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Abstract

The paper describes recent work in modeling human aspects of musical performance.
Like speech, the exquisite precision of trained performance and mastery of an instrument
does not lead to an exactly repeatable performed musical surface with respect to note
timings and other parameters. The goal is to achieve sufficient modeling capabilities to
predict some aspects of expressive performance of a score.

1  Introduction

The present approach attempts to capture the variety of
ways a particular passage might be played by a single
individual, so that a predicted performance can be
defined from within a closed sphere of possibilities
characteristic of that individual. Ultimately, artificial
realizations might be produced by chaining together
different combinations at the level of the musical
phrase, or guiding in real time a synthetic or predicted
performance.

A pianist was asked to make recordings (in Yamaha
Disklavier MIDI data format) from a progression of
rehearsals during preparation of Charles Ives' First
Piano Sonata for a concert performance. The samples
include repetitions of an excerpt from the same day as
well as recordings over a period of months. Timing and
key velocity data were analyzed using classical
statistical feature comparison methods tuned to
distinguish a variety of realizations. Chunks of data
representing musical phrases were segmented from the
recordings and form the basis of comparison.

Presently under study is a simulation system stocked
with a comprehensive set of distinct musical
interpretations which permits the model to create
artificial performances. It is possible that such a system
could eventually be guided in real time by a pianist's
playing, such that the system is predicting ahead of an
unfolding performance. Possible applications would
include performance situations in which appreciable
electronic delay (on the order of 100's of msec.) is
musically problematic.

Caroline Palmer's comprehensive review of studies of
expressive performance [1] presents several points that
bear importance for the present work. Foremost, she
warns against “drawing structural conclusions based on
performance data averaged or normalized across tempi.”
Data in the present work is analyzed in a way that
preserves nuances until the final steps of classification.

Several reports are mentioned in conjunction with the
exploration of structure-expression relationships and
corroborate the salience of phrase-level units in
performance analysis. For example, errors in complex
sequences when analyzed suggest that phrase structures
influence mental partitioning. Errors tend not to interact
across phrase boundaries. Also, phrases appear to be
tied to their global context in different ways. Some
phrases appear to be "tempo invariant" where others
scale according to tempo-based ratios.

In Palmer’s words, “Each performer has intentions to
convey; the communicative content in music
performance includes the performers’ conceptual
interpretation of the musical composition.” Expressive
variations are  intentional and show a high degree of
repeatability in patterns of timing and dynamics.
Performers are deliberate in applying devices to portray
their concepts, for example choosing louder dynamics to
strengthen unexpected structural or melodic events.
Events with higher tension (in a tension / relaxation
scheme) might be brought out by being played longer.

2 Data from Rehearsals

Pianist George Barth, a Professor of Performance in the
Stanford University Music Department, provided the
recordings. He prepared his performance over the course



of four months with nearly daily practice. The first five
samples that are analyzed here were collected over
several weeks, beginning after he felt confident of the
notes.

An extract of the fifth movement was targeted for study
after an initial look at the data confirmed good stability
across the five samples. The 55 note passage was
performed flawlessly in each take and provided
sufficient length and variation for purposes of the
analysis. The pianist was unaware of the choice of the
extract, so as far as he was concerned he was recording
a much longer excerpt of the movement, thus avoiding
any likelihood of study-influenced effect on the
performance.

Figure 1:  Displayed proportionally, the raw data for
note onsets and key velocity shows expressive
variations.

Several steps were necessary to prepare the extract for
analysis. The performances were recorded directly to the
Disklavier's floppy disk in Yamaha's E-Seq MIDI data
format. Conversion to Standard MIDI File Format  type
1 was accomplished in software with Giebler
Enterprises' DOMSMF utility. Segmentation of the
extract and conversion to type 0 format was
accomplished with Opcode Systems' Vision sequencer.
Trimmed and converted files were then imported into
the Common Music Lisp environment for the first
stages of analysis.

The present study is limited to note onset timings and
key velocity (dynamic) information. Duration and

pedaling data have been preserved during the
conversion process for possible subsequent use.

Figure 1 shows proportionally the raw quantities
recorded from the five performances. In Figure 2,
phrase timing differences are depicted by connecting a
line segment between the positions of the starting and
ending note-heads of each phrase.

Figure 2:  Sketching only phrase boundaries, tempo
changes are visible both globally across phrases and
internally within  phrases.

a) note onset timing

b) key velocity

c) duration

Figure 3: Variation in three parameters across the five
performances.

For ease of comparison, Figure 3 isolates parameters
with phrases aligned (by lining up events on the timings
of the first performance and varying the notehead size
according to the given parameter). In b), variations of
note onset timing use data relative to the first
performance (larger noteheads indicate greater
lengthening). Dynamic information is depicted  by
notehead sizes that depend on the key velocities found
in each performance. Note durations are shown for
informational purposes but were not analyzed further.



