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Preface

Digital sound synthesis is, at the time of writing in 2007, exactly fifty years old. Set against the

glacial pace of the development and evolution of acoustic musical instruments in previous centuries,

this is not a long time. But given the astonishing rate at which computational power has increased

in the past decades, it is fair even to say that digital sound is, if not old, at least enjoying a robust

middle age. Many of the techniques that developed early on, during a twelve- to fifteen-year burst of

creativity beginning in the late 1950s, have become classics: wavetables, additive and FM synthesis

are now the cornerstones of modern synthesis. All of these methods appeared at a time when very

close attention had to be paid to operation counts and algorithmic simplicity. In the early days, these

algorithms stretched the bounds of computing power, only to produce sound when shoehorned into

the busy schedule of a university mainframe by a devoted and generally nocturnal composer. Now,

however, sounds of this nature may be produced very cheaply, and are used routinely by musicians

in all walks of life.

Beyond allowing musicians to do, faster, what was once grindingly slow, increased computational

power has also opened the door to resesarch into newer, more demanding techniques. Certainly, in

the last 20 years, the most significant effort has gone into a set of methods known, collectively,

as “physical modeling.” The hope is that by sticking to physical descriptions of musical objects,

far better synthetic sound quality may be acheived. There are many such methods available—

all, however, may ultimately be viewed as numerical simulation techniques, applied to generate an

approximate solution to the equations which describe an acoustic entity, such as a string, or drum

head, or xylophone bar. The interesting thing is that in one way, this is a step backwards; after all,

modern numerical solution techniques are at least 80 years old, and predate the existence of not only

the first digital sound synthesis methods, but in fact digital computers themselves! It is also a step

backward in a another sense—physical modeling techniques are far more computationally intensive

than the classic methods, and again, like the old days, algorithm efficiency has become a concern. Is

physical modeling a step forward? This is a question that may only be answered subjectively—by

listening to the sounds which may be produced in this way.

As mentioned above, physical modeling sound synthesis is an application of numerical simulation

techniques. Regardless of the application, when one is faced with solving a problem numerically,

many questions arise before any algebraic manipulations or computer coding are attempted. Or,

rather, after one has made one or many such attempts, these questions are begged. There are many,

but the most important are:

• How faithfully is the solution to be rendered? (Accuracy)

• How long should one reasonably expect to wait for the solution to be computed? (Efficiency)

• How bad is it if, for some unexpected reason, the simulation fails? (Stability)
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Though the ideal answers are, of course, “very, not long, and bad,” one might guess that rarely will

one be able to design a method which behaves accordingly. Compromises are necessary, and the types

of compromises to be made will depend on the application at hand. Regarding the first question

above, one might require different levels of accuracy in, for instance, a weather prediction problem,

as compared with the design of a novel parachute. As for the second, though in all cases, speedier

computation is desirable, in most mainstream simulation applications, the premium is placed rather

on accuracy (as per the first question), though in some, such as for instance, control systems built

to reduce panel flutter, efficient on-line performance is essential. Finally, because many mainstream

simulation applications are indeed intended to run off-line, many techniques have developed over

the years in order to control the usual problems in simulation, such as oscillatory behaviour, and

instability. In some applications, typically in an offline design scenario, such as in the design of

an airfoil, if one encounters numerical results which suffer from these problems, one can adjust a

parameter or two, and run the simulation again. But in an online situation, or, if the application is

to be used by a non-expert (such as might occur in the case of 3D graphics rendering), the simulation

algorithm needs to produce acceptable results with little or no intervention from the user. In other

words, it must be robust.

What about sound synthesis then? Numerical simulation methods have indeed, for some time,

played a role in pure studies of the acoustics of musical instruments, divorced from sound synthesis

applications, which are the subject of this book. For this reason, one might assume that such

methods could be applied directly to synthesis. But in fact, the constraints and goals of synthesis are

somewhat different from those of scientific research in musical acoustics. Synthesis is a rather special

case of an application of numerical methods, in that the result is judged subjectively. Sometimes

there is a target sound from a real-world instrument to be reproduced, but another perhaps longer-

term goal is to produce sounds from instruments which are wholly imaginary, yet still based on

physical principles. Furthermore, these methods are destined, eventually, to be used by composers

and musicians, who surely will have little interest in the technical side of sound synthesis, and who

are becoming increasingly accustomed to working in a real-time environment. For this reason, it

seems sensible to put more emphasis on efficiency and stability, rather than on computing extremely

accurate solutions.

Such considerations, as well as the auxiliary concern of programming ease, naturally lead one

to employ the simplest numerical methods available, namely finite difference schemes. These have

been around for quite a long time, and, in many mainstream applications, have been superseded by

newer techniques (some examples of which appear in the later chapters), which are better suited to

the complexities of real-world simulation problems. On the other hand, there are many advantages

to sticking with a relatively simple framework: these methods are efficient, quite easy to program,

and, best of all, one can use quite basic mathematical tools in order to arrive quickly at conclusions

regarding the behaviour of such methods. The trick in synthesis, however, is to understand this

behaviour in an audio setting, and, unfortunately, the way in which numerical techniques such as

finite difference schemes are presented in many standard texts do not address the peculiarities of

sound production. This has been one of the main motivations for writing this book.

