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ABSTRACT

A set of techniques for segmentation of polyphonic piano
signals is described. Event detection begins with time-
domain techniques. Note identification is accomplished on
spectral surfaces built up via the “Bounded-Q” frequency
transform. The transform method answers the need for
frequency discrimination which can pull apart close-lying
partials in polyphonic textures. Metrical context is used to
aid signal processing algorithms afier early searches reveal
an outline of events. The approach of reconciling the raw
results of detection algorithms with expectations from con-

text eliminates the need for critically tuned detection thresholds.

This work was supported by the National Science Foundation
under Tontracts NSF MCS-8012476 and DCR-8214350. Xerox
Corporation has provided computer equipment for the research.

INTRODUCTION

A fundamental task in analyzing performed music is to
extract every note played, identifying timings, pitch and
dynamic information and other parameters. Our goal is a
competent system that can be an important tool for the
study of real performance as well as for applications re-
quiring tracking of live musicians, automatic transcription,
and segmentation of digital audio recordings. Past research
at CCRMA has addressed the monophonic version of this

problem. Turning to the analysis of polyphonic music has
presented new challenges and led to several new techniques.

The experimental analysis system relies on a hierarchy
of descriptions of the input. Beginning with time and fre-
quency domain representations, it moves through succes-
sive stages of abstraction to obtain musical representations
such as scale pitches, note values and so on. The topic of
this paper is the acoustic analysis used for the initial task
of finding notes in the raw signal. We will discuss how
knzwledge about the instrument's acoustics can be com-
binad with context-building capabilities to increase the sys-
tem's level of performance.

The acoustic analysis relies both on specially adapted
signal processing tools, and on data reduction ideas derived
from knowledge of the source’s acoustics. Signal processing
methods are chosen for maximum performance in terms of
bandwidth-vs-time tradeofls and computation cost. These
include applications of the Bounded-Q frequency transform
[Kashiss:2. 1085] and time-domain techniques [Schloss 1985).
Event idectification is accomplished with knowledge about
the instrument, for example, in grouping peaks as partials
which belong to the same pitch. As metrical context be-
comes available inconsistencies and ambiguitics in the first-
pass results are identified.

The system combines information at different stages to
form and evaluate bypotheses about events, partials and




notes. Feedback paths are being developed in which more
abstract knowledge about the signal is used to oversee the
basic feature detectors. A control structure will configure
the calling sequence of analytic sub-tasks. The current
environment provides a laboratory for studying the adap-
tive manoeuvers required of a fully automatic and flexible
control structure. Modules designed to meet the following
needs have been incorporated:

¢ Signal Transformation High resolution in the fre-
quency domain is required to distinguish voices in a
polybonic texture.

¢ Event Detection Time domain techniques identify
points of interest in the signal.

s Note Modelling Detected events are examined. Chor.
are broken into notes and note partials are tracked
in time.

¢ Generation of Early Context Event timings are

used to build a metrical grid. Patterns suggest events
that are rhythmically weak.

¢ Recursive Sharpening Tracked notes are eliminated
from the original signal and further passes attempt
to find hidden events.

ERONT-END SIGNAL TRANSFORMATION

A fixed transformation technique produces the data base
on which event detection and modelling is performed. In a
sense, this corresponds to the outermost periphery of the
ear-brain system. At the cochlea the signal is transformed
into information that is presented to first-level abstractors
in the pathway. Cues for musical events in temporal, fre-
quency and phase representations become identified in sub-
sequent stages. The following front-end procedure creates
a raw data base for our system representing the signal in
these three domains.

Boanded-Q Frequency Transform

A specially adapted version of the Constant-Q frequency

transform is used to obtain time-varying spectral data. Previon

work with monophonic musical input was accomplished us-
ing a straight FFT-based method which was sufficient to
resolve single source harmonically-related partials [Foster
1082]. Greater frequency resolution is needed when dis-
criminating multiple notes which may be played as close as
a semitone apart. The preblems in extending the original
:nethod can be shown by a calculation of requirements at
tze extreme ends of the range of interest.

A straight FFT yields magnitude data in a set of equally-
spaced frequency bins. There are half as many bins as
there are time samples taken as input (for real signals nega-
tive frequency components duplicate the positive frequency
components). The width of a bin, AF is equal to the
Nyquist rate divided by the number of bins. Tbe resolution
problem for the polyphonic case is worst at the low end of
the range. Here, an extremely high-resolution straight FFT
is needed to separate two tones a semitone apart, which is
expensive to compute. In the second octave of the piano (for
the pitch Al) the interval is 3.270 Hz. Resolving any pair
of peaks requires at least one intermediate bin, indicating
a minimum AF of 1.635 Hz. Given our analysis system’s
sampling rate of 25.6 kHz, the time window would be 15657
samples wide (rounded up to 16384 points for a convenient
FFT block size). Since we calculate an FFT cvery 5 msec
for minimally sufficient temporal resolution, the straight
FFT method is going to produce 128 frequency points for

every time sample, or an overhead of 3.276 Megasamples/second.

