Oxygen Flute, a Computer Music Instrument

that Grows

Chris Chafe

Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University

cc@ccrma.stanford.edu

January 29, 2005

Abstract

The quality of the air we breath depends on a balance of plant and animal life. Oxygen Flute is an interactive computer music environment that makes the exchange of gases audible. Gallery visitors enter a chamber with bamboo and four continuously-performing (digitally-modeled) flutes. Patterns in levels of carbon dioxide measured inside the chamber create the music. The computer flutes are played both in real time and from the accumulated history of fluctuations recorded in the space. The flute models are simulations of 9,000 year-old bone flutes from China.

1 Introduction

Artist Greg Niemeyer was commissioned in 2000 to create an interactive installation for the San Jose Museum of Art, located in the heart of Silicon Valley. Greg knew he wanted to make a tangible - sonic exhibit and enlisted me as musician. The result is a 1500 kg sculpture, Fig. 1, exhibited from October, 2001, and then from September, 2002 at the Kroeber Museum of the University of California, Berkeley.

The project became the second collaboration in a series whose theme is revealing hidden dynamic aspects of our world. These pieces involve sensor technology which extends our sensory organs (Chafe and Niemeyer, 2001). Oxygen Flute reveals plant and animal respiration through gas concentration readings. Our sense of our own respiration is normally functional ["T'm gasping"] or observational [scientific]. Oxygen Flute is intended to open a different mode of perception, one which fosters intuitive and emotional awareness. The musical and sculptural design focuses attention on a dynamic exchange that is so simple, yet so vital and largely taken for granted. Visitors to the flute gain a qualitative feeling for the interdependence of respiration between plants and animals and the carbon / oxygen exchange that takes place.

INSERT FIGURE 1 NEAR HERE

2 Listening to Breath

The first thing to note is that patterns in the dynamics of respiration are exhibited on various time scales. Oxygen Flute operates a continuous sensor which logs carbon dioxide concentrations at 2 samples / sec. On the fastest time scale, visitors' breathing inside the chamber triggers reactions and interaction. And on the farthest scale, the sensor accurately records the gradual increase of atmospheric CO_2 due to carbon emissions. Patterns in between these extremes include the flow of visitors and the much slower flux from plant photosynthesis superimposed on the daily cycle of gallery visiting hours. The overall range of temporal patterns is shown in Table 1.

INSERT TABLE 1 NEAR HERE

Fig. 2 shows the daily cycles recorded over one week of the exhibition. The hours of museum operation are distinguishable as a 24-hour rhythm, and closed days are relatively quiet. Underneath this "animal" activity the 24-hour pattern of photosynthesis is visible.

INSERT FIGURE 2 NEAR HERE

2.1 A Paradoxical Zoom

As observers of this time-series data containing multi-layered patterns, we are confronted with the "zoom question" whenever we step out of real time. That is, what is the ratio of compression or expansion to employ? Paradoxically, as shown in Fig. 3, slowed-down fast patterns appear quite similar to speeded-up slow patterns. Here, the top trace shows the reading logged from one day in the exhibit. Spikes represent visitor interaction. Smaller deflections show visitors coming and going.

The middle trace shows a zoom-in on 10ms of data, equivalent to decreasing the playback tempo by a factor of 100. Compare the appearance of events in this graph to those in the bottom trace, which is an accelerated (downsampled) view of the top trace's 8 hours worth of data. The blurring of finer detail by zooming out leads to confusingly similar event patterns.

INSERT FIGURE 3 NEAR HERE

An observer cannot tell from these graphs or from their corresponding flute sounds what the time window or zoom factor actually is. That, however, is problematic since the point of the piece is to project an appreciation of the "total" dynamic. The problem can be solved by making zoom itself perceptible.

Oxygen Flute employs a "performer algorithm" which has two modes: realtime and playback. In its relaxed state, the music follows a languorously slowmotion (very-zoomed-in) time course through logged data. At the moment a visitor's breath is detected, it switches into real-time mode, obviously awakened and excited. The awakened mode is something of a tease which invites the visitor to breath harder and faster. At some point it detects a lack of visitor interaction and it decays from very excited back to the slower, ambient tempo of events.

