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Abstract

In the last few years, musicians have been exploring ways to perform with people in
di�erent parts of a city, a country or the world. New technologies for the Internet
have been developed that are already high-quality in terms of audio experience. There
is, however, a persistent problem: telecommunications delay. Even though these
latencies are presently down to approximately 150 milliseconds from opposites sites
of the globe, we know that delays of 20 milliseconds are already problematic for
musical performance.

This research presents an experimental analysis of the rhythmic strategies that
humans use to stay synchronized with di�erent delay conditions, similar to the ones
encountered in present day networked music performance concerts. The vast majority
of experimental studies of sensorimotor synchronization involve humans synchronizing
to machines, usually some sort of tapping experiments. Likewise, rhythmic tracking
has overwhelmingly focused on the analysis of one musical source, but not on the
interaction of performing musicians. This research’s focus is on the latter.

The results show that performers are able to adapt to di�erent delay conditions
anticipating each other’s beats. This anticipation is believed to be an intrinsic aspect
of beat perception. The results are compared to earlier studies and new metrics are
proposed that consider the alternating interaction between musicians. This approach
also adopts phase dynamics using stroboscopic mapping.

An integrated model for tracking and generating rhythmic interactions between
two performers is also presented. This model uses coupled adaptive oscillators and
includes an anticipation and reaction parameter that is shown to be critical to un-
derstand rhythmic synchronization with delay. We show how this model compares to
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the experimental data and use it to explain some common observations in rhythmic
performance with delay.
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Chapter 1

Introduction

Latency is the basic building

block of life and music.

Pauline Oliveros, The 156th

Acoustical Society of America

(ASA) Meeting, 2008, Miami

When music performers play together, they have an uncanny ability to stay syn-
chronized. We know that ensembles don’t keep metronomic time—that will sound
unhuman, machine-like—but are still able to follow each-other in incredibly complex
musical situations. Furthermore, experimental studies show that rhythmic duos are
able to synchronize in the presence of time delays way beyond the natural acoustic
situations—although with some time-keeping disruptions [18, 19, 26, 30, 6].

It is believed that human synchronization with musical beats is uniquely human
and is not encountered in other animals [49, chap. 7.5.3]. There seem to be some
higher level brain structures that a�ord human rhythmic synchronization, specifically
auditory and motor coupling.

The vast majority of experimental studies of sensorimotor synchronization involve
humans synchronizing to machines, usually some sort of tapping experiments [57].
Likewise, rhythmic tracking has overwhelmingly focused on the analysis of one mu-
sical source, but not on the interaction of performing musicians. Several models for

1



CHAPTER 1. INTRODUCTION 2

rhythmic tracking exist (see Collins [21] for a comprehensive review of current beat-
tracking systems), using Kalman Filters, Bayesian Networks, Coupled Oscillators,
and others.

In recent years, distributed musical performance using internet networks has
introduced—or made more conspicuous—a new parameter into the problem: latency.
A signal can travel no faster than the speed of light. In practice, this means that geo-
graphically separated musical performances (say between the US and Europe) include
delays that are way longer than the ones needed for accurate musical synchronization.

This setting presents a problem, but also an opportunity. We know that it gets
harder to perform as the delays get longer, but we don’t have a quantification or a
comprehensive explanation for this phenomenon. We don’t understand exactly how
humans behave (musically) in this delayed medium. This opens a whole unexplored
research area that will have to answer what other studies have quantified and de-
scribed: how musicians manage to perform together, and even predict each-other
expressive timing variations.

This research tries to address two related problems:

1. Understand, from data, the rhythmic strategies that humans use to stay syn-
chronized with di�erent delay conditions.

2. Model these strategies using the dynamic systems approach.

It is important to note that this research doesn’t try to find specific brain structures
of motor and auditory behavior. It models rhythmic coupling from a dynamic per-
spective assumption. Although there’s some speculation that rhythmic coordination
may be based on internal neural oscillations that entrain to an external sequence,
there’s no evidence for it [47].

In order to motivate the problem in a broader context, we discuss some applica-
tions that would be possible with a model of rhythmic synchronization with delay:

Distributed Musical Performance In distributed concerts, musicians are aware
and feel the disruption of delay, but don’t have strategies and a conceptual
framework to deal technically and musically with it. A better understudying
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of the sensorimotor aspects of music performance with delay can help to create
music that is workable in this environment, or to establish strategies to minimize
the adverse e�ects.

Automatic Accompaniment There’s an intrinsic delay in any system that listens
to human performance and try to create an automatic accompaniment. There
are several systems already in place [21], but a model that explicitly includes
delay can enhance these systems.

Distributed Rock Bands Music games like Rock Band [2] are a great success.
Adding a remote performance feature is hard because of the delay involved.
A system than understand musical delay and can predict it will enable this
possibility.

A further understanding of expressive performance synchronization
Although the main motivation of this research is to understand synchroniza-
tion in delayed environments like the Internet, the insights obtained can also be
used to as part of a more general understanding of expressive tempo variations
in musical performance, and the internal mechanisms to keep a performance
synchronized in the presence of large variations of tempo.

1.1 Contributions

The main contributions of this research are:

1. An analysis and interpretation of rhythmic performance with delay using an
adapted version of the stroboscopic technique used in the synchronization lit-
erature. The role of the strobe alternates between performers depending on
musical context.

2. An integrated model for tracking and generating rhythmic interactions between
two performers using coupled oscillators, including an anticipation and reaction
parameter that is shown to be critical to understand rhythmic synchronization
with delay.
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1.2 Outline

In Chapter 2 we introduce network music and its historical development, describe the
main technologies used in real-time network concerts, and explain the challenges of
musical performance with delay and some current strategies to cope with it.

In Chapter 3 we describe the experiment used for this dissertation and present
some analytical tools to explains some observed phenomenon in the data.

Chapter 4 presents a coupled oscillator model for the experiment presented in the
previous section. The performance of this model is compared to the experimental
data and we explain why some di�erences may happen.

We conclude the dissertation in Chapter 5 with some closing remarks, suggest
improvements to the model proposed, and explain possible future research and appli-
cations.



Chapter 2

Latency in the Context of
Networked Performance

Internet multimedia communications have grown exponentially and become ubiqui-
tous in the last decade. Audio and video transmission are now common, widely ex-
tended and adopted. The specific characteristics and demands of music performance
are, however, very di�erent from the conversational communication. “Real-time” has
a di�erent meaning in music and speech. While latencies of 200 milliseconds are con-
sidered good in speech transmission, musicians have already problems with delays on
the order of 20 milliseconds.

The technical requirements are only part of the story in Internet network music. A
distributed performance brings to the forefront some of the most intrinsic character-
istics of music: time, space and its interrelation. This type of performance forces the
musicians to think about these elements because they are made conspicuous; things
that were taken for granted are now a “problem” that needs to be addressed from a
di�erent perspective and using distinct strategies.

We review in this chapter part of the history of telecommunications and sound,
and how latency is currently addressed in distributed music performance.

5
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2.1 Telecommunications and Sound: Historical
Overview

The idea of transmission of music to remote locations goes back to the first de-
velopments of telephony and the Musical Telegraph [38] in the second half of the
19th Century. Ever since, di�erent attempts to connect remote locations have ex-
plored a variety of interactions; these include Hindemith and Weill’s radio plays [36],
John Cage’s transistor radio experiments, and the first computer network experiments
[7, 33], some of which where done remotely.1

It is only since the massive expansion and speedup of Internet in the 1990’s that
high-quality, real-time, bi-directional network performance between separated geo-
graphical locations, has become possible. Bargar et al. [5] set several challenges for
music and audio applications on Internet2 [40]. These include digital libraries, three-
dimensional audio, going beyond virtual reality, audio web-casting, music education
and forensic applications, among others.

The last decade of the 20th Century saw the first concerts between di�erent cities
using video conferencing systems (typically ISDN-based) to send audio and video.
During this time, however, the time delays on the performances ranged from 0.5
seconds to 30 seconds [63], making any king of real-time musical interaction virtually
impossible.

The reasons for the long latencies in audio transmission included the slow com-
pression algorithms and low bandwidth of the time. The first dramatic decrease in
delays happened in the early 2000’s, with tools developed by various research groups
(including McGill University [67] and SoundWIRE at CCRMA [17, 62]). The basic
approach is to send uncompressed audio (avoiding the latency introduced by com-
pression encode/decode algorithms) through high speed links like Internet2. With
these ingredients the round trip time (RTT) came much closer to the speed of light,
the theoretical limit.

1
An historical and aesthetic overview of Interconnected Musical Networks can be found at Bar-

bosa [3] and Weinberg [66, 65].
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2.2 Networked Music Performance Technologies

Systems for real-time, high-quality and low-latency audio over the Internet that take
advantage of high-speed networks are available and have been used in the last several
years for distributed concerts and other musical applications [56].

Wide Area Network connections inevitably introduce transmission delays between
two or more hosts. Keeping delay to a minimum is one of the main goals when tuning
network parameters. Delay is known to be disruptive in musical performance [19],
so a sensible goal is to minimize it as much as possible. Often, there is a tradeo�
with audio quality. The longer the latency, the better the audio (i.e., less dropouts)
if facing problematic network conditions.

