
TabSynth 0.1: Report and Documentation

Cosmin Deaconu

March 19, 2009

Abstract

TabSynth provides a software framework for generating sound based
on the position of a cursor within a window. The extra input options
afforded by graphics tablets are supported (and recommended!). Tab-
Synth is written in C++ using gtkmm (for the user interface) and the
Synthesis Toolkit (STK) (for audio generation). TabSynth’s project web
site is http://ccrma.stanford.edu/~cozzyd/tabsynth/. This document
describes version 0.1 of TabSynth.

1

http://ccrma.stanford.edu/~cozzyd/tabsynth/

Contents

1 Background and Motivation 3

2 User Documentation 3
2.1 Installation Procedure . 3

2.1.1 Obtaining TabSynth . 4
2.1.2 Basics . 4
2.1.3 Installing gtkmm . 4
2.1.4 Installing the STK . 4
2.1.5 Compiling TabSynth . 5

2.2 Running TabSynth . 5
2.3 The Input Window . 5
2.4 The Control Window . 6
2.5 The Input Devices Dialog . 6

3 Included Plugins 7
3.1 Theremin . 7

3.1.1 Physical Model . 7
3.2 Flutemin . 8
3.3 Super Simple . 9

4 Developer Documentation 9
4.1 TabSynth Design . 9
4.2 Developing Plugins . 10

4.2.1 Subclass methods . 11
4.2.2 Adding settable parameters 11
4.2.3 Making the plugin loadable 12
4.2.4 Getting it compiled . 12

4.3 Tutorial: The Super Simple Plugin 12

5 Future Plans 15

References 16

2

1 Background and Motivation

As a Christmas present this year, I received a Wacom Tablet of the Bamboo
variety (these are the cheapest ones; they do not support detecting tilt.) After
a bit of fooling around, I managed to get it working with Linux, and all was
good (thanks to the people at the linuxwacom project).

When I learned that I could pursue an independent project for an extra unit
for Music 420, I immediately thought of attempting to do something with my
tablet. In particular, I wanted to make a theremin that I could play with my
tablet. I soon realized that it would be useful to have a general framework for
this sort of thing.

A little bit of research showed that I was not the first to come up with this
idea. In particular, I was able to find an article 1 which lists some existing
programs for tablet input. While it appears there exists an HID object for PD
on Linux, there is not (to my knowledge) an easy to use theremin-like application
that uses tablet input. [1]

As we were learning to use the STK in Music 420, I decided to use that for
audio generation. Since the STK is written in C++, that would be the language
to use. After a bit of research, I learned that GTK+ has support for tablets
(which makes sense, since it was developed as a toolkit for GIMP). Since I was
using C++, I looked into using gtkmm (C++ GTK+ bindings) for the user
interface for my program. I had never developed a GTK+ application before,
so this was a bit of a learning experience.

I also decided that I wanted to have a module-oriented synthesis system,
where synthesis plugins are dynamically loaded. This was also new to me (which
explains some of the poor design decisions).

Finishing the program became increasingly difficult, as every time I wanted
to “test” it, I would spend a lot of time playing with it instead. I originally had
grand plans to write a lot of output plugins, but in the end I ended up with just
two real plugins and one pedagogical plugin. Fortunately, writing an output
plugin is “easy,” so additional plugins may be provided in the future.

I hope others find TabSynth as enjoyable as I do.

2 User Documentation

This section provides instructions for setting up and using TabSynth.

2.1 Installation Procedure

(Note: A more updated version of this will be maintained at http://ccrma.
stanford.edu/~cozzyd/tabsynth/#install)

1http://createdigitalmusic.com/2006/06/15/use-graphics-tablets-for-music-new-and-
updated-software-free-tablet-theremin/

3

http://createdigitalmusic.com/2006/06/15/use-graphics-tablets-for-music-new-and-updated-software-free-tablet-theremin/
http://ccrma.stanford.edu/~cozzyd/tabsynth/#install
http://ccrma.stanford.edu/~cozzyd/tabsynth/#install

2.1.1 Obtaining TabSynth

Instructions for obtaining the most current version of TabSynth are available at
http://ccrma.stanford.edu/~cozzyd/tabsynth/#dl.