Level-of-zoom is communicated as a "voice" to be perceived through the music, thereby disambiguating it from the patterns themselves. The solution was found by giving zoom itself a pattern that registers perceptually. This pattern came from simple mechanics, a system that is common in everyone's experience. We created a zoom "pendulum" (in software) that begins to swing when a visitor blows on it. At rest, the level of zoom returns to the ambient level (the slow tempo as in Fig. 3's middle graph). As it begins to swing, there is a clear sense of tempo change, moving forward or backward through the data. Tempo and direction are in direct relation to angular displacement of the pendulum. The greatest excursion zooms out the tempi to the point where it creates the same musical effect as fully zoomed-in tempi (as shown in the graphs in Fig. 3). But to get there, the visitor must continue to blow on the pendulum in phase with its resonance, building its oscillation. The pendulum's period is 2 secs. – about right to induce hyperventilation. Design-wise, this was entirely intended and has been kept secret, or at least unmentioned in the exhibit's onsite documentation; "maximum swing" is meant to be a discovery that rewards the best (most dizzy) participants.

2.2 Hyperventilation Game and DSP

The Oxygen Flute system, Fig. 4, comprises a computer, CO_2 sensor and four loudspeakers in a three-sided pyramid arrangement. Visitors enter onto a walkway, Fig. 5, and are surrounded by the bamboo and music. The sensor is unobtrusively located at the end of the walkway.

INSERT FIGURE 4 NEAR HERE

INSERT FIGURE 5 NEAR HERE

Flute sound is projected within an arificial reverberant space that can grow

or shrink in size using digital signal processing effects. For the listener, this changing synthetic "room" is superimposed on the actual room.

Hyperventilation creates a dizziness spell which goes away after relaxing one's breathing rate. During the spell, disorienting acoustical effects are noted by some. I have always experienced a kind of change to the spatial quality of sounds. The walls seem to move inward. It's not dangerous, and maybe it's only me, but it's something the performer algorithm capitalizes on. During a sustained period of pendulum-swinging, the algorithm instigates a shift of spatialization to reinforce this effect. Fig. 6 shows the (inverse) coupling of heavy breathing which accumulates CO_2 to a narrowing of the artificial reverberant space.

INSERT FIGURE 6 NEAR HERE

The change is reinforced with a concomitant change to synchrony of a continuous background percussion sound.

2.3 Small Snapping Shrimp (inside Flutes)

A popcorn-like sound plays continuously in the background. These are the "snaps" from thousands of small (1cm) shrimp recorded by hydrophone at Monterey Bay on September 11, 2001. Their inclusion serves three functions: first, to create a musical connection to the visual surround of constantly trembling bamboo leaves, second, to provide a separate percussion line (part of a musical dimension of synchrony vs. asynchrony), and third, to add key-click sounds to the flutes which would still project the flute pitch even when there is no breath excitation (sounding like tuned drums).

The walls of the Oxygen Flute chamber are stretched sheets of silicone rubber. At the outdoor sites where it has been installed the air is never still, so the walls continuously stir the air inside. Thus the slight trembling of the leaves. This jittery visual background is complemented by aromas (bamboo, earth and silicone) and a sonic background of the continuously snapping shrimp.

A shrimp recording is looped over its length but seems infinite because the snapping is uncorrelated. The recording plays into each of the four flutes, exciting the tube resonators. Before entering the flutes, however, the recording is split by delay lines of different lengths. If the illusory walls are in the "relaxed, ambient, wide" setting, Fig. 6 (top), then the delays are set to rhythmically-significant lengths, i.e., a single snap entering the system will sound in a correlated four-part rhythm. When "dizziness mode" is triggered, the delays instead shorten to sub-rhythm lengths (< 50ms) adding distinct early reflections to the reverberation. The walls close in making for an illusory suffocatingly small room around the listener's head, Fig. 6 (bottom). Since the delays are nearly the same, the correlated rhythm disappears.

2.4 Music from Old Bones: Recreating Ensembles of Ancient Chinese Flutes through Digital Simulation

Archaeological finds from the Jiahu site, Henan Province, of Central China have included twenty-five Neolithic bone flutes similar to the present-day bamboo xiao. These five to eight-hole vertical flutes were fashioned from ulnae (wing bones) of the red-crowned crane. A team at CCRMA has attempted to bring these 9,000 year-old instruments to life using physical modeling synthesis.

We have been engaged in extrapolating synthesized ensemble performances through simulations which have been calibrated by ear to two flutes found in playable condition. The team's "fantasy" performances do not claim authenticity of style or practice. Rather, we are interested in an evaluation of whether advanced computer music techniques might serve musical archeology by providing replicas for experimentation. Oxygen Flute is a completely different application for these models, attempting improvisational-sounding performance instead of scored or traditional melodies.

Our interest in simulating the Jiahu flutes was sparked by a published description of the instruments and the accompanying web-posting of a 45 sec. recording made at the Music Institute of the Art Research Institute of China (Zhang, Harbottle et al. 1999), one of several analog recordings made between 1987 and 1992. Conservation now dictates that the flutes no longer be played.