Every book has a latent agenda. Frequency domain analysis techniques play a central role in both

musical acoustics and numerical analysis, and such techniques are not neglected here. The reason for

this is, of course, that many important features of real-world systems (such as musical instruments)

may be deduced through linearization. But frequency domain techniques constitute a only single

point of view—there are many others. The use of energetic principles amounts to more than just

xiv



a different slant on the analysis of numerical methods than that provided by frequency domain

methods; it is in fact much more general, though at the same time, less revealing—the dynamics of

a system is compressed into the time evolution of a single scalar function. The information it does

yield, however, is usually exactly what one needs in order to answer thorny questions about, say,

the stability of nonlinear numerical methods, as well as how to properly set numerical boundary

conditions. It is the key to solid design of numerical methods, and of immense practical utility, and

for this reason, is given an elaborate treatment in this book. Besides—it’s interesting.

This work is not really intended directly for musicians or practising acousticians, but rather for

working engineers and (especially) doctoral students and researchers working on the more technical

side of digital audio and sound synthesis. Nor is it meant as a collection of recipes, despite the

inclusion of a body of code examples on an accompanying website. I realize that the audience

for this book will be narrowed somewhat (and maybe a little disappointed) because of this. The

reason for this is that physical modeling synthesis is really numerical simulation, a discipline which

is somewhat more removed from audio processing than many might like to believe. There is a need,

I think, to step back from the usual body of techniques which has been employed for this purpose,

generally those which evolved out of the language and tools of electrical engineers, namely digital

signal processing, and to take a look at things the way a simulation specialist might. The body of

techniques is different enough to require a good deal of mathematics which may be unfamiliar to the

audio engineer. At the same time, the audio-informed point of view taken here may seem foreign

to the simulation specialist. It is my greatest hope that this book will serve to engender curiosity

in the union of these two sets of people—in the ultimate interest, of course, of producing new and

beautiful sounds.

Book Summary

Chapter 1 is a historical overview of digital sound synthesis techniques—though far from complete,

it highlights the (sometimes overlooked) links between abstract sound synthesis methods, based

essentially on signal processing manipulations, and more modern physical modeling sound synthesis

methods, as well as the connections among the various physical modeling methodologies.

In Chapter 2, time series and difference operators are introduced, and some time is spent on

the frequency domain interpretation of such operators, as well as on the development of certain

manipulations which are of use in energy analysis of finite difference schemes. Special attention is

paid to the correspondence between finite difference operations and simple digital filter designs.

The simple harmonic oscillator is introduced in Chapter 3, and serves as a model for many of

the systems which appear throughout the rest of the book. Various difference schemes are ana-

lyzed, especially with respect to numerical stability and accuracy, using both frequency domain and

energetic principles; the linear loss mechanism is also introduced.

Chapter 4 introduces various nonlinear excitation mechanisms in musical acoustics, many of

which reduce to nonlinear generalizations of the harmonic oscillator, as well as associated finite

difference schemes.

Chapter 5 is designed as a reference chapter for the remainder of the book, with a complete

introduction to the tools for the construction of finite difference schemes for partial differential

equations in time and one spatial dimension, including grid functions, difference operators, as well

as a description of frequency domain techniques and inner product formulations, which are useful

for nonlinear problems and the determination of numerical boundary conditions.

As a test problem, the 1D wave equation and a variety of numerical methods are presented
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in Chapter 6. Various features of interest in musical simulations, including proper settings for

boundary conditions, readout and interpolation, numerical dispersion and its perceptual significance,

and numerical stability conditions are discussed. In addition, finite difference schemes are related

to modal methods, digital waveguides and lumped networks, and relative strengths and weaknesses

are evaluated.

Chapter 7 deals with more musical extensions of the 1D wave equation and finite difference

schemes to the case of transverse vibration of bars and stiff strings, and considerable time is spent

on loss modelling as well as the coupling with hammer/mallet and bow models, and coupling with

lumped elements and between bars. The chapter ends with a short treatment of spatially varying

string and bar systems.

The first serious foray into numerical methods for distributed nonlinear systems occurs in Chapter

8, with a discussion of nonlinear string vibration. Various models, of differing degrees of complexity

are presented, and certain important perceptual effects of string nonlinearity, such as pitch glides

and phantom partial generation are discussed. The construction of sound synthesis methods makes

use of purely energetic techniques in this case.

Chapter 9 picks up from the end of Chapter 6 to deal with linear wave propagation in acoustic

tubes, which are the resonating elements in woodwind and brass instruments. Webster’s equation,

and finite difference methods are introduced, as are features of musical interest such as tome hole

modelling, bell radiation, and coupling to reed-like excitation mechanisms.

Chapters 10, 11 and 12 are analogous to Chapters 5, 6 and 7, but in two spatial dimensions.