2.1.2 Basics

TabSynth must currently be compiled from source. This requires a C++ com-
piler (g++) as well as the development files for gtkmm2 and STK 3 TabSynth
is known to compile on Ubuntu 8.10 and Fedora 10.

2.1.3 Installing gtkmm

gtkmm-dev should be provided in the repository of most distros. In particular,
Ubuntu 8.10 and Fedora 10 both have it easily available. The Makefile looks for
gtkmm-2.4, though it’s possible an older version may also work.

2.1.4 Installing the STK

STK is not uncommonly included in distro’s repositories, however the version
shipped with Ubuntu 8.10 is too old to work with TabSynth’s provided plugins.
(We need at least 4.2.1 and 8.10 provides 4.2.0). Fedora’s version is recent
enough.

Ubuntu users must manually install the STK libraries. Some instructions
for doing that can be found at the STK web page 4 (look for the part called
”Library Use”). I have outlined the important steps below:

Installing STK from Source

• It’s probably best to get rid of any existing, older version of STK using
your package manager.

• Download the newest sources from the project home page 5.

• Untar and cd into the directory just created

• ./configure
The default options should probably suit you, but if you want JACK
output or something like that, feel free to peruse the STK documentation
to look up the correct flags.

• make
This step will probably fail. I think this is because STK was made
for gcc3 but most new distributions bundle gcc4. In order to get it to
compile, either use gcc3 or modify the source as follows (thanks to Nelson
Lee for figuring this out):

2http://www.gtkmm.org
3http://ccrma.stanford.edu/software/stk/
4http://ccrma.stanford.edu/software/stk/compile.html
5http://ccrma.stanford.edu/software/stk/download.html

4

http://ccrma.stanford.edu/~cozzyd/tabsynth/#dl
http://www.gtkmm.org
http://ccrma.stanford.edu/software/stk/
http://ccrma.stanford.edu/software/stk/compile.html
http://ccrma.stanford.edu/software/stk/download.html

– In stk/include/Stk.h:

1. add #include <stdlib.h>

2. change #include <string> to <string.h>

– In stk/src/Messanger.cpp, add #include <algorithm>

– In stk/src/RtAudio.cpp, add #include <limits.h>

• Copy src/libstk.a somewhere in your library path (/usr/local/lib is prob-
ably a good candidate). It may be necessary to run ldconfig before your
system will recognize the library.

• Copy everything in include/ to a folder called stk/ somewhere in your
include path (e.g. /usr/local/include/stk/).

• That should be everything. If the step below still complains about stk
not being found, check your library and include environmental variables
to make sure they’re looking in the right place.

2.1.5 Compiling TabSynth

To install, get the newest sources and run ”make” in the root tabsynth directory.
If you’re lucky, it will compile and produce a tabsynth executable :).

2.2 Running TabSynth

To run TabSynth, enter the TabSynth root directory and execute ./tabsynth.
Currently, calling TabSynth from a different directory won’t work due to hard-
coded paths (hopefully this will be fixed in the future).

Upon opening TabSynth, two windows will spawn. The functions of these
windows are detailed in the next sections.

2.3 The Input Window

The Input Window (Fig. 1) is the heart of TabSynth. Sound is produced by
moving the cursor around in the playing area (the white part surrounded by the
frame). Individual output plugins are responsible for figuring out what sound
to make based on the parameters in the region. Normally sound will only be
produced if there is non-zero tablet pressure (or, if you don’t have a tablet, if
you are holding down the left mouse button).

A frame shows the name of the currently loaded plugin and the status area
at the bottom shows the current position (in relative coordinates), pressure and
frequency to be outputted by the plugin.

The window may be resized past its minimum sized freely, although the
playing area will always maintain a square aspect ratio.

5

Figure 1: The Input Window with the Theremin plugin loaded. Note that the
actual appearance of the widgets will vary according to your GTK+ theme. The
appearance of the canvas area can be modified by a plugin.

