
   

  I am Streaming in a Room
  Chris Chafe1*

 
1Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, United States

  Submitted to Journal:

  Frontiers in Digital Humanities

  Specialty Section:

  Digital Musicology

  Article type:

  Technology Report Article

  Manuscript ID:

  370032

  Received on:

  02 Mar 2018

  Revised on:

  12 Oct 2018

  Frontiers website link:
  www.frontiersin.orgIn review

http://www.frontiersin.org/


   

  Conflict of interest statement

  The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest

   

  Author contribution statement

  The author contributed the idea, implemented it in software, organized the first demonstration and wrote this report.
   

  Keywords

 
Network Music Performance, internet acoustics, JackTrip, internet reverberation, real-time computational neuroscience

   

  Abstract

Word count: 154

 

Internet Acoustics is the study of sound traveling through the Internet, treating it as an acoustical medium just like air or water.
Real-time streaming of sound, something commonplace nowadays, can be exploited for its own "physics" of propagation. In a
digitally-connected telecommunication world, rooms of the kind which will be described enclose remotely collaborating musicians in
their own reverberated sound. The ambiance which results is the product of an acoustical loop which creates room-like
resonances. They are created between Internet endpoints which recirculate sound echoes on the paths between them.These are
synthesized acoustical spaces engineered to resemble actual rooms and distinct from other kinds of online rooms where "room" is
used metaphorically for gatherings of users participating in teleconference or chat applications. The present article describes
room-like internet reverberation  for local area and wide area networking, respectively named LAIR and WAIR. Aspects of the
medium, algorithms used and the resulting musical experiences are detailed.

   

  Ethics statements

  (Authors are required to state the ethical considerations of their study in the manuscript, including for cases
where the study was exempt from ethical approval procedures)

Does the study presented in the manuscript involve human or animal subjects: No

In review



1

I am Streaming in a Room
Chris Chafe 1,∗

1Center for Computer Research in Music and Acoustics, Stanford University,
Stanford, California, USA
Correspondence*:
CCRMA / Music, Stanford University, Stanford, CA 94305 USA
cc@ccrma.stanford.edu

ABSTRACT2

Internet Acoustics is the study of sound traveling through the Internet, treating it as an acoustical3
medium just like air or water. Real-time streaming of sound, something commonplace nowadays,4
can be exploited for its own “physics” of propagation. In a digitally-connected telecommunication5
world, rooms of the kind which will be described enclose remotely collaborating musicians in their6
own reverberated sound. The ambience which results is the product of an acoustical loop which7
creates room-like resonances created between internet endpoints which recirculate sound echoes8
on the paths between them. These are synthesized acoustical spaces engineered to resemble9
actual rooms and distinct from other kinds of online rooms where “room” is used metaphorically10
for gatherings of users participating in teleconference or chat applications. The present article11
describes room-like internet reverberation for local area and wide area networking, respectively12
named LAIR and WAIR. Aspects of the medium, algorithms used and initial musical experiments13
are detailed. To support these topics, the article also presents a theory of operation for jacktrip,14
the low-latency internet streaming software which was modified for the project.15

Keywords: network music performance, internet acoustics, jacktrip, internet reverberation16

1 INTRODUCTION

Internet reverberation requires at least two hosts to create an acoustical loop. Closer endpoints – in17
terms of network audio round-trip time (RTT) – are associated with the sound of smaller-sized rooms.18
Auditorium-sized reverberation results from longer distances, for example, between continents.19

Multiple rooms may coexist and opening acoustical portals between them is a matter of interconnecting20
the audio streams of different rooms. Each new participating endpoint joins the acoustical space by21
becoming a node in an interconnected mesh. All sounds entering the mesh are reverberated by the mesh.22

Echoes often plague voice and music telecommunications systems. Squelching annoying feedback with23
echo cancellation algorithms becomes necessary when delays are long enough and echoes are loud enough24
to be perceptible. It’s the same with real rooms. Depending on its intended application, a listening space25
may need acoustical treatment to dampen wall reflections or conversely loudspeakers may be used to26
enhance the direct sound of the sound being listened to. Reverberation which is completely appropriate for27
a choir singing in a cathedral may obscure intelligibility of someone speaking to the audience. Management28
and manipulation of room resonances is an age-old tool in creation of good sounding spaces for music and29