3 Covariance Analysis

Performance data, being sequential, requires the choice
of a time window relevant to the features that the
analysis intends to capture. As can be seen in the above
graphs of the raw data, phrase-level comparisons are of
interest. Because phrases have different overall
durations and begin times which are influenced by the
tempo of the performance, the first step in preparing
features for classification was to isolate the phrases,
setting the elapsed time of each event to be relative to
the onset of the phrase rather than its absolute time.

The two features chosen as dimensions for a covariance
analysis are note onset timings and dynamics expressed
as differences from a reference performance (key
velocities are scaled to a range of 0 - 1). A less effective
approach would be to express differences relative to
perfect values derived from proportions in the score,
which itself is a sort of performerless performance.
Differences obtained against the score are distributed
more coarsely;  timings are relative to a less realistic
baseline and values for dynamics have to be intuited
(since they are specified only generally). By referencing
to a recorded performance, differences are distributed
more usefully. Stylistic or habitual features such as
phrase-final lengthenings are made implicit and
dynamic differences are relative to actual values.

To compare two performances,  three performances are
required: the reference (Pref) and the two inputs (P1 and
P2). For each phrase, each event in each input is mapped
according to the two feature dimensions. The intended
result is that the inputs will be sufficiently
distinguishable in this space. Figure 4 shows the
distribution that results for the fifth phrase with Pref as
performance #5, P1 as #1, and P2 as #2. A separator has
been calculated based on the Mahalanobis distance to
the center of each performance cluster [2]. The
separator as shown correctly classifies 76% of the
displayed points.

As the performance unfolds, the relative positions of
cluster centers change  phrase-by-phrase. Figure 5
shows trajectories mapped for four performances during
the second half of the excerpt.

The analysis demonstrates an ability to identify nearby
performances. In Figure 6, a coincidentally close pair of
performances of one phrase was correctly classified.

Figure 4:  Note onset timing (feature 1) is plotted
against key velocity (feature 2) for the same phrase in
two performances. Quantities are differences from
values for the same notes in a third, reference
performance.

Figure 5:  The relative positions of cluster centers
change phrase-by-phrase. The trajectories of four
performances are shown for three phrases in the same
feature comparison space as Figure 4.

4 Discussion

Phrase-by-phrase tendencies in rhythmic and dynamic
articulations can be successfully classified by covariance
analysis. Performances that are not distinguishable are
presumed similar for the sake of the model being
developed.



Figure 6:  Successful classification of an “unknown”
performance of phrase 4 in a comparison space created
with Pref = #5, P1 = #1, and P2 = #3.

A future interest is to produce imitative expressive
performances via behavior-based manipulation. A given
passage would be realized by selecting a stored phrase
from an analyzed set of phrases. In a purely guided
mode, the operator would determine the sequence of
phrase samples, perhaps also choosing from interpolated
combinations as in [3]. Another mode involves real-time
analysis / synthesis of expressive performance. A pianist
performing in real time would be located in the
comparison space and on-the-fly classification decisions
would predict the most likely stored performance
matching the current input. The ability to predict ahead
of a current performance can be useful, for example, to
overcome transmission delays.

The predict-ahead capability is analogous to
teleautonomous control in robotics applications [4]. The
remote instrument (robot) is played by its predictor (a
remote simulator) guided by controls transmitted to it by
analysis of the local performer (human operator). To be
agonizingly complete in this analogy, a remote
accompanist's performance (environmental feedback) is
provided back to the local performer via a second
system running in the other direction. A bi-directional
setup might allow a piano duo to perform together
across oceans. The two simultaneous concerts would
differ, but not by much, assuming the analyzers and
predictors are effective.

Force-feedback manipulation of the model is discussed
in O’Modhrain’s accompanying article [5]. Her system
operates on the phrase-level substrate that has been the
focus of the present analysis and is intended to display
the possible realizations of a given phrase within its
comparison space. As a performance unfolds, the
manipulator is guided through a dynamically changing
scene, much like Figure 5.

A performance is made of many layers. Global tempo
changes and other longer structures remain to be
described in the present model.  Arkin describes layers
of schema operating in combination to enable guided
teleautonomous behavior of a robot. “…that schema-
based reactive control results in a ‘sea’ of forces acting
upon the robot.”  By patterning phrase-level behavior
according to a predictor, partially autonomous
performance is possible which can be realized in
conjunction with global and other performance schema.
Control of these other layers is a subject for future work,
either in testing a real-time remote performance venue
or in an editing environment for algorithmic
performance.
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