2.4 The Control Window

The Control Window (Fig. 2) allows you to select the output plugin as well as
set any other options.

The Input Devices button loads the Input Devices Dialog (see below), which
allows you to configure extended input devices (e.g. tablets).

The volume slider controls the volume of TabSynth, regardless of plugin.
The plugin selector drop down box allows you to select the currently loaded

plugin. This list is populated at start up by the current contents of the plugins/
directory.

Below that is the “Plugin Information” frame, which contains the name and
description of the currently loaded plugin as well as any settable parameters the
plugin may specify.

2.5 The Input Devices Dialog

The Input Devices dialog is the standard GTK+ way of configuring extended
input devices, such as tablets. If you have a properly configured tablet (for
example, using the linuxwacom projects drivers, NOT the hotplugging HID
drivers which will not allow pressure detection), you will want to select the
stylus device (on my system, it’s called “stylus,” but the actual name will vary
according to X.org configuration) and select “Screen” mode. This maps the
surface of the tablet to the entire display. “Window” is supposed to map the
device to a specific window, though in practice, its behavior is rather ill-defined.

6

Figure 2: The Control Window with the Theremin plugin loaded. The options
available in the “Plugin Information” frame will vary from plugin to plugin.

3 Included Plugins

Each currently included plugin is documented here.

3.1 Theremin

The theremin plugin is the raison d’etre of TabSynth. As its name may suggest,
it is supposed to model theremin.

The theremin plugin draws an “antenna” in the middle and an inscribed
blue circle on the playing area. The closer one is to the antenna, the higher the
frequency. The outer circle represents a frequency of 0 hz. The instrument’s
volume is controlled by the pressure of the stylus (or, if no stylus is present, it
will be 100 percent when the left button is pressed and 0 otherwise).

Care was taken to mimic a real analog theremin, so most of the settable
parameters are somewhat opaque. The exception is trem, which controls the
tremolo frequency. Tremolo may be induced by pressing the right mouse button.

3.1.1 Physical Model

The basic idea of the theremin is that my moving one’s hand around an antenna,
it is possible to modify the capacitance of an LC circuit. However, because the
capacitance change from this action is so small compared to the components that
can be reasonably used in a circuit, a theremin actually employs two oscillators
operating at very high frequencies. The capacitance of one of them is slightly
modified by the operator, and what one hears is the beat frequency between the
two.

I used the basic model outlined in Skeldon[2]. The circuit of the oscillator
hooked up to the antenna looks something like what is depicted in Fig. 3. The
circuit provides the resonant frequency for a Colpitts oscillator. The following

7

Figure 3: The oscillator connected to the antenna in an analog theremin

equations are used to calculate the pitch of this oscillator, where L is inductance,
C1, C2 are specified capacitances, h is height of the antenna, d is diameter, x
is distance from hand, k is a factor having to do with the distance from the
ground (∼0.4 for slightly above ground) and K is a fudge factor.

f =
1

2π
√
L

(
1
C1

+
1

(C2 + CA)

)(1/2)

(1)

CA ≈
2πε0h

log(2h/d)− k
+

πε0h

K log(4x/d)
(2)

You may notice that the first equation is nothing more than the resonance
frequency of an LC circuit. The second equation is based on empirical studies
of the capacitance of an antenna near the earth’s surface. The first factor
represents the intrinsic capacitance of such an antenna with no hand near it.
The second equation adds the effect of a nearby hand (modelled as an infinite
plane). The factor K is introduced as a fudge factor because most people’s
hands are not of infinite extent (Rachmaninoff notwithstanding).

C1, C2, h, L and K are all settable parameters in the Theremin plugin. The
other oscillator is tuned such that the frequencies are equal (and thus the total
output is 0 hz) at the blue circle in the drawing area. k is set to 0.4 and d is
set to 1 cm. The extent of the box is assumed to be ∼ 2 m.

Note that if x is less than d, x is set to d (however, there are still instabilities
near the antenna).

The output plugin outputs a sine wave with a frequency corresponding to
the beat frequency between the oscillators.