1

In review



Chafe I am Streaming in a Room

speech. Passive modifications use curtains, acoustical absorbers and diffusers and are generally subtractive.30
Active electronic systems use real-time digital signal processing (DSP) and are generally additive.31

The technique presented here, a form of echo construction, does the opposite of echo cancellation.32
Software is used to create “internet walls” which are additive in nature. To see how it works, let’s think33
of sound propagating in any medium. A sound source emits a sound (in air, it’s a pressure disturbance34
and on the internet, it’s a stream of packets of non-silent audio data) which for illustration’s sake we can35
simplify by imagining as an impulse like a balloon pop. The balloon’s impulsive pressure disturbance36
expands outward as an increasing sphere until it’s energy is entirely dissipated. But what if it hits a wall37
along the way? The impulse bounces off the wall and creates an impulse reflection. For simplicity, we’ll38
observe the reflection from the point of view of the source (balloon) position. Out to the wall and back39
again at the medium’s speed of sound. A second wall inserted right behind the source position will create40
a train of echoes. Any sound emitted will create a diminishing series of copies of itself – a bounce of a41
bounce of a bounce, until fully dissipated.42

Figure 1. A filtered delay loop (FDL) which is an infinite impulse response (IIR) “unit reverberator.” The
output signal Y is the result of mixing the input signal X with feedback from T(z) which has been delayed
by m samples and multiplied by gain g.

The DSP version of this is the filtered delay loop (FDL) which is an infinite impulse response (IIR) “unit43
reverberator” first mentioned by Moorer in 1979 (Moorer, 1979). It’s a comb filter modified to have a44
low-pass filter in its feedback loop with which “The purpose of placing a filter in the loop is to simulate the45
effect of the attenuation of the higher frequencies by the air.” As shown in Figure 1, it’s a feedback circuit46
in which the time taken around the loop determines the base frequency of the repetition. Inserting the47
attenuating low-pass filter causes the recurring train of echoes to die out and completes the approximation48
of what happens in air between two parallel walls.49

Internet echo construction uses FDLs. Taking the place of two walls, the two hosts of a streaming50
connection act as reflectors which transmit back what they receive. The FDL low-pass filter is inserted51
somewhere in the acoustic loop. For example, this could be at one or even both of the hosts’ loopback52
algorithms. Sounds can be emitted into the loop from either host, as if from either side of a room.53

Real rooms have complex geometries with many walls, reflection paths and resonances. We’ll see how54
internet reverberation can be made similarly complex by cloning acoustic loops to create banks of them55
and adjusting the banks to approach the necessary density and variety of resonances.56

The final section of this article is devoted to a theory of operation which explains and differentiates in57
detail the three modes of the peer-to-peer streaming system “jacktrip” (Cáceres and Chafe, 2010a). These58
are its standard two-way connection mode, its hub and spoke mode, and lastly, its mode supporting internet59
reverberation over wide area networking.60

This is a provisional file, not the final typeset article 2

In review

https://ccrma.stanford.edu/groups/soundwire/software/jacktrip/


Chafe I am Streaming in a Room

Figure 2. Depiction of a single full-duplex (SFD) jacktrip connection streaming stereo uncompressed
audio bi-directionally between two network hosts. Software on both sides packetizes incoming local audio
and sends it to the cloud with minimal delay, likewise playing back audio from received packets with
minimal delay.

2 BACKGROUND

Early study of internet acoustics at CCRMA required the development of a system for low-latency,61
uncompressed audio streaming over IP. That software evolved into jacktrip and is shared today as an62
open-source application widely used for jamming, rehearsing and concerts. Similar systems are discussed63
in a comprehensive review of network music performance technologies in (Rottondi et al., 2016). The64
present project revisits jacktrip’s original use as part of an experiment to treat acoustical loops in the internet65
as sound-producing objects. This idea relates to certain methods for physical modeling sound synthesis the66
earliest of which is the Karplus-Strong plucked string, an efficient computer algorithm consisting of delay67
lines and loop filters (Karplus and Strong, 1983). The KS string became ubiquitous in computer music with68
memorable compositions (for example, David Jaffe’s Silicon Valley Breakdown ) and numerous extensions69
to the technique (Jaffe and Smith, 1983; Sullivan, 1990; Smith, 1993).70

Figure 3. KS-like algorithm in which audio recirculates betweem two hosts. The SFD software, Figure 2,
has been modified on both sides to include audio loopback and a loop filter (not shown). Aka “SoundWIRE”
for Sound Waves on the Internet from Real-time Echoes, this circuit can be excited or “plucked” to sound
like a guitar string.

