
  

  

Abstract— The goal of this research is to improve signal 
operation and reduce delay through an innovative 
transdisciplinary integration of traffic signal control and music 
theories. The main hypothesis in this research is that “the 
underlying sense that musicians exhibit during improvisation 
can be utilized to better synchronize signal control with internal 
traffic rhythm.” In this work, we developed and used a SONATA 
interface to control a simulated traffic signal. It was found that 
two of the three musicians in this study have outperformed the 
Webster’s optimal control (by 22.3% and 17.6%). It was also 
found that all three musicians controlled the traffic signal better 
when they were not looking at the simulation (i.e., using only 
auditory sensing).  

I. INTRODUCTION 

The Texas Transportation Institute (TTI) Urban Mobility 
Scorecard of 2015 collected and analyzed data from 471 urban 
areas in the US. The data indicated that there is an equivalent 
of $160 billion of wasted time and fuel in 2014 alone [1]. One 
of the remedial strategies recommended by TTI is “adding 
capacity of all kinds.” This can be achieved by optimal 
allocation of traffic signal green times. There is a large room 
for improvement in what we do in signal control, both in theory 
and applications, as evidenced by the statistics mentioned 
above.  

A. Traffic Control Methods 
State-of-the-art traffic controllers use physical vehicle 

sensing information to regulate vehicle movements with 
control algorithms using three control parameters: cycle, splits, 
and offsets. Signal cycle optimization has been cited as an NP-
Complete problem [2], and offset optimization/signal 
coordination as NP-hard on arterials [3] and networks [4, 5], 
which reduces the optimality of current control paradigm. The 
systems become more complex when we consider a road 
network instead of a single road link. Two widely used 
responsive control systems are SCOOT [6, 7] and SCATS [8]. 
SCOOT implements a gradient descent algorithm with online 
detector data, while the optimization process with SCATS is 
done offline to generate candidate signal plans.  

Traffic Responsive Plan Selection (TRPS) is a technique 
that has been embedded in most of the traffic controllers in the 
US. Abbas et al. used pattern recognition techniques to guide 
optimal and robust configuration of TRPS [9–11]. Further 
studies on TRPS followed this track and implemented different 
machine learning techniques for pattern recognition [12–14]. 
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Another approach to traffic optimal control is dynamic 
programming (e.g., [15][16, 17][18]). However, the “curse of 
dimensionality” prevents the dynamic-programming-based 
adaptive traffic control system from practically being 
implemented for a large network. There are also controllers 
implementing machine learning techniques such as fuzzy logic 
controllers [19–21] and reinforcement learning based 
controllers [21–24]. 

B. Problem Statement 
Most, if not all, of the existing traffic control methods 

utilize central optimization of intersection traffic movements, 
and can quickly reach the computational capacity of a local (at 
an intersection) or a master (network-operating) controller. 
Because of the difficulty/infeasibility of optimizing traffic 
operation of networks or large corridors, several researchers 
and operators turned to heuristic methods (e.g., using 
supervised learning in artificial intelligence, AI). However, 
supervised learning needs a set of optimized output that 
corresponds to each input in the training set, which defies the 
purpose of using AI methods when the optimized output is not 
known to start with (unless the objective of using AI is to speed 
up the computation, rather than to improve operation).  

Unlike driving behavior modeling, for example, where the 
change in driver acceleration in every time step is guided by a 
human choice, the optimality of a given control policy in traffic 
signal operation is only guided by the final outcome (was the 
timing plan optimal? What is the total delay at the end of a 
given time period as a result of following a pre-determined 
timing plan?). The major missing component in optimal 
adaptive control of intersection or network traffic, therefore, is 
the “sense” of correct control actions in each time step. Without 
this sense, depending on a pre-defined model of delay can 
quickly become intractable; similarly, depending on a rolling-
horizon dynamic programming can suffer from the curse of 
dimensionality.  

II. INNOVATIVE CONCEPTS 
In order to address the limitation of existing control 

optimization methods, we propose a novel and foundationally 
transformative control paradigm where each control action is 
guided by a “sense of correctness” obtained from the music 
domain. The goal of this research is to improve signal operation 
and reduce delay through an innovative transdisciplinary 
integration of traffic signal control and music theories. The 
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main hypothesis in this research is that “the underlying sense 
that musicians exhibit during improvisation can be utilized to 
better synchronize signal control with internal traffic rhythm.”  

A. Music and Control 
Traffic signal control is typically achieved through 

allocating different green durations to different traffic 
movements (four through movements and four protected left 
movements). Previous research showed that it is unlikely to 
achieve global optimal operation using any closed-form 
control optimization solution. Engineers typically use some 
heuristic methods in conjunction with stochastic traffic 
simulation packages (e.g., VISSIM) to come up with close-to-
optimal operation that minimizes an objective function 
(typically overall delay). VISSIM provides a phase allocation 
sequence (a phase diagram) for any running control strategy 
along with the corresponding overall delay at the end of the 
simulation run.  

Looking closely at Figure 1 and Figure 2 below, one can 
see the resemblance between the phase diagram and the 
musical score Piano key representation. This realization is what 
opens the door for potentially very intriguing and interesting 
research tasks as will be described next. 