At the highest frequencies of interest, for example the
4th partial of a pitch 5 octaves up (the partial equals A8),
frequency is greatly oversampled, with 512 bins per semi-
tone, creating a huge amount of useless data. The basic
problem is a mismatch between the logarithmic continuum

of interest and the linear FFT method. This is solved by
choosing a technique in which AF varies propertionally

- with frequency, such as the Constant-Q transform, in which

bin widths are exponentially spaced. The implementation
used in the current work is actually a hybrid technique that
makes efficient use of the straight, or linear, FFT to produce
a constant number of bins by octave. In the Bounded-Q
method, a window size is selected which is only long enough
to resolve partials in the upper octave of the signal. The
signal is repeatedly transformed and down-sampled by an
octave. Each octave decimation produces a set of bins with
doubling resolution [Kashima 1085].

The BQFT implementation benefits efficiency-wise from
being able to do its low-pass decimation filter as a multi-
plication in the frequency domain (instead of time domain
convolution), and can be quite economical especially when
the signal is hopped by full windows. Using full hops, the
5 msec temporal resolution constraint dictates an FFT size
of 128 points yielding 64 bin resolution in each successive
octave decimation. Within the best resolved upper half
of each octave decimation the ratio of bins per semitone
varies between a low bound of 1.86 and an upper bound of
3.52. Where the straight FF'T' above produced 128 points
for every input sample, the BQFT mcthod yiclds one point




per sample.

Each octave decimation of the BQFT produces a time-
varying spectrum of the signal in the form of a matrix. It
contains magnitude information which has been thresholded
above the level of transform noise and converted to dB for-
mat. A second matrix containing phase information for
each bin is output as well, and along with the original time
domain signal these comprise the raw data base for higher-
level processing. The data base structure and its access
functions are described in the Appendix.

Pre-emphasis

The input spectrum is equalized to retain high frequency
information. Without pre-¢mphasis, higher partials are lost
when thresholding spectral data to remove the transform
noise floor. A pre-emphasis filter is designed which flattens
out a representative average spectral envelope of the input
[Smith 1983]. The energy in the input signal is modelled
using a 3-pole linear predictor. A filter is then fit to the
model's inverse curve and used to pre-emphasize the entire
input sound file before executing the above transform.

EVENT DETECTION

Time domain amplitude information is used to identify
points of interest in the transformed data base. A simple
event detecting algorithm is paired with a second process
which generates metrical context. A third one, the “listener”
adjusts detection sensitivity until a sufficiently strong metri-
cal scheme comes into focus. It guides the entire event
detection task, signalling satisfactory completion.

An assumption is made about the source: The musi-
cal performance is presumed to be an elaboration of some
meter (albeit expressive, since there is no restriction on
tempo variation or rubato) and to be rich in rhythmic pat-
terns. At this early stage only timings are available to es-
tablish a scose of musical context. These rhythmic events
create a flat, pitchless projection of the piece, where even
chords are indistinguishable from single notes. _

Surfboard Amplituae Segmentation

The event detector accomplishes segmentation according
to amplitude. By detecting abrupt attacks, the method
is suited to percussive instruments in general, e.g. struck
or plucked strings, drums, bells, ete. Using the low-passed
and down-sampled version of the amplitude envelope of the
signal, a linear-regression “surfboard™ runs along its crest
marking significant rises of slope [Schioss 1985]. A set of
parameters determine detection sensitivity. The accuracy

of the detector is limited to the sampling interval of the
amplitude envelope (5 msec). Performance, in terms of
number of correct detections, is better than 85% for the
piano.

Smooth overlappping tones present the greatest difficulty.
Strong ringing events sometimes mask the entrance of a
relatively weak subsequent note. With the amplitude method,
keyboard-style slurs leave slurred tones lying undetectable
in the shadow of the elongated preceeding tones. In es-
sence, these are local polyphonic moments which can occur
in a single musical line. After the primary note has been
spectrally modelled, a subsequent stage of the analysis can
uncover the missing note,. as is explained below.

