- Vector Notation
- Spaces
- Projection
- Orthogonality
- Signal Measures
- Basis Vectors

Geometric Signal Theory

- Vector Notation


## Geometric Signal Theory/

Inner Product:

$$
\langle x \quad y\rangle \triangleq \sum_{n=0}^{N-1} x(n) \overline{y(n)} \quad \text { where } x, y \in \mathbf{C}^{N}
$$

some Inner Product properties:

$$
\begin{aligned}
& 1:\langle x-y, z\rangle=\langle x, z\rangle-\langle y, z\rangle \\
& 2:\langle\alpha x, y\rangle=\alpha\langle x, y\rangle \\
& 3:\langle x, \alpha y\rangle=\bar{\alpha}\langle x, y\rangle
\end{aligned}
$$

Norm:

$$
\|x\|^{2} \triangleq\langle x x\rangle
$$

$$
\text { example: } \quad\|x\|=\sqrt{12^{2}+5^{2}}=13
$$

The Norm of a vector is its "length".


Properties of the Norm:
1: $\|x\|=0 \Longleftrightarrow x=0$
2: $\|x+y\| \leq\|x\|+\|y\|$
3: for $c \in \mathbf{C},\|c x\|=|c| \cdot\|x\|$
4: $\|x\| \cdot\|y\| \geq|\langle x, y\rangle| \quad$ (Schwartz inequality)

Geometric Signal Theory

## - Orthogonality

$$
x \perp y \Longleftrightarrow\langle x, y\rangle=0
$$

- Projection
orthogonal projection:

$$
\mathcal{P}_{x}(y)=x_{y} \triangleq\left(\frac{\langle y, x\rangle}{\|x\|^{2}}\right) x
$$

example:

$$
\begin{aligned}
\mathcal{P}_{x}(y) & =\frac{\langle y, x\rangle}{\|x\|^{2}} x \\
& =\frac{\langle(1,7),(8,6)\rangle}{\|(8,6)\|^{2}}(8,6) \\
& =\frac{8+42}{64+36}(8,6) \\
& =\frac{1}{2}(8,6) \\
& =(4,3)
\end{aligned}
$$



## Geometric Signal Theory

- Signal Measures


## Mean (average):

$$
\mu_{x} \triangleq \frac{1}{N} \sum_{n=0}^{N-1} x_{n} \quad x \in \mathbf{C}^{N}
$$

## Energy:

## Power:

$$
P_{x} \triangleq \frac{1}{N} \mathcal{E}_{x}=\frac{1}{N} \sum_{n=0}^{N-1}\left|x_{n}\right|^{2}
$$

- also called the mean square
- represents the average energy per sample


## Variance:

$$
\sigma_{x}^{2} \triangleq P_{x}-\mu_{x}^{2}
$$

"mean square" - "squared mean"

$$
\sigma_{x}^{2}=\frac{1}{N} \sum_{n=0}^{N-1}\left(x_{n}-\mu_{x}\right)^{2}
$$

- Removes "DC" component of signal - gives a better feel for the signal level.


## Geometric Signal Theory

## - Basis Vectors

A set of mutually orthogonal vectors
"Natural" Basis (Catesian Basis)

- Basis set for samples in a signal

$$
\hat{e}_{0}=[1,0,0] \quad \hat{e}_{1}=[0,1,0] \quad \hat{e}_{2}=[0,0,1]
$$

"Sinusoidal" Basis

- Basis set for samples in a spectrum

$$
\hat{s}_{k}(n) \triangleq e^{j \omega_{k} n T}=e^{j 2 \pi k n / N}
$$

3D-example:

$$
\begin{aligned}
& \hat{s}_{0}=\left.e^{j 2 \pi 0 n}\right|_{n=0} ^{3} \\
& \hat{s}_{1}=\left.e^{j 2 \pi 1 n}\right|_{n=0} ^{3}=[1,1,1] \\
&\left.\hat{s}_{2}=e^{j 2 \pi 2 n / 3}, e^{j 4 \pi / 3}\right]=\left[1, \frac{-1+j \sqrt{3}}{2}, \frac{-1-j \sqrt{3}}{2}\right] \\
& \hat{s}_{n=0} \perp \hat{s}_{1} \perp \hat{s}_{2}
\end{aligned}
$$

## Orthonormal Basis

The natural basis vectors all have a norm of 1. However, the sinusoidal basis vectors all have a norm of $N$.

Orthonormal Sinusoidal Basis:

$$
\tilde{s}_{k} \triangleq \frac{\hat{s}_{k}}{\left\|\hat{s}_{k}\right\|}
$$

