendicularity (1762) establishes uniqueness [73, §4.9] of projection P1XP2

on a matrix subspace. The minimum-distance projector is the orthogonal
projector, and vice versa. �

E.7.2.0.2 Example. PXP redux & N (V).
Suppose we define a subspace of m×n matrices, each elemental matrix
having columns constituting a list whose geometric center (§5.5.1.0.1) is the
origin in Rm :

Rm×n
c

∆
= {Y ∈ Rm×n | Y 1 = 0}
= {Y ∈ Rm×n | N (Y ) ⊇ 1} = {Y ∈ Rm×n | R(Y T ) ⊆ N (1T )}
= {XV | X∈ Rm×n} ⊂ Rm×n (1765)

the nonsymmetric geometric center subspace. Further suppose V ∈ Sn is
a projection matrix having N (V )=R(1) and R(V ) =N (1T ). Then linear
mapping T (X)=XV is the orthogonal projection of any X∈Rm×n on Rm×n

c

in the Euclidean (vectorization) sense because V is symmetric, N (XV )⊇1,
and R(VXT )⊆N (1T ).

Now suppose we define a subspace of symmetric n×n matrices each of
whose columns constitute a list having the origin in Rn as geometric center,

Sn
c

∆
= {Y ∈ Sn | Y 1 = 0}
= {Y ∈ Sn | N (Y ) ⊇ 1} = {Y ∈ Sn | R(Y ) ⊆ N (1T )}

(1766)

the geometric center subspace. Further suppose V ∈ Sn is a projection
matrix, the same as before. Then V XV is the orthogonal projection of
any X∈ Sn on Sn

c in the Euclidean sense (1762) because V is symmetric,
V XV 1=0, and R(V XV )⊆N (1T ). Two-sided projection is necessary only
to remain in the ambient symmetric matrix subspace. Then

Sn
c = {V XV | X∈ Sn} ⊂ Sn (1767)

has dim Sn
c = n(n−1)/2 in isomorphic Rn(n+1)/2. We find its orthogonal

complement as the aggregate of all negative directions of orthogonal
projection on Sn

c : the translation-invariant subspace (§5.5.1.1)

Sn⊥
c

∆
= {X − V XV | X∈ Sn} ⊂ Sn

= {u1T + 1uT | u∈Rn}
(1768)
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characterized by the doublet u1T + 1uT (§B.2).E.12 Defining the
geometric center mapping V(X) =−V XV 1

2
consistently with (805), then

N (V)=R(I −V) on domain Sn analogously to vector projectors (§E.2);
id est,

N (V) = Sn⊥
c (1769)

a subspace of Sn whose dimension is dim Sn⊥
c = n in isomorphic Rn(n+1)/2.

Intuitively, operator V is an orthogonal projector; any argument
duplicitously in its range is a fixed point. So, this symmetric operator’s
nullspace must be orthogonal to its range.

Now compare the subspace of symmetric matrices having all zeros in the
first row and column

Sn
1

∆
= {Y ∈ Sn | Y e1 = 0}

=

{[

0 0T

0 I

]

X

[

0 0T

0 I

]

| X∈ Sn

}

=
{

[

0
√

2VN
]T
Z
[

0
√

2VN
]

| Z ∈ SN
}

(1770)

where P =

[

0 0T

0 I

]

is an orthogonal projector. Then, similarly, PXP is

the orthogonal projection of any X∈ Sn on Sn
1 in the Euclidean sense (1762),

and

Sn⊥
1

∆
=

{[

0 0T

0 I

]

X

[

0 0T

0 I

]

−X | X∈ Sn

}

⊂ Sn

=
{

ueT
1 + e1u

T | u∈Rn
}

(1771)

Obviously, Sn
1 ⊕ Sn⊥

1 = Sn. 2

E.12Proof.

{X − V XV | X∈ Sn} = {X − (I − 1
n11T )X(I − 11T 1

n) | X∈ Sn}
= { 1

n11TX + X11T 1
n − 1

n11TX 11T 1
n | X∈ Sn}

Because {X1 | X∈ Sn}= Rn,

{X − V XV | X∈ Sn} = {1ζT + ζ 1T − 11T (1T ζ 1
n) | ζ∈Rn}

= {1ζT(I − 11T 1
2n) + (I − 1

2n11T )ζ 1T | ζ∈Rn}

where I− 1
2n11T is invertible. �
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E.8 Range/Rowspace interpretation

For idempotent matrices P1 and P2 of any rank, P1XP
T
2 is a projection

of R(X) on R(P1) and a projection of R(XT ) on R(P2) : For any given
X= UΣQT ∈ Rm×p, as in compact singular value decomposition (1350),

P1XP
T
2 =

η
∑

i=1

σi P1uiq
T
i P

T
2 =

η
∑

i=1

σi P1ui (P2 qi)
T (1772)

where η
∆
= min{m, p}. Recall ui∈R(X) and qi∈R(XT ) when the

corresponding singular value σi is nonzero. (§A.6.1) So P1 projects ui on
R(P1) while P2 projects qi on R(P2) ; id est, the range and rowspace of any
X are respectively projected on the ranges of P1 and P2 .E.13

E.9 Projection on convex set

Thus far we have discussed only projection on subspaces. Now we
generalize, considering projection on arbitrary convex sets in Euclidean space;
convex because projection is, then, unique minimum-distance and a convex
optimization problem:

For projection PCx of point x on any closed set C⊆Rn it is obvious:

C = {PCx | x∈Rn} (1773)

If C⊆Rn is a closed convex set, then for each and every x∈Rn there exists
a unique point Px belonging to C that is closest to x in the Euclidean sense.
Like (1676), unique projection Px (or PCx) of a point x on convex set C
is that point in C closest to x ; [182, §3.12]

‖x− Px‖2 = inf
y∈C
‖x− y‖2 (1774)

There exists a converse:

E.13When P1 and P2 are symmetric and R(P1)=R(uj) and R(P2)=R(qj) , then the j th

dyad term from the singular value decomposition of X is isolated by the projection. Yet
if R(P2)=R(qℓ) , ℓ 6=j∈{1 . . . η} , then P1XP2 =0.
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E.9.0.0.1 Theorem. (Bunt-Motzkin) Convex set if projections unique.
[280, §7.5] [146] If C⊆Rn is a nonempty closed set and if for each and every
x in Rn there is a unique Euclidean projection Px of x on C belonging to
C , then C is convex. ⋄

Borwein & Lewis propose, for closed convex set C [41, §3.3, exer.12(d)]

∇‖x− Px‖22 = 2(x− Px) (1775)

for any point x whereas, for x /∈C

∇‖x− Px‖2 = (x− Px) ‖x− Px‖−1
2 (1776)

E.9.0.0.2 Exercise. Norm gradient.
Prove (1775) and (1776). (Not proved in [41].) H

A well-known equivalent characterization of projection on a convex set is
a generalization of the perpendicularity condition (1675) for projection on a
subspace:

E.9.1 Dual interpretation of projection on convex set

E.9.1.0.1 Definition. Normal vector. [230, p.15]
Vector z is normal to convex set C at point Px∈ C if

〈z , y−Px〉 ≤ 0 ∀ y ∈ C (1777)

△

A convex set has a nonzero normal at each of its boundary points.
[230, p.100] Hence, the normal or dual interpretation of projection:

E.9.1.0.2 Theorem. Unique minimum-distance projection. [148, §A.3.1]
[182, §3.12] [73, §4.1] [56] (Figure 124(b), p.632) Given a closed convex set
C⊆Rn, point Px is the unique projection of a given point x∈Rn on C
(Px is that point in C nearest x) if and only if

Px ∈ C , 〈x− Px , y − Px〉 ≤ 0 ∀ y ∈ C (1778)

⋄
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As for subspace projection, operator P is idempotent in the sense: for
each and every x∈Rn, P (Px)=Px . Yet operator P is not linear;� projector P is a linear operator if and only if convex set C (on which

projection is made) is a subspace. (§E.4)

E.9.1.0.3 Theorem. Unique projection via normal cone.E.14 [73, §4.3]
Given closed convex set C⊆Rn, point Px is the unique projection of a
given point x∈Rn on C if and only if

Px ∈ C , Px− x ∈ (C − Px)∗ (1779)

In other words, Px is that point in C nearest x if and only if Px− x belongs
to that cone dual to translate C − Px . ⋄

E.9.1.1 Dual interpretation as optimization

Deutsch [76, thm.2.3] [75, §2] and Luenberger [182, p.134] carry forward
Nirenberg’s dual interpretation of projection [205] as solution to a
maximization problem: Minimum distance from a point x∈Rn to a convex
set C⊂Rn can be found by maximizing distance from x to hyperplane ∂H
over the set of all hyperplanes separating x from C . Existence of a
separating hyperplane (§2.4.2.7) presumes point x lies on the boundary or
exterior to set C .

The optimal separating hyperplane is characterized by the fact it also
supports C . Any hyperplane supporting C (Figure 20(a)) has form

∂H− =
{

y∈Rn | aTy = σC(a)
}

(108)

where the support function is convex, defined

σC(a)
∆
= sup

z∈C
aTz (458)

When point x is finite and set C contains finite points, under this projection
interpretation, if the supporting hyperplane is a separating hyperplane then
the support function is finite. From Example E.5.0.0.8, projection P∂H−

x of
x on any given supporting hyperplane ∂H− is

P∂H−
x = x− a(aTa)−1

(

aTx− σC(a)
)

(1780)

E.14 −(C − Px)∗ is the normal cone to set C at point Px . (§E.10.3.2)
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C

κa

∂H−

x

PCx

(a)

(b)

H−
H+

P∂H−
x

Figure 120: Dual interpretation of projection of point x on convex set C
in R2. (a) κ= (aTa)−1

(

aTx− σC(a)
)

(b) Minimum distance from x to
C is found by maximizing distance to all hyperplanes supporting C and
separating it from x . A convex problem for any convex set, distance of
maximization is unique.
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With reference to Figure 120, identifying

H+ = {y∈Rn | aTy ≥ σC(a)} (87)

then

‖x− PCx‖ = sup
∂H− | x∈H+

‖x− P∂H−
x‖ = sup

a |x∈H+

‖a(aTa)−1(aTx− σC(a))‖

= sup
a |x∈H+

1
‖a‖ |aTx− σC(a)|

(1781)

which can be expressed as a convex optimization, for arbitrary positive
constant τ

‖x− PCx‖ =
1

τ
maximize

a
aTx− σC(a)

subject to ‖a‖ ≤ τ
(1782)

The unique minimum-distance projection on convex set C is therefore

PCx = x− a⋆
(

a⋆Tx− σC(a⋆)
) 1

τ 2
(1783)

where optimally ‖a⋆‖= τ .

E.9.1.1.1 Exercise. Dual projection technique on polyhedron.
Test that projection paradigm from Figure 120 on any convex polyhedral
set. H

E.9.1.2 Dual interpretation of projection on cone

In the circumstance set C is a closed convex cone K and there exists a
hyperplane separating given point x from K , then optimal σK(a⋆) takes
value 0 [148, §C.2.3.1]. So problem (1782) for projection of x on K becomes

‖x− PKx‖ =
1

τ
maximize

a
aTx

subject to ‖a‖ ≤ τ

a ∈ K◦
(1784)

The norm inequality in (1784) can be handled by Schur complement
(§3.1.7.2). Normals a to all hyperplanes supporting K belong to the polar
cone K◦=−K∗ by definition: (275)

a ∈ K◦ ⇔ 〈a , x〉 ≤ 0 for all x ∈ K (1785)
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Projection on cone K is

PKx = (I − 1

τ 2
a⋆a⋆T )x (1786)

whereas projection on the polar cone −K∗ is (§E.9.2.2.1)

PK◦x = x− PKx =
1

τ 2
a⋆a⋆Tx (1787)

Negating vector a , this maximization problem (1784) becomes a
minimization (the same problem) and the polar cone becomes the dual cone:

‖x− PKx‖ = −1

τ
minimize

a
aTx

subject to ‖a‖ ≤ τ

a ∈ K∗
(1788)

E.9.2 Projection on cone

When convex set C is a cone, there is a finer statement of optimality
conditions:

E.9.2.0.1 Theorem. Unique projection on cone. [148, §A.3.2]
Let K⊆ Rn be a closed convex cone, and K∗ its dual (§2.13.1). Then Px is
the unique minimum-distance projection of x∈Rn on K if and only if

Px ∈ K , 〈Px− x , Px〉 = 0 , Px− x ∈ K∗ (1789)

⋄

In words, Px is the unique minimum-distance projection of x on K if
and only if

1) projection Px lies in K

2) direction Px−x is orthogonal to the projection Px

3) direction Px−x lies in the dual cone K∗ .

As the theorem is stated, it admits projection on K having empty interior;
id est, on convex cones in a proper subspace of Rn.
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Projection on K of any point x∈−K∗, belonging to the negative dual
cone, is the origin. By (1789): the set of all points reaching the origin, when
projecting on K , constitutes the negative dual cone; a.k.a, the polar cone

K◦ = −K∗ = {x∈Rn | Px = 0} (1790)

E.9.2.1 Relation to subspace projection

Conditions 1 and 2 of the theorem are common with orthogonal projection
on a subspace R(P ) : Condition 1 is the most basic requirement;
namely, Px∈R(P ) , the projection belongs to the subspace. Invoking
perpendicularity condition (1675), we recall the second requirement for
projection on a subspace:

Px− x ⊥ R(P ) or Px− x ∈ R(P )⊥ (1791)

which corresponds to condition 2. Yet condition 3 is a generalization
of subspace projection; id est, for unique minimum-distance projection on
a closed convex cone K , polar cone −K∗ plays the role R(P )⊥ plays
for subspace projection (PRx= x− PR⊥ x). Indeed, −K∗ is the algebraic
complement in the orthogonal vector sum (p.676) [197] [148, §A.3.2.5]

K ⊞−K∗= Rn ⇔ cone K is closed and convex (1792)

Also, given unique minimum-distance projection Px on K satisfying
Theorem E.9.2.0.1, then by projection on the algebraic complement via I−P
in §E.2 we have

−K∗ = {x− Px | x∈Rn} = {x∈Rn | Px = 0} (1793)

consequent to Moreau (1796). Recalling any subspace is a closed convex
coneE.15

K = R(P ) ⇔ −K∗= R(P )⊥ (1794)

meaning, when a cone is a subspace R(P ) then the dual cone becomes its
orthogonal complementR(P )⊥. [46, §2.6.1] In this circumstance, condition 3
becomes coincident with condition 2.