Employing Early Context

Early on, the analysis is guided by higher level processing.
Using only a population of first-pass detections, context
is used to provide hints indicating grossly underdetected
signals. Further hints help to eliminate spurious detec-
tions and identify likely points of interest to probe with
further signal processing. The linked-in musical analysis
capabilities are described in detail elsewhere.

Metrical context is determined using musical analysis tools

developed in a parallel effort to the acoustic analysis presented
here [Chafe 1982, Mont-Reynaud et al. 1984, Mont-Reynaud
and Goldstein 1985, Mont-Reynaud 1985]. Briefly, the sys-
tem derives a pulse from the raw event timings and tracks
it across tempo variations. Timings are then “normalized,”
effectively the same as flattening out expressive fluctuations
in the performance. Each detected event is assigned a
metrically related musical duration. A heuristic measure
is available which represents the confidence with which the
task was completed. The heuristic can be examined to see
how it varies with different detection sensitivity values.

Three detection parameters can be altered. By compar-
ing the raw detected results at different threshold levels,
strong points can be distinguished by their number of oc-
curences. We are attempting to combine this kind of “grey-
scale” information with context heuristics to automatically
focus the following parameters.

o Slope Threshold This parameter determines a min-
imum rise in slope to be considered as a possible at-
tack. Lowering the threshold detects more events.

¢ Surfboard Length The surfboard length is short-
ened to change the window size used in the linear
regression, essentially to weaken its low pass effect.




¢ Refractory Interval A minimum event duration is
specified. If shortened, attacks can follow each other
more closely in time.

The second use of rhythmic context is to identify spurious
detections. All detections are compared as to the number
of thythmic patterns to which they belong. Spurious detec-
tions contribute to fewer patterns in a pattern-rich musical
score. .

The patterns are discovered by a search through the
musical, metrically normalized, durations determined above.
Patterns which occur are identified and counted. Events are
weighted by the nunber of patterns to which they belong,
and those which are more or less loners are marked as ques-
tionable. All but the most ambiguous loners are separable
from their peers via a heuristic measure and can be ignored.

Certain kinds of patterns are strong enough to suggest
missing detections. As an example, a solid run of fast equal
notes might be broken midway by a single missing down
beat. If unbroken runs are typical of the example it is
reasonable to infer that the down beat went undetected.
A likely attack time is then inferred from the meter and
added to the list of detections.

NOTE MODELLING

Events can be identified by building note models from

their spectral componcats. The models are based on knowledge

about the acoustics of the source instyument. For the piano,
particular features which can be observed are stretched par-
tials, smooth spectral rollofl and transient envelope shapes.

Plcking Peaks

A list of events is now available, which have been identified
either directly by event detectio- or suggested via rhyth-
mic context. The spectral conteat of each event can be
established by identifying peaks in the transform matrix.
A [requency vs. amplitude slice, in the form of a set of in-
stantaneous bin amplitudes is returned from the matrix at
the indicated time, or slightly later if it is important that
the event has stabilized. A latency of 100 msec ensures
most transient phenomena have subsided.

In order to determine peaks with the best possible fre-
quency resolution, a vector is formed which consists of a
composite of bin amplitudes taken from the top octave of
each octave decimation. These arc joined into a single vec-
tor whose bins span the range from 1/2 the Nyquist rate
of the lowest decimation to the Nyquist rate of the original

signal. A vector of 256 points covers the range from 50 Hz.
to 12.8 kllz.

Peakpicking is accomplished by searching the vector for
groups of points which exceed a threshold. Each group
yields a single maximum peak location which is converted
into a frequency. A table provides bin center frequencies
where the different octave decimations have been taken into
account.

Grouping Partials

Peak data is analyzed to find groups which cohere as par-
tials. The method starts with the lowest peak, assumes it's
a fundamental and checks each above-lying peak to deter-
mine whether it could be a partial. If matches are found
they are marked and eliminated from further searches. If
no match is found the fundamental candidate is discarded.
The search continues until no peaks remain. Chords within
the peak data are separated into multiple fundamental can-
didates.

Matching takes into account the overtone properties of
piano strings. For each fundamental, a template is generated
against which peaks can be compared. It consists of a series
that approximates the stretching of piano harmonics for the
given pitch and register.

The search method is simple, effective and soinewhat
flawed. Omissions occur where one fundamental falls oo
the partial of another, e.g. an octave or an octave and
a fifth interval. A filter for uncovering the higher tone
is constructed by adding up partial amplitudes associated
with each possible hidden fundamental, e.g. an octave’s
partials: [2, 4, 6, 8...]. Significant weighting in a such a
set identifies the hidden note.

