- Steady-State Complex Sinusoid
- Phase
- Decay Time Constant
- Generalized Complex Sinusoid

Complex Sinusoids

2

Steady-State Complex Sinusoid

a complex sinusoid can be written as:

$$A e^{j\omega t} = A\cos\omega t + jA\sin\omega t$$

A = amplitude

where
$$\omega = \text{angular frequency} = 2\pi f$$

t = time variable = nT if discrete

Phase

$$A \ e^{j(\omega t + \phi)} \ = \ A \cos(\omega t + \phi) + j \ A \ \sin(\omega t + \phi) \ = \ A \ e^{j\phi} \ e^{j\omega t}$$

no phase: $e^{j\omega t}$

phase advance:
$$e^{j(\omega t - \phi)}$$

phase delay:
$$e^{j(\omega t + \phi)}$$

4

Complex Sinusoids

Decay Time Constant

exponential amplitude envelope: $e^{\sigma t}$

Also written as $e^{-t/\tau}$: where τ is called the "time constant". This is the time it takes for the envelope to decay by 1/e = 0.37

 $T_{60} \approx 7~\tau$, where T_{60} is the time it takes a sound to decay by 60 dB.

Generalized Complex Sinusoid