The properties of projection on cones following in §E.9.2.2 further
generalize to subspaces by: (4)

K = R(P ) ⇔ −K = R(P ) (1795)

E.15 but a proper subspace is not a proper cone (§2.7.2.2.1).
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E.9.2.2 Salient properties: Projection Px on closed convex cone K
[148, §A.3.2] [73, §5.6] For x , x1 , x2∈Rn

1. PK(αx) = αPKx ∀α≥0 (nonnegative homogeneity)

2. ‖PKx‖ ≤ ‖x‖

3. PKx = 0 ⇔ x ∈ −K∗

4. PK(−x) = −P−Kx

5. (Jean-Jacques Moreau (1962)) [197]

x = x1 + x2 , x1∈K , x2∈−K∗ , x1⊥ x2

⇔
x1 = PKx , x2 = P−K∗x

(1796)

6. K = {x− P−K∗x | x∈Rn} = {x∈Rn | P−K∗x = 0}

7. −K∗ = {x− PKx | x∈Rn} = {x∈Rn | PKx = 0} (1793)

E.9.2.2.1 Corollary. I−P for cones. (confer §E.2)
Denote by K⊆ Rn a closed convex cone, and call K∗ its dual. Then
x−P−K∗x is the unique minimum-distance projection of x∈Rn on K if and
only if P−K∗x is the unique minimum-distance projection of x on −K∗ the
polar cone. ⋄

Proof. Assume x1 = PKx . Then by Theorem E.9.2.0.1 we have

x1∈ K , x1− x ⊥ x1 , x1− x ∈ K
∗

(1797)

Now assume x− x1 = P−K∗x . Then we have

x− x1 ∈ −K
∗
, −x1 ⊥ x− x1 , −x1 ∈ −K (1798)

But these two assumptions are apparently identical. We must therefore have

x−P−K∗x = x1 = PKx (1799)

�
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E.9.2.2.2 Corollary. Unique projection via dual or normal cone.
[73, §4.7] (§E.10.3.2, confer Theorem E.9.1.0.3) Given point x∈Rn and
closed convex cone K⊆Rn, the following are equivalent statements:

1. point Px is the unique minimum-distance projection of x on K

2. Px ∈ K , x− Px ∈ −(K − Px)∗ = −K∗∩ (Px)⊥

3. Px ∈ K , 〈x− Px , Px〉 = 0 , 〈x− Px , y〉 ≤ 0 ∀ y ∈ K
⋄

E.9.2.2.3 Example. Unique projection on nonnegative orthant.
(confer (1126)) From Theorem E.9.2.0.1, to project matrix H∈Rm×n on
the self-dual orthant (§2.13.5.1) of nonnegative matrices Rm×n

+ in isomorphic
Rmn, the necessary and sufficient conditions are:

H⋆ ≥ 0
tr
(

(H⋆−H)TH⋆
)

= 0
H⋆−H ≥ 0

(1800)

where the inequalities denote entrywise comparison. The optimal solution
H⋆ is simply H having all its negative entries zeroed;

H⋆
ij = max{Hij , 0} , i, j∈{1 . . . m} × {1 . . . n} (1801)

Now suppose the nonnegative orthant is translated by T ∈Rm×n; id est,
consider Rm×n

+ + T . Then projection on the translated orthant is [73, §4.8]

H⋆
ij = max{Hij , Tij} (1802)

2

E.9.2.2.4 Example. Unique projection on truncated convex cone.
Consider the problem of projecting a point x on a closed convex cone that
is artificially bounded; really, a bounded convex polyhedron having a vertex
at the origin:

minimize
y∈RN

‖x− Ay‖2
subject to y � 0

‖y‖∞ ≤ 1

(1803)
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where the convex cone has vertex-description (§2.12.2.0.1), for A∈Rn×N

K = {Ay | y � 0} (1804)

and where ‖y‖∞ ≤ 1 is the artificial bound. This is a convex optimization
problem having no known closed-form solution, in general. It arises, for
example, in the fitting of hearing aids designed around a programmable
graphic equalizer (a filter bank whose only adjustable parameters are gain
per band each bounded above by unity). [66] The problem is equivalent to a
Schur-form semidefinite program (§3.1.7.2)

minimize
y∈RN , t∈R

t

subject to

[

tI x − Ay
(x − Ay)T t

]

� 0

0 � y � 1

(1805)

2

E.9.3 nonexpansivity

E.9.3.0.1 Theorem. Nonexpansivity. [125, §2] [73, §5.3]
When C ⊂ Rn is an arbitrary closed convex set, projector P projecting on C
is nonexpansive in the sense: for any vectors x, y∈Rn

‖Px− Py‖ ≤ ‖x− y‖ (1806)

with equality when x−Px = y−Py .E.16 ⋄

Proof. [40]

‖x− y‖2 = ‖Px− Py‖2 + ‖(I − P )x− (I − P )y‖2

+ 2〈x− Px , Px− Py〉+ 2〈y − Py , Py − Px〉
(1807)

Nonnegativity of the last two terms follows directly from the unique
minimum-distance projection theorem (§E.9.1.0.2). �

E.16This condition for equality corrects an error in [56] (where the norm is applied to each
side of the condition given here) easily revealed by counter-example.
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The foregoing proof reveals another flavor of nonexpansivity; for each and
every x, y∈Rn

‖Px− Py‖2 + ‖(I − P )x− (I − P )y‖2 ≤ ‖x− y‖2 (1808)

Deutsch shows yet another: [73, §5.5]

‖Px− Py‖2 ≤ 〈x− y , Px− Py〉 (1809)

E.9.4 Easy projections� Projecting any matrix H∈Rn×n in the Euclidean/Frobenius sense
orthogonally on the subspace of symmetric matrices Sn in isomorphic
Rn2

amounts to taking the symmetric part of H ; (§2.2.2.0.1) id est,
(H+HT )/2 is the projection.� To project any H∈Rn×n orthogonally on the symmetric hollow
subspace Sn

h in isomorphic Rn2

(§2.2.3.0.1), we may take the symmetric
part and then zero all entries along the main diagonal, or vice versa
(because this is projection on the intersection of two subspaces); id est,
(H +HT )/2− δ2(H) .� To project a matrix on the nonnegative orthant Rm×n

+ , simply clip all
negative entries to 0. Likewise, projection on the nonpositive orthant
Rm×n
− sees all positive entries clipped to 0. Projection on other orthants

is equally simple with appropriate clipping.� Clipping in excess of |1| each entry of a point x∈Rn is equivalent
to unique minimum-distance projection of x on the unit hypercube
centered at the origin. (confer §E.10.3.2)� Projecting on hyperplane, halfspace, slab: §E.5.0.0.8.� Projection of x∈Rn on a (rectangular) hyperbox: [46, §8.1.1]

C = {y∈Rn | l � y � u , l ≺ u} (1810)

P (x)k =







lk , xk ≤ lk
xk , lk ≤ xk ≤ uk

uk , xk ≥ uk

(1811)
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semidefinite cone Sn

+ in the Euclidean/Frobenius sense is accomplished
by eigen decomposition (diagonalization) followed by clipping all
negative eigenvalues to 0.� Unique minimum-distance projection on the generally nonconvex
subset of all matrices belonging to Sn

+ having rank not exceeding ρ
(§2.9.2.1) is accomplished by clipping all negative eigenvalues to 0 and
zeroing the smallest nonnegative eigenvalues keeping only ρ largest.
(§7.1.2)� Unique minimum-distance projection of H∈ Rm×n on the set of all
m×n matrices of rank no greater than k in the Euclidean/Frobenius
sense is the singular value decomposition (§A.6) of H having all
singular values beyond the kth zeroed. [246, p.208] This is also a solution
to the projection in the sense of spectral norm. [46, §8.1]� Projection on K of any point x∈−K∗, belonging to the polar cone, is
equivalent to projection on the origin. (§E.9.2)� Projection on Lorentz cone: [46, exer.8.3(c)]� PSN

+∩ SN
c

= PSN
+
PSN

c
(1070)� P

R
N×N
+ ∩ SN

h
= P

R
N×N
+

PSN
h

(§7.0.1.1)� P
R

N×N
+ ∩ SN = P

R
N×N
+

PSN (§E.9.5)

E.9.4.0.1 Exercise. Largest singular value.
Find the unique minimum-distance projection on the set of all m×n
matrices whose largest singular value does not exceed 1. H

Deutsch [75] provides an algorithm for projection on polyhedral cones.

Youla [300, §2.5] lists eleven “useful projections”, of square-integrable
uni- and bivariate real functions on various convex sets, in closed form.

Unique minimum-distance projection on an ellipsoid. (Example 4.4.3.0.2,
Figure 10)
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Figure 121: Closed convex set C belongs to subspace Rn (shown bounded
in sketch and drawn without proper perspective). Point y is unique
minimum-distance projection of x on C ; equivalent to product of orthogonal
projection of x on Rn and minimum-distance projection of result z on C .
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E.9.5 Projection on convex set in subspace

Suppose a convex set C is contained in some subspace Rn. Then unique
minimum-distance projection of any point in Rn⊕ Rn⊥ on C can be
accomplished by first projecting orthogonally on that subspace, and then
projecting the result on C ; [73, §5.14] id est, the ordered product of two
individual projections that is not commutable.

Proof. (⇐) To show that, suppose unique minimum-distance projection
PCx on C⊂Rn is y as illustrated in Figure 121;

‖x− y‖ ≤ ‖x− q‖ ∀ q ∈ C (1812)

Further suppose PR
nx equals z . By the Pythagorean theorem

‖x− y‖2 = ‖x− z‖2 + ‖z − y‖2 (1813)

because x− z ⊥ z− y . (1675) [182, §3.3] Then point y= PCx is the same
as PCz because

‖z− y‖2 = ‖x− y‖2− ‖x− z‖2 ≤ ‖z− q‖2 = ‖x− q‖2− ‖x− z‖2 ∀ q ∈ C
(1814)

which holds by assumption (1812).
(⇒) Now suppose z= PR

nx and

‖z − y‖ ≤ ‖z − q‖ ∀ q ∈ C (1815)

meaning y= PCz . Then point y is identical to PCx because

‖x− y‖2 = ‖x− z‖2 + ‖z− y‖2 ≤ ‖x− q‖2 = ‖x− z‖2 + ‖z− q‖2 ∀ q ∈ C
(1816)

by assumption (1815). �

This proof is extensible via translation argument. (§E.4) Unique
minimum-distance projection on a convex set contained in an affine subset
is, therefore, similarly accomplished.

Projecting matrix H∈Rn×n on convex cone K= Sn∩ Rn×n
+ in isomorphic

Rn2

can be accomplished, for example, by first projecting on Sn and only then
projecting the result on Rn×n

+ (confer §7.0.1). This is because that projection
product is equivalent to projection on the subset of the nonnegative orthant
in the symmetric matrix subspace.
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E.10 Alternating projection

Alternating projection is an iterative technique for finding a point in the
intersection of a number of arbitrary closed convex sets Ck , or for finding
the distance between two nonintersecting closed convex sets. Because it can
sometimes be difficult or inefficient to compute the intersection or express
it analytically, one naturally asks whether it is possible to instead project
(unique minimum-distance) alternately on the individual Ck , often easier.
Once a cycle of alternating projections (an iteration) is complete, we then
iterate (repeat the cycle) until convergence. If the intersection of two closed
convex sets is empty, then by convergence we mean the iterate (the result
after a cycle of alternating projections) settles to a point of minimum distance
separating the sets.

While alternating projection can find the point in the nonempty
intersection closest to a given point b , it does not necessarily find it.
Dependably finding that point is solved by an elegantly simple enhancement
to the alternating projection technique: this Dykstra algorithm (1854)
for projection on the intersection is one of the most beautiful projection
algorithms ever discovered. It is accurately interpreted as the discovery
of what alternating projection originally sought to accomplish: unique
minimum-distance projection on the nonempty intersection of a number of
arbitrary closed convex sets Ck . Alternating projection is, in fact, a special
case of the Dykstra algorithm whose discussion we defer until §E.10.3.

E.10.0.1 commutative projectors

Given two arbitrary convex sets C1 and C2 and their respective
minimum-distance projection operators P1 and P2 , if projectors commute
for each and every x∈Rn then it is easy to show P1P2x∈ C1∩ C2 and
P2P1x∈ C1∩ C2 . When projectors commute (P1P2 =P2P1), a point in the
intersection can be found in a finite number of steps; while commutativity is
a sufficient condition, it is not necessary (§6.8.1.1.1 for example).

When C1 and C2 are subspaces, in particular, projectors P1 and P2

commute if and only if P1P2 = PC1∩C2 or iff P2P1 = PC1∩C2 or iff P1P2 is
the orthogonal projection on a Euclidean subspace. [73, lem.9.2] Subspace
projectors will commute, for example, when P1(C2)⊂ C2 or P2(C1)⊂ C1 or
C1⊂ C2 or C2⊂ C1 or C1⊥ C2 . When subspace projectors commute, this
means we can find a point in the intersection of those subspaces in a finite
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C1
C2

∂K⊥C1∩C2(Pb) + Pb

b

Figure 122: First several alternating projections (1827) in
von Neumann-style projection of point b converging on closest point
Pb in intersection of two closed convex sets in R2 ; C1 and C2 are partially
drawn in vicinity of their intersection. The pointed normal cone K⊥ (1856)
is translated to Pb , the unique minimum-distance projection of b on
intersection. For this particular example, it is possible to start anywhere
in a large neighborhood of b and still converge to Pb . The alternating
projections are themselves robust with respect to some significant amount
of noise because they belong to translated normal cone.

number of steps; we find, in fact, the closest point.

E.10.0.1.1 Theorem. Kronecker projector. [245, §2.7]
Given any projection matrices P1 and P2 (subspace projectors), then

P1 ⊗ P2 and P1 ⊗ I (1817)

are projection matrices. The product preserves symmetry if present. ⋄

E.10.0.2 noncommutative projectors

Typically, one considers the method of alternating projection when projectors
do not commute; id est, when P1P2 6=P2P1 .

The iconic example for noncommutative projectors illustrated in
Figure 122 shows the iterates converging to the closest point in the
intersection of two arbitrary convex sets. Yet simple examples like
Figure 123 reveal that noncommutative alternating projection does not
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H1

H2

b

Pb

P2b

P1P2b
H1 ∩ H2

Figure 123: The sets {Ck} in this example comprise two halfspaces H1 and
H2 . The von Neumann-style alternating projection in R2 quickly converges
to P1P2b (feasibility). The unique minimum-distance projection on the
intersection is, of course, Pb .

always yield the closest point, although we shall show it always yields some
point in the intersection or a point that attains the distance between two
convex sets.

Alternating projection is also known as successive projection [128] [125]
[48], cyclic projection [99] [191, §3.2], successive approximation [56], or
projection on convex sets [243] [244, §6.4]. It is traced back to von Neumann
(1933) [278] and later Wiener [284] who showed that higher iterates of a
product of two orthogonal projections on subspaces converge at each point
in the ambient space to the unique minimum-distance projection on the
intersection of the two subspaces. More precisely, if R1 and R2 are closed
subspaces of a Euclidean space and P1 and P2 respectively denote orthogonal
projection on R1 and R2 , then for each vector b in that space,

lim
i→∞

(P1P2)
ib = PR1∩R2b (1818)

Deutsch [73, thm.9.8, thm.9.35] shows rate of convergence for subspaces to
be geometric [299, §1.4.4]; bounded above by κ2i+1‖b‖ , i=0, 1, 2 . . . , where
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0≤κ<1 :
‖ (P1P2)

ib − PR1∩R2b ‖ ≤ κ2i+1‖b‖ (1819)

This means convergence can be slow when κ is close to 1. The rate of
convergence on intersecting halfspaces is also geometric. [74] [220]

This von Neumann sense of alternating projection may be applied to
convex sets that are not subspaces, although convergence is not necessarily
to the unique minimum-distance projection on the intersection. Figure 122
illustrates one application where convergence is reasonably geometric and the
result is the unique minimum-distance projection. Figure 123, in contrast,
demonstrates convergence in one iteration to a fixed point (of the projection
product)E.17 in the intersection of two halfspaces; a.k.a, feasibility problem.
It was Dykstra who in 1983 [84] (§E.10.3) first solved this projection problem.