Jacktrip [13], the main application we have used to power our concerts in the last
few years, has a design that achieves:

• The highest audio quality possible, by using uncompressed linear sampling and
redundancy to recover from packet loss.

• Throughput maximization, which gets audio packets onto and o� of the network
as soon as the sound card can deliver them.

• Working with any number of channels (depending on available computer pro-
cessing power and bandwidth).

• Flexibility in routing and mixing audio channels from and to the di�erent hosts.

Other networking audio packages use di�erent strategies for audio delivery and syn-
chronization. These include the use of compressed audio, artificially increased delays
that match one or more musical measures [32] (i.e., musicians play asynchronously
with the output that was generated one or more measures before) and one-way record-
ing techniques (with one location/performer at a time) where latency is not an issue
[56]. NetJack uses a master/slave approach to synchronize audio clocks. This ap-
proach is most suitable for local area networks (LAN) where jitter is smaller [15].
Other systems (nStream, SoundJack and jack-tools) also deliver uncompressed audio
[10].
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Although some of these technologies minimize audio latency, for longer geograph-
ical distances we will still be limited by the theoretical limit of the speed of light.
It is thus important to understand the problem of latency in the context of musical
performance.

2.3 The Problem with Latency

Figure 2.1 shows an example of the current scenario in network performance. The
sound produced by the performer on the left (ipsilateral) and the one on the right
(contralateral) are shown both locally and remotely, with the present global time
indicated. The signals represented with thin blue lines show the amount of latency
introduced by the network. The final result on each location (the combination of
both sounds) is di�erent.

present
time

present
time

Delay

Delay

Figure 2.1: The current situation on the network.

Depending on the amount of delay, this scenario may or may not be a perceptual
and performative problem. In the experiment analyzed in this research (it has come
to be known as the “Clapping Experiment”) [19], two subjects are asked to perform
a simple rhythmic task, which is performed with signal latency in the range of 1–78
milliseconds. The delayed sound is just the one coming from the other performer.
The subjects can always hear their own sound without any latency (without Delayed



CHAPTER 2. LATENCY IN NETWORKED PERFORMANCE 9

Auditory Feedback, DAF). The results show that there is a negative linear relation
between tempo acceleration and delay. For delays of more than 12 milliseconds, the
longer the latency, the more severe the tempo deceleration in the performance. For
shorter delays there is also a surprising tempo acceleration.

A di�erent experiment documented online [12] and discussed in Section 4.6.1 shows
the same results in a real musical situation with the St. Lawrence String Quartet. Ne-
glecting any asymmetries, the performers in the string quintet (viola at Stanford, CA,
the quartet at Ban�, Alberta) were separated by a path of approximately 25 millisec-
onds (unidirectional). In the performance of standard classical repertoire (Mozart’s
String Quintet in G minor, K. 516), the deceleration e�ect was also experienced.
Other observable e�ects included the power balance/unbalance between the bigger
ensemble and the smaller one (the single viola). In this case, the viola was following
the quartet, and the tempo struggle happened on the quartet side. The viola was
much more comfortable during the performance.

Other studies have done similar experiment with comparable results [6]. Experi-
ments exploring cases like Delayed Auditory Feedback and attack length dependent
perceptual synchronization will be reviewed in Section 3.1.

2.4 Some Current Musical Strategies to Deal with
Latency

2.4.1 Synchronization and Conducting Systems

Trying to deal with the time delay introduced by network latency has been the main
focus for many researchers. Currently, the main approach is to add delay to one or
more of the participants in the performance, so that the amount of delay can translate
into musical terms.

One of the first basic synchronization approaches over wide area networks (WAN)
was proposed by Goto et al. [32], Goto and Neyama [31]. It relies on the one-phase
delay concept used for metronomic music. The connection delay is increased by a
constant corresponding to a repetitive musical structure, e.g., a 12-bar blues chord
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progression. Each musician is then playing on top of a delayed version of all the
others. NINJAM [1], a software application that implements this technique provides
several audio examples on its website. These approaches have the limitation of only
being useful for metronomic and repetitive (with loops) music only.

Bouillot [9] explores a similar approach with a distributed metronome and user-
configurable delays. He also includes Delayed Auditory Feedback (DAF) in the syn-
chronization process, as in Chew et al. [20]. This approach works to synchronize
musicians but has the added and artificial cost of making musicians hear their own
instrument delayed, like a church organ player.

Fober et al. [27, 28] propose an algorithm to compensate for the clock frequencies
drifts when the receiver and sender clocks di�er. Time-stamped packages (events,
not audio) are sent and the receiver can use its local clock to order and synchronize
packages.

In a di�erent approach, an ad-hoc interactive environment is presented by Hajdu
[35] for five musicians and one conductor. He streams just data messages. In this
case synchronization is not a concern; the conductor has just the function of defining
musical parameters but without any precise synchronization control. Several pieces
are performed in the environment, including John Cage’s Five.

2.4.2 Anticipation and Music Prediction

The literature that deals specifically with music prediction is very limited. In an early
study Chafe [16] analyzes di�erent performances of the same pianist in a Charles Ives
passage. Just timing and key velocity are used as feature parameters. The study
uses Mahalanobis distance [24, Appx. A] to cluster di�erent performances. Real-
time analysis/synthesis of the performance is proposed to classify and predict musical
performance to overcome transmission delays. Prediction in a teleautonomous control
in robotic applications is also suggested.

A recent study [59, 58] presents a system for recognition and prediction in Indian
tabla performance. The system is unidirectional, and defines a transmitter and a
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receiver. After preprocessing the input audio signal with the aid of contact micro-
phones for a more accurate event detection, the system sends symbolic data over the
network; no audio is transmitted. The symbolic data system is similar to the one
encountered on speech recognition, with audio data associated with bols, the equiv-
alent of phonemes in speech recognition. The K-Nearest neighbors algorithms [24,
Ch. 4] is used to classify similar bols. The phrase prediction is implemented using
simplified formal grammars [24, Ch. 8]. At the time of writing there is no demo or
audio available from this project.

2.4.3 Supervision and Control in Engineering and Music

A complete review of the extensive literature on supervisory control is out of the scope
of this dissertation. There are, however, some recent articles that deal specifically with
the similarities and dissimilarities of supervisory control in engineering and music.
Inagaki and Stahre [39] has a good description of the field in engineering as well as its
relation with the recent literature in music. Human supervisory control emerged in
the decade of 1960 as part of teleoperated lunar vehicles and manipulators research. In
order to deal with the long transmission delays, the remote computer communicates
with the human operator, scheduling short-range goals between orders. The local
machine—human operated—would also mimic predicted behavior of the remote robot
manipulator.

Johannsen [41] describes several activities in the arts and how they relate to the
engineering concepts of supervisory control, which include conducting, playing mu-
sical instruments, sound design, information retrieval, and others. This research is
however more concerned with a qualitative description of the musical field in a su-
pervisory control framework rather than the application of its techniques to music.
Inagaki and Stahre [39], in his description of an orchestra, also tries to obtain in-
spiration from the musical fields. Sheridan [61] has also a similar description of the
orchestral hierarchical levels, and includes some considerations of virtual reality and
teleprescence in the context of music technology.



Chapter 3

Rhythmic Coordination with
Delay: Experimental
Synchronization Analysis

3.1 E�ects of Delay in Rhythmic Synchronization

Several studies on perceptual aspects of synchronization have been attempted. Hirsch
[37], in his pioneering study on perception of temporal order, identifies three ranges of
perception; the short range extending from 0 to 20 milliseconds (phase perception),
a middle range between 20 and 100 milliseconds (auditory patterns), and a longer
range for 100 milliseconds and more (separate auditory events). Several later studies
agree with these ranges to within a couple of milliseconds [23]. It is also important
to be aware of the Hass (or precedence) e�ect [52, 29]; when identical sounds have
arrival times that di�er by 30–40 milliseconds, the sound is perceived as one coming
from a specific location rather than two distinct sounds.

In actual musical situations, synchronization between di�erent instruments is
never perfect, and the tolerances in the performance of small ensembles, like wind
and string trios, have been shown to be as high as 50 ms on average during a com-
plete performance [55]. Several factors like instrumental timbre, length of articula-
tions, masking, and reverberation help to make this situation perceptible. Computer

12
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music rendering and simulation of performance has shown that variations on syn-
chronization are perceived as “human like”, whereas systematic perfect synchronous
performances sound more “machine like”. It is also interesting to note that as en-
sembles grow in number and physical size, asynchronization also grows. At a certain
point the presence of a conductor becomes necessary to maintain synchronization for
larger ensembles.

Delayed Auditory Feedback (DAF)—one’s own sound delayed—experiments are
also relevant in situations when the delay is large (more than 100 ms one way). A
common e�ect of DAF is a slowing down on performances [30, 51]. This can be
understood by performers “waiting” for the next sound to catch up, consequently
making the performance slower with time. A similar e�ect has been observed on
simple rhythmic tasks [19]1 and on the performance of Poulenc [20] and Mozart [6]
repertoire between two musicians. This later study shows strategies by which mu-
sicians adapt to the delay. These strategies include playing ahead of each other, or
deciding that one of the two musicians will following the other. The latter seems
to be the natural tendency when there is an unbalance in the structure of the en-
semble such that one side can dominate rhythmic timing. The weak side naturally
follows the strong one, and we discuss examples of this below. Bartlette et al. [6]
show that musicians rated the musicality of a performance as high even for delays of
46 milliseconds (unidirectional).

3.2 Experiment: Clapping Duos with Delay

3.2.1 Experiment description

NOTE: We have described this experiment in detail previously. The reader is advised
to consult Chafe et al. [19] for details. A summary will be presented here.

We examined performances by pairs of clappers under di�erent delay conditions.
A simple interlocking rhythmic pattern was chosen as the task (Figure 3.1). Subjects
in separate rooms were asked to clap the rhythm together while hearing each other’s

1
We discuss this study and use the same dataset in the present dissertation.
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sound delayed by a slight amount. Common beats in the duo clapping rhythm pro-
vide reference points for analysis of ensemble synchronization. Circles and squares
represent synchronization points.

The pattern has three properties which are conducive for the experiment: first, it
comprises independent but equal parts rather than unison clapping (a kind of simple
polyphony), second, it creates a context free of “internal” musical e�ects [6], and third,
the rhythm can be analyzed for lead/lag (the metrical structure’s phase advance can
be individually monitored per part). The duo rhythm was easily mastered by a pool
of subjects who were not selected for any particular musical ability.

Subjects were seated apart in separate studios and monitored each other’s sound
with headphones (and with no visual contact). 11 delay conditions in the range from
d = 3 to 78ms (one-way) were introduced in the sound path (electronically) and
were randomly varied per trial. The shortest d = 3ms is equivalent to having a
subject clapping 1m from the other’s ears. The longest d = 78ms equates with a
separation of approximately 26m, equivalent to a distance wider than many concert
stages. Recordings were processed automatically with an event detection algorithm
ahead of further processing to extract synchronization information.

A control trial was inserted at the end of each session in which the electronic delay
was bypassed. The delay in this condition consisted only of the air delay from hand
clap to microphone, d = 1ms.

Sync
Points

Figure 3.1: Duo clapping rhythm used.
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3.2.2 Method

3.2.2.1 Trials and control

One-way delay was fixed to a constant value during a trial and applied to both paths.
Delay was varied in 11 steps according to the sequence dn(ms) = n + 1 + dn≠1

which
produces the set:

d
0

= 1; dn = {3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78}(ms)

The sequence was chosen in order to weight the distribution towards the low-delay
region and gradually lengthen in the higher region, but it bears no special significance
otherwise. Delays were presented in random order and each duo performed each
condition once. Starting tempo per trial was also randomly selected from one of
three pre-recorded “metronome” tracks of clapped beats at 86, 90 and 94bpm. (Other
pilot trials, not analyzed as part of the present experiment, were presented inside the
random sequence block: 2 for diverse tempi, and 2 for asymmetric delays. Sessions
began with 1 subject-against-recorded-track which also ran at the end of the block,
also not included.) A final 1ms trial using analog bypass mode was included as a
control. The bypass was designed to obtain the lowest possible delay. Overall, one
session took about 25 minutes to complete.

3.2.2.2 Number of subject pairs and trials

24 pairs of subjects participated in the experiment. Subjects were students and sta�
at Stanford University. A portion of the group was paid with gift certificates and
others participated as part of a course in computer music. All subjects gave their
informed consent according to Stanford University IRB policy. No subjects were
excluded in advance. Individuals in the pool were paired up randomly into duos.
Each duo performed all 11 conditions plus the control, once each.
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3.2.2.3 Acoustical and electronic conditions

Acoustical conditions minimized room reverberation e�ects and extraneous sounds
(jewelry, chair noise, etc.). Subjects were located in two sound isolated rooms
(CCRMA’s recording and control room pair whose adjustable walls were configured
for greatest sound absorption). They were additionally surrounded by movable sound
absorbing partitions (Figure 3.2). One microphone (Schoeps BLM3) was located 0.3
meters in front of each chair. Its monaural signal fed both sides of the opposite
subject’s headphones. Isolating headphones, Sennheiser HD280 pro, were chosen to
reduce headphone leakage to microphones. Glasses wearers were required to remove
their frames to enhance the seal. Volume levels were adjusted for users comfort
and ease of clapping. Direct sound was heard by leakage. The distance from clap-
ping hands to microphone introduced a time delay of about 1ms and is added into
our reported delays. In other words, our reported 3ms delay comprises respectively,
1ms + 2ms, air and electronic delays.

A single computer provided recording, playback, adjustable delays and the au-
tomated experimental protocol with GUI-based operation. The setup comprised a
Linux PC with 96kHz audio interface (M-Audio PCI Delta 66, Omni I/O). Custom
software was written in C++ using the STK2 set of open-source audio processing
classes which were interfaced to the Jack 3 real-time audio subsystem. All delays
were confirmed with analog oscilloscope measurement. Each trial was recorded as a
stereo, 16bit, 96kHz sound file. The direct microphone signals from both rooms were
synchronously captured to the two channels.

3.2.2.4 Protocol

Two assistants provided an instruction sheet and read it aloud. Subjects could read
the notated rhythm from the handout and listen to the assistants demonstrate it.
New duos first practiced face-to-face. They were told their task was to “keep the
rhythm going evenly” but they were not given a strategy nor any hints to help make

2
http://ccrma.stanford.edu/software/stk/

3
http://jackaudio.org/

http://ccrma.stanford.edu/software/stk/
http://jackaudio.org/
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that happen. After they felt comfortable clapping the rhythm together, they were
assigned to adjacent rooms designated “San Francisco” and “New York.”

The presentation was computer-controlled. Each time a new trial began, one sub-
ject was randomly chosen by the protocol program to begin the clapping (that subject
is henceforth referred to as the initiator). Their starting tempo was established by
play back of a short clip (6 quarter-note claps) recorded at the target tempo. 3 start-
ing tempi were used in random order (86, 90, 94bpm) in order to avoid e�ects of
over-training to one absolute tempo. Trials proceeded in the following steps:

1. Room-to-room audio monitoring switches on.

2. A voice recording (saying “San Francisco” or “New York”) plays only to the
respective initiator, to cue them up.

3. A recording of clapped beats at the new tempo (functioning as a metronome)
plays for 6 beats only to the initiator.

4. The initiator starts rhythm at will. The other subject has heard nothing until
the point when they hear the initiator begin to clap.

5. The other joins in at will.

6. After a total of 36 seconds, the room-to-room monitoring shuts o�, i.e., com-
munication is cut, signaling the trial’s end.

Assistants advanced the sequence of trials manually after each take was completed.
Short breaks were allowed and a retake was made if a trial was interrupted.
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New YorkSan Francisco

Clapper
Subject

Clapper
Subject

Asst.
mic mic

Figure 3.2: Floor plan. Rooms were acoustically and visually isolated and room
reflections were minimized with sound absorbing panels. Electronic delay from mic
to headphones was manipulated by computer.

3.2.3 Processing of Recordings

3.2.3.1 Recorded segments of interest

We were interested only in the sections of the recordings in which both clappers are
performing together. Since the protocol allowed the initiator to clap solo for a variable
length of time before the second one joined, we first identified the region in which
both clappers are involved. For the trial shown in Figure 3.3, clapper B (red squares)
starts the trial and is followed by clapper A (green circles). Enclosed (circles and
squares) notes correspond to the common beats which were automatically identified
in a first pass on the raw data.
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Onset times and tempo curves
Duo number: 10  |  Delay: 66 ms  |  Starting tempo: 94 bpm

 

 
Clapper a onset times (raw data)
Clapper b onset times (raw data)
Clapper a onset times (synched quarter−notes)
Clapper b onset times (synched quarter−notes)
Clapper a tempo curve (synched quarter−notes)
Clapper b tempo curve (synched quarter−notes)
Smoothed tempo curve (both clappers)

Figure 3.3: Example of onset times, synchronization points and tempo curves for
one trial. A smoothed tempo curve is derived from the instantaneous tempi of both
player’s synchronized events.

3.2.3.2 Event detection

An automated procedure detected and time stamped true claps. Detection proceeded
per subject (one audio channel at a time).

Candidate events were detected using the “amplitude surfboard” technique [60]
tuned to measure onsets with an accuracy of ±0.25ms. The extremely clean clapping
recordings allowed false events (usually spurious subject noises) to be rejected using
simple amplitude thresholding. A single threshold coe�cient proved suitable for the
entire group of sessions. The algorithm first found an amplitude envelope by recording
the maximum dB amplitude in successive 50-sample windows, while preserving the
sample index of each envelope point. A 7-point linear regression (the “surfboard”)
estimated the slope at every envelope sample. Samples with high slope were likely to
be event onsets. Candidate events were local maxima in the vicinity of samples with
slopes that fell within some threshold of the maximum slope. In the event of several
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candidates in close proximity, the one with the highest amplitude was chosen. After
an event was identified, there was a refractory period, during which another could
not occur.

3.2.3.3 Validation

Recordings were automatically examined and only validated for inclusion in further
analysis if they passed several automatic tests. Ninety-five trials contained more than
one missing event per clapper and were discarded. If only one event was missing, it
was automatically fixed through interpolation. Four trials were shorter than our
minimum length requirement (16 beats, which was 3 SD less than the mean length).
If a duo failed to keep the o�set relationship of the rhythm, that trial was discarded. If
a duo did not satisfactorily perform the control trial, the entire session was discarded.
Three duos did not pass. A total of 168 trial recordings were validated for further
analysis.

3.2.3.4 Event labeling, tempo determination

Inter-onset intervals (IOI’s) were calculated from the event onset times. Conversion
from IOI to tempo in bpm (by combining two eighth-notes into one quarter-note
beat) was ambiguous in the presence of severe deceleration and required that very
slow eighth-notes be distinguished from quarter notes. Since only eighth and quarter-
notes were present, the IOI’s were clustered into two separate groups using the k-
means clustering algorithm [8]. The group of notes clustered with the shortest IOI was
identified as eighth-notes and the one with the longest as quarter-notes. Conversion
to tempo (in bpm) was computed with:

tempoquarter≠note = 60
IOI(bpm)

tempoeighth≠note = 60
2 · IOI(bpm)
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3.2.3.5 E�ect of Starting Tempo

ANOVA and multiple comparisons of the mean tempo at each of the three starting
tempi (86, 90, 94bpm) revealed no significant di�erence between these cases, ruling
out a dependence on absolute tempo. Data for all trials were shifted (proportionally)
after event detection and labeling phases to a starting tempo of 90 bpm before further
analysis.

3.2.3.6 Database

Figure 3.3 presents the results for one trial. The example shows raw onset times,
common beat synchronization points, instantaneous tempo of each event in both
clappers, and a smoothed common tempo curve. Figure 3.4 groups smoothed tempo
curves for each condition (including the control). Data for the full set of trials is
available online4 for continuing analysis. The site also o�ers the algorithm code for
the present analysis.
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Figure 3.4: All trials’ tempo curves grouped by delay. Tempo acceleration during a
given performance is tracked by measuring inter-onset intervals as shown in Figure 3.3.

4
https://ccrma.stanford.edu/groups/soundwire/research/temporal-separation-article-som/

https://ccrma.stanford.edu/groups/soundwire/research/temporal-separation-article-som/


CHAPTER 3. EXPERIMENTAL SYNCHRONIZATION ANALYSIS 22

3.3 Lead/Lag Synchronicity Analysis

3.3.1 Synchronization points

The assigned rhythm in Figure 3.1 creates points at which claps should be simul-
taneous, also highlighted by circles and squares in Figure 3.5. A clapper in “San
Francisco” is green circles, a clapper in “New York” is red squares. Ideally, each
vertically adjacent pair of events is simultaneous. Leading or lagging by one subject
with respect to the other at these points is related to delay. Leading at 3ms; approx-
imately synchronous at 15ms; lagging at 78ms. Lead/lag is measured with respect
to measure-length periodicity. Odd-numbered events have inverted (antiphase) sign.
Disparities at these synchronization points were calculated to show the amount of
anticipation (lead) or lateness (lag) of each player’s enclosed (circles and squares)
event with respect to the other’s.

For the examples represented in Figure 3.6, the lead-lag factor was computed as
follows:

lead-lag = (a
4thsync[1] ≠ b

4thsync[1]) + (b
4thsync[2] ≠ a

4thsync[2]) (3.1)

where a
4thsync[n] are green circles sync points (clapper A) and b

4thsync[n] are red
squares sync points (clapper B).

This di�ers from previous studies which have measured the absolute value of
asynchronization. The sign of the quantity is preserved in order to observe chang-
ing interaction dynamics. For each delay condition, the analysis produced a mean
lead/lag value that aggregates all trials, all synchronization points and each player
with respect to their partner. Figure 3.6 compares these means and their variances
(95% error bars). At very small delays, performances are dominated by a tendency
to lead. Increasing delay traverses two “plateaus:” first is the region with best syn-
chronization, followed by a second plateau beginning at 28ms delay. At the greatest
delays, lag increases dramatically.
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Figure 3.5: Lead/lag at di�erent delays.
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Figure 3.6: Onset asynchrony measured at all beat points for the set of delay condi-
tions. Error bars show 95% confidence intervals.
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3.3.2 Tempo Acceleration

A single measure of tempo acceleration (its mean) is compared for all performances5.
In Figure 3.7 a linear model (green thick line) correlates well with data sampled at the
given delay conditions. Error bars show 95% confidence intervals for the acceleration
mean. Single blue dots represents acceleration mean for each individual trial. We
can see that for very small delays, there is a tendency to accelerate. Longer delays
produce deceleration as expected.
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Figure 3.7: A single measure of tempo acceleration (its mean) is compared for all
performances. Error bars show 95% confidence intervals.

3.4 Rasch Asynchronization

Rasch [55] defines asynchronization of a pair of voices (A
Rasch

in this study) as the
“standard deviation of the onset time di�erences of simultaneous tones of those voice

5
This curve is computed with a smoothed tempo curve, merging both clappers into one curve.

Smoothing is computed with a “local regression using weighted linear least squares and a 2nd degree

polynomial model” (Matlab’s smooth function included in the Curve Fitting Toolbox). Then, to

obtain a single quantity representing a trial’s overall acceleration, the average of the derivative of

the tempo curve is used.
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parts.” The details for its computation are described in the cited paper, but we
summarize the procedure for the clappers duo.

For each duo, we fist compute the mean onset times:

w̄ = a
4thsyn + b

4thsync

2 (3.2)

Then the relative onset times are:

va = a
4thsync ≠ w̄

vb = b
4thsync ≠ w̄ (3.3)

For duos the relative onset times is symmetric (i.e va = ≠vb), so in our case
it doesn’t convey sign information. We are therefore interested only in the A

Rasch

,
defined as the standard deviation of the onset times di�erence dab = vb ≠ va.

We compute A
Rasch

for all trials (each duo has a single A
Rasch

) and then average
the for each delay condition (Figure 3.8).
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Figure 3.8: Rasch Asynchronization means. Error bars show 95% confidence intervals.
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Rasch asyncronization doesn’t reveal interaction dynamics, but shows, as ex-
pected, that asynchronization increases for longer delays. For “natural” delays (be-
tween 1 and 21 milliseconds), error bars overlap which suggest that asynchronization
is very similar. This shows the need of a metric that considers the interaction dy-
namics and can be measured in relative and absolute terms.

3.5 Relative-Time Alternating-Asynchronization

Analysis

All the studies discussed previously, including the lead-lag metric presented earlier
(see Section 3.3), use absolute time. This means that there’s a central computer that
captures audio with the same time reference for all performers. This is fine for metrics
that evaluate absolute synchronization. However, it is also important to examine how
each performer understands time within his local frame of reference. The discussion
that follows use relative time for its analysis. We will discuss how this is important
in understanding the dynamics of rhythmic performance with delay.

The current understanding is that beat perception is anticipatory and not reactive
[50]. This means that performers synchronizing to an external rhythmic stimuli play,
on average, a little bit ahead of the expected beat, not after or exactly at the same
time. For ensembles with delay, this anticipation or reaction is performed in relative
time, i.e., the time frame of the each performer.

3.5.1 Asynchronization Analysis

In the synchronization literature, the stroboscopic technique [53, chap. 3.2 and 6.3]
is commonly used in experimental synchronization analysis. The technique consists
of observing the state of an oscillator (usually the phase, but we will observe times
also) at the times dictated by a second oscillator (a strobe oscillator). We will then
alternate the role of the observed and strobe oscillator in the metric discussed in what
follows.

The interlocking nature of the rhythmic task of our experiment (Sec. 3.2.1) can be
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understood as an alternation in the role of stimulator and responder. Therefore,
in the context of rhythmic interaction, we define:

Stimulator Beat in which the performer has the rhythmic initiative, i.e., he is not
waiting for another performer to synchronize.

Responder Beat in which the performer is waiting and trying to synchronize with
the other performer.

This was already implicit in the lead-lag metric used in the previous analysis (Sec. 3.3),
but we will now consider this alternation between the role of stimulator and responder
in computing asynchronization in a more general way. The result is slightly di�erent
in our experiment but can be generalized for other rhythmic patterns.

Figure 3.9 illustrates how the alternating-asynchronization was measured for the
clapping task. The pattern is defined as the sequence eighth-note–eighth-notes–
quarter-notes (↵–↵–�), numbered 1-2-3 (Figure 3.9 (a)). In that illustration, the first
clapper (stimulator) has to synchronize to the second one (responder) and then the
process is reversed. The lead-lag considered this as a pair. Now each synchronization
is newly established in each beat 1 and depends only on who is “waiting” for the other
performer. The interlocking clapping pattern makes it easy to define and understand
who takes the role of stimulator and responder, but this would work also for more
complex interactions as long as we can define this role separation.

We are interested in the sign of asynchronization. If the stimulator plays after the
responder, asynchronization is positive, if it plays ahead, it’s negative. Figure 3.9 (b)
and (c) shows these di�erent situations.
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stimulator

stimulator

Aasync
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Aasync
(+)

stimulator

stimulator

Aasync
(-) Aasync

(-)
(b) (c)

1 2 3

(a)

Figure 3.9: Alternating-asynchronization as measured for the interlocking pattern.
(a) Pattern order definition. (b) Example of positive alternating-asynchronies. (c)
Example of negative alternating-asynchronies.

We compute alternating-asynchronization across all duo trials in absolute and
in relative time for each delay condition. The analysis produces alternating-
asynchronization value that aggregates all trials. Figure 3.10 compares these means
and their variances (95% error bars) in absolute time. Figure 3.11 compares these
means and their variances (95% error bars) in relative time. Note that since in our
experiment the delay was symmetric, this corresponds to approximately subtracting
the delay from the mean.
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Figure 3.10: Alternating-asynchronization versus delays means. Error bars show 95%
confidence intervals.
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Figure 3.11: Relative alternating-asynchronization versus delays asynchronies means.
Error bars show 95% confidence intervals.
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3.5.2 Phase Analysis

We want to see if there is a relationship between phase correction and frequency
adaptation. To investigate this, we use the same technique (strobe alternating-
asynchronization) to compute the phase, „, normalized to -0.5 and 0.5 and defined
for the pattern shown in Figure 3.12.

time

phase (ϕ)

0.5

-0.5

stimulator stimulator

Figure 3.12: Phase stroboscopic analysis. For the rhythmic pattern used, phase is
defined as above.

Alternating-asynchronization measured time di�erences, while phase analysis
measures a proportion of alternating-asynchronization with respect to instantaneous
tempo. For example, for slower performances, the same alternating-asynchronization
(in time units) will result in a smaller „. Figure 3.13 and Figure 3.14 shows means
phase relations for all trials in absolute and relative terms.
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Figure 3.13: Mean phase relations. Error bars show 95% confidence intervals.
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Figure 3.14: Relative mean phase relations. Error bars show 95% confidence intervals.
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3.5.3 Internal Tempo Analysis

Asynchronization is measured relative to a second performer. We are also interested
in measuring if there is an internal mechanism by which clappers have control of
synchronization and tempo. We have already seen that tempo decreases with longer
delays. The model “a waits for b, b waits for a” [34] that accounts for this ritard
would produce decelerations much higher than the ones observed (see Section 4.4).
Alternating-asynchronization already suggests that there are higher anticipation levels
for longer delays. We now turn our attention to internal tempo control.

In the pattern used, subjects have more control over tempo in the first part of
the pattern, after which they have to wait for the other clapper to perform his part.
Therefore, we can measure a ratio between these two inter-onset-intervals (IOIs) to
obtain a measure of this e�ect. Figure 3.15 shows the two IOI of reference we use for
the computation of this metric.

41 2 3

IOIhalf

IOIfull

Figure 3.15: Internal IOIs definition

We then compute IOIratio = IOIhalf

IOIfull
across all trials.
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Figure 3.16: IOI
ratio

for all trials means. Error bars show 95% confidence intervals.

3.5.4 Individual duo imbalances

We are also interested in obtaining a metric for any internal imbalances for each
duo. This can appear as one clapper leading versus the other following (reactive).
We can get a metric of an internal duo imbalances by computing the mean di�erence
between relative phases, i.e., the di�erence between relative mean phase of one clapper
compared to the other. This will give us a metic for how much a clapper is leading
with respect to the other for each trial.

Figure 3.17 reveals a slight increase with delay but only significant (most confi-
dence intervals overlap) for longer delays (66 and 78). It is not significant enough
though to establish a trend.
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Figure 3.17: Individual duos imbalances per delay (dots) and means. Error bars show
95% confidence intervals. Thin blue line is median.

3.5.5 Role-based leading/reactive clappers

We want to analyze if the initiator who establishes the tempo by clapping first may
have assumed an unintended musical role as leader. For this, we use the internal duo
imbalance phase metric. Figure 3.18 shows the results with initiator with respect
to follower, i.e., mean(initiator)-mean(follower). A positive result indicates that the
initiator leads, a negative one that the follower leads. We see no significant impact
on who assumes the initiator role (mean is very close to 0).

Figure 3.19 plots internal duo imbalance with A and B as references. Green circles
indicate that Clapper A leads that trial, and red squares that Clapper B leads. We
see that this reveals a pattern that the initiator versus follower analysis doesn’t. This
suggests that the roles of leader and follower are assumed by a clapper independently
of whether or not he starts the trial to establish the tempo.
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Figure 3.18: Individual internal duo dynamics (mean of phi per duo), initiator versus
follower. Thin blue line is median.
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Figure 3.19: Individual internal duo dynamics (mean of phi per duo), Clapper A with
respect to Clapper B. Thin blue line is median.
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3.6 Discussion

3.6.1 Lead-lag versus alternating-asynchronization

Both lead-lag and alternating-asynchronization metrics preserve the sign in order to
observe changing interactions. If we compare Figure 3.6 with Figure 3.10 with the
naked eye, they follow the same trend. The actual numbers di�er slightly though,
because lead-lag needs a pair to measure asynchronization. Since not every duo is
exactly even or odd, some beats are lost at the end in a number of duo. Alternating-
asynchronization, in turn, measures every beat.

Furthermore, the lead-lag metric only measures interactions in pairs and in abso-
lute time, but alternating-asynchronization gives also a relative anticipation number
that is comparable to tapping experiments [50]. We discuss this in the next section.

3.6.2 Regimes

We discussed already the di�erent regimes in Chafe et al. [19]. We reproduce the
summary table here (Table 3.1).

Regime Delay (ms) Air equiv. (m) Net equiv. (km) E�ect
1 3,6 (8) <3 <500 acceleration
2 10,15,21 (25) 8 1700 “natural”
3 28,36,45,55 (60) 20 4000 deceleration
4 66,78 20< 4000< deterioration

Table 3.1: Clapping regimes, actual sampled delays and interpolated transition values
(bold in parenthesis).

When we look with alternating-asynchronization analysis, we see di�erent regimes
though (Table 3.2), and this may explain how deterioration happens (Figure 3.11). It
is first important to note that the sign is always positive. This suggest that there’s al-
ways a tendency to anticipate the beat, even for very short delays, which is consistent
with the tapping literature.

The next feature that we see is that for longer delays, alternating-asynchronization
stabilizes at approximately 40 milliseconds. This suggests there’s an upper bound
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beyond which no more anticipation is performed, and explains why deteriora-
tion starts at 55 milliseconds of delay. Since an ideal compensation (alternating-
asynchronization) will be the same that as the delay and we have an upper bound
of 40 milliseconds for alternating-asynchronization, the di�erence between delay and
alternating-asynchronization will only increase as delay increases, producing the de-
terioration observed.

Regime Delay (ms) E�ect
1 3,6,10 natural (produces acceleration in some cases)
2 15,21,28 first adaptation plateau
3 35,45 strong adaptation
4 55,66,78 lead (confidence) stabilizes

Table 3.2: Clapping regimes for relative alternating-asynchronization.

3.6.3 The role of anticipation in delayed performance

We mentioned previously that beat perception is anticipatory and not reactive, and
this results further confirm this theory. For all delays measured, there’s always a
rhythmic anticipation (Figure 3.11). For short delays this is consistent with tapping
experiments, but we can also see that this anticipation increases for longer delays.
Previous studies have hypothesized di�erent strategies, that include:

• Intentionally pushing the beat

• Leading by ignoring the sound of part of the ensemble

We will discuss in the next section if there is a frequency adaptation “inside” the
beat. But the current results suggest that there is a stronger phase coupling for
longer delays.

3.6.4 Frequency adaptation inside the beat

Figure 3.16 shows di�erent regimes for internal tempo of each clapper. This gives
us a measure of how much frequency adaptation there is for each delay condition.
We already discussed that there is a strong phase coupling (anticipation). The
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di�erent regimes are shown in Table 3.3. “Natural” delays show a symmetrical
IOI

ratio

. For shorter delays, the adaptation shows slower IOI
half

with respect to IOI
full

(IOI
ratio

<0.5). This means that clappers are “taken by surprise” by the partner. For
the second regime shown in table, IOI

ratio

¥0.5, which is the natural and expected
condition of the pattern. Longer delays show a strong frequency adaptation inside
the beat, with subjects accelerating IOI

half

with respect to the IOI
full

(IOI
ration

>0.5).
This reveals that besides the phase adaptation (anticipation) discussed previously,
there’s also a frequency adaptation inside the beat that each subject can control in
order to also accelerate the performance and avoid more tempo degradation.

Regime Delay (ms) E�ect
1 1,3,6 reactive adaptation
2 10,15,21 natural (symmetric)
3 28,35,45,55 frequency adaptation plateau
4 66,78 strong frequency adaptation

Table 3.3: Clapping regimes for IOI
ratio

.

3.6.5 Time of adaptation

Phase adaptation (anticipation) with di�erent delay conditions is almost instanta-
neous. A qualitative analysis of Figure 3.20 reveals that after the first beat, when
duo subjects are not yet aware of the underlying delay, all conditions cluster together.
The first synchronization point (Sync point 1) is smaller as expected, i.e., there is
less anticipation to push the beat, but then immediately the means cluster around
the overall mean (Figure 3.11). In other words, it takes only one cycle of the pattern
for the adaptation to already happen. Before the first pattern, subjects don’t know
(or feel) what the delay is, but after this the adaptation starts and doesn’t increase.
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Figure 3.20: Mean relative alternating-asynchronization for the each of the first 6 sync
points across duos. All conditions cluster together except the first synchronization
point (Sync point 1) when duos are not yet aware of delay.

3.7 Conclusions

The experimental data analysis presented in this chapter reveals several features of
the rhythmic interaction dynamics of human subjects. One of the first interesting
discoveries was that for very small delay times, rhythmic interaction is not optimal
as it would be expected. As was pointed out in Chafe et al. [18], there is a surprising
acceleration for these very short delays. In Chafe et al. [19] and the present research,
we have further investigated the causes of this e�ect.

We discussed that there is always a tendency to anticipate the beat of other
performer. This is consistent with the tapping literature, and it is this anticipation
for very small delays that produces this acceleration. We also see that humans are
good at adapting when delay increases. For longer delays, anticipation also increases,
but caps after 50 milliseconds.

The adaptation and the anticipation suggests an expectation mechanism in rhyth-
mic interaction. In the next chapter, we will use adaptive coupled oscillators to model
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these interaction dynamics. This model includes an expectation point that is con-
sistent with the observed mechanics in this chapter. We will also incorporate an
anticipation mechanism in these oscillators to consider the anticipation observed in
the experimental data.



Chapter 4

Models for Rhythmic Coordination
with Delay

4.1 Information Processing and Dynamic Systems
Approaches to Rhythmic Synchronization

There are two main theoretical approaches for sensorimotor synchronization: infor-
mation processing and dynamic systems theories [57, 54]. Information processing are
usually associated with a system with a discrete-time series while dynamic systems
theories model represent trajectories in a phase space.

Sensorimotor synchronization experimental studies have generally focused on hu-
mans synchronizing to a mechanical external stimulus. The setup is usually a tapping
experiment in which subjects are instructed to follow the beat provided by a machine.

The present research focus is on the interaction of human performers. We turn now
to a model that includes not only the tracking of rhythm, but also the interaction
of both performers. We can use this model to obtain some insights on common
observations in rhythmic performance with delay.

Before we describe the model for the synchronization between the two clappers
with delay, we explain the adaptive oscillators used for rhythmic tracking. These

41
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models are based on self-sustained adaptive oscillators. These oscillators have to syn-
chronize with an external, discrete rhythmic stimulus, and thus provide an underlying
model for meter perception.

4.2 Adaptive Oscillators to model meter percep-
tion

The class of oscillators used in this research are adaptive oscillators [45, 48, 64, 44, 46].
Other types of models, which are well described in Large [43], are linear models, and
oscillator-level models [25]. We chose adaptive oscillators because they have been
shown to work very well with discrete-time rhythms like the one analyzed in this
research. Its underlying structure of expectation and adaptation provides an ideal
way to include rhythmic generation and to couple two or more oscillators of its kind.
Furthermore, this methodology can later be adapted to the more general canonical
models and oscillator-level approaches.

Adaptive oscillators to track discrete pulses were originally described in Large
and Kolen [45] and McAuley [48]. Several refinements have been proposed later
[64, 44, 46], but the conceptual framework remains the same. They all model per-
ception and attention in a way that is flexible enough to couple with variable tempo
in music performance. They are all based on a circle map, an abstract model for
nonlinear oscillation. They assume that musical rhythm is described by a series of
discrete impulses. We first describe the mathematics of Sine circle maps and adap-
tive oscillators, and then show how to implement these in the context of the clapping
experiment of this research.

4.2.1 Sine circle map

Circle maps are a good tool to do a qualitative description of oscillators with moderate
external forcing. The details of this section draw from Pikovsky et al. [53, Chap. 7.3].
Large and Palmer [46] and Loehr et al. [47] also contains a summary description.
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The equations of of motion for periodically forced oscillators can be reduced to a
phase equation in the vicinity of the limit cycle:

d„

dt
= Ê

0

+ ÁQ(„, t) (4.1)

where Ê
0

is the frequency of the self-sustained oscillator (without external forcing,
the phase has to grow uniformly in time, i.e., d„

dt
= Ê

0

). For the specific case of a sine
circle map, this equation becomes:

„n+1

= „n + ÷ + Á sin „n (4.2)

with ÷ = Ê
0

T = 2fi
T0

T , and T is the period of the forcing. This is a stroboscopic
mapping with time interval T . When Á = 0, the system reduces to a stroboscopic
observation:

„n+1

= „n + Ê
0

T (4.3)

If T
T0

= p
q

is rational, the system is periodic with period p.
This type of description can also be adapted for non-periodic external stimulus,

specifically for the case of an external rhythm entraining an oscillator.

4.2.2 Adaptive oscillators conceptual framework

We propose a general conceptual framework for modeling rhythmic synchronization
between musicians. The proposed methodology is independent of the specific adaptive
oscillator model chosen. For consistency and simplicity we will use one of the original
models proposed for adaptive oscillators, the Large & Kolen adaptive-oscillator [45].

Figure 4.1 illustrates the structure of an adaptive oscillator. They combine a
limit-cycle oscillator with an energy pulse. The function of the pulse is to open a
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time

time

ϕ = 0

ϕ = 0.5ϕ = -0.5

+

Expectation Point 
(phase)

Limit Cycle Energy Pulse

Expectation Point 
(energy)

ϕ = 0

ϕ = -0.5 ϕ = 0.5

Figure 4.1: Conceptual framework for adaptive oscillators.

window of expectancy during which an external stimulus will be “heard”. Anything
that happens outside of the energy pulse is ignored in the adaptation. We now explain
in detail the the Large & Kolen adaptive oscillator.

4.2.3 Large & Kolen Oscillator

The Large & Kolen adaptive-oscillator is described in Large and Kolen [45] and Large
[42]. Although Large and Kolen [45] presents more details, it contains some errors
and inaccuracies, and we prefer to follow the formulation presented in Large [42].

The basic periodic oscillatory unit adjusts its phase and period to lock with a
discrete pulse’s input stimulus s(t). s(t) represents the onsets of individual event
notes. In our experiments, the onsets represent individual claps, with s(t) = 1 at
each event and 0 at any other time.

The phase of the periodic oscillator is defined as:
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„ = t ≠ tx

p
, with tx ≠ p

2 Æ t < tx + p

2 (4.4)

where tx is the expectation point. Events that occur before tx are early, and events
that occur after are late.

Adaptive oscillators track input events by generating their own theoretical beat
that instead of being a discrete event, has a width during which events are “listened”.
These are called output pulses, and are defined as:

o(t) = 1 + tanh “(cos 2fi„(t) ≠ 1) (4.5)

The parameter “ is an output gain, and it controls the width or skirt of the
oscillator output. The oscillator will only entrain to signals that occur within its
receptive field. A small “ means a wider receptive field, with the oscillator tolerating
more variability in the signal. A large “ generates a narrow receptive field. In this
case the oscillator will entrain to signals that are very close to it’s internal period.
This is useful in cases for rhythms that have a more complex internal structure to the
beat, like syncopation and others. In our analysis, we will keep “ constant since we
want to track each event.

Oscillators couple with an external stimulus by adjusting their phase. Adaptive
oscillators can also adjust their frequency. Perfect synchronization happens when tx is
perfectly aligned with the input events s(t). Therefore tracking is implemented based
a “modified gradient descent procedure” [45, pag. 15] that dynamically minimizes
the di�erence events and expectation points. Like standard gradient descent, the
delta-rule is based on the first derivative of an error function:

E(t) = s(t)(1 ≠ o(t)) (4.6)

This error function E(t) is non-zero only when there is a stimulus (s(t) > 0). It
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also has a minimum when o(t) = 1. Minimization of this function produces perfect
alignment between tx and s(t). The true gradient descent rule is modified in order
to obtain proportional phase adjustments regardless of the nominal period of the
oscillator.

The phase-tracking delta rule is implemented with:

�tx = ÷
1

s(t) p

2fi
sech2 “(cos 2fi„(t) ≠ 1) sin 2fi„(t) (4.7)

And the period-tracking delta rule:

�p = ÷
2

s(t) p

2fi
sech2 “(cos 2fi„(t) ≠ 1) sin 2fi„(t) (4.8)

The coupling strengths, ÷
1

and ÷
2

, determine the speed of adaptation for phase
and period, respectively. The adaptation only occurs when events s(t) are within
the receptive field. When events arrive early (before tx), the implication is that the
oscillator is going too slow, so this causes a negative phase shift and a shortening of
the period. Events after tx imply that the oscillator has to slow down, so the phase
is positively shifted and the period increased.

A simple example of this adaptive oscillator is shown in Figure 4.2. The stimulus
is a periodic impulse with a period of 0.66 seconds. The oscillator starts with a period
p = 0.7 seconds, ÷

1

= 0.8, ÷
2

= 0.2 and “ = 2. We see how the oscillator adapts
it’s periods for every event s(t), until they are both aligned at 0.66 milliseconds. The
oscillator is adaptive because after the tracking, in the absence of future events, stays
at it’s new period of 0.66 milliseconds and doesn’t return to it’s original period like
many other kinds of oscillators.
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Figure 4.2: Example of a Large-Kolen oscillator responding to a simple periodic
impulse stimulus. (adapted from Large and Kolen [45]).

4.3 Coupled Adaptive Oscillators for Rhythmic
Tracking and Firing

In this section we use adaptive oscillators not only to track beats, but also as a genera-
tive (performing) mechanism. The underlying assumption is that tracking (following
some rhythms) and firing (performing a beat) are part of the same self-sustained
oscillator. Adaptive oscillators assume that performers have an internal expectation
point where the next beat is more likely to occur. We expand this notion using the
same adaptive oscillator for generative beat performance, i.e., performing the beat.

The tracking point is an idealized metronomic firing point, but musicians don’t
play metronomically. Instead, they are able to push the beat, or in turn, follow the
expressive tempo variations of another performer in the ensemble. Depending on how
confident the performer is, or on his intention of accelerating or decelerating the beat,
the firing point will be before or after the expected point.

In this conceptual framework, the same adaptive oscillator serves two functions,
expectation, and as a measure of confidence, i.e., when a player performs based on
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his expectation.
Figure 4.3 shows the temporal receptive field of the Large & Kolen adaptive-

oscillator, with the firing points example. The position of the firing point within the
limit-cycle is a measure of confidence or leading in rhythmic synchronization. When
performers are confident and want to push the beat, there is an anticipation in the
firing point („ < 0). When performers are reactive, they are waiting for the stimulator
and are less confident („ > 0).

time

Tracking point 
(expected)

ϕ = 0ϕ = -0.5 ϕ = 0.5

Firing point 
(Excecution)

ANTICIPATION
ϕ < 0

REACTION
ϕ > 0

Figure 4.3: Integrated framework for tracking and firing rhythm. The figure shows
the receptive field of an adaptive oscillator with tracking (expected) point and firing
(execution) point.
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4.3.1 Example: coupling two Large-Kolen oscillators

Figure 4.4 and Figure 4.5 show an example of a coupling between two oscillators
using the rhythmic pattern of this research (see Figure 3.1). In this example, the
firing point and the tracking point are the same („ = 0). Delay between oscillators
is 20 ms.
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Figure 4.4: Synchronization example between two oscillators: output pulses.
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Figure 4.5: Synchronization example between two oscillators: instantaneous tempo.
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Figure 4.6: Synchronization example between two oscillators: instantaneous tempo.
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We see in this example of coupled oscillators with no anticipation („ = 0) that
tempo will slow down indefinitely, since expected points are always late due to the
delay. The period of the oscillator will adapt and slow down until tempo is zero in the
limit. In the next section we will discuss the di�erent predicted tempos with several
delay conditions, and how it is di�erent with and without anticipation in firing.

4.4 Predicted Tempos

A simple memoryless model that instantly perceives tempo has been propose by
Gurevich et al. [34]. In this model, each performer incorporates the perceived delay
as a tempo decrease. Each performer waits for the other to clap and then immediately
adjusts its tempo. There is no delay in the adjustment and no expectation point, so
this model is purely theoretical and cannot be implemented computationally. Tempo
M will therefore decrease according to:

M(n) = 60

T0+nd

where T
0

= 60/Mo is the starting period in seconds, n is the quarter-note number
and d is the delay time.

We compare the predictions of this model with the coupled oscillators model when
there is no anticipation, i.e., firing and tracking are the same point.
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Figure 4.7: Synchronization example between two oscillators: predicted instantaneous
tempo for all delay conditions.
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Figure 4.8: Comparison between oscillator model (left) and Gurevich model (right):
predicted instantaneous tempo for all delay conditions.

In both models (Figure 4.8), tempo will decay indefinitely (eventually reaching
0). Humans outperform both models with a much more stable performance, with
less tempo degradation. However, the nonlinearity of the coupled oscillators model
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makes it significantly better than the simple oscillator model. The decay happens
much slower. The nonlinearlity and expectation framework of the model account for
this. In the next section we will discuss improvements to the model in its tracking
and performance (See Figure 4.11 for a mean acceleration comparison).

4.5 Anticipation and reaction in rhythmic tracking

We want to understand the performance of a coupled oscillator model that incorpo-
rates distinct firing and tracking points (see Section 4.3). Figure 4.9 compares the
signed relative alternating-asynchronization means for the experimental data with
the theoretical compensation (anticipation) that would be needed to keep a constant
tempo for the di�erent delay conditions. The theoretical compensation is equal to
the delay condition in the performance, i.e., each clapper anticipates by exactly the
delay time. This will produce a steady tempo with no deterioration. When the ex-
perimental data (relative alternating-asynchronization) is greater than the theoretical
compensation (deceleration in the Figure 4.9), tempo will speed up. When the oppo-
site happens (acceleration in the Figure 4.9) tempo will slow down. This is consistent
with the experimental data of Figure 3.7 and may account for at least part of the
compensation process.
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Theoretical 0 acceleration
Aasync = delay

deacceleration

deacceleration

Figure 4.9: Relative alternating-asynchronization means and theoretical 0-
acceleration values

We use the experimental data values from Figure 4.9 to simulate and predict
tempo changes with the coupled oscillator model with anticipation (Figure 4.10).
Compared to the previous model with no anticipation, we now see the acceleration
for very small delays, and a better performance for longer delays. As predicted by
the data, the ideal delay (zero tempo deterioration) will be between 6 and 15 ms.
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Figure 4.10: Predicted tempos for all delay conditions with coupled oscillators with
anticipation. Anticipation values are taken from dataset analysis.

Figure 4.11 compares the mean acceleration from the experimental data with
the mean acceleration produced by the coupled oscillators model and the Gurevich
model. The oscillator model uses the relative alternating-asynchronization means as
the anticipation value (in milliseconds) for the compensation. The figure shows that
humans outperform this model at both extremes, for very small delays and for longer
delays.
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Figure 4.11: A single measure of tempo acceleration (its mean) is compared for experi-
mental data (solid line), oscillator model with anticipation (dotted line) and Gurevich
model (dashed line).

4.6 Tempo stabilization

All models considered so far will continue to increase or decrease tempo indefinitely.
However, it has been shown that tempo tends to stabilize during a performance.
This can happen after an initial acceleration or deceleration, depending on delay and
starting tempo [11]. We have also observed this phenomenon in network performance,
and in particular with some informal experiments done with the St. Lawrence String
Quartet. A description of this experiment follows.
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4.6.1 St. Lawrence String Quartet experiment1

Live music experiments have been made with the help of the St. Lawrence String
Quartet, Stanford University’s Ensemble-in-Residence. We present here a test be-
tween The Ban� Centre, Alberta, Canada and CCRMA, Stanford University (June
2006) of a split string quintet. The quartet, located at Ban�, was extended by a viola
player performing from CCRMA. The sound was configured in such a way that only
the room acoustics of the hall at Ban� were heard. In order to achieve this e�ect, the
viola player was placed in CCRMA’s semi-anechoic room. Four speakers were posi-
tioned simulating the physical locations of the other members of the quintet (violin
1, violin 2, viola 1, violoncello) surrounding the viola performer. Each instrument in
Ban� was picked up using a directional microphone that was fed into the individual
speakers in the semi-anechoic room, forming the quintet on the Stanford side. Two
extra microphones where used to capture the acoustics of the hall. A microphone on
the viola player at Stanford was sent to a speaker at Ban�, forming the quintet on
that side.

During this test, the audio RTT was measured and was approximately 50 ms.
Neglecting any asymmetries, the performers where separated by a path of 25 ms
(unidirectional). They performed Mozart’s String Quintet in G minor, K. 516.

4.6.1.1 Reactions to the delay

Qualitative analysis of the performance, recordings and comments from the musicians
are illustrative of issues that surface in such circumstances.

During a section between the viola (Stanford) and the violoncello (Ban�) which
constituted a rhythmic unison, the performance naturally slowed down. This e�ect
can be predicted from the present study. Interestingly though, when used consciously
by the musicians, it led to what was called the perfect ritard. The e�ect of “viola
waits for cello” and “cello waits for viola” led to this controlled ritard, down to a
certain point where the tempo stabilized. The amount of delay and the fact that
this part of the performance included only two instruments (i.e., in “rhythmic power”

1
Audio files from this experiment can be found at https://ccrma.stanford.edu/groups/

soundwire/research/slsq/

https://ccrma.stanford.edu/groups/soundwire/research/slsq/
https://ccrma.stanford.edu/groups/soundwire/research/slsq/


CHAPTER 4. MODELS FOR RHYTHMIC COORDINATION WITH DELAY 58

equilibrium) can explain this phenomenon. The musicians were also able to maintain
tempo when done consciously, i.e., when they were aware of the delay e�ect, they
could define strategies to be able to play on time (without ritard). Strategies used are
consistent with ones discussed earlier and in Bartlette et al. [6]. Again, these e�ects
where observed when there was an equal balance in “ensemble power” or “rhythmic
power” (only two musicians performing and with equally significant roles in terms of
setting rhythm).

Another interesting e�ect observed dealt with the opposite situation; an unbal-
anced power between the two groups. Since four musicians were at Ban� but only
one at Stanford, the natural tendency (or strategy) of the Stanford viola player was
to just follow the quintet. The quartet at Ban� had to compensate and “struggle”
with the slightly delayed sound coming in from Stanford. This struggle was clearly
heard during the test; at one moment, the performers in Ban� asked to “turn o�”
the viola (speaker) coming from Stanford. In that case, what was heard at Stanford
was an impeccable performance. This is a real-time case of music minus one.

4.6.2 Tempo stabilization with phase analysis

To understand why tempo stabilizes after some degradation, we postulate that tempo
anticipation and reaction are relative to instantaneous tempo and not absolute mea-
sures. It has also been shown that musicians tolerate more feedback delay for slower
tempos [4]. In Section 3.5.2 we discussed how phase analysis measures proportion of
alternating-asynchronization with respect to instantaneous tempo. For example, for
slower performances, the same alternating-asynchronization (in time units) will result
in a smaller „, i.e., a smaller proportion of the beat cycle. If instead of using a fixed
tempo anticipation, we use a relative one in terms of the instantaneous tempo and a
fixed delay, tempo will naturally stabilize into an “optimal” condition.

Each combination of delay condition and phase anticipation will have a theoretical
stable tempo. This tempo will be when the absolute anticipation (in milliseconds)
matches the delay. The stable tempo will be:

pstable = ≠delay
„fire



CHAPTER 4. MODELS FOR RHYTHMIC COORDINATION WITH DELAY 59

For example, using a delay = 28ms and „fire = ≠0.06, the theoretical stable
tempo will be 64.3 bpm. Using these same parameters with the coupled oscillator
model and coupling parameters ÷

1

= 0.2 and ÷
2

= 0.2, we see that the stable tempo
converges to a value close to the theoretical. The di�erence can be accounted by
the nonlinearlity of the coupling. We will see in the next section how the coupling
parameters influence the convergence tempo.
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Figure 4.12: Tempo stabilization example with coupled oscillators

4.6.3 Phase and frequency coupling parameters

The coupled oscillators discussed in this research have two relevant coupling param-
eter, phase coupling (÷

1

) and frequency adaptation (÷
2

). The speed of adaptation
and the stability of the coupling depends on the value of these coupling parameters.
Figure 4.13 show an example with larger coupling strengths , ÷

1

= 0.3 and ÷
2

= 0.8.
We remind the reader that the previous theoretical tempo stabilization was 64.3 bpm.
We see that in this example, for these coupling parameters, the stabilization occurs
at a much higher tempo (around 73 bpm), and that it converges faster than for the
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example shown in Figure 4.12. There is also a continuous adaptation after tempo has
stabilized, illustrated by the “zigzagging” of the tempo curves. This seems consistent
with the behavior of the human subjects, but it should be pointed out that this is
not the finer granularity for internal sub-beat proportions from inside the pattern
observed in Figure 3.16. To account for that e�ect, the model would have to include
a second order adaptation that is not in the scope of this research.
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Figure 4.13: Synchronization example between two oscillators: instantaneous tempo

Figure 4.14 and 4.15 show the tempo convergence for di�erent combinations of
coupling strengths ÷

1

and ÷
2

. A di�erent set of experimental data is needed to tune
these parameters, but we can comment on some of the observed behavior. When ÷

1

is small, tempo converges to very close to the theoretical value, independent of the
value of ÷

2

. This means that ÷
1

has an e�ect on the speed of the adaptation, but not
on the value of the stable tempo itself. With larger ÷

2

, however, convergence tempo
increases dramatically, and in extreme cases is even higher than the starting tempo
of 90 bpm.

We discussed in Section 3.5.5 that human subjects duos are not symmetric, that
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sometimes a subject is in a stronger role, that of leader. A future direction in this
research is to understand such interaction dynamics and to analyze in detail duos
in order to discover interaction patterns and imbalances that can be modeled with
asymmetric coupling strengths.
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Figure 4.14: Coupling parameters dependency for delay=28ms and „fire = ≠0.06
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Figure 4.15: 3D plot for coupling parameters dependency for delay=28ms and „fire =
≠0.06

4.7 Conclusions

We presented a model of coupled oscillators for the experimental data from Chap-
ter 3. Specifically, we used the Large-Kolen adaptive oscillators, and integrated into
it tracking (listening) and firing (performing) of the beat. We included in this model
an anticipation and reaction parameter that is consistent with the experimental data
in the literature and in this research. Humans anticipate the beat of the other per-
former and always play a little bit ahead of it. This e�ect becomes stronger as delay
increases, but caps at an average of around 40 milliseconds. This seems to be a
strong upper limit, but experiments with larger delays than the ones presented must
be performed in order to validate this theory.

When performing with delay, one goal is to be able to keep a steady tempo and
avoid timing degradation. The model presented performs better than previous at-
tempts, but humans are still better at this task. Second-order adaptation in a finer
inter-beat granularity that are not accounted in the presented model may explain this.
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Our model includes an anticipation parameter that is static, and a better understand-
ing of this prediction mechanism is a desirable goal to improve the performance of
the model.

A larger set of experiments needs to be performed in order to asses in more
detail the implications of the model. In particular, a test between a robot clapper
(the model) and a human subject would give insights on interactions which are still
missing and need to be accounted for in the oscillator coupling.



Chapter 5

Conclusions and Future Work

5.1 Overview

Musical Networked Performance has motivated the research of the e�ects of time de-
lay in music performance. We are in an exciting time when telecommunications are
approaching the theoretical limit of the speed of light, and can be as fast as a couple
hundred milliseconds between opposite parts of the planet. Music requirements are
much more stringent than conversation, and these very small delays are still prob-
lematic for music performance. To understand and quantify the strategies humans
use to deal with these types of latencies are the goals of this research.

We analyzed a set of experimental data in which duo subjects perform a simple
interlocked pattern, under a set of delay conditions that ranged from 1 to 78 millisec-
onds. This range is commonly encountered in today’s transcontinental concerts. The
analysis of the data reveals that there’s an innate tendency to anticipate the beat of
the other performer in rhythmic interaction. This explains why for very small delays
(delays that may be considered “unnatural” from an evolutionary point of view) there
is an acceleration. For longer delays, humans increase the adaptation mechanism (al-
ternating asynchronization) to avoid tempo degradation. We saw that there is a limit
to the amount of adaptation, however, and that this caps in average at around 50
milliseconds. This explains also the tempo degradation observed for longer delays.

To model delayed interaction dynamics, we presented a coupled oscillator model

64
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using adaptive oscillators. In this model we incorporated rhythmic execution (“fir-
ing” in oscillator terminology) to the tracking mechanism of the oscillator. With
this addition we can couple two oscillators using the same rhythmic pattern that was
discussed in the experimental analysis (Chapter 3). Firing in the oscillator incorpo-
rates an anticipation and reaction parameter. This addition is shown to improve the
tempo degradation that happens with delay, but humans outperform the model. The
model presented does not account for finer granularity of internal sub-beat propor-
tions inside the pattern, which is possibly an explanation of why humans are better
at it.

We also show how the coupled oscillator synchronization mechanism with antic-
ipation can explain the tolerances for slower tempi, and we speculate that relative
anticipation (in phase units) may have a role in why tempo stabilizes after some time
and doesn’t degrade indefinitely as in previous models.

We finished by opening a window to further research that is needed to better
understand the interaction dynamics and the coupling behavior, showing how larger
frequency adaptation coupling strengths have a great influence in the long-term dy-
namics interaction of the pattern analyzed.

5.2 Future Research and Directions

An immediate extension of the current research would be to implement and try a
realtime oscillator with the anticipation mechanism discussed to deploy an experi-
ment between humans and a machine. This experiment will reveal the strengths and
limitations of the current model, and will facilitate obtaining more data to validate
and fine tune some of its parameters.

We discussed how the internal sub-beat proportions may have an influence in the
overall interaction of a performing duo. To further understand this, it is necessary
to experiment with di�erent types of musical meters, e.g., ternary and others. This
should illuminate similarities and di�erences of the strategies adopted that are not
explicit in our dataset. This new data may help to create a model that incorporates
multiple oscillators to track di�erent metrical levels.
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Our model doesn’t consider other acoustical/musical parameters like attack du-
ration, loudness, reverberating environments, accented patterns, and others that are
relevant to the psychoacoustics of synchronization. These should be incorporated in
the future.

Speech synchronization [22] is also an emerging field of research. The main di�er-
ence between speech and rhythmic synchronization seems to be the how the system
(system in this case is the interacting humans) deals with error. In rhythmic syn-
chronization, humans are able to recover usually very fast. By contrast, in speech
synchronization errors are catastrophic, with the whole performance coming to a
halt. In speech synchronization the interlocking mechanism may be more fluid but
is also less robust. There’s much promising research that can be done to understand
synchronization in this di�erent context.

Finally, although complete musical prediction is still in its infancy and may never
be completely possible, the anticipation and expectation oscillator interaction dynam-
ics suggest that humans already do this kind of operation, at least rhythmically, and
having a machine performing a similar operation would be feasible. The delay can be
used in musical ways [14], and music can be specifically created in a predictive way
to “beat” the telecommunications delay. This has practical implications for appli-
cations like distributed musical games (like RockBand), but also opens new musical
and technical windows that real-time network performance makes us think and dream
about.
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