The site has been dated to 7000 - 5700 B.C. With twenty-five flutes already discovered and only 5% of the area excavated, it is likely that others will be found. The toneholes were apparently drilled using quartz tools, as inferred from the discovery of a quartz mine near the Jiahu area. The careful placement (and adjustment) of toneholes provide evidence of an advanced multi-note musical practice. None have register holes. Their construction, Fig. 7, resembles bamboo and various other wooden flutes found worldwide, including simple tourist flutes commonly sold as souvenirs. However, unlike many types of vertical flutes, the blowing edge was not modified by sharpening nor was it notched.

INSERT FIGURE 7 NEAR HERE

2.5 Simulation Technique

An earlier report (de la Cuadra, Chafe and Baoqiang, 2001) describes details of our physical model synthesis. The synthesis technique has been implemented in several computer environments, both as a real-time instrument and as a fasterthan-real-time soundfile score renderer. Briefly, we've built on the now classical one-dimensional waveguide model that simulates flute physics from first principles, (McIntyre, Schumacher and Woodhouse, 1983), (Smith, 1992), (Hanninen and Valimaki, 1996). Toneholes have been added (Scavone, 1997) providing appropriate pitch control (replacing earlier slide-flute-style implementations in the literature). The synthesis system creates individual instrument simulations automatically from physical measurements of each of the Jiahu flutes. Since our present design implements a one-dimensional waveguide, only length, tonehole placement and tonehole diameter are relevant.

Two categories of parameters belong to the present model: those which are manipulated in performance and those which are qualities of each individual instrument, Fig. 8. Breath noise is implemented using the vortex noise technique described in Chafe (1995).

INSERT FIGURE 8 NEAR HERE

For the Oxygen Flute ensemble, experimentation with different instrument

combinations led to a quartet based on two flutes recovered from the same period at Jiahu. A copy of this pair was then digitally-modified to create a second pair with longer alto flute lengths as shown in Fig. 9. For installation at the exhibit's second venue, these lower flutes were revoiced by extending them into the bass register.

INSERT FIGURE 9 NEAR HERE

2.6 Mapping CO₂ Readings to Flute Performance

At any given instant, the flutes are receiving a combination of real-time CO_2 data and recorded data that has accumulated since the beginning of the exhibit ("historical" data). This one-dimensional time-series data arrives at the performer algorithm and is split into several streams, Fig. 10. As described above, the presence of a visitor determines the mix of real-time and historical data, and a "zoom pendulum" controls the tempo (and direction) of historical data playback.

INSERT FIGURE 10 NEAR HERE

INSERT FIGURE 11 NEAR HERE

A mix of real-time data and historical data is used to determine instantaneous values for the performance parameters in Fig. 8, plus one other, the amount of shrimp snapping sound admitted into the flute. The following translations are provided by the performer algorithm:

Translation to breath pressure.

Translation to vortex operating point (affects spectral content of breath

noise).

A translation to **tonehole closings and portamento**. The scale ranges from fully-open to fully-closed and the toneholes can be closed abruptly or gently according to portamento value.

Embouchure (blowing angle) changes with tonehole fingering and also follows a translation to amount of desired overblowing (for harmonics).

Translation to shrimp input gain.

Each flute in the quartet maintains an independent index into the historical data. These pointers move into and out of synchrony with each other depending on visitor interaction. Sometimes the ensemble plays in coordinated phrases, otherwise the pointers travel at different tempi and at different locations through the historical data.

2.7 Software Architecture

The application is written in C++ using the Synthesis ToolKit (STK, 2003) and the Qt library (Qt, 2003). The preferred operating system has been Linux under which it has been running on an Intel PIII 866MHz. processor with four-channel soundcard (44.1kHz sampling rate).

The application is divided into eight threads, one each for the flutes plus one each for the application event loop, sound output, CO_2 sensor and pendulum model. The pendulum was designed in the Matlab Simulink package and exported to C using Realtime Workshop package (Matlab, 2003).

3 Acknowledgments

The author is indebted to many colleagues without whom Oxygen Flute would never reached its present form and taken its first breath. Musicians, engineers and artists who have contributed include Han Baoqiang, Patricio de la Cuadra, Ben Dean, Michael Gurevich, Richard Humphrey, Fernando Lopez-Lezcano, Greg Niemeyer, and Gary Scavone.

4 References

Chafe, C. (1995). Adding Vortex Noise to Wind Instrument Physical Models.In Proceedings of the International Computer Music Conference 1995 (57-60).San Francisico: International Computer Music Association.