E.10.0.3 the bullets

Alternating projection has, therefore, various meaning dependent on the
application or field of study; it may be interpreted to be: a distance problem,
a feasibility problem (von Neumann), or a projection problem (Dykstra):� Distance. Figure 124(a)(b). Find a unique point of projection P1b∈

C1 that attains the distance between any two closed convex sets C1
and C2 ;

‖P1b− b‖ = dist(C1 , C2) ∆
= inf

z∈C2
‖P1z − z‖ (1820)� Feasibility. Figure 124(c),

⋂ Ck 6= ∅ . Given a number of indexed
closed convex sets Ck⊂Rn, find any fixed point in their intersection
by iterating (i) a projection product starting from b ;

( ∞
∏

i=1

∏

k

Pk

)

b ∈
⋂

k

Ck (1821)� Optimization. Figure 124(c),
⋂ Ck 6= ∅ . Given a number of indexed

closed convex sets Ck⊂Rn, uniquely project a given point b on
⋂ Ck ;

‖Pb− b‖ = inf
x∈T Ck‖x− b‖ (1822)

E.17A fixed point of a mapping T : Rn→Rn is a point x whose image is identical under
the map; id est, Tx= x .
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C2

C2

C2

C1

C1

C1

Pb

P1b

P1P2b

{y | (b−P1b)
T (y −P1b)=0}

y

(a)

(b)

(c)

b

b

a

Figure 124:
(a) (distance) Intersection of two convex sets in R2 is empty. Method of
alternating projection would be applied to find that point in C1 nearest C2 .
(b) (distance) Given b ∈ C2 , then P1b ∈ C1 is nearest b iff
(y−P1b)

T (b−P1b)≤ 0 ∀ y∈C1 by the unique minimum-distance projection
theorem (§E.9.1.0.2). When P1b attains the distance between the two sets,
hyperplane {y | (b−P1b)

T (y −P1b)=0} separates C1 from C2 . [46, §2.5.1]
(c) (0 distance) Intersection is nonempty.
(optimization) We may want the point Pb in

⋂ Ck nearest point b .
(feasibility) We may instead be satisfied with a fixed point of the projection
product P1P2b in

⋂ Ck .
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E.10.1 Distance and existence

Existence of a fixed point is established:

E.10.1.0.1 Theorem. Distance. [56]
Given any two closed convex sets C1 and C2 in Rn, then P1b∈C1 is a fixed
point of the projection product P1P2 if and only if P1b is a point of C1
nearest C2 . ⋄

Proof. (⇒) Given fixed point a = P1P2a ∈ C1 with b
∆
= P2a ∈ C2 in

tandem so that a = P1b , then by the unique minimum-distance projection
theorem (§E.9.1.0.2)

(b− a)T (u− a) ≤ 0 ∀u∈C1
(a− b)T (v − b) ≤ 0 ∀ v∈C2

⇔
‖a− b‖ ≤ ‖u− v‖ ∀u∈C1 and ∀ v∈C2

(1823)

by Schwarz inequality ‖〈x, y〉‖ ≤ ‖x‖ ‖y‖ [166] [230].
(⇐) Suppose a∈C1 and ‖a−P2a‖ ≤ ‖u−P2u‖ ∀u∈C1 . Now suppose we
choose u=P1P2a . Then

‖u− P2u‖ = ‖P1P2a− P2P1P2a‖ ≤ ‖a− P2a‖ ⇔ a = P1P2a (1824)

Thus a= P1b (with b=P2a∈C2) is a fixed point in C1 of the projection
product P1P2 .E.18 �

E.10.2 Feasibility and convergence

The set of all fixed points of any nonexpansive mapping is a closed convex
set. [107, lem.3.4] [23, §1] The projection product P1P2 is nonexpansive by
Theorem E.9.3.0.1 because, for any vectors x, a∈Rn

‖P1P2x− P1P2 a‖ ≤ ‖P2x− P2a‖ ≤ ‖x− a‖ (1825)

If the intersection of two closed convex sets C1 ∩ C2 is empty, then the iterates
converge to a point of minimum distance, a fixed point of the projection
product. Otherwise, convergence is to some fixed point in their intersection

E.18Point b=P2a can be shown, similarly, to be a fixed point of the product P2P1 .
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(a feasible point) whose existence is guaranteed by virtue of the fact that each
and every point in the convex intersection is in one-to-one correspondence
with fixed points of the nonexpansive projection product.

Bauschke & Borwein [23, §2] argue that any sequence monotonic in the
sense of Fejér is convergent.E.19

E.10.2.0.1 Definition. Fejér monotonicity. [198]
Given closed convex set C 6= ∅ , then a sequence xi∈Rn, i=0, 1, 2 . . . , is
monotonic in the sense of Fejér with respect to C iff

‖xi+1 − c‖ ≤ ‖xi − c‖ for all i≥0 and each and every c ∈ C (1826)

△

Given x0
∆
= b , if we express each iteration of alternating projection by

xi+1 = P1P2xi , i=0, 1, 2 . . . (1827)

and define any fixed point a=P1P2 a , then sequence xi is Fejér monotone
with respect to fixed point a because

‖P1P2xi − a‖ ≤ ‖xi − a‖ ∀ i ≥ 0 (1828)

by nonexpansivity. The nonincreasing sequence ‖P1P2xi − a‖ is bounded
below hence convergent because any bounded monotonic sequence in R
is convergent; [189, §1.2] [30, §1.1] P1P2xi+1 = P1P2xi = xi+1 . Sequence
xi therefore converges to some fixed point. If the intersection C1 ∩ C2
is nonempty, convergence is to some point there by the distance theorem.
Otherwise, xi converges to a point in C1 of minimum distance to C2 .

E.10.2.0.2 Example. Hyperplane/orthant intersection.
Find a feasible point (1821) belonging to the nonempty intersection of two
convex sets: given A∈Rm×n, β∈R(A)

C1 ∩ C2 = Rn
+∩ A = {y | y � 0} ∩ {y | Ay = β} ⊂ Rn (1829)

the nonnegative orthant with affine subset A an intersection of hyperplanes.
Projection of an iterate xi∈Rn on A is calculated

P2xi = xi − AT(AAT )−1(Axi − β) (1720)

E.19Other authors prove convergence by different means; e.g., [125] [48].
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C2 = A = {y | [ 1 1 ] y = 1}

C1 = R2

+

b

θ

Pb

y1

y2

Figure 125: From Example E.10.2.0.2 in R2, showing von Neumann-style
alternating projection to find feasible point belonging to intersection of
nonnegative orthant with hyperplane. Point Pb lies at intersection of
hyperplane with ordinate axis. In this particular example, the feasible point
found is coincidentally optimal. Rate of convergence depends upon angle θ ;
as it becomes more acute, convergence slows. [125, §3]
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Figure 126: Geometric convergence of iterates in norm, for
Example E.10.2.0.2 in R1000.
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while, thereafter, projection of the result on the orthant is simply

xi+1 = P1P2xi = max{0, P2xi} (1830)

where the maximum is entrywise (§E.9.2.2.3).
One realization of this problem in R2 is illustrated in Figure 125: For

A= [ 1 1 ] , β=1, and x0 = b= [−3 1/2 ]T , the iterates converge to the
feasible point Pb= [ 0 1 ]T .

To give a more palpable sense of convergence in higher dimension, we
do this example again but now we compute an alternating projection for
the case A∈R400×1000, β∈R400, and b∈R1000, all of whose entries are
independently and randomly set to a uniformly distributed real number in
the interval [−1, 1] . Convergence is illustrated in Figure 126. 2

This application of alternating projection to feasibility is extensible to
any finite number of closed convex sets.

E.10.2.0.3 Example. Under- and over-projection. [43, §3]
Consider the following variation of alternating projection: We begin with
some point x0∈Rn then project that point on convex set C and then
project that same point x0 on convex set D . To the first iterate we assign
x1 = (PC(x0) + PD(x0))

1
2
. More generally,

xi+1 = (PC(xi) + PD(xi))
1

2
, i=0, 1, 2 . . . (1831)

Because the Cartesian product of convex sets remains convex, (§2.1.8) we
can reformulate this problem.

Consider the convex set

S ∆
=

[

C
D

]

(1832)

representing Cartesian product C ×D . Now, those two projections PC and
PD are equivalent to one projection on the Cartesian product; id est,

PS

([

xi

xi

])

=

[

PC(xi)
PD(xi)

]

(1833)

Define the subspace

R ∆
=

{

v ∈
[

Rn

Rn

] ∣

∣

∣

∣

[ I −I ] v= 0

}

(1834)
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By the results in Example E.5.0.0.6

PRS

([

xi

xi

])

= PR

([

PC(xi)
PD(xi)

])

=

[

PC(xi) + PD(xi)
PC(xi) + PD(xi)

]

1

2
(1835)

This means the proposed variation of alternating projection is equivalent to
an alternation of projection on convex sets S and R . If S and R intersect,
these iterations will converge to a point in their intersection; hence, to a point
in the intersection of C and D .

We need not apply equal weighting to the projections, as supposed in
(1831). In that case, definition of R would change accordingly. 2

E.10.2.1 Relative measure of convergence

Inspired by Fejér monotonicity, the alternating projection algorithm from
the example of convergence illustrated by Figure 126 employs a redundant

sequence: The first sequence (indexed by j) estimates point (
∞
∏

j=1

∏

k

Pk)b in

the presumably nonempty intersection, then the quantity
∥

∥

∥

∥

∥

xi −
( ∞
∏

j=1

∏

k

Pk

)

b

∥

∥

∥

∥

∥

(1836)

in second sequence xi is observed per iteration i for convergence. A priori
knowledge of a feasible point (1821) is both impractical and antithetical. We
need another measure:

Nonexpansivity implies
∥

∥

∥

∥

∥

(

∏

ℓ

Pℓ

)

xk,i−1 −
(

∏

ℓ

Pℓ

)

xki

∥

∥

∥

∥

∥

= ‖xki − xk,i+1‖ ≤ ‖xk,i−1 − xki‖ (1837)

where
xki

∆
= Pkxk+1,i ∈ Rn (1838)

represents unique minimum-distance projection of xk+1,i on convex set k at
iteration i . So a good convergence measure is the total monotonic sequence

εi
∆
=
∑

k

‖xki − xk,i+1‖ , i=0, 1, 2 . . . (1839)

where lim
i→∞

εi = 0 whether or not the intersection is nonempty.
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E.10.2.1.1 Example. Affine subset ∩ positive semidefinite cone.
Consider the problem of finding X∈ Sn that satisfies

X � 0 , 〈Aj , X 〉 = bj , j=1 . . . m (1840)

given nonzero Aj∈ Sn and real bj . Here we take C1 to be the positive
semidefinite cone Sn

+ while C2 is the affine subset of Sn

C2 = A ∆
= {X | tr(AjX)= bj , j=1 . . . m} ⊆ Sn

= {X |





svec(A1)
T

...
svec(Am)T



svecX = b}

∆
= {X | A svecX = b}

(1841)

where b= [bj]∈Rm, A∈Rm×n(n+1)/2, and symmetric vectorization svec is
defined by (47). Projection of iterate Xi∈ Sn on A is: (§E.5.0.0.6)

P2 svecXi = svecXi − A†(A svecXi − b) (1842)

Euclidean distance from Xi to A is therefore

dist(Xi , A) = ‖Xi − P2Xi‖F = ‖A†(A svecXi − b)‖2 (1843)

Projection of P2Xi
∆
=
∑

j

λj qjq
T
j on the positive semidefinite cone (§7.1.2) is

found from its eigen decomposition (§A.5.2);

P1P2Xi =
n
∑

j=1

max{0 , λj} qjqT
j (1844)

Distance from P2Xi to the positive semidefinite cone is therefore

dist(P2Xi , Sn
+) = ‖P2Xi − P1P2Xi‖F =

√

√

√

√

n
∑

j=1

min{0 , λj}2 (1845)

When the intersection is empty A ∩ Sn
+ = ∅ , the iterates converge to that

positive semidefinite matrix closest to A in the Euclidean sense. Otherwise,
convergence is to some point in the nonempty intersection.
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Barvinok (§2.9.3.0.1) shows that if a point feasible with (1840) exists,
then there exists an X∈A ∩ Sn

+ such that

rankX ≤
⌊
√

8m+ 1− 1

2

⌋

(232)

2

E.10.2.1.2 Example. Semidefinite matrix completion.
Continuing Example E.10.2.1.1: When m≤n(n+ 1)/2 and the Aj matrices
are distinct members of the standard orthonormal basis {Eℓq∈ Sn} (50)

{Aj∈ Sn, j=1 . . . m} ⊆ {Eℓq} =

{

eℓe
T
ℓ , ℓ = q = 1 . . . n

1√
2
(eℓe

T
q + eqe

T
ℓ ) , 1 ≤ ℓ < q ≤ n

}

(1846)

and when the constants bj are set to constrained entries of variable

X
∆
= [Xℓq]∈ Sn

{bj , j=1 . . . m} ⊆
{

Xℓq , ℓ = q = 1 . . . n

Xℓq

√
2 , 1 ≤ ℓ < q ≤ n

}

= {〈X,Eℓq〉} (1847)

then the equality constraints in (1840) fix individual entries of X∈ Sn. Thus
the feasibility problem becomes a positive semidefinite matrix completion
problem. Projection of iterate Xi∈ Sn on A simplifies to (confer (1842))

P2 svecXi = svecXi − AT (A svecXi − b) (1848)

From this we can see that orthogonal projection is achieved simply by
setting corresponding entries of P2Xi to the known entries of X , while
the remaining entries of P2Xi are set to corresponding entries of the current
iterate Xi .

Using this technique, we find a positive semidefinite completion for








4 3 ? 2
3 4 3 ?
? 3 4 3
2 ? 3 4









(1849)

Initializing the unknown entries to 0, they all converge geometrically to
1.5858 (rounded) after about 42 iterations.
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0 2 4 6 8 10 12 14 16 18
10
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10
0

i

dist(P2Xi , Sn
+)

Figure 127: Distance (confer (1845)) between PSD cone and iterate (1848) in
affine subset A (1841) for Laurent’s completion problem; initially, decreasing
geometrically.

Laurent gives a problem for which no positive semidefinite completion
exists: [172]









1 1 ? 0
1 1 1 ?
? 1 1 1
0 ? 1 1









(1850)

Initializing unknowns to 0, by alternating projection we find the constrained
matrix closest to the positive semidefinite cone,









1 1 0.5454 0
1 1 1 0.5454

0.5454 1 1 1
0 0.5454 1 1









(1851)

and we find the positive semidefinite matrix closest to the affine subset A
(1841):









1.0521 0.9409 0.5454 0.0292
0.9409 1.0980 0.9451 0.5454
0.5454 0.9451 1.0980 0.9409
0.0292 0.5454 0.9409 1.0521









(1852)

These matrices (1851) and (1852) attain the Euclidean distance dist(A , Sn
+) .

Convergence is illustrated in Figure 127. 2
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H1

H2

b

x12

x21

x11

x22

y21

y11

H1 ∩ H2

Figure 128: H1 and H2 are the same halfspaces as in Figure 123.
Dykstra’s alternating projection algorithm generates the alternations
b , x21 , x11 , x22 , x12 , x12 . . . , . The path illustrated from b to x12 in R2

terminates at the desired result, Pb . The alternations are not so robust in
presence of noise as for the example in Figure 122.

E.10.3 Optimization and projection

Unique projection on the nonempty intersection of arbitrary convex sets to
find the closest point therein is a convex optimization problem. The first
successful application of alternating projection to this problem is attributed
to Dykstra [84] [47] who in 1983 provided an elegant algorithm that prevails
today. In 1988, Han [128] rediscovered the algorithm and provided a
primal−dual convergence proof. A synopsis of the history of alternating
projectionE.20 can be found in [49] where it becomes apparent that Dykstra’s
work is seminal.

E.20For a synopsis of alternating projection applied to distance geometry, see [264, §3.1].
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E.10.3.1 Dykstra’s algorithm

Assume we are given some point b ∈ Rn and closed convex sets
{Ck⊂Rn | k=1 . . . L}. Let xki∈Rn and yki∈Rn respectively denote a
primal and dual vector (whose meaning can be deduced from Figure 128
and Figure 129) associated with set k at iteration i . Initialize

yk0 = 0 ∀ k=1 . . . L and x1,0 = b (1853)

Denoting by Pkt the unique minimum-distance projection of t on Ck , and

for convenience xL+1,i
∆
= x1,i−1 , calculation of the iterates x1i proceeds:E.21

for i=1, 2, . . . until convergence {
for k=L . . . 1 {

t = xk+1,i − yk,i−1

xki = Pkt
yki = Pkt− t

}
}

(1854)

Assuming a nonempty intersection, then the iterates converge to the unique
minimum-distance projection of point b on that intersection; [73, §9.24]

Pb = lim
i→∞

x1i (1855)

In the case all the Ck are affine, then calculation of yki is superfluous
and the algorithm becomes identical to alternating projection. [73, §9.26]
[99, §1] Dykstra’s algorithm is so simple, elegant, and represents such a tiny
increment in computational intensity over alternating projection, it is nearly
always arguably cost-effective.

E.10.3.2 Normal cone

Glunt [106, §4] observes that the overall effect of Dykstra’s iterative procedure
is to drive t toward the translated normal cone to

⋂ Ck at the solution
Pb (translated to Pb). The normal cone gets its name from its graphical
construction; which is, loosely speaking, to draw the outward-normals at Pb
(Definition E.9.1.0.1) to all the convex sets Ck touching Pb . The relative
interior of the normal cone subtends these normal vectors.

E.21We reverse order of projection (k=L . . . 1) in the algorithm for continuity of exposition.
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0

H1

H2

Pb

b

K⊥H1∩H2
(0)

K⊥H1∩H2
(Pb) + Pb

K ∆
= H1 ∩ H2

Figure 129: Two examples (truncated): Normal cone to H1 ∩ H2 at the
origin, and at point Pb on the boundary. H1 andH2 are the same halfspaces
from Figure 128. The normal cone at the origin K⊥H1∩H2

(0) is simply −K∗.

E.10.3.2.1 Definition. Normal cone. [196] [30, p.261] [148, §A.5.2]
[41, §2.1] [229, §3] The normal cone to any set S⊆Rn at any particular
point a∈Rn is defined as the closed cone

K⊥S (a)
∆
= {z∈Rn | zT (y−a)≤ 0 ∀ y∈S} = −(S − a)∗ (1856)

an intersection of halfspaces about the origin in Rn hence convex regardless
of the convexity of S ; the negative dual cone to the translate S − a . △

Examples of normal cone construction are illustrated in Figure 129: The
normal cone at the origin is the vector sum (§2.1.8) of two normal cones;
[41, §3.3, exer.10] for H1∩ intH2 6= ∅

K⊥H1∩H2
(0) = K⊥H1

(0) + K⊥H2
(0) (1857)

This formula applies more generally to other points in the intersection.
The normal cone to any affine set A at α∈A , for example, is the

orthogonal complement of A− α . Projection of any point in the translated
normal cone K⊥C (a∈C) + a on convex set C is identical to a ; in other words,
point a is that point in C closest to any point belonging to the translated
normal cone K⊥C (a) + a ; e.g., Theorem E.4.0.0.1.
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E3

K⊥E3(11T ) + 11T

Figure 130: A few renderings (next page) of normal cone K⊥E3 to elliptope
E3 (Figure 87) at point 11T , projected on R3. In [173, fig.2], normal
cone is claimed circular in this dimension (severe numerical artifacts corrupt
boundary and make interior corporeal, drawn truncated).
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When set S is a convex cone K , then the normal cone to K at the origin

K⊥K(0) = −K∗ (1858)

is the negative dual cone. Any point belonging to −K∗, projected on K ,
projects on the origin. More generally, [73, §4.5]

K⊥K(a) = −(K − a)∗ (1859)

K⊥K(a∈K) = −K∗∩ a⊥ (1860)

The normal cone to
⋂ Ck at Pb in Figure 123 is the ray

{ξ(b−Pb) | ξ≥0} illustrated in Figure 129. Applying Dykstra’s algorithm to
that example, convergence to the desired result is achieved in two iterations as
illustrated in Figure 128. Yet applying Dykstra’s algorithm to the example
in Figure 122 does not improve rate of convergence, unfortunately, because
the given point b and all the alternating projections already belong to the
translated normal cone at the vertex of intersection.

E.10.3.3 speculation

From these few examples we surmise, unique minimum-distance projection on
blunt polyhedral cones having nonempty interior may be found by Dykstra’s
algorithm in few iterations.
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Appendix F

Matlab programs

Made by The MathWorks http://www.mathworks.com , Matlab is a high
level programming language and graphical user interface for linear algebra.

F.1 isedm()

% Is real D a Euclidean Distance Matrix. -Jon Dattorro

%

% [Dclosest,X,isisnot,r] = isedm(D,tolerance,verbose,dimension,V)

%

% Returns: closest EDM in Schoenberg sense (default output),

% a generating list X,

% string ’is’ or ’isnot’ EDM,

% actual affine dimension r of EDM output.

% Input: matrix D,

% optional absolute numerical tolerance for EDM determination,

% optional verbosity ’on’ or ’off’,

% optional desired affine dim of generating list X output,

% optional choice of ’Vn’ auxiliary matrix (default) or ’V’.

function [Dclosest,X,isisnot,r] = isedm(D,tolerance_in,verbose,dim,V);

isisnot = ’is’;

N = length(D);© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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http://www.mathworks.com
http://www.stanford.edu/~dattorro
http://www.convexoptimization.com
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if nargin < 2 | isempty(tolerance_in)

tolerance_in = eps;

end

tolerance = max(tolerance_in, eps*N*norm(D));

if nargin < 3 | isempty(verbose)

verbose = ’on’;

end

if nargin < 5 | isempty(V)

use = ’Vn’;

else

use = ’V’;

end

% is empty

if N < 1

if strcmp(verbose,’on’), disp(’Input D is empty.’), end

X = [ ];

Dclosest = [ ];

isisnot = ’isnot’;

r = [ ];

return

end

% is square

if size(D,1) ~= size(D,2)

if strcmp(verbose,’on’), disp(’An EDM must be square.’), end

X = [ ];

Dclosest = [ ];

isisnot = ’isnot’;

r = [ ];

return

end

% is real

if ~isreal(D)

if strcmp(verbose,’on’), disp(’Because an EDM is real,’), end

isisnot = ’isnot’;

D = real(D);

end
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% is nonnegative

if sum(sum(chop(D,tolerance) < 0))

isisnot = ’isnot’;

if strcmp(verbose,’on’), disp(’Because an EDM is nonnegative,’),end

end

% is symmetric

if sum(sum(abs(chop((D - D’)/2,tolerance)) > 0))

isisnot = ’isnot’;

if strcmp(verbose,’on’), disp(’Because an EDM is symmetric,’), end

D = (D + D’)/2; % only required condition

end

% has zero diagonal

if sum(abs(diag(chop(D,tolerance))) > 0)

isisnot = ’isnot’;

if strcmp(verbose,’on’)

disp(’Because an EDM has zero main diagonal,’)

end

end

% is EDM

if strcmp(use,’Vn’)

VDV = -Vn(N)’*D*Vn(N);

else

VDV = -Vm(N)’*D*Vm(N);

end

[Evecs Evals] = signeig(VDV);

if ~isempty(find(chop(diag(Evals),...

max(tolerance_in,eps*N*normest(VDV))) < 0))

isisnot = ’isnot’;

if strcmp(verbose,’on’), disp(’Because -VDV < 0,’), end

end

if strcmp(verbose,’on’)

if strcmp(isisnot,’isnot’)

disp(’matrix input is not EDM.’)

elseif tolerance_in == eps

disp(’Matrix input is EDM to machine precision.’)

else

disp(’Matrix input is EDM to specified tolerance.’)

end
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end

% find generating list

r = max(find(chop(diag(Evals),...

max(tolerance_in,eps*N*normest(VDV))) > 0));

if isempty(r)

r = 0;

end

if nargin < 4 | isempty(dim)

dim = r;

else

dim = round(dim);

end

t = r;

r = min(r,dim);

if r == 0

X = zeros(1,N);

else

if strcmp(use,’Vn’)

X = [zeros(r,1) diag(sqrt(diag(Evals(1:r,1:r))))*Evecs(:,1:r)’];

else

X = [diag(sqrt(diag(Evals(1:r,1:r))))*Evecs(:,1:r)’]/sqrt(2);

end

end

if strcmp(isisnot,’isnot’) | dim < t

Dclosest = Dx(X);

else

Dclosest = D;

end
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F.1.1 Subroutines for isedm()

F.1.1.1 chop()

% zeroing entries below specified absolute tolerance threshold

% -Jon Dattorro

function Y = chop(A,tolerance)

R = real(A);

I = imag(A);

if nargin == 1

tolerance = max(size(A))*norm(A)*eps;

end

idR = find(abs(R) < tolerance);

idI = find(abs(I) < tolerance);

R(idR) = 0;

I(idI) = 0;

Y = R + i*I;

F.1.1.2 Vn()

function y = Vn(N)

y = [-ones(1,N-1);

eye(N-1)]/sqrt(2);

F.1.1.3 Vm()

% returns EDM V matrix

function V = Vm(n)

V = [eye(n)-ones(n,n)/n];
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F.1.1.4 signeig()

% Sorts signed real part of eigenvalues

% and applies sort to values and vectors.

% [Q, lam] = signeig(A)

% -Jon Dattorro

function [Q, lam] = signeig(A);

[q l] = eig(A);

lam = diag(l);

[junk id] = sort(real(lam));

id = id(length(id):-1:1);

lam = diag(lam(id));

Q = q(:,id);

if nargout < 2

Q = diag(lam);

end

F.1.1.5 Dx()

% Make EDM from point list

function D = Dx(X)

[n,N] = size(X);

one = ones(N,1);

del = diag(X’*X);

D = del*one’ + one*del’ - 2*X’*X;
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F.2 conic independence, conici()

(§2.10) The recommended subroutine lp() (§F.2.1) is a linear program solver
(simplex method) from Matlab’s Optimization Toolbox v2.0 (R11). Later
releases of Matlab replace lp() with linprog() (interior-point method)
that we find quite inferior to lp() on an assortment of problems; indeed,
inherent limitation of numerical precision to 1E-8 in linprog() causes failure
in programs previously working with lp().

Given an arbitrary set of directions, this c.i. subroutine removes the
conically dependent members. Yet a conically independent set returned is
not necessarily unique. In that case, if desired, the set returned may be
altered by reordering the set input.

% Test for c.i. of arbitrary directions in rows or columns of X.

% -Jon Dattorro

function [Xci, indep_str, how_many_depend] = conici(X,rowORcol,tol);

if nargin < 3

tol=max(size(X))*eps*norm(X);

end

if nargin < 2 | strcmp(rowORcol,’col’)

rowORcol = ’col’;

Xin = X;

elseif strcmp(rowORcol,’row’)

Xin = X’;

else

disp(’Invalid rowORcol input.’)

return

end

[n, N] = size(Xin);

indep_str = ’conically independent’;

how_many_depend = 0;

if rank(Xin) == N

Xci = X;

return

end
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count = 1;

new_N = N;

% remove zero rows or columns

for i=1:N

if chop(Xin(:,count),tol)==0

how_many_depend = how_many_depend + 1;

indep_str = ’conically Dependent’;

Xin(:,count) = [ ];

new_N = new_N - 1;

else

count = count + 1;

end

end

% remove conic dependencies

count = 1;

newer_N = new_N;

for i=1:new_N

if newer_N > 1

A = [Xin(:,1:count-1) Xin(:,count+1:newer_N); -eye(newer_N-1)];

b = [Xin(:,count); zeros(newer_N-1,1)];

[a, lambda, how] = lp(zeros(newer_N-1,1),A,b,[ ],[ ],[ ],n,-1);

if ~strcmp(how,’infeasible’)

how_many_depend = how_many_depend + 1;

indep_str = ’conically Dependent’;

Xin(:,count) = [ ];

newer_N = newer_N - 1;

else

count = count + 1;

end

end

end

if strcmp(rowORcol,’col’)

Xci = Xin;

else

Xci = Xin’;

end
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F.2.1 lp()

LP Linear programming.

X=LP(f,A,b) solves the linear programming problem:

min f’x subject to: Ax <= b

x

X=LP(f,A,b,VLB,VUB) defines a set of lower and upper

bounds on the design variables, X, so that the solution is

always in the range VLB <= X <= VUB.

X=LP(f,A,b,VLB,VUB,X0) sets the initial starting point to X0.

X=LP(f,A,b,VLB,VUB,X0,N) indicates that the first N constraints

defined by A and b are equality constraints.

X=LP(f,A,b,VLB,VUB,X0,N,DISPLAY) controls the level of warning

messages displayed. Warning messages can be turned off with

DISPLAY = -1.

[X,LAMBDA]=LP(f,A,b) returns the set of Lagrangian multipliers,

LAMBDA, at the solution.

[X,LAMBDA,HOW] = LP(f,A,b) also returns a string how that

indicates error conditions at the final iteration.

LP produces warning messages when the solution is either

unbounded or infeasible.
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F.3 Map of the USA

F.3.1 EDM, mapusa()

(§5.13.1.0.1)

% Find map of USA using only distance information.

% -Jon Dattorro

% Reconstruction from EDM.

clear all;

close all;

load usalo; % From Matlab Mapping Toolbox

% http://www-ccs.ucsd.edu/matlab/toolbox/map/usalo.html

% To speed-up execution (decimate map data), make

% ’factor’ bigger positive integer.

factor = 1;

Mg = 2*factor; % Relative decimation factors

Ms = factor;

Mu = 2*factor;

gtlakelat = decimate(gtlakelat,Mg);

gtlakelon = decimate(gtlakelon,Mg);

statelat = decimate(statelat,Ms);

statelon = decimate(statelon,Ms);

uslat = decimate(uslat,Mu);

uslon = decimate(uslon,Mu);

lat = [gtlakelat; statelat; uslat]*pi/180;

lon = [gtlakelon; statelon; uslon]*pi/180;

phi = pi/2 - lat;

theta = lon;

x = sin(phi).*cos(theta);

y = sin(phi).*sin(theta);

z = cos(phi);

http://www-ccs.ucsd.edu/matlab/toolbox/map/usalo.html
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% plot original data

plot3(x,y,z), axis equal, axis off

lengthNaN = length(lat);

id = find(isfinite(x));

X = [x(id)’; y(id)’; z(id)’];

N = length(X(1,:))

% Make the distance matrix

clear gtlakelat gtlakelon statelat statelon

clear factor x y z phi theta conus

clear uslat uslon Mg Ms Mu lat lon

D = diag(X’*X)*ones(1,N) + ones(N,1)*diag(X’*X)’ - 2*X’*X;

% destroy input data

clear X

Vn = [-ones(1,N-1); speye(N-1)];

VDV = (-Vn’*D*Vn)/2;

clear D Vn

pack

[evec evals flag] = eigs(VDV, speye(size(VDV)), 10, ’LR’);

if flag, disp(’convergence problem’), return, end;

evals = real(diag(evals));

index = find(abs(evals) > eps*normest(VDV)*N);

n = sum(evals(index) > 0);

Xs = [zeros(n,1) diag(sqrt(evals(index)))*evec(:,index)’];

warning off; Xsplot=zeros(3,lengthNaN)*(0/0); warning on;

Xsplot(:,id) = Xs;

figure(2)

% plot map found via EDM.

plot3(Xsplot(1,:), Xsplot(2,:), Xsplot(3,:))

axis equal, axis off
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F.3.1.1 USA map input-data decimation, decimate()

function xd = decimate(x,m)

roll = 0;

rock = 1;

for i=1:length(x)

if isnan(x(i))

roll = 0;

xd(rock) = x(i);

rock=rock+1;

else

if ~mod(roll,m)

xd(rock) = x(i);

rock=rock+1;

end

roll=roll+1;

end

end

xd = xd’;

F.3.2 EDM using ordinal data, omapusa()

(§5.13.2.1)

% Find map of USA using ordinal distance information.