A KS-like algorithm entered the realm of internet acoustics through experimentation between two hosts71
(Chafe et al., 2002) and by 2003 had produced a distributed algorithm for “plucking the internet.” The72
algorithm’s delay memory was no longer local computer memory (as in the original KS string) but the time73
of flight across an internet path. Pitch frequency of a recirculating “pluck” excitation (which could be had74
by simply tapping a microphone on either side) was a direct result of the path’s RTT, Figure 3. And since75
the pitch fluctuates as RTT varies, it was conceived of as a very sensitive means for sonifying network76
quality of service (QoS) (Chafe and Leistikow, 2001).77

Vibrating guitar strings and echoing parallel walls can both be modeled with FDLs. For a KS-like guitar78
string, the loop filter is tuned to be “ringy” (high Q, with strong resonance). The parallel wall case is the79
opposite, typically a very damped (low Q, weakly resonant) loop. Once an internet implementation of the80

Frontiers 3

In review



Chafe I am Streaming in a Room

guitar string had proved that the requisite time delay could be obtained using the network, it was natural81
to contemplate implementation of internet reverberators using well-known, FDL-based reverberation82
techniques (Chafe, 2003). Banks of FDLs would mimic the complexity of room geometry. Because each83
FDL element requires a separate channel, the idea would capitalize on jacktrip’s support of large numbers of84
synchronized, parallel audio channels (extreme tests of streaming capacity have hit hundreds of channels).85

Internet reverberation was demonstrated a decade after having been described in concept. The period saw86
changes to jacktrip’s architecture, adoption of an updated reverberator algorithm, “freeverb” (Smith, 2010),87
and incorporation of a new DSP programming language (Faust1) for coding freeverb and its FDL banks.88
In 2013, a LAIR system was implemented consisting of three simultaneous freeverb “rooms” running on89
Stanford’s campus-wide network. Participants at three endpoints were interconnected through LAIR portals90
(Chafe and Granzow, 2013). In 2016, the system was improved for wide area networking and demonstrated91
with four endpoints in a nation-wide WAIR mesh.292

LAIR and WAIR are similar in many ways and from here on the remainder of the article will present93
details pertaining to the more recent WAIR system.94

3 WAIR

3.1 N-way Mesh of Reverberators95

Figure 4. NPAPW 2016 demonstration of WAIR system. The red, green and blue lines indicate individual
freeverb “rooms” which are cross-patched at the summing site in California. Musicians in New York,
Michigan and Florida could hear each other in a conjoined acoustical space.

In the four-endpoint WAIR shown in Figure 4, a central server is in California and three clients are96
located at points along the East Coast. Each of the clients sets up its own two-way freeverb circuit with the97
central server. The server runs in jacktrip’s multiclient (audio hub) mode (Cáceres and Chafe, 2010b), a98
persistent process which listens for incoming client connections. Figure 5 shows mode’s hub and spoke99
design. Clients (or “spokes”) connect at will and on connection begin bi-directional streaming with the100

1 http://faust.grame.fr/
2 https://www.nws.edu/events-tickets/concerts/network-performing-arts-production-workshop-2016/

This is a provisional file, not the final typeset article 4

In review

http://faust.grame.fr/
https://www.nws.edu/events-tickets/concerts/network-performing-arts-production-workshop-2016/


Chafe I am Streaming in a Room

Figure 5. jacktrip’s multiclient (audio hub) mode. The main server (on the left) spawns multiple dedicated
servers for an arbitrary number of clients (on the right). Audio input and output cross-patching happens at
the main server, if needed.

server. The hub’s automatic system for management of connections was designed as an improvement over101
manually maintaining many SFDs from a central point.102

The central hub’s own audio source can be distributed to all clients and the clients’ streams can remain103
independent from one another. In many situations, however, it’s desirable that audio streams be cross-104
patched to allow clients to hear one another. Cross-patching happens at the server either manually, with a105
jack patching application (for example, qjackctl3), or programmatically through APIs offered by the host’s106
audio service, such as the jack audio connection kit.4107