 

 
Figure 1. VISSIM traffic simulation with phase diagram 

 

 

 
Figure 2. Fur Elise music score with piano representation 

B. Intellectual Merits 
The work proposed here is the very first research effort 

bridging traffic signal system control and music theory. The 
presented work converts traffic arrival patterns at signalized 
intersections into musical tunes, allowing skilled musicians to 
listen and play along, while controlling the signal indications 
in the process. Data collected during this experiment is used to 
develop a new adaptive controller that would work in the 
absence of music (the intention is to encapsulate the musician’s 
behavior in a traffic control software agent, and not to lock 
musicians inside traffic cabinets). The technological 
innovation includes the development of software system that: 
(1) extracts and plays traffic rhythms/tunes from microscopic 
traffic simulations, (2) captures and records musician 
corresponding tunes, and (3) converts musician tunes into 
signal indications in the traffic simulation software. 

The intellectual merit includes: (1) investigation, analysis 
and encapsulation of human’s capabilities to create optimal 
control through the musical sense and (2) the creation of an 
innovative central and distributed control platform that adapts 
to evolving traffic.  

C. Paper’s Contribution 
This paper presents our foundational work with the 

following contributions: (1) developing software interface 
between commercial traffic simulation software and music 
devices, (2) designing and conducting an experiment to record 
the actions of musicians who are skilled in improvisation 
playing in response to different traffic rhythms, and (3) 
conducting statistical data analyses of musical and signal 
control performance data. This paper lays the foundations for a 
transformative transdisciplinary integration of traffic signal 
control and interactive musical improvisation.  

III. METHODOLOGY 
Three research tasks were conducted and presented in this 

paper: (1) development of software and hardware interface 
between the traffic simulation package (VISSIM) and the 
acoustic kit (microphone/speakers and associated drivers), (2) 
designing and conducting an experiment to record skilled 
musicians playing in response to traffic rhythms, (3) statistical 
analysis of signal performance when operated by musical 
improvisation versus traditional control.  

A. The SONATA Platform   
We developed a software package with a graphical user 

interface (GUI) and an Application Programming Interface 
(API) to communicate with the VISSIM simulation software 
and the Musical Instrument Digital Interface (MIDI) devices. 
The Green Light SONATA (Green Light Signal Operation 
with Neuro-fuzzy Acoustic Tuning Application) platform is 
intended at this stage to provide the communication and data 
collection functionalities required for this phase of the 
research, but is intended to be used in the future as a stand-
alone neuro-fuzzy control agent. The software package 
includes an algorithm that maps each detector activation 
(shown as the blue lines in Figure 3), and the MIDI output 
(rhythm beats or melodies, depending on a user setting). An 
algorithm also maps the notes played by each musician into 
phase indications (shown as the green lines in Figure 3). All 
data is stored in two separate databases: (1) a VISSIM 
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database, storing all vehicle, signal, and delay data, and (2) a 
musical notation database, storing all the MIDI data. A module 
developed in the MAX music software is used to: (1) convert 
detector actuation into musical notes and (2) convert musical 
improvisation into VISSIM signal indications.  

 
Figure 3. Main Software and Research Framework. 

B. Experimental Setup and Data Collection 
"Improvisation" refers to a wide variety of musical 

practices, within and across musical styles/cultures. Some 
improvisation is governed by explicit conventions of playing 
over a harmonic/rhythmic structure (for example 12-bar blues), 
whereas other improvisation adheres to conventions that are 
not made explicit, but simply absorbed in the process of 
learning a musical system (such as Indian ragas, or Persian 
radif). We designed an experiment to test the main research 
hypothesis. Experiment variables included different traffic 
patterns (changing traffic intensity and variance), using visual 
and auditory versus auditory only information, and controlling 
the signal by different musician improvisation styles (Co-
authors Abbas, Nichols, and Thomas were the musicians in this 
research). SAS JMP software was used to analyze data 
obtained from the experiment. The response variable and 
surface were built based on the resulting traffic delay of each 
run.  

The experiment was conducted at the DISIS Studio at 
Virginia Tech where Abbas, Nichols, and Thomas (pictured 
from left to right in Figure 4 below) performed in response to 
the sonification of traffic, having their musical performance 
translated in real-time into signal indication in the VISSIM 
simulation environment using COM interface and Max 
software.  

 

 

Figure 4. The SONATA Experiment 

Each musician performed with and without looking at the 
simulation. Each detector hit was sonified with a plucked 
string sound and each detector occupancy (percent of time the 
detector is on) was sonified with a bowed string sound. 
Detector information was sonified as a pitch corresponding to 
the associated National Electrical Manufacturers Association 
(NEMA) phasing shown in Figure 5. Musicians’ play, in 
response, was converted into VISSIM phase indication 
associated with the played note. Control parameters 
corresponding to Webster’s optimal control were also coded 
in VISSIM and the simulation results were compared side to 
side. Webster minimum delay cycle was computed with 
equation (1) below. 