% -Jon Dattorro

clear all;

close all;

load usalo; % From Matlab Mapping Toolbox

% http://www-ccs.ucsd.edu/matlab/toolbox/map/usalo.html

factor = 1;

Mg = 2*factor; % Relative decimation factors

Ms = factor;

Mu = 2*factor;

gtlakelat = decimate(gtlakelat,Mg);

gtlakelon = decimate(gtlakelon,Mg);

http://www-ccs.ucsd.edu/matlab/toolbox/map/usalo.html
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statelat = decimate(statelat,Ms);

statelon = decimate(statelon,Ms);

uslat = decimate(uslat,Mu);

uslon = decimate(uslon,Mu);

lat = [gtlakelat; statelat; uslat]*pi/180;

lon = [gtlakelon; statelon; uslon]*pi/180;

phi = pi/2 - lat;

theta = lon;

x = sin(phi).*cos(theta);

y = sin(phi).*sin(theta);

z = cos(phi);

% plot original data

plot3(x,y,z), axis equal, axis off

lengthNaN = length(lat);

id = find(isfinite(x));

X = [x(id)’; y(id)’; z(id)’];

N = length(X(1,:))

% Make the distance matrix

clear gtlakelat gtlakelon statelat

clear statelon state stateborder greatlakes

clear factor x y z phi theta conus

clear uslat uslon Mg Ms Mu lat lon

D = diag(X’*X)*ones(1,N) + ones(N,1)*diag(X’*X)’ - 2*X’*X;

% ORDINAL MDS - vectorize D

count = 1;

M = (N*(N-1))/2;

f = zeros(M,1);

for j=2:N

for i=1:j-1

f(count) = D(i,j);

count = count + 1;

end

end



660 APPENDIX F. MATLAB PROGRAMS

% sorted is f(idx)

[sorted idx] = sort(f);

clear D sorted X

f(idx)=((1:M).^2)/M^2;

% Create ordinal data matrix

O = zeros(N,N);

count = 1;

for j=2:N

for i=1:j-1

O(i,j) = f(count);

O(j,i) = f(count);

count = count+1;

end

end

clear f idx

Vn = sparse([-ones(1,N-1); eye(N-1)]);

VOV = (-Vn’*O*Vn)/2;

clear O Vn

pack

[evec evals flag] = eigs(VOV, speye(size(VOV)), 10, ’LR’);

if flag, disp(’convergence problem’), return, end;

evals = real(diag(evals));

Xs = [zeros(3,1) diag(sqrt(evals(1:3)))*evec(:,1:3)’];

warning off; Xsplot=zeros(3,lengthNaN)*(0/0); warning on;

Xsplot(:,id) = Xs;

figure(2)

% plot map found via Ordinal MDS.

plot3(Xsplot(1,:), Xsplot(2,:), Xsplot(3,:))

axis equal, axis off
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F.4 Rank reduction subroutine, RRf()

(§4.3.1.0.1)

% Rank Reduction function -Jon Dattorro

% Inputs are:

% Xstar matrix,

% affine equality constraint matrix A whose rows are in svec format.

%

% Tolerance scheme needs revision...

function X = RRf(Xstar,A);

rand(’seed’,23);

m = size(A,1);

n = size(Xstar,1);

if size(Xstar,1)~=size(Xstar,2)

disp(’Rank Reduction subroutine: Xstar not square’), pause

end

toler = norm(eig(Xstar))*size(Xstar,1)*1e-9;

if sum(chop(eig(Xstar),toler)<0) ~= 0

disp(’Rank Reduction subroutine: Xstar not PSD’), pause

end

X = Xstar;

for i=1:n

[v,d]=signeig(X);

d(find(d<0))=0;

rho = rank(d);

for l=1:rho

R(:,l,i)=sqrt(d(l,l))*v(:,l);

end

% find Zi

svectRAR=zeros(m,rho*(rho+1)/2);

cumu=0;

for j=1:m

temp = R(:,1:rho,i)’*svectinv(A(j,:))*R(:,1:rho,i);

svectRAR(j,:) = svect(temp)’;

cumu = cumu + abs(temp);

end
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% try to find sparsity pattern for Z_i

tolerance = norm(X,’fro’)*size(X,1)*1e-9;

Ztem = zeros(rho,rho);

pattern = find(chop(cumu,tolerance)==0);

if isempty(pattern) % if no sparsity, do random projection

ranp = svect(2*(rand(rho,rho)-0.5));

Z(1:rho,1:rho,i)...

=svectinv((eye(rho*(rho+1)/2)-pinv(svectRAR)*svectRAR)*ranp);

else

disp(’sparsity pattern found’)

Ztem(pattern)=1;

Z(1:rho,1:rho,i) = Ztem;

end

phiZ = 1;

toler = norm(eig(Z(1:rho,1:rho,i)))*rho*1e-9;

if sum(chop(eig(Z(1:rho,1:rho,i)),toler)<0) ~= 0

phiZ = -1;

end

B(:,:,i) = -phiZ*R(:,1:rho,i)*Z(1:rho,1:rho,i)*R(:,1:rho,i)’;

% calculate t_i^*

t(i) = max(phiZ*eig(Z(1:rho,1:rho,i)))^-1;

tolerance = norm(X,’fro’)*size(X,1)*1e-6;

if chop(Z(1:rho,1:rho,i),tolerance)==zeros(rho,rho)

break

else

X = X + t(i)*B(:,:,i);

end

end
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F.4.1 svect()

% Map from symmetric matrix to vector

% -Jon Dattorro

function y = svect(Y,N)

if nargin == 1

N=size(Y,1);

end

y = zeros(N*(N+1)/2,1);

count = 1;

for j=1:N

for i=1:j

if i~=j

y(count) = sqrt(2)*Y(i,j);

else

y(count) = Y(i,j);

end

count = count + 1;

end

end
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F.4.2 svectinv()

% convert vector into symmetric matrix. m is dim of matrix.

% -Jon Dattorro

function A = svectinv(y)

m = round((sqrt(8*length(y)+1)-1)/2);

if length(y) ~= m*(m+1)/2

disp(’dimension error in svectinv()’);

pause

end

A = zeros(m,m);

count = 1;

for j=1:m

for i=1:m

if i<=j

if i==j

A(i,i) = y(count);

else

A(i,j) = y(count)/sqrt(2);

A(j,i) = A(i,j);

end

count = count+1;

end

end

end
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F.5 Sturm’s procedure

This is a demonstration program that can easily be transformed to a
subroutine for decomposing positive semidefinite matrix X . This procedure
provides a nonorthogonal alternative (§A.7.5.0.1) to eigen decomposition.
That particular decomposition obtained is dependent on choice of matrix A .

% Sturm procedure to find dyad-decomposition of X -Jon Dattorro

clear all

N = 4;

r = 2;

X = 2*(rand(r,N)-0.5);

X = X’*X;

t = null(svect(X)’);

A = svectinv(t(:,1));

% Suppose given matrix A is positive semidefinite

%[v,d] = signeig(X);

%d(1,1)=0; d(2,2)=0; d(3,3)=pi;

%A = v*d*v’;

tol = 1e-8;

Y = X;

y = zeros(size(X,1),r);

rho = r;

for k=1:r

[v,d] = signeig(Y);

v = v*sqrt(chop(d,1e-14));

viol = 0;

j = [ ];

for i=2:rho

if chop((v(:,1)’*A*v(:,1))*(v(:,i)’*A*v(:,i)),tol) ~= 0

viol = 1;

end

if (v(:,1)’*A*v(:,1))*(v(:,i)’*A*v(:,i)) < 0

j = i;
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break

end

end

if ~viol

y(:,k) = v(:,1);

else

if isempty(j)

disp(’Sturm procedure taking default j’), j = 2; return

end % debug

alpha = (-2*(v(:,1)’*A*v(:,j)) + sqrt((2*v(:,1)’*A*v(:,j)).^2 ...

-4*(v(:,j)’*A*v(:,j))*(v(:,1)’*A*v(:,1))))/(2*(v(:,j)’*A*v(:,j)));

y(:,k) = (v(:,1) + alpha*v(:,j))/sqrt(1+alpha^2);

if chop(y(:,k)’*A*y(:,k),tol) ~= 0

alpha = (-2*(v(:,1)’*A*v(:,j)) - sqrt((2*v(:,1)’*A*v(:,j)).^2 ...

-4*(v(:,j)’*A*v(:,j))*(v(:,1)’*A*v(:,1))))/(2*(v(:,j)’*A*v(:,j)));

y(:,k) = (v(:,1) + alpha*v(:,j))/sqrt(1+alpha^2);

if chop(y(:,k)’*A*y(:,k),tol) ~= 0

disp(’Zero problem in Sturm!’), return

end % debug

end

end

Y = Y - y(:,k)*y(:,k)’;

rho = rho - 1;

end

z = zeros(size(y));

e = zeros(N,N);

for i=1:r

z(:,i) = y(:,i)/norm(y(:,i));

e(i,i) = norm(y(:,i))^2;

end

lam = diag(e);

[junk id] = sort(real(lam));

id = id(length(id):-1:1);

z = [z(:,id(1:r)) null(z’)] % Sturm

e = diag(lam(id))

[v,d] = signeig(X) % eigenvalue decomposition

X-z*e*z’

traceAX = trace(A*X)
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F.6 Convex iteration demonstration

We demonstrate implementation of a rank constraint in a semidefinite
Boolean feasibility problem from §4.4.3.0.5. It requires CVX, [117] an intuitive
Matlab interface for interior-point method solvers.

There are a finite number 2N=50≈1E15 of binary vectors x . The feasible
set of semidefinite program (668) is the intersection of an elliptope with
M=10 halfspaces in vectorized variable G . Size of the optimal rank-1
solution set is proportional to the positive factor scaling vector b . The
smaller that optimal Boolean solution set, the harder this problem is to solve.
That scale factor and initial states of random number generators, making
matrix A and vector b , are selected to demonstrate Boolean solution to one
instance in about 7 iterations (about 6 seconds), whereas a sequential binary
search tests 25.7 million vectors (in one hour) before finding one Boolean
solution feasible to nonconvex problem (665). (Other parameters can be
selected to reverse these timings.)

% Discrete optimization problem demo.

% -Jon Dattorro, June 4, 2007

% Find x\in{-1,1}^N such that Ax <= b

clear all;

format short g;

M = 10;

N = 50;

randn(’state’,0); rand(’state’,0);

A = randn(M,N);

b = rand(M,1)*5;

disp(’Find binary solution by convex iteration:’)

tic

Y = zeros(N+1);

count = 1;

traceGY = 1e15;

cvx_precision([1e-12, 1e-4]);

cvx_quiet(true);
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while 1

cvx_begin % requires CVX Boyd

variable X(N,N) symmetric;

variable x(N,1);

G = [X, x;

x’, 1];

minimize(trace(G*Y));

diag(X) == 1;

G == semidefinite(N+1);

A*x <= b;

cvx_end

[v,d,q] = svd(G);

Y = v(:,2:N+1)*v(:,2:N+1)’;

rankG = sum(diag(d) > max(diag(d))*1e-8)

oldtrace = traceGY;

traceGY = trace(G*Y)

if rankG == 1

break

end

digits = 1e3;

if round((oldtrace - traceGY)*digits) == 0

disp(’STALLED’);disp(’ ’);

Y = -v(:,2:N+1)*(v(:,2:N+1)’ + randn(N,1)*v(:,1)’);

end

count = count + 1;

end

x

count

toc

disp(’Ax <= b , x\in{-1,1}^N’)
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disp(’ ’);disp(’Combinatorial search for a feasible binary solution:’)

tic

for i=1:2^N

binary = str2num(dec2bin(i-1)’);

binary(find(~binary)) = -1;

y = [-ones(N-length(binary),1); binary];

if sum(A*y <= b) == M

disp(’Feasible binary solution found.’)

y

break

end

end

toc



670 APPENDIX F. MATLAB PROGRAMS

F.7 fast max cut

We use the graph generator (C program) rudy written by Giovanni Rinaldi
[224] which can be found at http://convexoptimization.com/TOOLS/RUDY

together with graph data. (§4.4.3.0.7)

% fast max cut, Jon Dattorro, July 2007, http://convexoptimization.com

clear all;

format short g; tic

fid = fopen(’graphs12’,’r’);

average = 0;

NN = 0;

s = fgets(fid);

cvx_precision([1e-12, 1e-4]);

cvx_quiet(true);

w = 1000;

while s ~= -1

s = str2num(s);

N = s(1);

A = zeros(N);

for i=1:s(2)

s = str2num(fgets(fid));

A(s(1),s(2)) = s(3);

A(s(2),s(1)) = s(3);

end

Q = (diag(A*ones(N,1)) - A)/4;

W = zeros(N);

traceXW = 1e15;

while 1

cvx_begin % CVX Boyd

variable X(N,N) symmetric;

maximize(trace(Q*X) - w*trace(W*X));

X == semidefinite(N);

diag(X) == 1;

cvx_end

[v,d,q] = svd(X);

W = v(:,2:N)*v(:,2:N)’;

rankX = sum(diag(d) > max(diag(d))*1e-8)

http://convexoptimization.com/TOOLS/RUDY


F.7. FAST MAX CUT 671

oldtrace = traceXW;

traceXW = trace(X*W)

if (rankX == 1)

break

end

if round((oldtrace - traceXW)*1e3) <= 0

disp(’STALLED’);disp(’ ’)

W = -v(:,2:N)*(v(:,2:N)’ + randn(N-1,1)*v(:,1)’);

end

end

x = sqrt(d(1,1))*v(:,1)

disp(’ ’);

disp(’Combinatorial search for optimal binary solution...’)

maxim = -1e15;

ymax = zeros(N,1);

for i=1:2^N

binary = str2num(dec2bin(i-1)’);

binary(find(~binary)) = -1;

y = [-ones(N-length(binary),1); binary];

if y’*Q*y > maxim

maxim = y’*Q*y;

ymax = y;

end

end

if (maxim == 0) && (abs(trace(Q*X)) <= 1e-8)

optimality_ratio = 1

elseif maxim <= 0

optimality_ratio = maxim/trace(Q*X)

else

optimality_ratio = trace(Q*X)/maxim

end

ymax

average = average + optimality_ratio;

NN = NN + 1

running_average = average/NN

toc, disp(’ ’)

s = fgets(fid);

end
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Appendix G

Notation and a few definitions

b vector, scalar, logical condition (italic abcdefghijklmnopqrstuvwxyz)

bi ith entry of vector b=[bi , i=1 . . . n] or ith b vector from a set or list
{bj , j=1 . . . n} or ith iterate of vector b

bi:j or b(i :j) , truncated vector comprising ith through j th entry of vector b

bk(i :j) truncated vector comprising ith through j th entry of vector bk

bT vector transpose

bH Hermitian (conjugate) transpose

A−2T matrix transpose of squared inverse

AT1 first of various transpositions of a cubix or quartix A

A matrix, scalar, or logical condition
(italic ABCDEFGHIJKLMNOPQRSTUVWXY Z)

skinny a skinny matrix; meaning, more rows than columns:







. When

there are more equations than unknowns, we say that the system Ax= b
is overdetermined. [110, §5.3]

fat a fat matrix; meaning, more columns than rows:
[ ]

underdetermined© 2001 Jon Dattorro. CO&EDG version 2007.09.17. All rights reserved.
Citation: Jon Dattorro, Convex Optimization & Euclidean Distance Geometry,

Meboo Publishing USA, 2005.
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A some set (calligraphicABCDEFGHIJKLMNOPQRST UVWXYZ)

F(C ∋A) smallest face (138) that contains element A of set C

G(K) generators (§2.8.1.2) of set K ; any collection of points and directions
whose hull constructs K

A−1 inverse of matrix A

A† Moore-Penrose pseudoinverse of matrix A

√
positive square root

A1/2 and
√
A A1/2 is any matrix such that A1/2A1/2 =A .

For A ∈ Sn
+ ,
√
A ∈ Sn

+ is unique and
√
A
√
A=A . [41, §1.2] (§A.5.2.1)

◦
√
D

∆
= [
√

dij ] . (1153) Hadamard positive square root: D= ◦
√
D ◦ ◦
√
D .

E elementary matrix

Eij member of standard orthonormal basis for symmetric (50) or symmetric
hollow (64) matrices

Aij ij th entry of matrix A

Ai ith matrix from a set

Di ith principal submatrix or ith iterate of D

A(: , i) ith column of matrix A [110, §1.1.8]

A(j , :) j th row of matrix A

Ai:j,k:ℓ or A(i :j , k :ℓ) , submatrix taken from ith through j th row and
kth through ℓth column

e.g. exempli gratia, from the Latin meaning for sake of example

no. number, from the Latin numero

a.i. affinely independent

c.i. conically independent
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l.i. linearly independent

w.r.t with respect to

a.k.a also known as

Re real part

Im imaginary part

ı or 
√
−1

⊂ ⊃ ∩ ∪ standard set theory, subset, superset, intersection, union

∈ membership, element belongs to, or element is a member of

∋ membership, contains as in C ∋ y (C contains element y)

� such that

∃ there exists

∴ therefore

∀ for all, or over all

∝ proportional to

∞ infinity

≡ equivalent to

∆
= defined equal to, or equal by definition

≈ approximately equal to

≃ isomorphic to or with

∼= congruent to or with

Hadamard quotient as in, for x, y∈Rn,
x

y
∆
= [xi/yi , i=1 . . . n ]∈Rn

◦ Hadamard product of matrices: x ◦ y ∆
= [xi yi , i=1 . . . n ]∈Rn
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⊗ Kronecker product of matrices (§D.1.2.1)

⊕ vector sum of sets X =Y ⊕ Z where every element x∈X has unique
expression x= y + z where y∈Y and z∈Z ; [230, p.19] then the
summands are algebraic complements. X =Y ⊕ Z ⇒ X =Y + Z .
Now assume Y and Z are nontrivial subspaces. X =Y + Z ⇒
X =Y ⊕ Z ⇔ Y ∩ Z=0 [231, §1.2] [73, §5.8]. Each element from
a vector sum (+) of subspaces has a unique representation (⊕) when a
basis from each subspace is linearly independent of bases from all the
other subspaces.