WAIR does the latter by incorporating a portal connection procedure capable of rewiring itself when it108
senses clients connecting or disconnecting. The idea is analogous to opening doors between newly-created109
rooms. When a new client’s freeverb is instantiated, the portal algorithm makes the signal connections110
required for sharing audio between the new freeverb and all existing freeverbs. The result is an audio mesh111
made of dynamic nodes where each node has its own audio perspective on the total scene. The impression112
for a given WAIR participant is that they’re in a room of their own and from that room they can hear113
slightly more distant sounds in all other currently running rooms. Tuning the cross-talk between freeverbs114
is sensitive. The system will go into self-feedback if the portal gain parameter is too great.115

3.2 Freeverb in jacktrip – Implementing an Internet Reverberator116

An implementation of the freeverb reverberator is included as a library function in distributions of the117
Faust DSP language. Freeverb is a high-quality example from a class of reverberators with elements and118
structures proposed by Schroeder (Schroeder, 1962) and further described in Moorer (Moorer, 1979).119
Freeverb’s well-known antecedents from the 80’s are exemplified by JCRev and NRev5. Across this class120
of reverberators, there are differences in quality due to the number of elements and channels used, their121
sequential arrangement and the exact parameter tunings applied.122

Freeverb’s parameters offer control of damping, room size and dry / wet mix. Freeverb’s 16 FDLs,123
Figure 6, have delay lengths tuned to time delays ranging from approximately 25ms to 37ms. Like all124
Schroeder-style reverberators, coincident fundamental resonances (and their harmonics) are avoided by125
ensuring that delay times are mutually prime. For use in the WAIR system, freeverb has been modified126
so that its bank of FDL elements are the product of looping audio between two network endpoints. The127
substitution of network delay starts with subtracting 1100 samples from the original delay lengths (an128

3 https://qjackctl.sourceforge.io/
4 http://www.jackaudio.org/
5 https://ccrma.stanford.edu/software/stk/

Frontiers 5

In review

https://qjackctl.sourceforge.io/
http://www.jackaudio.org/
https://ccrma.stanford.edu/software/stk/


Chafe I am Streaming in a Room

Figure 6. Freeverb’s 2 x 8 FDLs and 2 x 8 All-Pass delays.

equivalent of 23ms of round trip delay). In cases where more delay is desired than the network path129
provides, an additional amount can be added back in at the client host (by command line specification).130

Freeverb is shown in Figure 7 with two DSP blocks, recirculating FDLs and inline APs. For the WAIR131
implementation these blocks are installed in the client using jacktrip’s DSP plug-in architecture (Cáceres132
and Chafe, 2010a). “ProcessPlugin” modules are programmed in Faust. The language is especially well-133
suited for generating complex multichannel circuits which can be emitted as C++ and then compiled into134
the ProcessPlugin format.135

Figure 7. Freeverb depicted as blocks.

Figure 8. A 3-room WAIR system with hub in CA and clients in FL, MI and NY.

This is a provisional file, not the final typeset article 6

In review



Chafe I am Streaming in a Room

The WAIR system is a combination of hub mode, WAIR servers, WAIR clients, portals and plugins.136
Figure 8 illustrates the components involved in creating a room with the client in Florida and hub in137
California. Additional clients in Michigan and New York function like the one in Florida (components138
omitted in the figure). The portals which are cross-patched in California allow the 3 WAIR rooms to hear139
each other. A “DCB” plugin is installed on each server in the signal path to its portal. This plugin computes140
a DC-blocking filter and applies the portal’s gain factor.141

3.3 Implementing WAIR in jacktrip142

3.3.1 Theory of Operation143

The following theory of operation begins with describing the way jacktrip’s two original modes operate.144
The SFD jacktrip connection mode is documented first because it is a component of hub mode. The latter145
system spawns multiple instances of the former. More information on both modes can be found in (Cáceres146
and Chafe, 2010a) and (Cáceres and Chafe, 2010b), respectively. The detailed sequences presented here147
have not been documented elsewhere and while making for somewhat tedious reading, are needed to148
prepare the presentation of WAIR mode and its various extensions to hub mode.149