 
𝐶𝐶𝑜𝑜 = 1.5∗𝐿𝐿+5

1−∑𝑣𝑣/𝑠𝑠
  (1) 

Where: 

Co: Webster minimum delay cycle length 

L: total lost time in each cycle (5 seconds per 
NEMA phase per ring) 

V: critical approach volume 

S: saturation flow rate 

The phase duration is determined based on the Webster 
cycle length and the v/s ration as follows: 

𝑔𝑔𝑖𝑖 =
𝑣𝑣𝑖𝑖
𝑠𝑠𝑖𝑖
∑𝑣𝑣
𝑠𝑠
  (2) 

Where: 

Gi: green duration for phase i 

Other variables as previously defined 

 

 
Figure 5. NEMA Phasing and Associated Notes 

IV. RESULTS 
All collected data was analyzed using JMP software. The 

optimality level of musical plays (as compared to a base line 
Webster control) was used to label each musical control 
episode. Next, a Markov state transitioning analysis was 
conducted to analyze and investigate the reasons resulted in 
that control performance.  
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A. Control Performance—delay  
It was very interesting to find that all three musicians 

controlled the traffic signal better when they were not looking 
at the simulation (i.e., using only auditory sensing) as shown in 
Figure 6. Figure 6 also shows the delay associated with each of 
the eight NEMA phases, highlighting phases where musicians 
served better than others. It was also exciting to see that two of 
the three musicians have outperformed the Webster’s optimal 
control (by 22.3% and 17.6%) as shown in Figure 7. These 
results are very encouraging and warrants further investigation 
of the proposed concept. 

 
Figure 6. Phase delay corresponding to Musicians’ control with visual and 
auditory 

 
Figure 7. Overall musicians’ intersection delay compared to Webster 
optimal control 

Figure 8 shows the statistical t-test analysis of the performers 
operation. The figure shows that two musicians performances 
were statistically significant from the rest of performances 
when they were using auditory cues. This result suggest that 
there is a value in using all phases harmonic auditory sensing 
when controlling traffic.  

 
Figure 8. Statistical significance of musical performance  

A. Control Harmony 
What we mean by control harmony is how “in-tune” was 

the musician to the traffic state progression while 
“improvising” back to control the traffic. Was the musician 
responding to all phases equally? Was the musician responding 
to changes in traffic states in real-time such that delay 
distribution among phases remain the same as time passes by? 

These concepts are illustrated in Figure 9 through Figure 
14. The figures show the cumulative delay per control period 
and for each of the eight NEMA phases. For example, the 
figures show that with auditory cues, Thomas was able to 
respond better to phases 4, 7, and 6. Her auditory cues were 
resulting in lesser delay to these phases (than the visual cues 
control) early on, and then keeping their delay in check. In 
essence, it seemed that her auditory cues control took 
advantage of the opportunity to reduce delay for those phases 
as soon as possible, followed by keeping the delay for those 
phases in check for the rest of the simulation.  

Nichols auditory cues control resulted in a much better 
attention to phase 8 in comparison to the visual cues control. 
Another interesting observation is how Nichols built a 
sequential “pressure” for phases 5, 6, and 7, respectively before 
coming back and “resolving” that pressure keeping their delay 
in check from his response point to the end of the simulation. 
This seems to be the opposite strategy to what Thomas did. It 
should be noted that Nichols was also attempting to produce 
“beautiful” pieces of music while responding to the traffic 
demand, which can lead to the exploration of the relationship 
between control efficiency and “beauty,” which is currently 
beyond the scope of this paper.  

Abbas’s auditory responses resulted in a much less variance 
in his responses to phases (all phases delays are contained 
within a tight band). His auditory cues control lead to a more 
equitable control to phase 4 than his visual cues control.    
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Figure 9. Control harmony-visual cues- Thomas 

 
Figure 10. Control harmony-auditory cues- Thomas 

 
Figure 11. Control harmony-visual cues- Nichols 

 
Figure 12. Control harmony-auditory cues- Nichols 

 
Figure 13. Control harmony-visual cues- Abbas 

 
Figure 14. Control harmony-auditory cues- Abbas 

Phase Transitions 
We also analyzed the transition probabilities from existing 

phases and the action that each musician took (sending a 
particular phase invocation signal). The y-axis in Figure 15 
shows the phase that was last invoked, and the legend color 
shows the phase that was invoked by the musician at each time 
step. The figure shows, for instance, that Nichols stayed in 
phase 8 significantly longer than Thomas and Abbas; Abbas 
stayed the least in phase 6 than the other two participants. 
Thomas hardly remained in phase 2, etc. Insights obtained from 
this figure will be used in future work to develop encapsulating 
control agents.  
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Figure 15. Phase transitioning  

V. CONCLUSIONS 
In this paper, we presented the very first attempt at 
controlling traffic signals based on musicians intuitions and 
ability to improvise. The platform presented here (the Green 
Light SONATA) sonifies traffic data and converts musicians 
improvising responses into signal indications. Our 
preliminary results shows that two out of the three co-authors 
were able to beat Webster optimal control using auditory 
signal information only. We also discussed the impact of the 
different improvisation styles we implemented on signal 
performance. These findings are very encouraging and 
warrant further investigation and development. 
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