⊖ likewise, the vector difference of sets

⊞ orthogonal vector sum of sets X =Y ⊞ Z where every element x∈X
has unique orthogonal expression x= y + z where y∈Y , z∈Z ,
and y ⊥ z . [247, p.51] X =Y ⊞ Z ⇒ X =Y + Z . If Z⊆Y⊥ then
X =Y ⊞ Z ⇔ X =Y ⊕ Z . [73, §5.8] If Z= Y⊥ then the summands
are orthogonal complements.

± plus or minus

⊥ as in A⊥B meaning A is orthogonal to B (and vice versa), where
A and B are sets, vectors, or matrices. When A and B are
vectors (or matrices under Frobenius norm), A ⊥ B ⇔ 〈A ,B〉= 0
⇔ ‖A +B‖2 = ‖A‖2 + ‖B‖2

\ as in \A means logical not A , or relative complement of set A ;

id est, \A = {x /∈A} ; e.g., B\A ∆
= {x∈B | x /∈A} ≡ B ∩\A

⇒ or ⇐ sufficiency or necessity, implies ; e.g., A⇒ B ⇔ \A⇐ \B

⇔ if and only if (iff) or corresponds to or necessary and sufficient or
the same as

is as in A is B means A ⇒ B ; conventional usage of English language
by mathematicians

; or : does not imply

← is replaced with; substitution, assignment

→ goes to, or approaches, or maps to
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t→ 0+ t goes to 0 from above; meaning, from the positive [148, p.2]

: as in f : Rn →Rm meaning f is a mapping, or sequence of successive
integers specified by bounds as in i :j (if j< i then sequence is
descending)

f :M→R meaning f is a mapping from ambient space M to ambient R , not
necessarily denoting either domain or range

| as in f(x) | x∈ C means with the condition(s) or such that or
evaluated for, or as in {f(x) | x∈ C} means evaluated for each and
every x belonging to set C

g|xp
expression g evaluated at xp

A , B as in, for example, A , B ∈ SN means A ∈ SN and B ∈ SN

(A , B) open interval between A and B in R , or variable pair perhaps of
disparate dimension

[A , B ] closed interval or line segment between A and B in R

( ) hierarchal, parenthetical, optional

{ } curly braces denote a set or list, e.g., {Xa | a� 0} the set of all Xa
for each and every a � 0 where membership of a to some space is
implicit, a union

〈 〉 angle brackets denote vector inner-product (26) (31)

[ ] matrix or vector, or quote insertion, or citation

[dij] matrix whose ij th entry is dij

[xi] vector whose ith entry is xi

xp particular value of x

x0 particular instance of x , or initial value of a sequence xi

x1 first entry of vector x , or first element of a set or list {xi}

xε extreme point
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x+ vector x whose negative entries are replaced with 0 ,
or clipped vector x or nonnegative part of x

x⋆ optimal value of variable x

x∗ complex conjugate or dual variable

f ∗ convex conjugate function

PCx or Px projection of point x on set C , P is operator or idempotent matrix

Pkx projection of point x on set Ck or on range of implicit vector

δ(A) (§A.1) vector made from the main diagonal of A if A is a matrix;
otherwise, diagonal matrix made from vector A

δ2(A) ≡ δ(δ(A)). For vector or diagonal matrix Λ , δ2(Λ) = Λ

δ(A)2 = δ(A)δ(A) where A is a vector

λi(X) ith entry of vector λ is function of X

λ(X)i ith entry of vector-valued function of X

λ(A) vector of eigenvalues of matrix A , (1265) typically arranged in
nonincreasing order

σ(A) vector of singular values of matrix A (always arranged in nonincreasing
order), or support function

Σ diagonal matrix of singular values, not necessarily square

∑

sum

π(γ) nonlinear permutation operator (or presorting function) arranges
vector γ into nonincreasing order (§7.1.3)

Ξ permutation matrix

Π doublet or permutation matrix

∏

product
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ψ(Z) signum-like step function that returns a scalar for matrix argument
(604), it returns a vector for vector argument (1365)

D symmetric hollow matrix of distance-square,
or Euclidean distance matrix

D Euclidean distance matrix operator

DT(X) adjoint operator

D(X)T transpose of D(X)

D−1(X) inverse operator

D(X)−1 inverse of D(X)

D⋆ optimal value of variable D

D∗ dual to variable D

D◦ polar variable D

∂ partial derivative or matrix of distance-square squared or as in ∂K ;
boundary of set K

∂y partial differential of y

√

dij (absolute) distance scalar

dij distance-square scalar, EDM entry

V geometric centering operator, V(D)=−V DV 1
2

VN VN (D)=−V T
NDVN

V N×N symmetric elementary, auxiliary, projector, geometric centering
matrix, R(V )=N (1T ) , N (V )=R(1) , V 2 =V (§B.4.1)

VN N×N−1 Schoenberg auxiliary matrix, R(VN )=N (1T ) ,
N (V T

N )=R(1) (§B.4.2)

VX VXV
T
X ≡ V TXTXV (996)
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X point list (having cardinality N) arranged columnar in Rn×N , or set of
generators, or extreme directions, or matrix variable

G Gram matrix XTX

r affine dimension

n Euclidean dimension of list X , or integer

N cardinality of list X , or integer

dom function domain

on function f(x) on A means A is dom f , or projection of x on A
means A is Euclidean body on which projection of x is made

onto function f(x) maps onto M means f over its domain is a surjection
with respect toM

epi function epigraph

span as in spanA = R(A) = {Ax | x∈Rn} when A is a matrix

R(A) the subspace: range of A , or span basisR(A) ; R(A) ⊥ N (AT )

basisR(A) columnar basis for range of A , or a minimal set constituting generators
for the vertex-description of R(A) , or a linearly independent set of
vectors spanning R(A)

N (A) the subspace: nullspace of A ; N (A) ⊥ R(AT )

× Cartesian product
[

Rm

Rn

]

Rm× Rn = Rm+n

Rm×n Euclidean vector space of m by n dimensional real matrices

Rn Euclidean n-dimensional real vector space (nonnegative integer n)

Cn or Cn×n Euclidean complex vector space of respective dimension n and n×n

Rn
+ or Rn×n

+ nonnegative orthant in Euclidean vector space of respective dimension
n and n×n
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Rn
− or Rn×n

− nonpositive orthant in Euclidean vector space of respective dimension
n and n×n

Sn subspace comprising all (real) symmetric n×n matrices,
the symmetric matrix subspace

Sn⊥ orthogonal complement of Sn in Rn×n, the antisymmetric matrices

Sn
+ convex cone comprising all (real) symmetric positive semidefinite n×n

matrices, the positive semidefinite cone

int Sn
+ interior of convex cone comprising all (real) symmetric positive

semidefinite n×n matrices; id est, positive definite matrices

Sn
+(ρ) convex set of all positive semidefinite n×n matrices whose rank equals

or exceeds ρ

EDMN cone of N×N Euclidean distance matrices in the symmetric hollow
subspace

√

EDMN nonconvex cone of N×N Euclidean absolute distance matrices in the
symmetric hollow subspace

PSD positive semidefinite

SDP semidefinite program

SVD singular value decomposition

EDM Euclidean distance matrix

Sn
1 subspace comprising all symmetric n×n matrices having all zeros in

first row and column (1770)

Sn
h subspace comprising all symmetric hollow n×n matrices (0 main

diagonal), the symmetric hollow subspace (56)

Sn⊥
h orthogonal complement of Sn

h in Sn (57), the set of all diagonal matrices

Sn
c subspace comprising all geometrically centered symmetric n×n

matrices; geometric center subspace SN
c

∆
= {Y ∈ SN | Y 1=0} (1766)

Sn⊥
c orthogonal complement of Sn

c in Sn (1768)
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Rm×n
c subspace comprising all geometrically centered m×n matrices

X⊥ basisN (XT )

x⊥ N (xT ) , {y | xTy= 0}

R(P )⊥ N (P T )

R⊥ orthogonal complement of R⊆Rn ; R⊥ ∆
={y∈Rn | 〈x, y〉=0 ∀x∈R}

K⊥ normal cone

K cone

K∗ dual cone

K◦ polar cone; K∗= −K◦

KM+ monotone nonnegative cone

KM monotone cone

Kλ spectral cone

K∗λδ cone of majorization

H halfspace

H− halfspace described using an outward-normal (86) to the hyperplane
partially bounding it

H+ halfspace described using an inward-normal (87) to the hyperplane
partially bounding it

∂H hyperplane; id est, partial boundary of halfspace

∂H supporting hyperplane

∂H− a supporting hyperplane having outward-normal with respect to set it
supports

∂H+ a supporting hyperplane having inward-normal with respect to set it
supports
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d vector of distance-square

dij lower bound on distance-square dij

dij upper bound on distance-square dij

AB closed line segment between points A and B

AB matrix multiplication of A and B

C closure of set C

decomposition orthonormal (1680) page 592, biorthogonal (1657) page 585

expansion orthogonal (1690) page 594, biorthogonal (344) page 163

vector column vector in Rn

cubix member of RM×N×L

quartix member of RM×N×L×K

feasible set most simply, the set of all variable values satisfying all constraints of
an optimization problem

solution set most simply, the set of all optimal solutions to an optimization problem;
a subset of the feasible set and not necessarily a single point

natural order with reference to stacking columns in a vectorization means a vector
made from superposing column 1 on top of column 2 then superposing
the result on column 3 and so on; as in a vector made from entries of the
main diagonal δ(A) means taken from left to right and top to bottom

tight with reference to a bound means a bound that can be met,
with reference to an inequality means equality is achievable

g′ first derivative of possibly multidimensional function with respect to
real argument

g′′ second derivative with respect to real argument

→Y

dg first directional derivative of possibly multidimensional function g in
direction Y∈RK×L (maintains dimensions of g)
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→Y

dg2 second directional derivative of g in direction Y

∇ gradient from calculus, ∇f is shorthand for ∇xf(x). ∇f(y) means
∇yf(y) or gradient ∇xf(y) of f(x) with respect to x evaluated at y ,
∇2 is second-order gradient

∆ distance scalar, or infinitesimal difference operator, or diagonal matrix

△ijk triangle made by vertices i , j , and k

I Roman numeral

I identity matrix

I index set, a discrete set of indices

∅ empty set, an implicit member of every set

0 real zero

0 origin or vector or matrix of zeros

O sort-index matrix, or order of magnitude of information required,
or computational intensity : O(N) is first order, O(N2) is second,
and so on

1 real one

1 vector of ones

ei vector whose ith entry is 1 (otherwise 0), or ith member of the standard
basis for Rn

max maximum [148, §0.1.1] or largest element of a totally ordered set

maximize
x

find the maximum of a function with respect to variable x

arg argument of operator or function, or variable of optimization

supX supremum of totally ordered set X , least upper bound, may or may
not belong to set [148, §0.1.1]
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arg sup f(x) argument x at supremum of function f ; not necessarily unique or a
member of function domain

subject to specifies constraints to an optimization problem

min minimum [148, §0.1.1] or smallest element of a totally ordered set

minimize
x

find the function minimum with respect to variable x

inf X infimum of totally ordered set X , greatest lower bound, may or may
not belong to set [148, §0.1.1]

arg inf f(x) argument x at infimum of function f ; not necessarily unique or a
member of function domain

iff if and only if, necessary and sufficient; also the meaning
indiscriminately attached to appearance of the word “if ” in the
statement of a mathematical definition, an esoteric practice worthy
of abolition because of ambiguity thus conferred

rel relative

int interior

lim limit

sgn signum function or sign

round round to nearest integer

mod modulus function

tr matrix trace

rank as in rankA , rank of matrix A ; dimR(A)

dim dimension, dim Rn = n , dim(x∈Rn) = n , dimR(x∈Rn) = 1,
dimR(A∈Rm×n)= rank(A)

aff affine hull

dim aff affine dimension
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card cardinality, cardx
∆
= ‖x‖0

conv convex hull

cenv convex envelope

cone conic hull

content content of high-dimensional bounded polyhedron, volume in 3
dimensions, area in 2, and so on

cof matrix of cofactors corresponding to matrix argument

dist distance between point or set arguments

vec vectorization of m×n matrix, Euclidean dimension mn (30)

svec vectorization of symmetric n×n matrix, Euclidean dimension
n(n+ 1)/2 (47)

dvec vectorization of symmetric hollow n×n matrix, Euclidean dimension
n(n− 1)/2 (63)

�(x, y) angle between vectors x and y , or dihedral angle between affine
subsets

� generalized inequality; e.g., A� 0 means vector or matrix A must be
expressible in a biorthogonal expansion having nonnegative coordinates
with respect to extreme directions of some implicit pointed closed convex
cone K , or comparison to the origin with respect to some implicit
pointed closed convex cone, or (when K= Sn

+) matrix A belongs to the
positive semidefinite cone of symmetric matrices (§2.9.0.1), or (when
K= Rn

+) vector A belongs to the nonnegative orthant (each vector entry
is nonnegative, §2.3.1.1)

≻ strict generalized inequality

⊁ not positive definite

≥ scalar inequality, greater than or equal to; comparison of scalars,
or entrywise comparison of vectors or matrices with respect to R+

nonnegative for α∈R , α ≥ 0
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> greater than

positive for α∈R , α > 0

⌊ ⌋ floor function, ⌊x⌋ is greatest integer not exceeding x

| | entrywise absolute value of scalars, vectors, and matrices

det matrix determinant

‖x‖ vector 2-norm or Euclidean norm ‖x‖2

‖x‖
ℓ

= ℓ

√

n
∑

j=1

|xj|ℓ vector ℓ-norm

‖x‖∞ = max{|xj| ∀ j} infinity-norm

‖x‖22 = xTx = 〈x , x〉

‖x‖1 = 1T |x| 1-norm, dual infinity-norm

‖x‖0 0-norm, cardinality of vector x , cardx ≡ ‖x‖0 , 00 ∆
= 0

‖X‖2 = sup
‖a‖=1

‖Xa‖2 = σ1 =
√

λ(XTX)1 matrix 2-norm (spectral norm),

largest singular value, ‖δ(x)‖2 = ‖x‖∞
‖X‖ = ‖X‖F Frobenius’ matrix norm
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[215] Gábor Pataki. Cone-LP’s and semidefinite programs: Geometry and
a simplex-type method. In William H. Cunningham, S. Thomas
McCormick, and Maurice Queyranne, editors, Integer Programming
and Combinatorial Optimization, Proceedings of the 5th International
IPCO Conference, Vancouver, British Columbia, Canada, June 3-5,
1996, volume 1084 of Lecture Notes in Computer Science, pages
162–174. Springer-Verlag, 1996.
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0-norm, 241, 273, 285
1-norm, 187, 189
2-norm, 187, 274

matrix, 457, 509, 520, 528, 687
Ax = b , 74, 241, 245, 253, 272–274,

289, 583
δ , 481
∞-norm, 187, 189
π , 451, 455, 476
ψ , 249, 511
k-largest norm, 188
0 eigenvalues theorem, 512

accuracy, 244
active, 255
adaptive, 258
adjacency, 47
adjoint

operator, 45, 142, 147, 428
self, 305, 481

affine, 192
combination, 59, 66
dimension, 36, 54, 340

complementary, 429
hull, 36, 54
independence, 67, 121

preservation, 67
map, 68
set, 36

as hyperplane intersection, 74
as span of nullspace basis, 75

subset, 54, 59
projector, 585, 596

transformation, 44, 68, 86, 101,
222, 391, 432

affinely independent, 66
affinity, 36
algebra

linear, 481
algebraic

complement, 81, 134
multiplicity, 505

Alizadeh, 247
alternating projection, 307, 628
alternation, 378
alternative, 148

weak, 149
ambient, 421, 434

vector space, 34
anchor, 258, 311, 318
angle, 72, 324

acute, 62
alternating projection, 635
brackets, 45
dihedral, 72, 323, 383, 535
EDM cone, 107
halfspace, 61
inequality, 296, 381
matrix, 326

inequality, 327
interpoint, 301
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obtuse, 62
positive semidefinite cone, 107
right, 109, 137, 154, 155

antisymmetric, 48
antihollow, 51, 441

artificial intelligence, 23
axioms of the metric, 293
axis of revolution, 108, 535

ball packing, 307
Barvinok, 33, 97, 118
base, 81

station, 319
basis, 50, 680

nonorthogonal, 163, 597
projection on, 597

orthogonal
projection, 596

orthonormal, 50, 76, 593
standard, 50, 131

bees, 27, 307
bijective, 45, 102, 548

Gram form, 331
inner-product form, 335
isometry, 48, 377
linear, 47, 48, 50, 52, 122, 157,