A second weakness results from unlucky coincidences be-
tween noise induced peaks. Such spurionsly identified fun-
damentals can be identified because they are short-lived,
and disappear when tracked through time.

Tracking Note Models

Starting from the detected event's attack point, each
fundamental and its associated partials are tracked forward
and backward to refine onsct time and determine the note’s
duration. A minimum duration of 50 msec. is required for
a candidate to qualify for true notchood. Shorter durations
are kicked out as spurious fundamentals.

Percussive notes can disappear in two ways: either as free-
ringing exponential decays or with more abrupt damping.




The tracking mechanism infers one or the other case {rom
the time-varying spectral envelope that it creates. With
BQFT data lower partial timings are significantly blurred
due to poor time resolution from the longer effcctive FFT
window in the lower octave decimations. By studying pp-
per partials a match is made either to the free-ringing case
or the damped one. If the lowei partials cannot be clearly
resolved in higher decimation levels {to gain time resolu-
tion) their fate is extrapolated from their expected behavior
in the rl.0sen situation.

Looking Further and Music Minus One

Once timings for all apparent notes are known, a second
matrix is constructed in which partials of found notes have
been erased. Partials are subtracted from their peak bin
along with neighboring skirts, if any. The blanking interval
is limited to 3 bins.

This new matrix is used to conduct a second search for
missing events, peaks, note candidates and so on. Instead
of the original time-domain amplitude envelope, the surfer
is run on an envelope created by summing all remaining
bins for each point in time in the composite vector surface.

Note models available from each successive analysis pass

can be used to drive two kinds of re-synthesis. The models
can drive additive synthesis in a straight-forward way, with
one oscillator per partial using the time-varying amplitude
envelopes found by tracking. A second method uses the
models to subtract notes from the original signal using an
FFT-based filter. With the signal transformed into the
frequency domain, the spectral components of one note or
any combination of notes (a single voice, for instance) is
removed and the modified spectrum is inverse transformed.

IMPLEMENTATION

The research system is currently implemented across several
machines, in a networked environment. Digitizing is ac-
complished with a portable PCM-F1 system in 16 bits at
44.1 kHz. The recordings are digitally transferred from
playback tothe file system of CCRMA'’s time sharing facility,
a Foonly F4 computer. Programs written in SAIL for the
Foonly handle the [ront-end signal processing including sound
file editing, sample rate conversion, pre-emphasis, the BQFT
and amplitude envelope extraction. The facility also offers

hardware synthesis capabilities and high-resolution manuscript

printing. These arc often used for reviewing results at
different stages of the analysis.

The various representations of the signal are sent via

Ethernet to the file system of a Xerox 1108 which runs
INTERLISP-D. This machine is primarily used for devel-
opment of the acoustic analysis system. A data base with
access functions for BQFT data allows random access from
files. These functions are optimized for sequential opera-
tions. In addition, interpolations of several kinds are avail-
able for “in-betweening” in different dimensions (see Appendix).

Processing which involves musical context is being devel-
oped on a second 1108. Operations which build or evaluate
context can be handled as requests run on this sister proces-
sor. One machine can evaluate functions or obtain data
resident on the other. From this capability we are devel-
oping a fiexible environment for the system's control struc-
ture. An analysis system is evolving with diffcrent layers of
the system running in parallel and communicating in the
networked environment. UNIX-like pipes are the software
channpels which link points in the system hierarchy within
and between machines.

SUMMARY

The modules presented are building blocks of a future
fully-automated analysis system. We are integrating them
into an environment with software for recognition of many
other musical contructs. This will extend the principle

that perfomance of the initial detection task is improved
by building expectation into the system. The current use
of rhythmic recognition capabilities will be augmented by
parsers for melodic and harmopic constructs.

Brute force detection schemes are less likely to succed
in analyzing polyphonic musical textures than they are for
monophonic input. The balance between undertection and
overdetection becomes more difficult to achieve. We have
taken the approach that conservative, less sensitive thresholds
can be augmented by using metric information to point. to
likely event positions. Spurious events from overdetection
are conversely reducible by evaluating rhythmic confor-
mity. Thus, threshold tuning becomes less critical. Further
sharpening results from modelling notes according to ex-
pectations of acoustic features in the source.

The musical applications of this work potentially involve
many instruments and musical textures. Non-percussive in-
struments require other techniques soon to be incorporated.
We can imagine for example, amplitude “windsurfers™ that
are keyed to recognize the different classes of note onsets
of wind instruments. In any case, pure time-domain tech-
niques will generally be less effective for such cases than
they are for the piano. A detector in the frequency-domain




is being engineered based on the Maximum A-Prior Line

Estimation {(MAPLE) method for tracking significant spoctral
lines in the matrix [Wolcin 1080].