3.3.1.1 jacktrip single full-duplex connection (SFD) session150

Standard jacktrip operation sets up a single full-duplex audio streaming between two hosts, a server and a151
client. The only actual difference between server and client is the server’s need to have a public IP address152
and its initial function of listening for incoming connections. Otherwise, they consist of identical sequences153
of setting up network-related and audio-related processes. The order of events is transcribed below. It is154
initiated and ended by underlined commands issued by the hosts’ operators (either human or script). All155
other steps proceed automatically.156

Before launching a jacktrip job, the host’s audio service needs to be running and accepting clients so157
the job can connect to the local audio system. An example of an audio server which allows dynamic158
connections from jacktrip is the jack audio connection kit mentioned above.159

3.3.1.2 SFD sequence160

server host (begins session, listens for any client)161
A jacktrip server application is started on a host by issuing the command jacktrip -s162
The application instantiates a jacktrip instance with mode set to SERVER163

step 1 The jacktrip instance checks if the application’s intended network ports are already in use,164
sets up the desired audio interface and installs an audio callback in the already running165
audio server166

2s server only The instance creates a temporary UDP receiver socket and starts listening for incoming167
datagrams168
The application prints Waiting for Connection From a Client...169

170
171

client host (waits for server, streams to server)172
A client application is started on a host by issuing the command jacktrip -c <server>173
which requires the server’s IP address or name174
The application instantiates a jacktrip instance with mode set to CLIENT175

step 1 (same as server)176
2c client only The jacktrip instance sets the peer address for its network receiving and sending processes177

Frontiers 7

In review



Chafe I am Streaming in a Room

step 3 The instance forks the receive process which binds its socket to the receive port, sets up178
its ring buffers, sets real-time priority and starts listening179
The application prints Waiting for Peer...180

step 4 The instance forks the send process which binds its socket to the client host, sets up its181
ring buffers, sets real-time priority and starts transmitting182

183
184

server host (waits for client, streams to client)185
When a datagram is received by the jacktrip instance, the incoming packet’s IP address is186
identified as the client and the temporary socket is deleted187

step 3 (same as client)188

step 4 (same as client)189
190

both hosts (start audio, verify incoming stream, run indefinitely)191

step 5 The audio process starts192

step 6 The application waits in its event loop193

step 7 When the receive socket receives its first incoming datagram, it checks the packet’s audio194
settings195
The application prints Received Connection from Peer!196

step 8 Outgoing and incoming datagrams continue to stream, the receive process keeps track of197
timing between incoming datagrams and if they stall out, the application prints198
UDP waiting too long (more than 30ms)...199
UDP waiting too long (more than 30ms)...200

201
202

both hosts (end session)203
The application is stopped by issuing a <ctrl>c command204

The handshake between server and client relies on connections to known UDP port numbers, (the205
pre-determined default is 4464). If agreed upon ahead of launching both jobs, a port offset can be specified206
with -o <offset> added to the above commands, for example, jacktrip -s -o10 starts a server on port 4474207
which is reached by jacktrip -c <server> -o10208

The similarity of server and client makes it possible to connect two clients together (in -c mode) if both209
have public IP addresses. Furthermore, it’s fine for a server to start after its client (or, for instance, to stop210
and restart one side while the other stays running).211

3.3.1.3 jacktrip hub mode212

For a server in hub mode whose job is to tend to multiple client spokes, the story starts with understanding213
how ephemeral ports work. Also called dynamic ports, these are unique temporary ports provided by214
the hub server in response to connection requests initiated by hub mode clients. Each ephemeral port215
is associated with an automatically spawned SFD server. All initiation requests are sent to the hub’s216
common listening port. Existing SFDs persist while the hub server tends to new clients wishing to establish217
connections.218

This is a provisional file, not the final typeset article 8

In review



Chafe I am Streaming in a Room

3.3.1.4 hub and spoke sequence219

hub server host (begins session, listens for any client, spawns JackTripWorkers as needed)220
A jacktrip hub server application is started on a host by issuing the command jacktrip -S221
The application instantiates a UdpMasterListener222
The UdpMasterListener instance opens a TCP socket on the standard port and begins a223
loop listening for connections224

step 6 (same as SFD)225

The application prints226
JackTrip HUB SERVER: TCP Server Listening in Port = 4464227
JackTrip HUB SERVER: Waiting for client connections...228
=======================================================229

230
231

client host (initiate connection)232
A client application is started on a host by issuing the command jacktrip -C <server>233
which requires the server’s IP address or name234

step 1 (same as SFD)235

The application instantiates a jacktrip instance with mode set to CLIENTTOPINGSERVER.236

2C client only The jacktrip instance connects to the server’s TCP port and sends its UDP receive socket237
port number238

239
240

hub server host (advertises ephemeral port)241
When a connection is made to the UdpMasterListener instance TCP socket, the incoming242
packet’s payload contains the UDP port which the client wants to use. The application243
prints244
JackTrip HUB SERVER: Client Connection Received!245
JackTrip HUB SERVER: Client Connect Received from Address : <client>246
JackTrip HUB SERVER: Reading UDP port from Client...247
JackTrip HUB SERVER: Client UDP Port is = 4464248
and sends its ephemeral port to the client249

250
251

client host (receives the port, closes the TCP connection and continues as SFD client)252

steps 3-8 (same as SFD)253

254
255

hub server host (spawns a dedicated SFD server, continues the loop)256
The UdpMasterListener spawns a new JackTripWorker listening in SERVERPINGSERVER257
mode, adds it to the JackTripWorker thread pool and starts it. The application prints258
JackTrip HUB SERVER: Client TCP Connection Closed!259
JackTrip HUB SERVER: Spawning JackTripWorker...260
JackTrip HUB SERVER: Starting JackTripWorker...261
JackTripWorker: PeerNumChannels = <chans>262

Frontiers 9

In review



Chafe I am Streaming in a Room

steps 1, 2s, 3-5 (same as SFD)263
The UdpMasterListener increments the number of running JackTripWorker threads and264
the application prints265
JackTrip HUB SERVER: Total Running Threads: <threads>266
=======================================================267

steps 7, 8 (same as SFD)268
The UdpMasterListener loop continues and the application prints269
JackTrip HUB SERVER: Waiting for client connections...270
=======================================================271

272
273

client host (end session)274
The application is stopped by issuing a <ctrl>c command275

276
hub server host (releases a dead session)277

If the client stream stalls out for too long, its server ends the session and the278
JackTripWorker ID and port are freed for future use. The application prints279
UDP WAITED MORE THAN 30 seconds.280
Stopping JackTrip...281
JackTrip Processes STOPPED!282
———————————————————283
JackTrip ID = <ID> released from the THREAD POOL284
———————————————————285

286
287

hub server host (end session)288
The application is stopped by issuing a <ctrl>c command289

3.3.2 Modifications to Implement WAIR Mode290

A third jacktrip mode was added to implement WAIR. The following are the specific modifications made291
to jacktrip for this purpose. Parameters, members and methods are listed for the classes affected. (jacktrip292
at the time of these modifications was version 1.1 and was obtained from the project’s repository in early293
2018 6)294

WAIR mode extends hub mode and is invoked by adding the -w argument. Specify -wS or -wC to start,295
respectively, either a WAIR server or a WAIR client. The new mode adds a parameter member to the296
Settings class (mWAIR).297

Two additional parameters, also new members of the Settings class, can be set by command line: -N (to298
set mClientAddCombLen for the addition of extra delay to the FDLs), and -H (to set mClientRoomSize299
which overrides the default value of Freeverb’s room size).300

A fourth new parameter member, mNumNetRevChans, is set internally to a fixed value of 16 channels.301
This specifies the number of FDLs in each WAIR connection, each of which requires a separate network302
audio channel.303

6 https://github.com/jcacerec/jacktrip

This is a provisional file, not the final typeset article 10

In review

https://github.com/jcacerec/jacktrip


Chafe I am Streaming in a Room

In the Settings class method startJackTrip, jacktrip instances created for clients have two ProcessPlugins304
appended, ap8x2 (for Freeverb’s stereo series of 8 all-pass delays per audio input channel) and Stk16 (to305
create the OnePole filters for the 16 FDLs, extend their lengths to prime relationships, and apply either -N306
or -H modifications).307