455, 536
biorthogonal

decomposition, 585, 594
expansion, 134, 163, 588

biorthogonality, 161, 164
condition, 159, 524

blunt, 645
Boolean, 241, 278
bound

lower, 444
polyhedral, 393

boundary, 38, 80, 413

and extreme, 95
classical, 38
cone, 90
conventional, 81
membership, 147, 238
positive semidefinite cone, 103

bounded, 56
bowl, 563, 564
box, 624
bridge, 323, 350, 400, 445, 461

calculus
matrix, 551
of inequalities, 7

Carathéodory’s theorem, 146, 607
cardinality, 298

minimum, 241
problem, 241, 272, 273, 285

Cartesian
axes, 35, 55, 68, 84, 92, 132, 143
cone, 134, 144
coordinates, 372
product, 43, 141, 234, 636

Cayley-Menger, 341, 363, 383, 475
cellular, 320

telephone network, 319
center

of gravity, 329
of mass, 329

central path, 233
certificate

null, 147
chain rule, 558

two argument, 558
chop(), 651
Chu, 7
circumhypersphere, 341
clipping, 189, 440, 624, 625
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closure, 37
coefficient

binomial, 189
projection, 159, 416, 603, 609

cofactor, 384
combinatorial, 278
compaction, 260, 269, 304, 397, 465
comparable, 89, 160
comparison, 56

orthant, 153
complement

algebraic, 81, 134
projection on, 589

orthogonal, 48
relative, 77, 676

complementarity, 187, 240
linear, 178
maximal, 228, 233
problem, 178
strict, 240

complementary
affine dimension, 429
dimension, 73
eigenvalues, 589
halfspaces, 63
inertia, 364, 501
slackness, 239
subspace, 48

completion
geometry, 397
problem, 294, 349, 356, 387
semidefinite, 639

composition
EDM, 357

compressed sensing, 287
concave, 183, 465, 539
concavity, 183
condition

biorthogonality, 159, 524
optimality, 239

cone, 59, 81, 84, 686
blade, 145
circular, 86, 108, 109

right, 108
convex, 43, 85

positive semidefinite, 100
dual, 134, 135, 179, 181, 367

algorithm, 166
construction, 136, 137
examples, 144
formula, 152, 166
Lorentz, 144, 154
positive semidefinite, 153
properties, 141
unique, 135, 158

EDM, 389, 391, 392, 394
boundary, 407
construction, 406
convexity, 395
decomposition, 430
dual, 421, 422, 432, 436
extreme direction, 408
face, 408, 410
positive semidefinite, 411, 418
projection, 458

halfspace, 138
ice cream, 86
invariance, 86
Lorentz, 86, 128

dual, 154
majorization, 484
membership, 87, 98

relation, 144, 168
monotone, 171–173

nonnegative, 170
nonconvex, 82–85
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normal, 175, 415, 622, 642, 643
elliptope, 644
orthant, 177

orthogonal, 143
pointed, 86, 146, 161, 174

closed convex, 87, 122
polyhedral, 92, 129

polar, 81, 135, 415, 620
polyhedral, 59, 121, 127

dual, 155, 157, 159
halfspace description, 127
majorization, 477
pointed, 157
proper, 123

positive semidefinite, 97, 425
boundary, 418
circular, 108
face, 417
inscription, 112
inverse image, 101
optimization, 232
polyhedral, 113
rank, 230
visualization, 229

proper, 89, 179
quadratic, 86
recession, 138
second order, 86
self-dual, 154
simplicial, 60, 131, 132, 160

dual, 160, 167
spectral, 362, 451

dual, 367
orthant, 454

tangent, 415
unique, 97, 135, 391

congruence, 361
congruent, 330

conic
combination, 59
hull, 59
independence, 25, 120–122, 125

preservation, 122
problem, 226
section

circular cone, 111
conically independent, 120
conici(), 653
conservation

dimension, 340, 512, 513
constellation, 20
constraint

cardinality, 273, 285
equality, 151
Gram, 305
inequality, 255
nonconvex, 276
polynomial, 276
rank, 256, 276, 450
sort, 376

content, 385, 686
contour plot, 176, 212
convergence, 257, 377, 628

geometric, 630
convex

combination, 34, 59
cone, 43, 85
envelope, 245, 266, 318, 462
equivalent, 267
form, 225
function, 183
geometry, 33
hull, 53, 56, 292

of outer product, 57
iteration, 256, 257, 273, 274, 467

stall, 275, 279
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optimization, 7, 186, 226, 311
polyhedron, 56, 126

halfspace description, 126
vertices, 128

problem, 140, 151, 177, 193, 200,
228, 234, 456, 614

geometry, 19, 25
tractable, 226

set, 34
Schur-form, 100

simultaneously, 198, 199, 217
strictly, 185

convexity, 183, 327
first order, 210, 211, 214, 215
second order, 213, 217

coordinate, 166
Crippen & Havel, 322
criteria

matrix, 342
cubix, 552, 555, 683
curvature, 220

decimate(), 658
decomposition, 683

biorthogonal, 585, 594
dyad, 517
eigen, 504
orthonormal, 592, 593
singular value, 507

compact, 507
full, 508
subcompact, 508

Delsarte method, 308
dense, 79
derivative, 204

directional, 213, 551, 559, 562
second, 564

table, 572

description
conversion, 134
halfspace, 62

dual cone, 152
vertex, 59, 158

of halfspace, 124
determinant, 380, 491, 503, 578
diagonal, 481, 538

dominance, 114
diagonalizable, 161, 504

simultaneously, 240, 494, 515
diagonalization, 39, 504

expansion by, 161
symmetric, 506

difference, 42
PSD matrices, 118
vector, 43

diffusion, 397
dilation, 374
dimension, 36

affine, 21, 36, 53, 337, 339, 349,
429

low, 315
minimization, 462, 474
reduction, 386
spectral projection, 475

complementary, 73
conservation, 340, 512, 513
embedding, 54
positive semidefinite cone, 105
Précis, 340
rank, 339, 340

direction, 81, 91
exposed, 94
extreme, 91, 158

PSD cone, 99
matrix, 256

disc, 59
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discretization, 152, 185, 213, 433
distance

geometry, 20, 319
matrix, 292
origin to hyperplane, 65

doublet, 329, 525, 613
range, 525

dual
affine dimension, 429
cone, 129

Lorentz, 144, 154
feasible set, 234
norm, 144
of dual, 141, 243, 283
positive semidefinite cone, 153
problem, 138, 227, 238
projection, 615
strong, 140, 239, 548

duality gap, 139, 140, 235
dvec, 52
Dx(), 652
dyad, 517, 520

-decomposition, 517
independence, 522, 523
negative, 520
projector, 521, 586, 603
range, 521
sum, 504, 507

range, 524
symmetric, 522

Dykstra algorithm, 628

edge, 77
EDM, 26, 292, 435

closest, 449
composition, 358
cone, 299, 391

projection dual, 473

construction, 404
criterion, 420

dual, 428
definition, 298, 402, 416

Gram form, 301, 413
inner-product form, 324
interpoint angle, 301
relative-angle form, 326

dual, 429
exponential entry, 358
graph, 295, 308, 315, 316, 398
projection, 419
range, 403
unique, 356, 369, 370, 450

eigen, 504, 538
decomposition, 504
matrix, 98, 505
spectrum, 362, 451

ordered, 364
unordered, 366

value, 341, 490
coefficients, 604, 607
EDM, 361, 374, 403
interlaced, 347, 361
intertwined, 347
largest, 349
Schur, 502
smallest, 349, 357
unique, 108, 504
zero, 512

vector
distinct, 505
EDM, 403
left, 504
unique, 505

elbow, 443, 444
element

minimal, 89
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minimum, 89
elementary matrix, 359, 526, 528

range, 526
ellipsoid, 34, 38, 40, 44, 274
elliptope, 245, 311, 351, 352, 360, 413,

414
embedding, 337

dimension, 54
empty, 37

interior, 37
set, 37

entry, 184, 673
epigraph, 194, 216

form, 201
errata, 182, 193, 258, 334, 543
error

input, 442
Euclidean

distance, 292
geometry, 20, 312, 319, 610

metric, 293
fifth property, 293, 296, 297,

379, 381, 387
norm, 687
projection, 116
space, 34

exclusive
mutually, 149

expansion, 163, 683
biorthogonal, 134, 159, 163, 588,

598
as projection, 597
EDM, 408
unique, 161, 163, 166, 409, 524,

598
implied by diagonalization, 161
orthogonal, 50, 134, 592, 594
w.r.t orthant, 163

exponential, 579
exposed, 76

direction, 94
extreme, 78, 126
face, 77, 79
point, 79, 94

density, 79
extreme, 76

and boundary, 95
direction, 91, 96

distinct, 91
EDM cone, 408, 427
positive semidefinite cone, 107
unique, 91

exposed, 78, 126
point, 76, 257
ray, 91

face, 39, 77
algebra, 80
transitivity, 80

face recognition, 23
facet, 79
Fantope, 57, 58, 108, 199, 256, 257
Farkas’ lemma, 144, 148

definite, 236
not definite, 238
semidefinite, 234

fat, 74, 673
full-rank, 74

finitely generated, 127
Finsler criterion, 420
flared horn, 85
floor, 687
Forsgren & Gill, 225
Fréchet differential, 560
Frobenius

norm, 47
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minimization, 206, 611
full, 37

-dimensional, 37, 89
rank, 74

function
affine, 192, 206

supremum, 195
composition, 209, 222
concave, 222
convex, 183

differentiable, 218
strictly, 185

linear, 184, 192
matrix, 214
monotonic, 183, 209, 222
multidimensional, 183, 193, 204,

217
objective, 72, 140, 150, 175, 177

linear, 193
nonlinear, 194

presorting, 451, 455, 476
quadratic, 186, 202, 208, 218,

298, 325, 470, 563, 608
quasiconcave, 115, 249, 272
quasiconvex, 115, 220, 222
quasilinear, 222, 511
sorting, 451, 455, 476
step, 511

matrix, 249
support, 194
vector, 184

fundamental
convex

geometry, 62, 68, 72, 303
optimization, 225

metric property, 293
subspaces, 73, 591
test semidefiniteness, 154, 485

theorem algebra, 504

Gâteaux differential, 560
Gale matrix, 315
generating list, 57
generator, 93
geometric

center, 303, 329, 370
subspace, 426, 612

centering
matrix, 528
operator, 333

Hahn-Banach theorem, 62
multiplicity, 505
realizability, 306

Geršgorin, 113
gimbal, 534
global positioning system, 22, 259
Gower, 291
gradient, 150, 176, 194, 203, 204, 551,

570
derivative, 569
first order, 569
monotonic, 209
product, 555
second order, 570, 571
table, 572

Gram matrix, 301

halfline, 81
halfspace, 59, 61, 138

description, 60, 63
hand

off, 321
over, 321

Hardy-Littlewood-Pólya, 452
Hayden & Wells, 389, 402, 439
Hermitian matrix, 485
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Hessian, 204, 551
hexagon, 306
homogeneity, 299
honeycomb, 27
Horn & Johnson, 486, 487
hull, 53, 55

affine, 36, 53
unique, 54

conic, 59
convex, 53, 56, 292

of outer product, 57
unique, 56

hyperboloid, 516
hyperdimensional, 556
hyperdisc, 564
hyperplane, 59, 61, 63, 206

independent, 74
movement, 64
normal, 63
radius, 64
separating, 72
supporting, 68, 70

strictly, 70
unique, 70, 210

tangent, 70
vertex description, 66

hypersphere, 57, 307, 353
hypograph, 197

idempotent, 584, 589
symmetric, 590, 593

iff, 685
image

inverse, 44
indefinite, 360
independence

affine, 66, 121
preservation, 67

conic, 120–122, 125
preservation, 122

linear, 35, 121
preservation, 35

inequality
generalized, 25, 89, 134, 144

dual, 146, 153
linear, 147

matrix, 25, 156, 157, 234, 235,
238

spectral, 362
triangle, 344

unique, 379
inertia, 361, 501

complementary, 364, 501
Sylvester’s law, 493

infimum, 223, 537, 590, 611, 685
inflection, 214
injective, 48, 90, 331, 581
inner product, 45

vectorized matrix, 45
interior, 37
interior-point method, 228, 310, 431
intersection, 42

cone, 86
hyperplane with convex set, 68
line with boundary, 39
of subspaces, 76
planes, 75
positive semidefinite cone

affine, 118, 238
line, 313

tangential, 40
invariance, 328

Gram form, 329
inner-product form, 330
orthogonal, 48, 377
translation, 328
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invariant set, 359
inversion

Gram form, 333
is, 676
isedm(), 647
isometry, 48, 377, 446
isomorphic, 47, 48, 51, 106, 306, 408,

675
isometrically, 39, 47, 102, 154

isomorphism, 47, 156, 334, 390
isometric, 48, 52, 377
symmetric matrix subspace, 49

isotonic reconstruction, 374
iterate, 628
iteration

alternating projection, 628
convex, 256, 257, 274, 467

stall, 275, 279
iterative

alternating projection, 471, 628,
642

Jacobian, 204

K-convexity, 184
Karhunen−Loéve transform, 368
kissing number, 308
Kronecker product, 102, 298, 483,

548, 556, 574, 582, 629

Lagrange multiplier, 151
Lagrangian, 283, 655
lattice, 261–264, 270, 271
Laurent, 358
law of cosines, 324
least

norm, 242, 584
squares, 259, 584

Legendre-Fenchel transform, 462

Lemaréchal, 19
line, 206, 217

tangential, 41
linear

complementarity, 178
function, 184, 192
independence, 35, 121
inequality, 147

matrix, 25, 156, 157, 234, 235,
238

program, 71, 194, 227, 308
transformation, 35, 67, 90, 122,

127
linearly independent, 35
localization, 22, 313

sensor network, 258
standardized test, 261
unique, 21, 259, 260, 312, 315
wireless, 319

log det, 220, 319, 465, 568, 577
logarithm, 579
Lorentz cone, 86, 128

dual, 144, 154
lp(), 655

machine learning, 23
majorization, 484

symmetric hollow, 484
manifold, 23, 24, 105, 396, 397, 444,

478, 544
map

isotonic, 374
linear

of cone, 122
USA, 26, 372, 656

mapusa(), 656
mater, 552
Matlab, 372, 647
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lp() versus linprog(), 653
matrix, 552

auxiliary, 528, 532
orthonormal, 531
projector, 528
Schoenberg, 530
table, 532

bordered, 347, 361
calculus, 551
circulant, 219, 506, 529
commutative, 219, 240, 492, 493,