3.2 Flutemin

The Flutemin is an unphysical thereminish instrument. Like the theremin, the
frequency goes up as one approaches the antenna. Unlike the theremin, the

8

frequency is calculated according to an inverse power law. The exponent on the
bottom and the maximum frequency are settable. Also, a checkbox for doubling
the frequency was added (mostly so all three types of plugin parameter widgets
would be displayed).

Unlike the theremin plugin, which uses a simple sine wave, the Flutemin
boasts the STK Flute instrument model. However, the flute doesn’t very flute-
like at low frequencies, and if you get low enough, the instrument cannot produce
the corresponding sound. It sounds cool though.

Once again, the volume is a function of the pen pressure (or the left mouse
button provides binary volume control).

The plugin draws only an antenna in the middle.

3.3 Super Simple

The Super Simple plugin is meant to serve as an example of how to develop
an audio output plugin. As such, it is not really meant to be used for play-
back, though you are welcome to regardless. The output frequency is calculated
according to the completely arbitrary formula:

f = 1000(x2 − y2 + xy − P 2)2 (3)

where f is the output frequency, x and y are the coordinates in the playing
area and P is the pressure. The pressure also controls the volume.

The settable parameter corresponds to the number of harmonics in the STK
BlitSaw instrument used for output.

It does not render any graphics to the playing area at all.

4 Developer Documentation

This section is intended to explain the code layout of TabSynth and to provide
instructions for developing plugins.

4.1 TabSynth Design

TabSynth was designed with the possibility of having many different output
modules in mind. To accomplish this, the output plugins are compiled as shared
objects and loaded at runtime by TabSynth.

Here is a brief outline of each what each file does:

• Makefile
The main makefile, although all it does is call src/Makefile

• plugins/
Folder created during build process that will hold the shared object files
for the plugins

9

• resources/icon.svg
The beautiful TabSynth logo. This is called absolutely in several places.
This should probably be fixed in the future.

• src/Makefile
Responsible for compiling the main program and for triggering the com-
pilation of the plugins

• src/Main.cpp
The point of entry for TabSynth. Initializes GTK+ and the threading
system and spawns an InputWindow and a ControlWindow

• src/control window.[h|cpp]
Implements the TabSynth control window. This code is responsible for
dynamically loading the plugins as well as all configuration.

• src/input window.[h|cpp]
Implements the TabSynth input window. This code is responsible for
capturing input events and sending them to the plugin.
Also, it calls the plugin’s draw function to decorate the input area.

• src/plugin option.[h|cpp]
A plugin option is a data structure used to describe and store per-plugin
user-settable parameters.

• src/tabsynth plugin.[h|cpp]
All plugins extend from the class defined in this file (TSPlugin) and should
implement the virtual members of this class. TSPlugin implements some
convenience functionality so that individual plugins don’t need to, like a
separate audio processing thread that constantly polls tick().

• src/plugins/Makefile
Builds all .cpp files in the plugins directory as plugins and copies them to
plugins/

• src/plugins/theremin.cpp
Implements the theremin plugin

• src/plugins/flutemin.cpp
Implements the flutemin plugin

• src/plugins/super simple.cpp
Implements the “super simple” example plugin that is outlined in the
tutorial .

4.2 Developing Plugins

Developing a plugin is meant to be a simple process not requiring in-depth
knowledge of the rest of TabSynth’s code base. To write a plugin, one must

10

create a .cpp file in src/plugins/ and populate it accordingly. Once compiled,
the plugin will appear in the drop down list in the control window. For example,
if your file is named foo.cpp, foo.so will appear in the dropdown box.

4.2.1 Subclass methods

The majority of the logic should be done in a subclass to TSPlugin. The correct
include file for the class is tabsynth plugin.h. The following virtual methods
need to be implemented in the subclass:

• setParameters(double x, double y, double pressure,
bool button2, bool button3,
double tiltX, double tiltY);

This function is called by the input window whenever it processes a GTK+
event. It should be used to modify the parameters of the output. Gen-
erally, it is advisable to use the pressure as the volume since otherwise
sound will be emitted all the time.