The UdpMasterListener class has a new method, connectMesh, with which the hub server manages308
audio connections between spawned WAIR rooms. When a new room goes live, its audio is cross-309
patched into other rooms with connectMesh(true) and when it is released it is deleted from the mesh with310
connectMesh(false). The cross-patching functionality is borrowed from JMess, an application for storing311
and restoring jack patches.7312

Spawned servers belong to the JackTripWorker class. In WAIR mode these are given unique IDs (with313
names like “WAIR0, WAIR1”) for cross-patching by connectMesh. These servers have one ProcessPlugin314
appended, dcblock2gain (for DC blocking between WAIR rooms and setting the gain between WAIR315
rooms).316

The AudioInterface class manages audio signal buffers for network and audio input/output, and signal317
processing. Sizes have been adjusted to accommodate the extra network audio channels and two buffers318
have been added to handle intermediate stages of the signal processing plugins.319

As always, an audio callback function will be installed in the already running audio server. The following320
specifies the normal callback tasks and then provides details on the extensive modifications necessary for321
WAIR’s audio callback function.322

3.3.2.1 SFD and hub modes audio callback323

The original audio callback comprises 4 steps.324

audio input local audio input is transferred from the audio server (inBuffer)325
net output computeProcessFromNetwork calls receiveNetworkPacket (mOutputPacket → outBuffer)326
net input computeProcessToNetwork calls sendNetworkPacket (inBuffer → mInputPacket)327
audio output local audio output is transferred to the audio server (outBuffer)328

3.3.2.2 WAIR mode audio callback329

audio input (same as above)330
net output computeProcessFromNetwork calls receiveNetworkPacket331

(16 ch mOutputPacket → 16 ch mNetInBuffer)332
client DSP client computes 16 ch Stk16 ProcessPlugin333

(mNetInBuffer → mInProcessBuffer → Stk16 → mOutProcessBuffer)334
server DSP server is a 16 ch straight wire (mNetInBuffer → mOutProcessBuffer)335
net input computeProcessToNetwork calls sendNetworkPacket after a 2 ch to 16 ch fan-out and mix336

((2 ch inBuffer + 16 ch mOutProcessBuffer) → 16 ch mInputPacket)337
client DSP client fans in 16 ch to 2 ch and computes ap8x2 ProcessPlugin338

(16 ch mNetInBuffer → 2 ch mAPInBuffer → ap8x2 → outBuffer)339
server DSP server fans in 16 ch to 2 ch and computes dcblock2gain ProcessPlugin340

(16 ch mNetInBuffer → 2 ch mAPInBuffer → dcblock2gain → outBuffer)341
audio output (same as above)342

7 https://github.com/jcacerec/jmess-jack

Frontiers 11

In review

https://github.com/jcacerec/jmess-jack


Chafe I am Streaming in a Room

4 CONCLUSION

The occasion for the first public demonstration of WAIR was the 2016 meeting of the Network Performing343
Arts Production Workshop. Four endpoints were connected in a nation-wide mesh as discussed above, with344
musicians at the New World Symphony Concert Hall in Miami, the University of Michigan, Ann Arbor345
and Rensselaer Polytechnic Institute, Troy. The WAIR server was running at CCRMA, Stanford University.346

The approximately 20 minute improvisation which was performed 8featured carillon bells (in a studio),347
saxophone, daxaphone, fretless electric guitar and cello. Studio engineers in the audience at the New World348
Symphony reported that the acoustical result heard over a stereo PA system in the symphony hall was349
attractive and complemented the hall’s own sound. Performers were able to hear others well and said they350
experienced a “composite hall.” During sound check we found that the portal gain parameter interacted351
with the freeverb room size parameter and could lead to self-oscillation (feedback) with either value being352
too great.353

WAIR mode is included in an upcoming release of jacktrip with the hope that others may be interested in354
experimenting with its possibilities. Additionally, the release includes a new command line argument -V355
which turns on “verbose” mode and prints exactly the step numbers detailed in the sequences for all modes356
above.357

There have been multiple motivations for providing this informantion. First, it is hoped that WAIR mode358
has been sufficiently documented as a concept, and secondly, that its jacktrip source code modifications359
can be more easily followed. Lastly, the detailed sequences should provide a more precise understanding of360
jacktrip execution order, something which has been somewhat difficult to grasp heretofore and which is361
needed if the system is to be ported to other languages and systems in the future.362