515, 628
correlation, 56, 352
diagonal, 494, 504, 506, 507, 586
direction, 256, 268, 285, 309, 468
doublet, 329, 525

range, 525
dyad, 517, 520, 603, 606

independence, 522
projector, 586
range, 521
sum, 504, 507, 524
symmetric, 522

elementary, 359, 526, 528
range, 526

Euclidean distance, 291
exponential, 219, 579
fat, 74, 673
full-rank, 74
Gale, 315
geometric centering, 391, 400,

528
Gram, 301
Householder, 527

auxiliary, 529
idempotent, 584, 590
inverse, 218
Jordan form, 490

measurement, 440
normal, 47, 491, 506
orthogonal, 506, 533
orthonormal, 48, 57, 257, 277,

508, 531, 541, 582
partitioned, 500
permutation, 506, 528, 533, 547
positive semidefinite, 485

from extreme directions, 108
product, 221, 557

determinant, 493
fractional, 198, 217
gradient, 555
Hadamard, 46, 458, 557, 675
Kronecker, 556, 574, 582, 629
positive definite, 487
pseudofractional, 197
trace, 492
zero, 515

projection, 102, 529, 584, 590,
592

product, 628
pseudoinverse, 102, 164, 206, 242,

500
product, 582
SVD, 511
transpose, 159
unique, 581

rotation, 536
Schur-form, 500
simple, 519
skinny, 164, 673
sort index, 373
square root, 506
squared, 218
step function, 249
symmetric, 48

subspace of, 48
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unitary, 533
maximal

complementarity, 228
membership relation, 144, 168

discretized, 152, 433
in subspace, 168

metric property, 293
fifth, 293, 296, 297, 379

minimal
element, 89
generating set, 124
set, 66, 601

minimax problem, 140
minimization, 150, 175, 260, 562

on unit cube, 71
minimum

cardinality, 241
element, 89
global

unique, 183, 564
unique, 186

molecular conformation, 22, 322
monotonic, 183, 200, 209, 258, 634,

637
Fejér, 634
gradient, 209

Moore-Penrose conditions, 581
Muller, 511
multidimensional

function, 183, 193, 204, 217
scaling, 22, 368

multilateration, 259, 319
multipath, 319

nearest neighbors, 397
neighborhood graph, 396, 397
nesting, 346
Newton, 551

nondegeneracy, 293
nonexpansive, 592, 623
nonisomorphic, 515
nonnegative, 342, 686
nonsymmetric, 490
nontrivial support, 70
nonvertical, 206
norm, 45, 187, 687

k largest, 188
Frobenius, 47

minimization, 206, 611
least, 242, 584
spectral, 444, 457, 527, 625, 687
zero, 512

normal, 63, 176, 615
cone, 175, 622, 643
equation, 583
facet, 158
inward, 62, 421
matrix, 47, 506
outward, 62
vector, 615

Notation, 673
NP-hard, 467
nuclear magnetic resonance, 322
nullspace, 73, 529, 613

form, 73
numerical precision, 244

objective
convex, 225

strictly, 459, 464
function, 72, 140, 150, 175, 177
linear, 193, 266, 313
multidimensional, 186
nonlinear, 194
polynomial, 276
quadratic, 202
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real, 186
value, 238, 252

unique, 227
offset, 328
omapusa(), 658
on, 680
one-dimensional projection, 605
onto, 680
operator

adjoint, 45, 142, 147, 428, 481
linear, 43, 48, 51, 301, 333, 335,

377, 411, 481, 613
projector, 589, 593, 596, 616

nullspace, 329, 331, 333, 335, 613
permutation, 451, 455, 476

optimal
analytical results, 537
solution, 186

optimality, 150, 175, 239
conic, 177
equality constraint, 151
first order, 176

optimization
combinatorial, 278, 281, 480
convex, 7, 186, 226, 311
multicriteria, 186
vector, 186

order
natural, 45, 481, 683
nonincreasing, 453, 506, 507, 678
of projection, 440
partial, 87, 100, 159

ordinal multidimensional scaling, 374
origin, 34, 338, 600, 620, 625
Orion nebula, 20
orthant, 36, 163, 177

nonnegative, 427
orthogonal, 45

complement, 48
equivalence, 536
expansion, 50, 134, 592, 594
invariance, 48, 377
matrix, 533

orthonormal, 45, 330
decomposition, 592
matrix, 48

orthonormality condition, 162

parallel, 36
pattern recognition, 22
Penrose conditions, 581
pentahedron, 384
perpendicular, 45, 590, 611
perturbation, 247, 249

optimality, 252
plane, 59

segment, 91
point

exposed, 78
extreme, 78
fixed, 631
inflection, 214

polychoron, 81
polyhedral

cone, 59, 121, 127
polyhedron, 39, 71, 126, 350

vertex description, 128
vertices, 128

polynomial, 501
constraint, 276
objective, 276

polytope, 126
positive, 687

definite
Farkas’ lemma, 236

semidefinite, 488
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difference, 118
Farkas’ lemma, 234
square root, 506

semidefinite cone, 40, 97, 99, 426
boundary, 115
dimension, 105
dual, 153
extreme direction, 107
face, 105
inscription, 112
rank, 105

strictly, 343
postulates, 293
primal feasible set, 234
principal

component analysis, 285, 368
eigenvector, 285
submatrix, 311, 379, 384, 410

leading, 344, 346
theorem, 498

problem
Boolean feasibility, 278
cardinality, 241, 272, 273, 285
completion, 294, 349, 356, 387,

397, 639, 640
conic, 226
convex, 140, 151, 177, 193, 200,

228, 234, 456, 614
dual, 138, 227, 238
equivalent, 257
feasibility, 178
max cut, 281
minimax, 140
prevalent, 445
Procrustes, 277
proximity, 447
same, 257
stress, 446, 467

procedure
dyad-decomposition, 665
rank reduction, 248
Sturm, 665

Procrustes, 277
diagonal, 550
linear program, 547
maximization, 547
orthogonal, 544

two sided, 546, 548
solution

unique, 545
symmetric, 549
translation, 545

product, 42
Cartesian, 43, 86, 141, 234, 636
direct, 556
Hadamard, 46, 458, 557, 675
Kronecker, 102, 298, 483, 548,

556, 574, 582, 629
matrix, 221, 557

determinant, 493
fractional, 198, 217
gradient, 555
positive definite, 487
pseudofractional, 197
trace, 492
zero, 515

positive definite
nonsymmetric, 487

pseudoinverse, 582
semidefinite

symmetric, 498
tensor, 556

program
dual, 138, 227, 238, 239
geometric, 8
linear, 71, 194, 227, 308
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semidefinite, 194, 225, 460
prototypical, 227

projection, 416, 581
algebra, 596
alternating, 628, 629

convergence, 633, 635, 637, 640
distance, 631, 632
Dykstra, 641, 642
feasibility, 631–633
on affine/psd cone, 638
on EDM cone, 471
on halfspaces, 630
on orthant/hyperplane, 634,

635
optimization, 631, 632, 641
over/under, 636

biorthogonal expansion, 597
coefficient, 159, 416, 603, 609
cyclic, 630
dual, 615

as optimization, 616
on cone, 618
on convex set, 615, 617
on EDM cone, 473

easy, 624
Euclidean, 116, 441, 444, 448,

450, 458, 469, 615
matrix, 584, 590, 592
minimum-distance, 588, 591, 611,

614
nonorthogonal, 457, 587, 603

eigenvalue coefficients, 604
on dyad, 603
on elementary matrix, 599
on matrix, 603

oblique, 584
on affine, 596, 601

vertex description, 601

on algebraic complement, 589
on cone, 619, 621
on convex set, 614

in affine subset, 627
in subspace, 626, 627

on convex sets, 630
on EDM cone, 459, 469
on ellipsoid, 274
on halfspace, 602
on hyperplane, 602

origin, 600
on matrix

vectorized, 603, 610
on nonorthogonal basis, 597
on orthant, 622
on orthogonal basis, 596
on PSD cone, 104, 116, 447, 450

rank constrained, 450, 456
on slab, 602
on subspace, 620
on truncated cone, 622
one dimensional, 605
order of, 440
orthogonal, 605

eigenvalue coefficients, 607
on dyad, 606
on function domain, 197
on matrix subspace, 610
on vectorized matrix, 605
semidefiniteness test as, 608

spectral, 451, 454
unique, 454

successive, 630
two sided, 612

range, 614
unique, 588, 591, 611, 614, 615

projector
biorthogonal, 594
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commutative, 426, 628
direction

universal, 594
dyad, 521, 586, 603
linear operator, 589, 593, 596, 616
noncommutative, 627, 629
nonorthogonal, 588, 595
orthogonal, 592
orthonormal, 594
product, 426, 628
range, 591
universal, 590

proximity
EDM

nonconvex, 454
in spectral norm, 457
problem, 439, 441
rank heuristic, 464, 466
semidefinite program, 460, 470

Gram form, 461
pyramid, 385, 386

quadrant, 36
quadratic

cone, 86
form, 214
function, 186, 202, 208, 218, 298,

325, 470, 563, 608
nonnegative, 501
program, 377

quartix, 554, 683
quasilinear, 214

range, 73, 611
form, 73
rotation, 534

rank, 685
constraint, 256, 276, 450, 467

dimension, 340, 685
heuristic, 464, 466, 467
log det, 465, 466
lowest, 230
minimization, 462
one, 522

modification, 526
partitioned matrix, 502
Précis, 340
quasiconcavity, 115
reduction, 228, 247, 248, 253

procedure, 248
regularization, 269, 467
Schur-form, 502
trace, 464

heuristic, 462
rank ρ subset, 103, 205
ray, 81

extreme, 413
Rayleigh’s quotient, 609
realizable, 20
reconstruction, 368

isometric, 315, 372
isotonic, 372
unique, 295, 315, 316, 330, 331

recursion, 268, 431, 481, 498
reflection, 330
regularization, 269
relative, 37

angle
inequality, 296, 381
matrix, 326
matrix inequality, 327

boundary, 37, 57
complement, 77, 676
interior, 37

relaxation, 71, 243, 245, 313, 375
Riemann, 228
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robotics, 23
rotation, 330

invariant, 330
round, 685
RRf(), 661

saddle value, 140
scaling, 368

multidimensional, 22, 368
unidimensional, 467

Schoenberg, 363, 433
auxiliary matrix, 300
criterion, 28, 303

Schur
-form, 100, 500

anomaly, 202
convex set, 101
rank, 502
semidefinite program, 201, 623
sparse, 501

complement, 266, 313, 500, 501
second order

cone, 86
program, 228

section, 110
self

adjoint, 481
dual, 147, 153, 154

semidefinite, 490
domain, 485
Farkas’ lemma, 234, 235
program, 194

equality constraint, 100
Gram form, 472
prototypical, 227
Schur-form, 471

versus symmetry, 485
sensor, 311, 318

sensor network
localization, 258, 311, 318

separation, 72
sequence, 634
set

feasible, 42, 150, 175, 234, 683
invariant, 359
level, 176, 192, 203, 204, 212, 222,

226
minimal, 66, 601
solution, 683
sublevel, 196, 211, 216, 221
superlevel, 197, 221

shape, 21
shift, 328
SIAM, 226
signeig(), 652
simplex, 130, 131, 385

unit, 130, 131
simplicial, 131
singular value

decomposition
compact, 507
full, 508
geometrical, 510
pseudoinverse, 511
subcompact, 508
symmetric, 511

problem, 457
skinny, 164, 673
slab, 35, 267, 602
slack variable, 227
Slater’s condition, 140, 235
slice, 109, 154, 319, 562, 563
smooth, 351
solid, 126
solution

numerical, 268
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set, 683
unique, 42, 185, 186, 230, 313,

457, 459, 464, 474
sort

function, 451, 455, 476
index matrix, 373
largest entries, 188
monotone nonnegative, 453
smallest entries, 188

span, 680
sparsity, 241, 272, 273, 285
spectral

cone, 364
norm, 444, 457, 527, 625, 687
projection, 400, 451

sphere packing, 307
standard basis

matrix, 50, 53
vector, 50, 131, 302

steepest descent, 563
step function, 249, 511
strict

complementarity, 240
positivity, 343
triangle inequality, 346

strictly
convex function, 186
feasible, 235
separating hyperplane, 72
supporting, 70

strong
dual, 140, 239, 548
duality, 239

subject to, 685
subspace, 34

as hyperplane intersection, 74
as span of nullspace basis, 75
complementary, 48

geometric center, 332, 424, 612
orthogonal complement, 105,

612
hollow, 51, 332, 425
projection on, 44
proper, 34
representation, 73
symmetric hollow, 51
tangent, 105
translation invariant, 612

successive
approximation, 630
projection, 630

sum, 42
vector, 43

unique, 48, 134, 523
support

function, 70, 194
nontrivial, 70

supporting hyperplane, 69
supremum, 684
surjective, 48, 331, 333, 335, 452, 680

linear, 335, 336, 353, 355
svec, 49
svect(), 663
svectinv(), 664
Swiss roll, 24
symmetrized, 486

tangent
hyperplane, 70, 208
line, 40, 313
subspace, 105

tangential, 40, 314
Taylor series, 551, 568
tetrahedron

angle inequality, 381
theorem
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0 eigenvalues, 512
alternating projection

distance, 633
alternative, 147, 435

semidefinite, 237
Barvinok, 118
Bunt-Motzkin, 615
Carathéodory, 146, 607
cone faces, 90
convexity condition, 210
decomposition

dyad, 517
directional derivative, 562
discrete membership, 153
dual cone intersection, 180
EDM, 353
eigenvalue

0, 512
of difference, 497
order, 496
sum, 497

exposed, 95
extreme existence, 77
extremes, 93, 94
Farkas’ lemma, 144, 148

definite, 236
not definite, 238
semidefinite, 234

fundamental
algebra, 504

Geršgorin discs, 113
gradient monotonicity, 209
halfspaces, 62
image, 44, 46
intersection, 42
inverse image, 44
line, 217
linearly independent dyads, 523

mean value, 568
monotone nonnegative sort, 453
nonexpansivity, 623
pointed cones, 87
positive semidefinite, 489

cone subsets, 116
matrix sum, 115
principal submatrix, 498
symmetric, 499

projection, 426
algebraic complement, 621
minimum-distance, 615
on affine, 596
on cone, 619
via dual cone, 622
via normal cone, 616

projector
rank/trace, 593
semidefinite, 499

proper-cone boundary, 90
Pythagorean, 325, 627
range of dyad sum, 524
rank

affine dimension, 341
partitioned matrix, 502
trace, 590

real eigenvector, 504
Schur, 484
Schur-form

rank, 502
subspace projection, 44
Tour, 358

tight, 295, 683
torsion, 27
trace, 45, 481, 538, 575
trajectory, 359, 420

sensor, 317
transformation
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affine, 44, 68, 86, 101, 222, 391,
432

linear, 35, 67, 122, 127
dual, 147
injective, 90

rigid, 21, 315
similarity, 608

translation invariant, 328
subspace, 329, 612

trefoil, 398, 399, 401
triangle, 294
triangulation, 21
trilateration, 21, 42, 312

tandem, 318

unbounded
below, 71, 149

unfolding, 397
unfurling, 397
unimodal, 220
unique, 8

eigenvalues, 504
extreme direction, 91
localization, 259, 260
minimum element, 89
solution, 185, 314

unit simplex, 131
unitary

linear operator, 48
matrix, 533

unraveling, 397, 399, 401
untieing, 399, 401
USA, 371

value
absolute, 187
minimum

unique, 186

objective
unique, 227

singular
largest, 625

variable
matrix, 65
slack, 227

vec, 45, 481
vector, 34

binary, 56, 245, 278, 351
dual, 642
normal, 615
Perron, 361
primal, 642

vectorization, 45, 49, 52, 416
Venn, 442
vertex, 38, 42, 79

description, 59, 60
of halfspace, 125
polyhedral cone, 129

Vitulli, 519
Vm(), 651
Vn(), 651
vortex, 406

Wüthrich, 22
weak

alternative, 149
duality theorem, 239

wedge, 92, 144
wireless location, 22, 258, 319
womb, 552

zero, 512
definite, 516
entry, 512
matrix product, 515
trace, 515
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