The two coordinates are in coordinates such that the size of the playing
area is 1.0. If no pressure is detected, 1 is passed if the left mouse button
is held down and 0 otherwise. Note that button2 refers to the middle
button and button3 to the right button. The tilt has not been tested yet
as I lack a fancy enough tablet.

• StkFloat tick();

This function is called by the audio processing thread whenever it needs
a new sample (44100 times a second, in fact).

• void draw(Cairo::RefPtr<Cairo::Context> cairo_context,
int size);

This function is called by the input window whenever it needs to redraw
the playing area. It passes along a Cairo context belonging to the playing
area and an integer specifying the length of a side of the playing area. The
idea is that the plugin should draw something here if it wants to).

• std::string getName();
std::string getDescription();
std::string getVersion();

The (self-explanatory) return values of these functions are used to popu-
late the plugin inspector in the control window.

4.2.2 Adding settable parameters

In addition to the above methods, the plugin can optionally make use of the
the protected std::vector<PluginOption*> options member. Any added
PluginOptions will appear as settable parameters in the control window.

To create a PluginOption, use the following constructor:

11

PluginOption(pluginOptionType type, std::string name,
std::string description, double def = 0,
double min = 0, double max = 1,
int numSteps = 10);

Here, pluginOptionType is an enum that can be one of OPTION SLIDER (a
slider control), OPTION SPIN (a spin entry box) or OPTION CHECK (a check box).
The label that appears next to the control is specified by name and its tooltip
is dictated by description. The default, minimum, maximum and number of
steps (when using arrow keys to access the field) can also be set (though for a
check box, only 0 and 1 make sense as values).

The value of a PluginOption may then be obtained using the getValue()
method.

4.2.3 Making the plugin loadable

Two functions are necessary to make the plugin loadable dynamically (via the
dlfcn module). As dlfcn was meant for C, the compiler needs special instructions
for these functions. The two necessary functions are:

extern "C" TSPlugin * init() {
return new Foo;

}

extern "C" void destroy(TSPlugin * p) {
delete p;

}

Obviously, you’d need to replace Foo with the appropriate name for your sub-
class of TSPlugin. The function init() is called by the plugin loader to create
the plugin and destroy(TSPlugin * p) is called to deallocate its resources.

4.2.4 Getting it compiled

Adding the .cpp file to the src/plugins/ directory and running make (in the root
directory) should be sufficient to compile and add the plugin to the plugins/
folder.

4.3 Tutorial: The Super Simple Plugin

An annotated version of a simple plugin (called super simple.cpp) follows..

#include "../tabsynth_plugin.h" //This file must be included
#include <stk/BlitSaw.h> //Use this for synthesis
#include <cmath>

The important thing here is the include for ../tabsynth plugin.h. This
will allow us to subclass TSPlugin.

12

class SuperSimple : public TSPlugin {

protected: //Protected Member Variables
double vol;
BlitSaw * blit;

We define a SuperSimple class (subclassing TSPlugin) and give it a few
protected variables. The double vol will represent the output volume of this
plugin and the STK generator blit is going to be used for audio synthesis.

public:
SuperSimple() { //Constructor
blit = new BlitSaw(220);
vol = 0;

//Add an option to set the number of harmonics
options.push_back(new PluginOption(OPTION_SPIN,
"NumHarmonics",
"setHarmonics is called with this number",
10,1,100,50));

}

In the constructor, we initialize the volume to 0 and we initialize our gener-
ator. As we will change the frequency later, the initial frequency doesn’t matter
too much.

The STK BlitSaw also contains a parameter for the number of harmonics
it uses. We want that to be user settable, so we add a new PluginOption * to
the options vector (which is a protected member of TSPlugin. We want the
users to be able to assign any number between 1 and 100 (with a default of 10)
and we also want a step size of 2 when using arrow keys in the spin button.

\~SuperSimple() { //Destructor
delete blit;

}

This is the destructor. It is called when this plugin is unloaded and should
free any allocated memory. This (hopefully!) does that.