Chafe, C., Niemeyer, G. (2001). Ping. URL: http://www-ccrma.stanford.edu/~cc/sfmoma/topLevel.html.

de la Cuadra, P., Chafe, C., Baoqiang, H. (2001). Waveguide Simulation of Neolithic Chinese Flutes. In *Proceedings of the 17th International Congress on Acoustics 2001* (181-184).

Hanninen R., Valimaki V. (1996). An Improved Digital Waveguide Model of a Flute with Fractional Delay Filters. In Proceedings of the. Nordic Acoustical Meeting 1996. (437-444).

Matlab (2003). Matlab & Simulink. URL: http://www.mathworks.com/.

McIntyre, M.E., Schumacher, R.T. and Woodhouse, J. (1983). On the Oscillations of Musical Instruments. *Journal of the Acoustical Society of America*, 74, 1325-1345.

Scavone, G. P. (1997). An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues and Digital Waveguide Modeling Techniques. PhD thesis, Music Department, Stanford University.

Smith, J. O. (1992). Physical Modeling Using Digital Waveguides. Computer Music Journal, 16, 4, 74-87.

STK (2003). The Synthesis Toolkit in C++ (STK). URL: http://ccrma-www.stanford.edu/software/stk/.

Qt (2003). Qt, The Cross-platform C++ GUI Toolkit. URL: http://www.trolltech.com/.

Zhang, J., Harbottle, G., et al. (1999). Oldest Playable Instrument Found at Jiahu Early Neolithic Site in China. *Nature*, 366-368.

5 Tables

duration	people pattern	bamboo pattern
decades	carbon emission	forest growth
weeks	museum vacations	plant growth
days	museum weekends	weather patterns
hours	museum hours	photosynthesis
minutes	visitor presence	-
seconds	inhale & exhale	-
milliseconds	breath shape	-

Table 1: The time scales of Oxygen Flute's gas measurements (CO_2) .

6 Figure captions

Figure 1: The Oxygen Flute is a bamboo growth chamber in an art gallery setting.

Figure 2: CO_2 data logged inside Oxygen Flute over one week. The lower graph is a spectral analysis which highlights the high-frequency content of visitor interaction.

Figure 3: CO₂ data logged inside Oxygen Flute shown at different zoom (tempo) rates: (top) a full day of museum visitors, 10am - 5pm, (middle) 100x zoom-in on a large spike, (bottom) 400x zoom-out by downsampling.

Figure 4: Oxygen Flute components showing CO_2 sensor and four loudspeakers in pyramid arrangement.

Figure 5: Walkway for visitors inside Oxygen Flute.

Figure 6: Sensor readings invoke changes to artificial reverberation, strong readings causing the perceived "walls" to shrink.

Figure 7: The two Jiahu flutes which for which there are example sound recordings.

Figure 8: Simulation parameters: Breath, blowing noise and fingering are controlled in real time. Tonehole geometry, filters and vortex noise parameters are set during instrument creation.

Figure 9: Two flutes shown in Fig. 7 are digitally altered.

Figure 10: Flute parameters are manipulated by incoming CO_2 readings (from LICOR device). Software modules analyze the readings and translate visitor's behavior into virtual pendulum motion and musical phrasing.

Figure 11: Software pendulum swinging motion (lower trace) is excited by excitations derived from CO_2 flux.

7 Figures

Figure 1: The Oxygen Flute is a bamboo growth chamber in an art gallery setting.

Figure 2: CO_2 data logged inside Oxygen Flute over one week. The lower graph is a spectral analysis which highlights the high-frequency content of visitor interaction.

Figure 3: CO_2 data logged inside Oxygen Flute shown at different zoom (tempo) rates: (top) a full day of museum visitors, 10am - 5pm, (middle) 100x zoom-in on a large spike, (bottom) 400x zoom-out by downsampling.

Figure 4: Oxygen Flute components showing CO_2 sensor and four loudspeakers in pyramid arrangement.

Figure 5: Walkway for visitors inside Oxygen Flute.

Figure 6: Sensor readings invoke changes to artificial reverberation, strong readings causing the perceived "walls" to shrink.

Figure 7: The two Jiahu flutes which for which there are example sound recordings.

Figure 8: Simulation parameters: Breath, blowing noise and fingering are controlled in real time. Tonehole geometry, filters and vortex noise parameters are set during instrument creation.

Figure 9: Two flutes shown in Fig. 7 are digitally altered.

Figure 10: Flute parameters are manipulated by incoming CO_2 readings (from LICOR device). Software modules analyze the readings and translate visitor's behavior into virtual pendulum motion and musical phrasing.

Time offset: 0

Figure 11: Software pendulum swinging motion (lower trace) is excited by excitations derived from CO_2 flux.

29