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Abstract

We describe a series of experiments using sequential neural networks to model the effect  of contextual bias

in music cognition. The model quantifies the strength and specificity of a virtual listener’s expectations

while listening to functional tonal harmonic chord sequences. The network integrates pools of duple and

triple metric units with pitch class representations of chords. The ’listener’ is then exposed to new chord

sequences. We interpret the output of each sequential vector as the expectation for the next event. By

representing segregated duple and triple metric beat units we visualize the process of metric cognition, and

the mutual reliance of metric and functional harmonic expectations in establishing a percept of meter and a

context for expecting consequential harmonic activity.

1. Background

Recent studies in cognition address the interdependence and mutual influence of multiple schemas in

creating contexts.  Schema based studies and models of music cognition [Leman, 1998] have applied

Gestalt approaches to many aspects of the musical experience. However, few of these studies consider

premonitory conditioning in schema selection. In this paper we show that a-priori contextual bias can

strongly influence a sequential neural network model of music cognition and propose that this influence

carries strong implications in understanding how a listener arrives at metric awareness (or, at the very least,

suggests that this factor must be taken into consideration in modeling).  

The interplay between conditioning and habituation in attending to, suppressing, repressing or rejecting

contexts has been studied both from biological [Ricker et al, 1993] and ecological approaches, also see

[Wagner, 1989] for a neural network model of conditioning. Bias in auditory priming has been studied in

speech perception [Ratcliff, et al 1996]. 

Dessain and Honing’s  study of beat induction  marvels at the human ability to induce a strong sense of beat

"Only after a few (5-10) notes" in a bottom-up process. They go on to note the simultaneous presence of a

’top-down’ process that creates a metrical framework to build expectations. "When in a change of meter the

evidence for the old percept becomes to meager, a new beat interpretation is induced."[Dessain and Honing

1994].  A-priori expectations can be among the factors in the speed and efficiency of beat induction (is a

few 5 or 10?). The time that it takes a listener to be cognizant of the meter is one possible measure of metric



clarity.

Although there have been studies regarding the influence of musical contexts on meter processing [Keller,

96] no studies that we are aware of have considered the role of a-priori expectations for meter on metric

cognition.  We call this phenomena contextual bias. Bias plays an important role in establishing the degree

of realized expectation (DRE). Examples of a-priori contextual bias include:

1. Biased expectation for duple meter  suggested by [Keller, 96].

In the absence of contextual hints there is empirical evidence of an initial assumption of duple meter.

2. The expectation from prior experience that a work or movement will be in a given meter. 

An experienced listener, for example, would expect the second movement of a Haydn string quartet to

be a minuet. Although each of these particular minuets contain peculiarities that play on expectations, one

(op 77 no. 4) begins in duple meter, creating an immediate conflict with premonitory expectations. 3. A

metric change or diversion in the course of a piece. 

Once a listener ’selects’ a metric framework, any subsequent change in meter will require a certain

amount of reconditioning (based upon how abrupt the change is). Such a change can include a prolonged

metric shift (example x) or a temporary metric diversion (for example, a hemiola) .

The range of the above examples suggests that metric bias deserves careful attention and must be integrated

into any study or model of beat induction.

2. Design Issues, Architecture and Representation 

Our approach to study the complex issue of premonitory conditioning was to model it with simple means.

In previous publications [Gang and Berger, 97], [Gang and Berger, 96], [Berger and Gang, 96] we

described a neural network  model of the interaction of duple and triple metric schemas with isochronous

harmonic progressions. In this model we trained a sequential neural network with a repertoire of metered

tonal progressions in duple and triple meter. We then introduced unambiguous, ambiguous and anomalous

progressions to our virtual listener and studied the interaction and mutual influence of metric and harmonic

expectations. In this paper we describe and compare two sets of experiments that model a-priori metric bias

of our virtual listener achieved by varying the training strategy we were able to control bias.

Our model uses a sequential neural network with two pools of metric  units (3 units for triple and 4 units for

quadruple meter) and a   pool of 12 units representing normalized pitch class  representations of chord

tones. The state layer is composed  of the two pools of metric units and the pool of PCs. The state units are

used to establish a context that influences the prediction of the next element of the sequential information.

The output layer contains the same pools of units as the state 

layer.  The metric units represent the predicted interpretation of the net for the  current metric position. The

12 PC units in the output layer, represent the prediction for the subsequent chord. In the case of the metric

units, the output  is fed back into the corresponding pools in the state and added to the  context. In the case

of the PC  units, the context is updated with the target, instead of the actual output.   The metric pools in the

net’s state units are fully connected to the hidden  layer together with the pool of pitch classes, actually

implementing the  integration of the mutual influences of meter and harmony. The hidden units  are fully

connected to the output layer.  

In the case of the metric pool the update rule of the state is:



State_meter(t) = State_meter(t-1)* Decay_meter + Output(t-1).

Where the Decay_meter is between 0 to 1.

This rule simulates the fact that the listener is unassisted in its  metric interpretation. In the learning phase

we feed back the actual  output but use the target meter to train the net. In the  generalization phase the

meter is unknown, hence there is no target. 

The state update rule for the pitch class pool is:

State_harmony(t) = State_meter(t-1)* Decay_harmony + Target(t-1).

This rule simulates the fact that the listener is concurrently  processing the present chord and expecting the

chord to follow. Thus  we feed the actual "heard" chord (target at t-1) and not the expectations of the chord

at time t-1, into the state.

Our model quantifies the strength and specificity of a virtual listener’s expectations while listening to

functional tonal harmonic chord sequences. The network integrates pools of duple and triple metric units

with pitch class representations of chords. The ’listener’ is then exposed to new chord sequences. We

interpret the output of each sequential vector as the expectation for the next event. By representing

segregated duple and triple metric beat units we visualize the process of metric cognition, and the mutual

reliance of metric and functional harmonic expectations in establishing a percept of meter and a context for

expecting consequential harmonic activity.

We classify expectations according to predictive qualifiers.

The degree of realized expectation (DRE) is a measure of the correspondence between a prediction and the

associated event. DRE is a composite of two indices, one of surprise (DSp) and the other of ambiguity

(DA).

A high DRE results from frequency of occurrence (normative) and from  normative placement. The

strength and specificity of the expectations must correspond with that of the expected consequent. Low

DRE’s represent surprises and/or ambiguities. The ability of neural networks to generalize time ordered

sequential data and deduce patterns of varying degrees of abstraction make this approach a suitable one for

modeling these predictive states.

3. On Meter

Meter is fundamental to formulating musical expectations. In [Berger and Gang, 1995] we describe a model

of music cognition in which a metric counter was critical in building meaningful expectations. In a

subsequent paper we described a model of the mutual influence of meter and harmonic rhythm [Gang and

Berger, 1996]. Our research proceeded to examine the mechanism of metric perception [Berger and Gang,

1997]. We proceed here to examine the role of context on formulating metric expectations.

We note the following attributes of meter:

1. Meter is repetitive - its periodicity allows for organization.

2. Meter is hierarchical. 

3. In tonal music functional harmonic relationships generally adhere to placement constraints according to

this hierarchy.



4. Meter is data reductive - it  rules out certain interpretations thus greatly reducing ambiguities. This

feature is an outgrowth of items 2 and 3.

5. Metric determination comprises  creating (sometimes complex) interactions of differing temporal

structures. The sense of metric conflict resulting from (for example) a misalignment of harmonic rhythm

and the metric framework is both a cause and a resultant of this property.

6. Conflicts with and variations within a metric framework reduces habituation.

7. Interactions between metric organization and other musical parameters (in the case of our research,

harmonic rhythm) can pose contradictions to meter thus promoting the formulation of hypotheses which

constitute expectations. 

3. On Measuring DS, DA and DRE:

We classify output activations in terms of their strength and specificity. The strength is graphically

represented by the size of activation in the output. The specificity describes the distribution of output

activations. Output activations can be:

strong and specific 

strong and unspecific

weak and specific/unspecific

A strong and specific output that correctly predicts the input constitutes a high DRE. 

Musical surprises and/or ambiguities are represented by conditions in which: 

1. strong and specific activations do not match the corresponding target vector. An example of this situation

occurs in beat 5 of example 1.1 in which the output is strong and specific for [0,5,9] (IV) but not matching

the target [0,4,9] (vi). This constitutes a surprise. 

2. activations are unspecific. An example of unspecific activations occurs in beat 6 of example 1.1 in which

activations for [0,4,5,7,9] (with a weak activation for 2) fail to represent a singular expectation (possible

inferences include I,IV or vi). Since specificity quantifies the distribution of activations,  a qualitative

description of a lack of specificity would be ambiguity. 

Metric expectations are classified as follows:

A normative metric event is  a strong and unique activation (only one metric pulse activated at one

moment)  that bears  sequential consequence (a beat is followed by the next beat) and is a member of at

least one period of a metric group.

Two situations of metric ambiguity exist. These are: 

1. event could be the same beat position in more than one metric pools, beat could 

2. event could be different beat positions in more than one metric pools

There are 2 types of metric specificity -

two or more activations  in a single event within a single meter pool

one or more activations simultaneously in multiple meter pools

metric shift is not simultaneous - that is it occurs between pools and in consequential beat units.

4. Description of the Experiments

4.1 Experiment 1: Unambiguous tonal progressions:



We first describe cognition of a tonal sequence that is unambiguous both in its harmonic progression as

well as in the metric placement of harmonic events.  (That is, both what occurs and where it occurs in time

conforms to experientially derived expectations).

We proceed to describe the output of our biasing experiments in terms of DS and DA.

In experiment 1  we analyzed the output of the network on a a four measure progression in triple meter [I I I

| vi vi ii | V V V7 | I I I]  after training the network with a learning set whose order was first randomized,

next biased to triple meter and finally biased towards duple meter.

 

4.1.a. example 1.1 Triple meter, high DRE, minimal bias

 In this example bias has been minimized by randomizing the training set.

Note that the output of both meter pools are activated at the start, representing openness for either duple or

triple meter. The recurrence of vi on beat 5 squelches the continuation of expectation of duple meter after

the weak activation of a downbeat. This plausible listening strategy is entirely consistent with the harmonic

rhythm since the network is not trained with harmonic rhythms that cross measure boundaries. 

Of particular interest is the distribution of activations in beat 3 in which the lack of a-priori metric

preference contributes to expectations for change. The change to a submediant in beat 4 weakens the

plausibility of quadruple meter. The repetition of this harmony in beat 5 completely obliterates activations

in the quadruple pool.

4.1.b. example 1.2 Triple meter, high DRE, triple bias

In this example the same progression is introduced to the network, which, except for the fact that the

training method creates a biased preference for triple meter, is identical to that described above.

In beat 3 of example 1.2 the strong preference for triple meter reduces the ambiguity noted in example 1.1.



Although example 1.1 doesn’t reflect a strong musical surprise, the openness of the virtual listener to either

meter creates a subtle but important conflict that is sharply reduced in the model of a listener who, in

essence, can correctly tap her foot before the music event starts.

4.1.c. example 1.3 triple meter, high DRE, quadruple bias

 In this example the same triple metered harmonic progression is presented to the network which is biased

towards quadruple meter. The incorrect prediction that a tonic harmony will continue in beat four is a direct

result of this bias. This situation represents a listener who has a strong premonitory belief that the piece will

adhere to a quadruple meter. The ability of the ’listener’ in beat 5 to readily adapt by switching activations

across meter pools from an incorrect prediction of beat 4 in 4/4 to a correct prediction of beat 2 in 3/4

visualizes the mutually influential organizational power of harmonic rhythm and meter.

4.2 Experiment 2: Ambiguous harmonic rhythmic progression

In experiment two we analyzed the output of the network when input with a far more problematic

progression. The progression [I  IV V I  vi V7 I  IV  ii  V  V I  I  I  I  I] is ambiguous from beat one through

beat seven, being plausibly parsable in both triple and quadruple meter. The dominant-tonic pair in beats 4-

5 hints at triple meter. This is substantiated in the V-I progression in beats 6-7. However the arrival at the

tonic on beat 12 would violate expectations in that it falls on the third beat of a triple measure. 

4.2.a. example 2.1 high metric DA, minimal bias

The unbiased ’listener’, influenced by the first dominant-tonic pair, rejects the duple interpretation  in the



first measure (note the strong and specific expectation for beat 2 in triple meter at beat 5). However the

tonic arrival on beat 12 creates a situation in which metric expectations are weak and unspecific. 

4.2.b. example 2.2 high metric DA, triple bias

The triple-biased ’listener’ seems (oddly at first glance) to be more resistant to a triple meter interpretation

than the unbiased listener was. The reason for this lies in the influential interaction of harmonic prediction

and metric interpretation. Of particular interest is the shift in meter resulting from the dominant-tonic

resolution in beat 12. In this case, there is a strong and specific triple interpretation albeit shifted to a new

accentual position.

4.2.c. example 2.3 high metric DA, quadruple bias

Until the surprise sounding of the tonic on beat 12 (the fourth beat in a 4/4 parsing), the quadruple-biased

listener manages to maintain a persistent duple interpretation. Of interest in this example is the weakened

activation in the downbeat of measure 3 (beat 9) resulting from the disparity between predicted harmonic

function and the target chords from beat 6.

5. Conclusion and Summary

Significant and highly interpretable differences in output is evident when simple generalization strategies

are varied. Research on algorithms to minimize errors during the generalization phase  [Gish, 1992] focus



primarily on size of training sets needed during the learning phase.  Although we are not concerned directly

with efficiency of learning a useful measure taken from these studies is the Maximum likelihood (ML)

criterion  [cite] which is a distance measure from data points to decision boundary. [Rumelhart and

McClelland, 1986] describe a competitive learning algorithm (discussed in musical contexts in [Bharucha

and Todd, 1989]).

The cognitive and music analytic implications of these differences suggest that meter acquisition

specifically, and, perhaps, any schema identification process is highly influenced by a-priori expectations.

This observation challenges many assumptions made in cognitive modeling studies.

We propose that a listener incorporates extra musical expectations in presuming the initial metric

organization of the music being attended to. Contributors to this bias could include biological or

experiential preference for a given metric schema, the influence of metric cues heard prior to audition of the

work, or veridical expectations based upon style or genre. We feel that the establishment of metric

awareness must adapt to or overcome these biases while simultaneously searching for pattern based

periodicities within the music in order to recognize metric organization. By controlling the order of training

we model the premonitory contextual bias and observe how the musical patterns either reinforce or subvert

these a-priori preferences.

6. References

[Berger and Gang, 96]  Modeling the Degree of Realized Expectation in Music: A Study of Perceptual and

Cognitive Modeling Using Neural Networks, Proceedings of the International Computer Music Conference,

Hong Kong, August 1996.

[Bharucha and Todd, 1989]  Bharucha, Jamshed and P. Todd. Modeling the Perception of Tonal Structure

with Neural Nets. Computer Music Journal, Vo. 13, No. 4, Winter 1989. Reprinted in Todd and Loy, Music

and Connectionism, page 128.

[Dessain and Honing, 1994]  Desain, Peter., and H.  Honing. Foot-Tapping: a brief introduction to beat

induction. In Proceedings of the 1994 International Computer Music Conference. Page 78..

[Gang and Berger, 97] A Neural Network Model of Metric Perception and Cognition in the Audition of

Functional Tonal Music. Proceedings of the International Computer Music Conference, Thessaloniki,

September, 1997.

[Gish, 1992] Gish, Herbert.   A Minimum Classification Error, Maximum Likelihood, Neural Network.

Proceedings of the 1992 International Conference on Acoustics, Speech and Signal Processing. IEEE

92CH3103-9, Page 289.

[Leman, 1998] Leman, Marc, editor. Music Gestalt and Computing: Systems in Cognitive and Systematic

Musicology, Springer, 1998.

[Rumelhart and McClelland, 1986] Parallel Distributed Processing: Explorations in the Microstructure of

Cognition, vol. 1. Cambridge, MIT Press, 1986.