APPENDIX

Design of the BQFT Data Base and Access Functions

The BQFT data base is organized to provide random
2ccess as well as efficient sequential access with local back-
tracking. The access is demand-driven. The basic unit is
the “block”, an array of FFTsize pieces of data of a given
type. The type is cither log-magnitude or phase for a given
decimation level. These types are called “basic types” be-
cause the data comes directly from a binary file. There are
also “derived types” which are computed from the basic
types on the basis of demand. The derived types currently
supported are linear-magnitude, real and imaginary.

For each basic type, the data is stored in memory in a
circular buffer which contains contiguous blocks of data.
Each basic type also has some local state indicating the cur-
rent contents of the buffer along with information about the
previous access and the resolution of the data. The buffer
is updated from the binary file only when a block which is
not currently in memory is requested. When this oécurs,

the requested data is positioned in the buffer according to a
user-settable variable and only as much data as is necessary
to fill out the buffer is read in. Thus the ratio of future data
to past data can be set by the user to an optimal value for

" his access pattern, presumably a value which triggers the
fewest number of disk accesses. Note that when a buffer
is updated, it is only the given basic type for the given
decimation level which is altered. Thus it is quite normal
for different decimation levels to have in memory, at the
same time, data from different times in the signal. The
principal motivation for the circular buffer arrangement is
the kind of access pattern required to do since function in-
terpolation (described below), in which Jocal backtracking
is required in the context of a general forward motion in
time.

A single pointer provides a handle to the entire BQFT
data base for a given signal. This pointer is passed to
various access functions to return the appropriate data, al-
lowing several signals to be in memory at once without in-
terfering with one another. A header file gives information
for the signal as a whole. Any decimation level or type
of data may be omitted froin the data base. Thus partial
BQFT representations are supported.

The access functions are arranged hierarchically, so that
functions dealing with higher levels of abstraction are defined
in terms of functions dealing more closely with the raw
data. Each access function returns a vector along either
the frequency axis or the time axis of the BQFT data base.
This vector is a set of data points of a given basic type and
decimation level. The lowest level access functions return
the basic frequency axis unit, the FFT block, or the basic
time axis unit, the channel. A block consists of ouly those
frequency points which were evaluated in the original FFT
for a selected decimation level. Similarly, a channel con-
sists of only those times at which an FFT was evaluated
for the selected decimation level. :

Higher level functions provide two forms of interpolation
of blocks and channels. First, it is possible to interpolate
to derive a block lying between two blocks or channels.
Secondly, it is possible to use interpolation to resample up
or down a block or channel to derive a new resolution in
that domain. Of course, it is also possible to perform both
of these interpolations. For example, a vector consisting of
a block at an arbitrary time with an arbitrary resolution
can be derived.

The interpolation may be done in one of two ways. Linear
interpolation provides a quick approximation and is espe
cially useful in generating graphic plots of BQFT surfaces
Sinc function interpolation requres more computation but
gives the true value between two frequency points, assum-
ing the signal is time-limited, or between two time points,
assuming the signal is band-limited. Sinc interpolation is
optimal and is superior to Lagrange interpolation for acous-
tic signals [Schafer and Rabiner, 1073]. The sinc interpola-
tion between two data points is evaluated by weighting the
neighbors of the desired point by a sine function, summing
these values and dividing by x. The sinc function chosen is
the one which is the transform of the rectangular window
in the opposite domain and is centered at the desired peint.

Sine [unction interpolation requires a complex represengation
of the signal, so functions which return a complex vector
are provided. Furthermore, the sinc interpolation works on
a real/imaginary representation of the complex data rather
than a polar rcpresentation. It can thus serve as an il-
lustration of how derived types are computed on the basis
of demand. The sinc interpolation function knows it needs
a real/imaginary representation so it calls a Generate-Real
and a Generate-Imaginary function. Each of these looks to
see if the real or imaginary data is already present. If not
it synthesizes it. First, it needs to call a Generate-Linear-




Magnitude function. This function, in turn, looks to see
if a linear-magnitude representation exists. U not, it syn-
thesizes it. Finally, the sinc function has the data it necds.

Another function answers the question of whether two
neighboring frequency points with some energy represent
a single or multiple sinusoidal components. An easy soly-
tion consists of looking at the phase of the two frequencies,
tracking them over several time intervals, and differentizting

" each of these vectors with respect to time. This produces a
vector tracking frequency for each channecl. If these vectors
are nearly identical, the information corresponds to a single
sinusoid.
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