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Musical tones from bowed strings and winds, though nearly periodic,
have a noise component that is a subtle but crucial part of the sound. At-
tempts to simulate these instruments in digital electronic synthesis are often
deficient with regard to the exact quality of the noise component. A new
description of the noise generation mechanism accounts for some of the noise
present in self-sustained mechanical oscillators. Analyses have verified the
existence of the predicted noise and digital simulations have synthesized
tones with improved bow and breath noise [1] [2].

Fluctuations are present from period to period both in period length and
waveform shape. The fluctuations often appear to have short-lived repeating
structures which include a complex mixture of subharmonic features. When
simulating string or wind tones with a physical model, the existence of these
features is linked in simulations to the presence of pulsed noise. The purpose
of this paper is to propose an explanation for the relationship.

The type of noise under study is pulse modulated in a pitch synchronous
fashion. Frictional or turbulent noise in the excitation mechanism is gated
by its periodic motion. If there were no phase where the string sticks to
the bow, or the reed aperture widens, the noise emitted by scraping or air
constriction would be continuous. In visualizing a violin string travelling
along the bow hair, it is seen that the string spends the major portion of its
time at successive sticking points. Each release jerks it along and the string
periodically scrapes the bow hair. Similarly, air rushing into a woodwind
mouthpiece creates turbulence at the reed aperture and is pulse modulated
as open — close phases alternate. The noise is “well-incorporated” in the



sound by its period-synchronous timing and perhaps by its influence on
short-lived subharmonic features.

Time-domain analysis is required since subharmonic structures are found
only in short, sub-period features in the waveform and are highly transient
in nature (frequency-domain techniques which average several periods at
a time are often blind to these subtleties). The present approach for ex-
amining the relationship between noise and subharmonics proceeds in an
analysis by synthesis fashion: A drastically simplified simulation of a clar-
inet with controllable noise components has been paired with a technique
devised for visualizing the stability of its oscillation. A distinctive feature
of the simulation is the strong dynamical interaction between the excitation
mechanism and a high-Q resonant system. Noise at the excitation in this
strongly coupled system elicits a variety of subharmonic features.

The simulation generates self-sustained oscillations resembling the square
wave of a clarinet. It is a lumped circuit approximation of a cylindrical tube
with an excitation device on one end and open at the other. The half-period
resonator is a recirculating delayline that includes a low-pass filter in its
feedback loop. The excitation is derived from a very simple non-linearity of
the form,
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where each new sample, s;, is obtained as a function of s;_4 = value returning
from the delay line, z =pressure control, and y =velocity control.

The delay length, d, is held constant in the simulation, resulting in a fixed
period length 2 x d + 1, after accounting for one sample of delay accrued in
the low-pass filter. Figure 1 shows the result of running the simulation with
d = 5 in which the same time-series is displayed three ways. The third
plot, which highlights period-by-period fluctations, is based on a method
first discussed in [4]. This new version displays fluctations as a ratio of each
period against a reference period (in dB) rather than its difference.

The nonlinearity is bypassed unless the differential velocity y — s;_g4 ex-
ceeds the pressure control term. When this happens, the oscillation is being
driven by the nonlinear product (y — s,_4)%. Figure 2 illustrates a phase
transition at this threshold. The dots are plotted at excitation samples in
an overlay of the period-by-period difference plot of the previous signal. Ap-
proximately one half of the period is spent in a regime where the threshold
is crossed only intermittently. The plot shows a system with constant con-
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Figure 1: Waveform of a drastically simplified clarinet simulation a) con-
tinuous time-series b) period-by-period time-series and c) period-by-period
ratio with the first period

trol parameters settling into an equilibrium (its limit cycle oscillation) after
an initial transient has died out. So far, no noise or other perturbations
are added. If the pulse noise mechanism were enabled, noise values would
perturb the oscillation only at the points exceeding the phase transition
threshold. - :

Extending the duration to 48 periods in Figure 3, it is apparent that exc:-
tation passive switching during equilibrium is chaotic. Short-lived patterns
are evident, skipping 2, 3 or 4 periods before the threshold is passed.

To test the dynamics of the system for transient response to noisy per-
turbations, a single sample was changed at a point in the signal after the
starting transient. The change then reverberated in succeeding periods.
Since the simulation is perfectly repeatable, a convenient display is made

period



Figure 2: Phase transition threshold.
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Figure 3: Longer view of phase transition threshold.

by drawing the difference plot of the perturbed signal and then erasing the
lines overlayed by a plot of the unperturbed signal. The remaining display
graphs the effect of the perturbation, Figure 4. Resulting transients varied
depending on where in the period the perturbation occured.

Subharmonics in musical tones can be explained in at least three wa: .
Schumacher has demonstrated subharmonics in the french horn and clarinet.
near the pedal tone under an overblown note. He explains that such res-
onance subharmonics arise from some coupling with the roundtrip path of
the low tone [4]. .

Another type of subharmonic is suspect in situations other than those
involving passively coupled resonances. The problem is to identify the delay
path corresponding to the subharmonic periodicities observed. Where is the
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Figure 4: Effect of one perturbed sample on stability. The dark areas show
differences from the same, but unperturbed, oscillation.

system memory that can correlate features over a time span greater than
one period?

A theory developed in regard to the bowed string accounts for another
path that skips numerous periods [3]. An instability is repeatedly reflected
off a sticking bow until it meets a slipping event and can pass through to the
other half of the string. In terms of timing (only), the effect is like the beating
of two frequencies, that are coincident in phase at some longer period. Again,
the subharmonic path depends on coupled resonances, though in this case
it is comprised of shorter, sub-period resonance paths coupled by an active
gating mechanism that opens only at the coincident delay interval.

The present clarinet simulation contains only a single resonance, so a
third mechanism must be at work. The present explanation involves the
self-regulating behavior of the excitation-feedback system. At the start of
a constant (non-noisy) tone, an alternating pattern of waveform periods
is set up that decays away until the system converges on its limit cycle
(steady state oscillation). Once the limit cycle oscillation has been reached,
a single perturbed sample can evoke another transient alternating pattern, as
shown in Figure 4. Single transient events can combine to form subharmonic
patterns becasue of the self-regulating property. A returning noise pulse
inhibits the possiblity of a subsequent pulse, and instead damps it. The
opposite condition is also true, a damped value returning to the input can
result in a new noise pulse. Such a mechanism would at least account for
subharmonics at twice the period.

Subharmonics with a much longer period are frequently found, for exam-
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Figure 5: Pulsed noise included in the simulation.

ple subharmonic 10 is prominent in the french horn [4]. Longer periodicities
are also present in the present simulation. Figure 5 shows the effect of incor-
porating pulsed noise, accomplished by adding up to .5dB of gain randomly
to the the excitation function output when the threshold in the excitation
function is exceeded.

The series of plots in Figure 6 are another view of the data. Horizontal
slices plot values for each of the 11 phase points period-by-period. Different
subharmonic cycles are found for the various phase points and some insight
can be gained about their relationship. Adjacent phase points seem to inter-
act. The probable mechanism to account for influence between neighboring
phase points is the one-zero low-pass filter in the feedback loop.

The conclusion is reached that the noise creates micro-transients which
keep an otherwise stable system in a perpetual transient state. Complexes of
subharmonics are spawned intermittently and can contain numerous period-
icities. The existence of shorter or longer cycles is due to period synchronous
noise pulses directly affecting some phase points and not others. The effect
is combinatorial: short-period subharmonics foster growth of longer term
subharmonics at neighboring phase points. Imperfect reflection boundaries,
such as the low-pass filter in the simulation, are implicated in the process.
Averaging of nearby phase points would occur at the clarinet bell, tone holes,
the mouthpiece and at string terminations and the bow contact point.
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