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» Spaces
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* Inner Product Space
Inner Product:

N—-1
(zy) 2 v z(n)y(n) where z, y € CV

n=0

some Inner Product properties:
L —y,z) = (x,2) — (y, 2)
2:{az,y) = a(z,y)
3 {x, ay) = a(z,y) Inner Product is linear.
Norm:

|2 2 (= @)

example: ||x|| — 122 +52 =13

The Norm of a vector is its "length". | x=(12,5)
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Properties of the Norm:

|z =0 <= =0

2: |z +yl < =] + |yl

3:forc € C, |cx| = |c| - || =]

4 x| |y = Kz, v)| (Schwartz inequality)
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» Orthogonality
rly < (z,y)=0
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 Projection

orthogonal projection:

Px(y) = Ly =

<y,w>] )

2
]

example:

Py =
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 Signhal Measures

Mean (average):
A 1 N—1

,uxzﬁngoxn zeCV
Energy:
N—-1
& 2 (w o) =[af" = = |z
n=0
Power:
1 1 N—1
p, & e = 5 T |z |2

— also called the mean square
— represents the average energy per sample
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Variance:

U% = Px_ﬂ;%

"mean square" — "squared mean"

— Removes "DC" component of signal — gives a better

feel for the signal level.
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 Basis Vectors
A set of mutually orthogonal vectors

"Natural" Basis (Catesian Basis)
— Basis set for samples in a signal

éo=11,0,0] é1 =10, 1, 0] éy =10, 0, 1]
"Sinusoidal" Basis
— Basis set for samples in a spectrum
$(n) A gwpnT _ j2mkn/N
3D-example:
$0 = eﬂﬂonizo =[1,1, 1]
& = ejzmnizo 11, 23 gidn/s) _py T +2j\/§7 —1 —23’\/51
s = ej27r2n‘i:0 1, /3 ety =1 —j\/§7 —1 +2j\/§]

30 L8 L g
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Orthonormal Basis

The natural basis vectors all have a norm of 1. However, the sinusoidal
basis vectors all have a norm of N.

Orthonormal Sinusoidal Basis:




