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Abstract:

In this paper a model of musical listening is described. The model provides a visualization of
the formulation and realization of musical expectations as a listener hears (or imagines)
functional tonal music. The model provides a framework for categorizing and evaluating
expectations and their associated realizations.

The model is a modular sequential recurrent neural network that incorporates interdependent
sub-nets for harmonic progressions and meter. Using this model we examine the interplay of
metric inference and functional tonal harmony. The model visualizes the mutual influence of
these musical characteristics and provides visualizations of normative and disruptive listening
situations. 

In addition to visualizing processes of expectations and realization a number of cognitive
implications are discussed. Musical listening involves sub-symbolic learning through
experience. Acquiring metric and harmonic schema are an emergent property of a listener’s
exposure to metered tonal harmonic progressions. Harmony and meter are mutually influential
in creating a combined context for prediction. From these predictions interpretation of the
metric schema and harmonic expectations are formulated. Expectations can be described in
terms of strength and specificity, the affect of which attributes result in specific, ambiguous
and vague expectations. Under normative situations expectations are realized while in
irregular situations there is a difference between the expectation and the actual heard events.
The degree to which the expectation is realized (termed here, the DRE) corresponds to the
affect of surprise.

The computational model simulates some of the cognitive processes involved in musical
listening. It provides a visualization of the complex dynamic processes involved in musical
listening, and suggests methods to qualify and quantify aspects of these processes.
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"As the director of an orchestra, I could make experiments, 
observing what elicits or weakens an impression and accordingly 
correct, add, delete, take risks."

- Joseph Haydn 

1. Introduction

Franz Joseph Haydn was perhaps the first composer to articulate his craft in terms of

risk taking vis a vis his audience. These risks were strategically placed disruptions of

listeners’ musical expectations. It is therefore fitting that this work addresses theoretical

aspects of musical expectations from the standpoint of Haydn’s audience .1

Can a musical analysis express the extraordinary  playfulness one senses when

listening to the following musical example (see fig. 1)?

< insert fig. 1 - Haydn, Piano sonata H. XVI:50, third movement, mm. 1-11>

Labels such as /  or V/  to describe the chord in the penultimate measure inferV   V/
III  vi

functional relationships to the event. But these relationships are neither present nor relevant at

the time the chord is heard.

Terms such as elision or takterstikung to describe the ambiguity of phrase in measure

four address the compositional technique but say nothing about its perceptual affect.

Musical treatises based upon rhetoric describe methods with which composers willfully

confuse the listener. Most analytical and descriptive methods provide some means to evaluate

where and when a musical event conforms to the global norms of style and genre, and the

local norms of function and context. Fewer provide a sense of the degree to which norms are
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disrupted. Fewer still consider the perceptual affect of perturbations of the norm.

Listener’s expectations are implicitly addressed in some analytical approaches. In

Hugo Riemann’s pedagogical work on tonicization, for example, the author distinguishes

situations in which the target resolution of the tonicization is absent. For such situations

Riemann (1916) introduces square-bracket notation to represent the ’expected’ chord along

with the actual sounded chord. 

Gjerdingen (1988) identifies melodic archetypes and relates stylistic evolution to

deviation from schematic norms. Narmour (1990) describes melodic tendencies that create

implications for specific realizations. Some of these tendencies have been validated

experimentally (Cuddy & Lunney, 1995).

Narmour (1990)  proposes that expectations result from both bottom-up and top-down

processes. Bottom-up processes are independent of prior knowledge and include principles

relating to the size and direction of a melodic . Top-down processes incorporate experience

with genre as well as of the history of the particular piece as it is heard (extra and intra-opus

knowledge). Bharucha (1987) describes a connectionist framework for modeling the

interaction between top-down and bottom-up processes. 

Lerdahl and Jackendoff (1983) apply perceptually based rules of preference and

reduction to identify hierarchical structure in a musical score. Meyer (1973) proposed that

listeners, aware of the implications of an event, assess the probability of what will follow. For

Meyer, musical expectations (a term he later supplanted by the term implications) contribute

greatly to emotive response to music.

However, with the exception of Hasty (1997) who describes the projective implications
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of metric pulse, these theories do not describe the experience of listening as it unfolds in real

time. 

Jackendoff (1992) addresses real-time musical parsing and proposes three models of

parsing that provide means of examining the interpretive choices a listener makes for each

musical event she hears. The numerous analytical indeterminacies that arise make this a

problematic endeavor. The author proposes that the most likely model is one in which all

analyses are performed simultaneously. This requires that all possible interpretations that

persist above a ’threshold of plausibility’ remain active. The author proposes that a selection

function is applied to continuously compare the plausibility of active interpretations giving

preference to the more salient. If, as the author suggests, multiple interpretations remain

active it seems likely that competing interpretations not only exist in  parallel but also

influence one another. 

In this paper we introduce a theory of musical listening that categorizes and evaluates

the percept of the listener in terms of the expectations she formulates and the degree to which

these expectations are realized. We provide an account of a listener’s real-time experience

while listening to tonal music. 

2. The Musical Problem

2. 1 Regularity and irregularity

In considering musical expectations we are concerned with how a listener perceives

and processes the musical stream of events as she hears it. Particularly, we seek to distinguish

between regular and irregular musical events in the context of the listener’s prior experiences.
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In order to describe percepts of regularity and irregularity we return to fig. 1. We focus on

three features of this brief excerpt, the change in pattern in measures 4-6,  the harmony in

measure 10, and the silence in measure 11.

2.2 measures 4-6

By the time a listener hears the upbeat to measure four there is a strong and quite

specific expectation that the leading tone will resolve, the tonic will arrive, and that the phrase

will end on the following beat.  

And so it does. However the embellishing dominant harmony of the following beat

(measure 4, beat 2) disrupts the recurring pattern of change in the preceding measures creating

a sense of surprise in the listener. 

The second beat of measure four implies continuity. This is a surprise which can often

directly identify the ambiguity. In this case it subverts the realization of the preceding beat

but does not create a single specific alternative. It is only at the next metrically stressed

position that the surprise of the preceding two beats is interpreted as instantiating an elided

phrase (see fig. 2).

The surprise here occurs in the context of expected regularity. The temporal shift, that

is, the occurrence of familiar chords in sequentially familiar positions but shifted to occur at

an unexpected point in time is a common technique of surprise in music. Regularity provides

the context for Haydn’s ’risk taking’. By subverting the context of ’familiar’ the composer

can elicit surprise.
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<insert fig. 2  - Elision of phrase in m4-6 of ex 1>

2.3 measures 10-11

The first inversion B major chord in measure 10 constitutes one of Haydn’s more risky

moments. Measure 10 parallels measure 3, and, with the exception of the embellishing

chromatic lower neighbor in measure 9 that replaces its diatonic counterpart in measure 2,

there is no warning that the dominant will be replaced. In the context of the music that

immediately precedes it the event is syntactically rare (in the context of C major that is)  and

creates a harsh affect. The dissonant cross relations that arise between measures 9 and 10, and

the subito forte marking make this surprise all the more pronounced.

The affect of this shock is augmented in the silence that follows. The silence is

surprising in that it joins measure 10 to subvert an expected cadence. By isolating measure 10

with silence, and subsequently subverting metric expectations by prolonging the silence (by

placing a fermata over the rest) Haydn simultaneously contradicts multiple expectations.

The contextualized silence of measure 11 serves as an example of the dynamic nature

of expectations and realizations. The silence draws attention to the expectation  that precedes

it, and thus causes us to ponder retrospectively. The silence however turns vague as it extends

beyond its expected duration demanding that the listener attend to the future. At this event a

single silence forces the listener not only to expect the future but to attend to the past.

Before it turns ambiguous, the rest’s surprise is attributable to the failure of the

strongly expected resolution of the leading tone to materialize. 
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2.4 The need for theoretical constructs to describe and evaluate expectations

The verbosity of the above description of such risks underscores the need for a theory

of expectations. The characteristics of strength and specificity of an expectation, and a

measure of the degree of correspondence between expectation and realization serve as the

primary tools of the theory. These characteristics constitute the sensations of different

amounts of ambiguity, and vagueness, and the corresponding degree of surprise. This goal is

problematic due to the obscurity of processes that originate in the listener’s mind during the

audition to music. A description of these processes must capture the complexities of

dynamically changing contexts.

A listener constantly imagines continuations and constructs predictions for how the

music she hears will proceed.  In this sense, as is the case with performance, active listening

is an instance of non-transcribed composition.

The composer relies upon the listener’s facility to build expectations and manipulates

audience attention and emotional response by satisfying or denying the realization of these

expectations.

Tracking these processes may add to our understanding of the intentions and choices

made by the composer. We hope to gain insight into these fundamental issues by introducing

a representation that visualizes the context in which expectations are created, the attention that

they draw, and the way in which they are realized or subverted.

Given the complex dynamic nature of listening, the multi dimensionality and

dependencies of music, the high level of abstraction and vagueries of the phenomena it is not
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surprising that there is a lack of adequate tools with which to construct an analytical theory of

musical listening. To this goal a computational model using recurrent neural networks (RNN)

is developed.

Computational models provide the ability to address multi dimensionality, abstraction,

and complex interdependencies. Neural networks provide a means of capturing processes

which are difficult to formulate by rules. The success of the model's behavior  is used to

validate intuitions about perception, and to refine the theory.

A neural network architecture that contains recurrent connections facilitates the

incorporation of the past history of the sequence. In this way a dynamic context is built which

contains the necessary information for learning the temporal correlation of data involved in

real time musical processes.

Because of this the RNN is suitable for modeling temporal processes. Such a model

can provide a visual representation of dynamic processes of formulation and realization of

expectations. The visualization provides a means of classifying conditions under which

expectations are formed, and to interpret listening states. The model also provides a means of

qualifying and perhaps quantifying the correspondence between the listener’s expectation and

the actual heard event. 

3. Goals

We propose a general theoretical model of music cognition that describes states and

attributes of a listener’s formulation and realization of expectations.

To establish the theory we introduce a method of identifying and describing listening states
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when regular patterns are disrupted. This method is implemented by a predictive model that

provides the means for qualitative and quantitative assessment of these states. Errors in the

model’s prediction designate different perceptual states of expectation formulation and

realization. These include ambiguity, vagueness, and surprise. The model simulates a

listener’s real-time interpretation of normative and disruptive musical events.  The input to the

model is a representation of tonal harmonic events with associated metric positions. 

The model serves to describe the contexts in which expectations are formulated and

the affect of an expectation’s associated realization. In normative situations there is a high

degree of correspondence between expectation and realization. The model’s predictive error

will therefore be small. When the predictive error is large we designate the musical affect to

be a surprise. We call the quantification of error the degree of realized expectation (DRE).

In the model harmonic events represented by a vector of pitch classes serve as musical

input. The model’s predictions (i.e., the listener’s expectations) are represented in terms of

activation strengths of each vector element. Since the activations represent individual strengths

of each element the expectation can be evaluated in terms of  which pitch classes are

expected, and how strongly they are expected. The functional tonal idiom ascribes specific

meaning to particular triadic combinations of pitch classes. The degree to which  these

combinations can be interpreted as harmonic events defines the amount of specificity of

expectation.  If the interpretation is singular the expected event is considered to be specific. 

We thus arrive at metrics for describing strength and the specificity of expectation. The DRE

reflects the degree of correspondence between the vector of the expectation and that of the

actual sounded event.
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Thus the theoretical goal of designating and specifying various conditions and states of

expectations and their associated realizations are inextricably bound to the model that serves

to visualize these concepts and provide means to qualify and (to a degree) quantify these

situations.

The specific goal of this study is to build and refine the model and evaluate its results

using abstractions of actual musical excerpts.

4. Computational  Approach

The computational model deals with a highly reductive representation of short

segments of diatonic functional tonal music.  We consider diatonic tonal harmonic

progressions and their associated metric placement (harmonic rhythm) as a reduced yet

meaningful representation of music audition. Harmonic progressions are comprised of

hierarchical and functionally related events that generate expectations of what events can

follow others. However, a listener not only predicts what will occur next, but also, when  it

will occur. Listeners use simple periodic patterns to organize the temporal dimension. These

metric groups direct the prediction of  ’when’ the next event will occur. The sequential event

influences the preference of a given metric organization over others. This means that metric

organization and harmonic expectations are mutually influential.  Thus, although the model

uses a greatly simplified representation of music the interactions of meter and harmonic

rhythm constitute complex behaviors as a consequence of their mutual interdependence.

The Jordan sequential network (Jordan, 86) provides an appropriate modeling method

to cope with real-time musical processes. The Jordan sequential net is a simple form of a
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RNN. It is a feed forward architecture with feedback connections between the output and a

pool of units in the input layer. The feedback connections have fixed values (i.e., they do not

learn). This simple modification enables the net to retain the back propagation learning

algorithm (Rumelhart, Hinton & Williams, 1986) in dealing with temporal processes.

A pool of units in the input-layer represents the context of the sequence. 

The context at time t+1 is the accrued history of the sequence up to time t,  plus the predicted

event or the target event at time t. The history decays exponentially according to an

empirically established decay parameter.

The Jordan sequential network provides the ability to learn sequences of musical

events (in our case metered harmonic progressions) and to establish contexts within which

predictions for the harmonies and their associated metric positions are formed. We interpret

these predictions as harmonic expectations and cognizance of metric schema. Todd (1991)

demonstrated the Jordan sequential net's ability to generate original melodies whose properties

are extrapolated from a set of learned melodies. One of the authors (Gang, Lehmann &

Wagner, 1998) used a modular approach in building Jordan sequential nets to realize real-time

harmonization of melodies.

To cope with the mutual interdependencies of meter and harmony we develop a

modular approach to building the Jordan sequential net (Berger & Gang, 1996; Gang &

Beger, 1996; Gang & Berger 1997). Sub-nets of meter and harmony are integrated together

and connected by a common hidden layer. Each sub-net has its own decay parameter and a

unique strategy for updating its context. The metric context is fed by the output by way of the

feedback connections and the harmonic context is fed by the actual heard event. The
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integration models the mutual influences of meter and harmony.  This modular approach

enables the model to deal with more complex tasks than the simple Jordan sequential net.

5. Design and architecture

5.1 Corpus

The corpus consists of fifty functional tonal progressions, all in major keys. These

patterns were evenly divided into quadruple and triple metered progressions each four

complete measures with no upbeat. The triple metered progressions were padded with zeros at

the end so that all examples contain sixteen events. Harmonic rhythm in the corpus ranges

from one chord per beat to one chord per measure, with most of the examples having one or

two chord changes per measure. The examples are typical perfect authentic cadential formulae

commonly found in late Eighteenth century music and in contemporary harmony text books. 

The learning set consists of forty examples randomly selected from the corpus. The

learning set should reflect the statistical distribution of structural properties and regularities

that constitute idiomatic ’norms’. 

The generalization set comprises the remaining ten examples from the corpus. These

examples were used to tune the net as explained in section 6.3. 

In addition to the examples taken from the corpus, three additional examples  were added to

the generalization set. These examples were  excerpted from works by Haydn and are

described in section 7.
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5.2 Architecture and Representation

The computational model uses a sequential neural network with two pools of metric

units (3 units for triple and 4 units for quadruple meter) and a pool of 12 units representing

normalized pitch class (pc). A general view of this architecture is presented in fig. 3. The

state layer is composed of the two pools of metric units and the pool of pc’s. The state units

are used to establish a context that influences the prediction of the next element of the

sequential information. The output layer contains the same pools of units as the state layer.

The metric units represent the prediction of the net for the current metric position. The 12 pc

units in the output layer represent the prediction for the subsequent chord tones. The model

integrates two sub-networks that represent distinct yet mutually-influential entities.

These entities, harmony and  meter, are intertwined in a complex manner and combine

in the hidden units to formulate context. The mutual influence of these contextual entities are

established and learned during the course of formulating corresponding harmonic and metric

predictions.

In the case of the metric units the output is fed back into the corresponding pool in the

metric state and added to the context. This simulates the fact that the listener is unassisted in

her metric interpretation. In the learning phase we fed back the actual output but used the

target meter to train the net. In the generalization phase the meter is unknown, hence there is

no target. In the case of the pc units the context is updated with the target instead of the

actual output. This rule simulates the fact that the listener is concurrently processing the

present chord and expecting the chord to follow. Thus we feed the actual sounded event and

not the expectations. We are currently investigating the implications of incorporating
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harmonic expectations into the context. Although this would seem to be a cognitively relevant

approach we found that it does not affect the performance of the model in predicting element

t for context t. This would, however, be a useful approach when trying to predict the element

at time t+n for n>0. In this case the expectations would serve to bridge the temporal gap

between element t and element t+n and would constitute an imagined musical context.

As a result of these considerations update rules for harmony and meter are derived as

follows:

For harmony:

context (t+1) = decay  * context (t) + target (t)  h   h  h   h

For meter:

context (t+1) = decay  * context (t) + Output (t)  m   m  m   m

Both decay  and decay  are bounded real numbers between 0 and 1. In this way, theh  m

context of the harmony (context ) and the context of meter (context ) at time t+1 are iterativelym       m

built and are, respectively, an exponential decay of the history of the harmony and meter. The

decay parameters are found to be important in terms of the quality of the model’s performance

and were empirically drawn from the tuning process described in section 6.3.

The metric pool of units are fully connected to the hidden layer together with the pool

of pcs, implementing the integration of the mutual influences of meter and harmony. The hidden

units are fully connected to the output layer (see fig. 3).
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<insert fig. 3: the network architecture>

6. Running the network

6. 1 Learning

In the model expectations are not directly learned but rather emergent properties of the

process of learning specific harmonic progressions. Bharucha & Todd (1991) suggested using

harmonic progressions to capture schematic expectations using a three layer back propagation

neural network. In the learning phase the network is trained with the forty harmonic progressions

of the learning set. Each harmony of each progression is sequentially fed into the harmonic

context thus simulating real time listening. The disparities between each actual output and the

corresponding target of the harmony and metric index is computed. These errors were used to

derive the iterative process of setting the weights of the net.

6.2 Generalization

In the generalization phase the net is introduced to the ten new metered harmonic

progressions of the generalization set. In this phase the metric target does not exist, While the

harmonic target is established by the actual harmony heard. Nevertheless, we are interested in

the actual prediction of the net. More specifically, in the distribution of the activation of the units

in the output, which are by-products of the learning process. 

The network was trained and tuned with normative examples and thus successfully



17

generalizes in normative situations. When a new or noisy situation is introduced to the network,

the model retains much of its capability of meaningful generalization. To examine the model’s

response to non-normative situations two of the musical examples that augmented the

generalization set included the musical ’problems’ described in sections 2.2 and 2.3. 

6.3 Tuning the network

Decay parameters and the number of hidden units used in the net were arrived at by using

the ten normative generalization examples mentioned in section 5.1. In principle, the network

should be able to predict the examples with relative accuracy since these examples conform to

the idiomatic norms of the learning set, that is, they contain the most frequently recurring chords

and their associated metric positions. 

We search for the architecture that will produce the least error by adjusting the number

of hidden units and decay parameters. The error between the actual output and the target is

computed as their mean square difference. In some states the model reflects the presence of

multiple chords at a particular state.  This ambiguity can occur both in normative and disruptive

situations. If the context is too short to provide a single definition for its continuation ambiguity

will arise. Thus, there will be an error in situations in which the idiom allows for greater variety.

Using this strategy, we first performed a wide search for harmony and meter decay

parameters and the  number of hidden units. We evaluate the net’s performance by computing

the net’s error produced from the ten normative examples from the generalization set. We

validate the performance by judging the results according to musical criteria. The aim of the wide

search was to prune the broad parameter space. This left a more restrictive set of values to be
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evaluated in terms of optimal performance. 

The procedure for producing a result from the net is a cycle composed of four stages:

training on the learning set; reproducing one of the learning states; introducing the new patterns

from the generalization set, and evaluating the results. The quality of this result is a function of

the initial weights set with small random values at the beginning of the learning process. Each

run cycle will produce a varied result. 

To statistically infer the quality of performance of a specific architecture  the network is

run ten times. (In statistical terms, the quality of performance is the random variable). The error

of each run computed by the mean square difference between the outputs and the targets provides

one sample of the random variable. The average and standard deviation of the samples of each

random variable are computed. As expected, a significant difference between the average of the

performance of different architectures was found to correspond to judgement according to

musical criteria. The best architectures which produce the least error directs our search for the

optimal model which was, n the end, determined by musical judgement.

7. Experiments

     Three excerpts  from two works by Haydn were used in the experiment phase. These

include: the opening four measures of the second movement of the F major string quartet op.

3 no. 5, Andante cantabile (see fig.4), the opening  five measures of the C major piano

sonata, H XVI/60, third movement (Allegro molto), and measures 8   11 of H. XVI/60: III.

<insert fig. 4 -Haydn String quartet>
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  These examples were selected to represent a diversity of  types of expectations and

realizations. They were chosen to examine how the computational model represents these

cognitive processes when normative and disruptive musical situations are encountered in

real-time.

  The model visualizes cognitive listening processes by providing a graphical representation

of harmonic expectations and metric interpretation (fig. 5). The output of the model is

represented as four components of sixteen successive columns.  These sixteen columns

represent the network’s predictions at sixteen discrete time steps. Each time step is associated

with a single musical event defined by the beat level resolution. Hence, to interpret fig. 5

 consider each event as a quarter note unit. 

 In the graphical visualization the two top components  represents pitch class members

 of the target and the predicted harmony, respectively. Below this are two components 

representing the model’s inference of metric organization in terms of triple and quadruple

meters. Within each component are squares of varying sizes. Each square represents an

activation of the pitch or metric vectors of the output. The larger the square, the stronger the

activation.

<put fig.5 figure  net output of Haydn-normative>
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7.1 Haydn: String quartet, F major, op. 3, no. 5, second mvt., mm. 1-4.

The first event, representing the first beat shows strong activations for pcs [0 4 7].

Since the entire corpus commences on a tonic downbeat there is no ambiguity in the net’s

initial harmonic prediction. There is, however, ambiguity in the model’s metric interpretation

as evident in the activations of  down beats in both metric pools. This expected behavior is

the result of training with an evenly divided number of quadruple and triple examples in the

corpus. 

This metric ambiguity will persist until there is a change in harmony. Since all of the

examples in the corpus have a single tonic harmony in the opening measure, and none of the

examples has a harmony that crosses over a measure boundary, the model is keenly sensitive

to the correlation between harmonic rate of change and metric inference. The fourth beat is

thus a critical event information in terms of metric and harmonic prediction. If the model

would unambiguously infer a triple meter schema for the first three events, then it should

predict a harmonic change at beat four. However, since the model is undecided as to a metric

interpretation, it activates pcs [0,4,7,9] with a weak activation of pc[2]. These activations

conform simultaneously to the anticipation of harmonic change in the case of a down beat in

triple meter and to the anticipation of continuation of the tonic in the case of a fourth beat in

quadruple meter. 

Since the target (i.e., actual sounded event) at beat four is a tonic triad this squelches

any interpretation of triple meter from beat five. Since the model now has sufficient

information to contextualize quadruple meter, it predicts a change to a subdominant at beat
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five. A subtle harmonic ambiguity is evident here in weak activations of pcs [4] and [5]

leaving the possible interpretations of vi or IV. This ambiguity disappears in the following

weak beat where the model correctly predicts IV. However in the following strong beat the

weak activation of pc[2] suggests the possibility of a change to the supertonic. 

For the rest of the example the predictions are strong, specific and consistently

correct . Beats nine and eleven display weak activations adding possible interpretations for a2

supertonic harmony (beat nine) and an added seventh (beat eleven), to the strong anticipation

of the dominant. 

With a normative example the model is expected to successfully and specifically

predict the harmonic events in their correct sequence and temporal position. The model is

also expected to resolve the initial metric ambiguity within a few preliminary time steps. In

the event that ambiguities arise the model reflects the statistical distribution of the learned

examples of the corpus. In the case of a slightly erroneous prediction the model updates its

context and expected to correct its prediction for the next event.

The ambiguities and errors discussed in regards to fig. 5 do not reflect overt musical

surprise. They do however reflect the interpretive decisions and choices a listener makes

when hearing music. Even the most ’normative’ music demands: relying on context to build

expectations; relying on the correlation between expectation and realization to provide cues

needed to establish a metric framework; and, conversely, relying on the metric interpretation

to  influence expectations.
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7.2 Haydn:  C major piano sonata, H XVI/60, third movement (Allegro molto) mm. 1-4. 

<insert fig. 6  net output of Haydn - surprise 1 (3/4)>

Next we return to the challenging musical example that opens this paper. The perceptual

affect of the metric shift described in section 2.2 is clearly visualized in fig. 6. Here the

model reacts to the unanticipated dominant on beat eleven. The unrealized strong and specific

prediction for a tonic in beat eleven represents a surprise. In section 7.5 we describe a means

of quantifying the amount of surprise based upon the dissimilarity between the prediction and

the actual heard event.  

The unusual placement of V at beat eleven updates the context with an irregularity that7 

will influence the prediction of beat twelve.  This is evident in the lack of strong and specific

prediction for a tonic in the final beat.

In fig. 6 the disruption of harmonic rhythm produces a surprise represented by the

inability to predict the event of beat eleven and the weak and unspecific activations at beat

twelve. Nevertheless, the metric inference remains strong and specific as the interpretation of

triple meter is unwavering. In section 7.3 we describe another model in which surprise is

reflected in the disruption of metric regularity as well as in the prediction of harmony.
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7.3 Haydn:  C major piano sonata, H XVI/60, third movement (Allegro molto) m. 8-11

< insert fig. 7  net output of Haydn - surprise 2 (3/4) >

After disrupting the opening phrase with an internal digression Haydn gives the listener

reason to believe that, from measure 9, a repetition of the opening measures at the octave will

bring the music back to the regularity established by the beginning. As at the opening, the

established regularity creates a strong expectation that the cadential dominant will arrive at

the downbeat of measure 10. However Haydn surprises his audience at this point with an

unprepared and uncontextualized  B major chord. 

Fig. 7 visualizes the neural network’s output when fed this example. The return to

regularity described above implies that the listener has an already established sense of

temporal correlations at the levels of beat, meter and phrase.

To account for this, an extended model would need to be introduced to longer musical

examples to learn long term temporal correlations. The fact that in measure 9 the metric

schema is already established in the listener’s mind can be implemented by biasing the metric

interpretation of the model. We demonstrate the use of bias in section 7.4.

The B major chord is rare in that it is not in the lexicon of the purely diatonic corpus.

Because of this it provides an irregular context to the model. The model persistently predicts

G major for all three beats of the measure even though the context is updated by each

repetition of the B major triad.  This constitutes a surprise that results from the disparity

between the prediction and the actual heard event. 
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The irregular harmonic events do not immediately affect the metric interpretation.

However, after three successive updates of the context, the irregularity results in metric

ambiguity at beat ten.    

Haydn follows this shocking surprise with another - a prolonged silence. Correspondingly

the model updates the context with a vector of zeros representing silence resulting in

irregularity of metric interpretation. Despite the target’s vector of zeros, and the erratic metric

interpretation the model persists in strong and specific expectations for a dominant harmony.

The behavior of this model reflects characteristics that result from numerous parameters

including random weights, decay parameters, number of hidden units, the content of the

learning examples and the order in which they are introduced. Training two identical

networks each with differing initial random weights will result in unique dynamic behaviors.

For each trial run the net will learn different characteristic properties of the data. Thus, one

trial may appear to focus upon one conception of regularity while another may reflect others.

In both cases, however, these different results may each reflect coherent behaviors.

< insert fig. 8 Haydn, surprise version 2>

To illustrate these differences,  fig. 8 presents the results of the same musical example in

a different trial. In contrast to the previous results, this model reflects the surprises of the B

major chord and the ensuing silence of beats seven through twelve differently. In this case,

the surprise is reflected both in the harmonic expectations and metric interpretations. 
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A cognitive model of listening  must, by nature of its task, assume broad generalizations

about listeners. The ’idealized listener’ denies individualities of each listening experience

whether by a single listener rehearing a piece or a larger audience experiencing the same

music.   As demonstrated above, multiple trials or different sets of values for the learning

parameters can be used to simulate multiple listenings, be they repeated hearings by a single

listener, or listenings by multiple listeners.  

7.4 Haydn:  C major piano sonata, H XVI/60, third movement (Allegro molto) mm. 1-2. 

- Metric bias for 4/4

< insert fig.. 9(a b & c): net’s output of Haydn, the  bias varsion>

In the final example we return to the opening two measures of fig. 1 and present three

models reflecting the affect of premonitory metric bias on expectations.

In fig. 9a the network produces activations in both meter pools in the first event. This

reflects the fact that the corpus is evenly divided between triple and quadruple examples that

are introduced to the net in random order during the training phase. The metric ambiguity of

the opening events persists until the harmonic change at beat four. Since all the examples in

the corpus commence with a complete measure of tonic harmony the prediction for pcs [0 4

7] remains strong and specific until beat four. In beat four the metric ambiguity posits a

downbeat in 3/4 against a weak beat in 4/4. The triple meter interpretation influences the
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harmonic prediction for change to a subdominant harmony, while the interpretation of 4/4 is

reflected in the continued prediction for the tonic. The actual heard event is a supertonic

harmony. The updated context extinguishes the quadruple interpretation. 

In fig. 9b the model reflects a strong bias towards triple meter. There is no metric

ambiguity. This results in a different prediction for beat four. Here, the expectation for a

move away from the tonic is evident in the absence of activation for pc[7]. Instead the

activations of pcs[0 4 5 9] suggest expectations of vi or IV.

In fig. 9c the network strongly and specifically interprets the opening four beats of the

music in /  meter. The model’s strong and specific metric interpretation influences a similarly4
4

strong prediction for a tonic in beat four. There is only a small activation of pc[9]

corresponding to the harmonic change that would reflect triple meter. The change to the

super-tonic in beat four causes the context to shift the metric interpretation to triple meter.

From this point on the prediction is strong, specific, and consistently correct.

       The premonitory metric bias visualized by the model is a result of the order of training

during the learning phase. When the corpus is trained with a randomly ordered set of training

examples the network does not reflect significant bias for one interpretation over the other.

However, by training the network first with the set of examples in one meter followed by its

complimentary set in the second meter, we can bias the network’s initial metric prediction

towards the later. The affect of this bias on the model’s consequential prediction is discussed

in detail in (Berger & Gang, 1998).

The cognitive implication of bias is important. If a listener has strong metric expectations

at the start of a piece it can affect the way expectations are built. Premonitory metric bias can



 
27

result from extra-opus experiences including title (e.g. minuet), context (the second movement

of a string quartet), genre (relatively few popular tunes are in 3/4) and from other factors.

Assuming, as we do,  that performance cues are not supporting initial interpretations, (as

for example in the situation described here, in which the harmonic rhythm is static within the

first measure) there is nothing beside premonitory bias to assist in interpretation. For this

reason beat four in (the unbiased) fig. 5 is ambiguous, while beat four in (biased) fig. 9 is a

surprise.

7.5 Measuring the degree of realized expectations (DRE)

In predictive models the error between the actual and the desired outputs might be used in

a meaningful way to demonstrate some of the model’s properties and temporal correlations of

the data. In natural language processing the sequential positions of errors produced by

recurrent neural network models have, for example,  been used to distinguish boundaries

between linguistic units (i.e.., distinguishing word endings from a stream of letters). By

graphing the error over time,  cues for segmentation can be inferred. Onsets of new events

will produce high error. In the case of word boundary segmentation, for example, these errors

will subdue over time as the predictability of the sequence increases as more letters of the

word are revealed. The decrease in the error marks the end of the distinguished word (Elman,

1990). 

Following this idea we calculate the errors produced by the model for each output and the

correspondent desired output. To this aim we defined distance functions to compute different
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aspects of correspondence. 

Fig. 10a contains a graph of the DRE for mm. 1-4 of fig 1. The surprise of measure 4 beat

2 was replaced by a tonic in order to provide a normative example. Fig. 10b is a similar graph

of mm. 8-11 of fig. 1 (corresponding to fig. 7). The DRE is computed by the square of the

differences between the target and the output.  

The descriptions of section 7.1-7.4 provide qualitative insights regarding expectations and

their corresponding realizations. Measuring the DRE suggests a quantitative description of

these insights. Refinement of meaningful methods to compute the DRE demand validation by

other experimental data and consideration of other distance functions.  

<insert: fig. 10a and 10b. - DRE)

8. Conclusions and further directions

Strunk (1933) expresses the rhetorical framework for manipulating expectations:

 "Only when the roles of the game are well established is it feasible for the composer to play

upon the expectation of his listener. And even then, to play on expectation he must first

arouse it. To secure emphasis he must first exercise self control. He cannot afford to be

continually surprising to his listener. He must be simple before he is complex, regular before

he is irregular, straightforward before he is startling.".

Haydn’s risk taking involved experiments with manipulating various types and degrees of

musical surprise.  That these surprises have been felt and appreciated by Haydn’s audience
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goes without saying. However, traditional analytical techniques lack the tools and terminology

to qualify and quantify these basic musical affects. 

In this paper we addressed these issues by proposing a computational model that simulates

some of the cognitive processes involved in musical listening. Specifically, we examined the

interplay of metric inference and functional tonal harmony. The model visualizes the mutual

influence of these musical characteristics and provides visualizations of normative and

disruptive listening situations. The RNN model provides an approach to visualization of

expectations and their associated realizations. Various phenomena and situations relating to

musical expectations can be identified with these visualizations. The model offers methods to

describe qualitative attributes of expectations and realizations. The interpretation of error in

the predictive model suggests methods of quantifying attributes of expectation and the degree

of its realization. 

Our work suggests a number of cognitive implications. Musical listening involves sub-

symbolic learning through experience. Acquiring metric and harmonic schemas are an

emergent property of a listener’s exposure to metered tonal harmonic progressions. Harmony

is perceived as part of the musical stream while meter is inferred from it. Harmony and meter

interact with one another to produce tonal harmonic expectations and metric interpretations.

Harmony and meter are mutually influential in creating a combined context for prediction.

From these predictions interpretation of the metric schema and harmonic expectations are

formulated. Expectations can be described in terms of strength and specificity. The affect of

these attributes result in specific, ambiguous and vague expectations. Under normative

situations expectations are realized while in irregular situations there is a difference between



 
30

the expectation and the actual heard events. The degree to which the expectation is realized

(DRE) corresponds to the affect of surprise.

The computational model can be refined and expanded in a number of ways. These

include the incorporation of a more extensive corpus, the use of longer musical examples, a

richer and more encompassing representation of music, and further investigation of distance

functions as a representative measurement of DRE. Empirical findings from psychological

experiments with human subjects can provide data to validate the performance of the model.

Probe tone studies of expectations for functional tonal harmonic progressions (Schmuckler,

1989), (Krumhansl & Shepard, 1979) and ERP studies (Patel, Gibson, Ratner, Besson &

Holcomb, 1996), and (Cohen & Erez, 1991)  provide some preliminary approaches for

validation.

The ability to simulate temporal processes makes the Jordan sequential neural network an

appropriate foundation for modeling musical listening. The added modularity of sub-nets to

the architecture provide a framework for modeling the mutual influence of heard music and

inferred meter (Gang & Berger, 1999). In general, the integration of sub-nets provides a

natural means to extend the model by adding more musical parameters. A more sophisticated

model should allow for expectations for occurrences farther in the future than the next event.

Such a model should also be able to retrospectively re-evaluate contexts after surprise.  

Using a RNN approach different models can be derived by changing learning parameters

such as the number of hidden units, decay parameters, or different trials of the same

architecture. Every model discovers different types of patterns and regularity and generates a

coherent solution for a task. This is potentially problematic in terms of what model to chose
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and what constitutes the more appropriate model for a given task. However, an ensemble of

networks each trying to solve a problem (Sharkey, 1999) can merge the individual attributes of

single networks to provide a flexible modeling methodology. An ensemble of neural nets can

provide a fertile laboratory for studying differences between a single individual hearing of a

musical work, multiple hearings of the same work, and group listening experiences.

How a listener reacts and adapts to music in real-time involves enormous complexity and

subtlety. This study hopes to provide a modest first step towards understanding the processes

involved, and suggest a computational approach with which to delve deeper into this domain. 
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Notes

1. We use the phrase ’Haydn’s audience’ in its broad sense. We assume the listener to have prior listening

experience with Western diatonic functional tonal music. We make no assumptions about a listener’s musical

literacy or training nor do we assume familiarity with any specific work of music including those used in the

model. Issues relating to extra and intra-opus experience are cursorily touched on in this paper. More literal

consideration of ’Haydn’s audience’ as opposed to our generalization are relevant and engaging but beyond the

scope of this paper. 

 

2. The opening of the slow movement of op. 3 no. 5 presents a four measure phrase that is normative in its

progression and regular in its rate of harmonic change. Although the opening period is extended to six measures

by the additional cadence of measures 5-6, the listener arrives at measure four with little sense of disruption or

surprise. Overall the model produces strong and specific predictions that are correctly realized. The ambiguities

that occur result either from a lack of context (metric ambivalence in first four beats, and harmonic ambiguity in

beat four), or  from occurring at points at which the statistical distribution of ’schematic norms’ is less clearly

articulated (e.g. the downbeat of measure 3).



Haydn, Piano Sonata H. XVI:50:3

fjh1
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Fig. 1 Haydn: Piano sonata, C major, H. XVI/50, 3  mvt., mm. 1-11rd



Haydn, Piano Sonata H. XVI:50:3

fjh3
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Fig. 2. Haydn: Piano sonata, C major, H. XVI/50, 3  mvt., rd

mm. 1-11, elided phrase 
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Fig. 3 Neural network architecture
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Fig. 4. Haydn: String quartet, op. 3, no. 5, second movement 
(Andante cantabile) mm. 1-4.



 
41

Fig. 5. Haydn: String quartet, op. 3, no. 5, second movement 
(Andante cantabile) mm. 1-4. Visualization of harmonic expectations
and metric interpretation.
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Fig 6. Haydn:  C major piano sonata, H XVI/60, third movement 
(Allegro molto) mm. 1-4. 
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Fig 7. Haydn:  C major piano sonata, H XVI/60, third movement 
(Allegro molto) mm. 1-4. 
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Fig 8. Haydn:  C major piano sonata, H XVI/60, third movement 
(Allegro molto) mm. 8-11.
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fig 9a. Haydn:  C major piano sonata, H XVI/60, third movement
(Allegro molto) mm. 1-2.  - No metric bias.
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fig 9b. Haydn:  C major piano sonata, H XVI/60, third movement
(Allegro molto) mm. 1-2.  - Metric bias for 3/4
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fig 9c. Haydn:  C major piano sonata, H XVI/60, third movement
(Allegro molto) mm. 1-2.  - Metric bias for 4/4
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Fig 10. DRE of Haydn, H.XVI/50, 3  mvt. mm, 1-4 and mm. 8-11 rd
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