CONFLICT OF INTEREST STATEMENT

The author declares that the research was conducted in the absence of any commercial or financial363
relationships that could be construed as a potential conflict of interest.364

AUTHOR CONTRIBUTIONS

The author is accountable for the content of the work.365

ACKNOWLEDGMENTS

Several musicians, led by Rob Hamilton and John Granzow, have been involved in demonstrating WAIR.366
My deepest gratitude to colleague and collaborator Juan-Pablo Cáceres who continues to support jacktrip.367
Thanks also to reviewers for very constructive and detailed suggestions.368

APOLOGIES

The title “I am Streaming in a Room” is a play on “I am Sitting in a Room,” a wonderful work by Alvin369
Lucier hereby appropriated and unwittingly twisted. I couldn’t help myself.370

8 https://purl.stanford.edu/ty997vz5847

This is a provisional file, not the final typeset article 12

In review

https://purl.stanford.edu/ty997vz5847


Chafe I am Streaming in a Room

REFERENCES

Chafe, C. (2003). Distributed internet reverberation for audio collaboration. In Audio Engineering Society371
Conference: 24th International Conference: Multichannel Audio, The New Reality (Audio Engineering372
Society)373

Chafe, C. and Granzow, J. (2013). Internet rooms from internet audio. In Proceedings of Meetings on374
Acoustics (Acoustical Society of America), vol. 19, 1–6. doi:10.1121/1.4799954375

Chafe, C. and Leistikow, R. (2001). Levels of temporal resolution in sonification of network performance.376
In Proceedings of the 7th International Conference on Auditory Display (ICAD2001). 50–55377

Chafe, C., Wilson, S., and Walling, D. (2002). Physical model synthesis with application to internet378
acoustics. In Proc. 2002 Intl. Conference on Acoustics, Speech and Signal Processing (IEEE), IV–4056–379
IV–4059. doi:10.1109/ICASSP.2002.5745548380

Cáceres, J.-P. and Chafe, C. (2010a). Jacktrip: Under the hood of an engine for network audio. J. New381
Music Res. 39, 183–187. doi:10.1080/09298215.2010.481361382

Cáceres, J.-P. and Chafe, C. (2010b). Jacktrip/soundwire meets server farm. Computer Music Journal 34,383
29–34. doi:10.1162/COMJ\ a\ 00001384

Jaffe, D. and Smith, J. (1983). Extensions of the karplus-strong plucked-string algorithm. Computer Music385
Journal 7, 56–69386

Karplus, K. and Strong, A. (1983). Digital synthesis of plucked string and drum timbres. Computer Music387
Journal 7, 43–55388

Moorer, J. (1979). About this reverberation business. Computer Music Journal 3, 13–28389
Rottondi, C., Chafe, C., Allocchio, C., and Sarti, A. (2016). An overview on networked music performance390

technologies. IEEE Access 4, 8823–8843. doi:10.1109/ACCESS.2016.2628440391
Schroeder, M. (1962). Natural sounding artificial reverberation. J. Audio Engineering Society 10, 219–223392
Smith, J. (1993). Efficient synthesis of stringed musical instruments. In Proceedings of the International393

Computer Music Conference. 64–71394
Smith, J. (2010). Physical audio signal processing : for virtual musical instruments and audio effects395

(W3K Publ.)396
Sullivan, C. (1990). Extending the karplus-strong algorithm to synthesize electric guitar timbres with397

distortion and feedback. Computer Music Journal 14, 26–37398

Frontiers 13

In review



Figure 1.JPEG

In review



Figure 2.JPEG

In review



Figure 3.JPEG

In review



Figure 4.JPEG

In review



Figure 5.JPEG

In review



Figure 6.JPEG

In review



Figure 7.JPEG

In review



Figure 8.JPEG

In review


	Introduction
	Background
	WAIR
	N-way Mesh of Reverberators
	Freeverb in jacktrip – Implementing an Internet Reverberator
	Implementing WAIR in jacktrip
	Theory of Operation
	jacktrip single full-duplex connection (SFD) session
	SFD sequence
	jacktrip hub mode
	hub and spoke sequence

	Modifications to Implement WAIR Mode
	SFD and hub modes audio callback
	WAIR mode audio callback



	Conclusion