//Tablet event occurred. Calculate new frequency from this.
//Return frequency for display purposes
StkFloat setParameters(double x, double y,

double pressure,
bool button2, bool button3,
double tiltX, double tiltY) {

//Some weird way of computing frequency

13

double freq = 1000 * pow((x*x - y*y + x*y -
pressure*pressure),2);

//Use pressure as volume
vol = pressure;
blit->setFrequency(freq);

//Grab the harmonics from the GUI option
blit->setHarmonics((unsigned int) options[0]->getValue());
return freq;

}

This is the heart of the plugin. Upon receiving a new input event, we want
to adjust the frequency and volume accordingly. For this toy plugin, we use an
arbitrary formula for coming up with frequency. We use the pressure as volume
(since that usually makes sense).

Also, we set the number of harmonics to the value currently selected by the
user (in case they changed it).

The frequency is returned so that it may be displayed in the status bar.

//Computes next sample
StkFloat tick() {
return blit->tick() * vol;

}

This method is called whenever a new sample is needed (this happens thou-
sands of times a second). We call the method on the BlitSaw and scale it by
the current volume.

/* We could draw something here, but Cairo’s complicated,
so we’ll skip this*/

void draw(Cairo::RefPtr<Cairo::Context> cr, int size) {}

A plugin can draw whatever figure it wants on the playing area of the input
window. Describing how to use Cairo is outside the scope of this tutorial,
however.

std::string getName() {
return "Super Simple";
}
std::string getDescription() {
return "A toy plugin for demonstration";
}
std::string getVersion() {
return "-1";
}

}; //End of Class Definition

14

These methods are used to provide the display text inside the plugin inspec-
tor. We have finished the class.

/* In addition to containing a class inheriting from TSPlugin,
* a plugin must have the following two methods. (Used for
* dynamic loading) */

extern "C" TSPlugin * init() {
return new SuperSimple;

}

extern "C" void destroy(TSPlugin * p) {
delete p;

}

The above methods are needed in every plugin to allow for dynamic loading
(because dlfcn is a C library which doesn’t understand classes).

As long as the .cpp file is inside src/plugins, it should be compiled automag-
ically when running make in the root directory and the plugin will appear in
the dropdown list in the control window.

5 Future Plans

Here are some of the known issues in TabSynth.

• No event is triggered when the cursor leaves the drawing area (at least,
none that I know about)

• Glitchy audio when volume changes too rapidly. Need to implement grad-
ual volume changes in plugins?

• Memory leaks

• Somewhat non-standard build system (I should probably switch to auto-
tools)

• Crash on exit (double free or something in Glib?), but only on one of my
computers

• Badly organized code... too much mix up of GUI and function.

• Resource / plugin paths hard linked. The executable has to be executed
from the right place to work.

• While gtkmm and stk are cross-platform, I use POSIX-specific paths and
the POSIX dynamic loading functions (dlfcn.h). Also I link to -lasound in
the Makefile, which would make compiling on non-Linux require a change
to the Makefile.

15

• Not enough plugins :(

With some luck, some of these will be ameliorated in future releases.

References

[1] Peter Kirn. Use graphics tablets for music: New and updated software, free
tablet theremin, June 2006. http://createdigitalmusic.com/2006/06/15/use-
graphics-tablets-for-music-new-and-updated-software-free-tablet-theremin/.

[2] K. D. Skeldon, L. M. Reid, V. McInally, B. Dougan, and C. Fulton. Physics
of the Theremin. American Journal of Physics, 66:945–955, November 1998.

16

	Background and Motivation
	User Documentation
	Installation Procedure
	Obtaining TabSynth
	Basics
	Installing gtkmm
	Installing the STK
	Compiling TabSynth

	Running TabSynth
	The Input Window
	The Control Window
	The Input Devices Dialog

	Included Plugins
	Theremin
	Physical Model

	Flutemin
	Super Simple

	Developer Documentation
	TabSynth Design
	Developing Plugins
	Subclass methods
	Adding settable parameters
	Making the plugin loadable
	Getting it compiled

	Tutorial: The Super Simple Plugin

	Future Plans
	References