Chapter 10 is a concise survey of difference operators and grid functions in both Cartesian and radial

coordinates. Chapter 11 deals with the important test case of the 2D wave equation, and Chapter 12

constitutes the first discussion of two-dimensional musical instruments, and in particular membranes

and plates. Special cases such as drum membranes, plate reverberation and piano soundboards are

dealt with in detail. Mallet interaction, two-dimensional interpolation necessary for sound output,

and direction-dependent numerical dispersion in finite difference schemes, as well as loss modeling

are also discussed.

Chapter 13 continues with the topic of two-dimensional vibration, in the nonlinear case, in order

to deal with perceptually crucial effects such as crashes in instruments such as gongs and cymbals,

and, as in Chapter 8, energy methods are developed.

Finally, in Chapters 14 and 15, some other numerical techniques with potential applications to

musical sound synthesis, in particular finite element methods and spectral methods, are introduced.

Concluding remarks appear in Chapter 16. Appendix A contains some rudimentary Matlab scripts

which yield synthetic sound output based on many of the models discussed in this book. A glossary

of symbols is provided in Appendix B.

As Teaching Aid

This book could be used as a teaching aid, for students at the Master’s or PhD level. A strong

background in digital signal processing, physics and computer programming is essential. Particular

topics in applied mathematics which are assumed prerequisites are the usual ones found in a re-

spectable undergraduate program in the physical sciences or engineering: differential and integral

calculus (multivariable), linear algebra, complex analysis, ordinary and partial differential equations,

Fourier, Laplace and z transforms, and some familiarity with functional analysis, and in particular

the notion of L2 inner product spaces. For a full year course at the Master’s or PhD level, one could

comfortably cover the part of the book which deals mainly with linear systems, namely Chapters 1,
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2, 3, 5, 6, 7, 9, 10, 11 and 12. The material on nonlinear systems and other topics in the remainder

of the book would perhaps be best left to a subsequent seminar-based course. The programming

exercises and examples are all based around the use of the Matlab language, which is, of course,

ideal for prototyping sound synthesis algorithms, but not for practical applications; the translation

of some of these algorithms to a more suitable (perhaps real time) environment would make for an

excellent, and practically useful independent study project.

Other Reading

For those new to sound synthesis and physical modeling, there are various texts which are worth

consulting:

The physics of musical instruments is covered in the texts by Fletcher and Rossing [96], Rossing,

Moore and Wheeler, [216] and Campbell and Greated [47]. A more advanced treatment for many

of the systems encountered in this book is given in the classic texts by Morse and Ingard [174],

Graff [111] and Nayfeh and Mook [178]. Many interesting aspects of musical instrument physics are

covered in the collection edited by Hirschberg, Kergomard and Weinreich [122].

For a general overview of digital sound synthesis, see the books by Roads [205], Dodge and

Jerse [75], and Moore [170], and various edited collections [206, 72, 207]. Special topics in physical

modeling sound synthesis are covered in various texts. For an exhaustive presentation of digital

waveguides, see the text by Smith [242], readily available on line, and certainly the best reference in

existence on physical modeling. Functional transformation approaches, which are similar to modal

synthesis methods, are discussed in Trautmann and Rabenstein [257]. A variety of sound synthesis

techniques, including a good deal of material on both digital waveguides and modal methods are

found in the book by Cook [64].

A good introduction to finite difference methods is the text by Strikwerda [244], which covers

frequency domain analysis in great detail, and from a point of view that will be accessible to those

with an audio signal processing background; indeed, some of the notation used here is borrowed
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Chapter 1

Sound Synthesis and Physical

Modeling

Before entering into the main development of this book, it is worth stepping back to get a larger

picture of the history of digital sound synthesis. It is, of course, impossible to present a complete

treatment of all that has come before, and unnecessary, considering that there are several books

which cover the classical core of such techniques in great detail; those of Moore [170], Dodge and

Jerse [75] and Roads [205], and the collections of Roads et al. [206], Roads and Strawn [207] and

DePoli et al. [72] are perhaps the best known. For a more technical viewpoint, see the report of

Tolonen et al. [254], the online text of Puckette [194], and, for physical modeling techniques, the

review article of Välimäki et al. [267]. This chapter is intended to give the reader a basic familiarity

with the development of such methods, and some of the topics will be examined in much more detail

later in this book. Indeed, many of the earlier developments are perceptually intuitive, and involve

only basic mathematics; this is less so in the case of more recent work, but every effort will be made

to keep the technical jargon in this chapter to a bare minimum.

It is convenient to make a distinction between earlier, or abstract digital sound synthesis meth-

ods, to be discussed in §1.1, and those built around physical modeling principles, as detailed in §1.2.

(Other, more elaborate taxonomies have been proposed [236, 254], but the above is sufficient for the

present purposes.) That this distinction is perhaps less clear-cut than it is often made out to be is

a matter worthy of discussion—see §1.3, where some more general comments on physical modeling

sound synthesis are offered, namely regarding the relationship among the various physical model-

ing methodologies and with earlier techniques, and the fundamental limitations of computational

complexity.

In Figure 1.1, for the sake of reference, a timeline showing the development of digital sound

synthesis methods is presented; dates are necessarily approximate. For brevity, only those techniques

which bear some relation to physical modeling sound synthesis are noted—such a restriction is a

subjective one, and is surely a matter of some debate.

1
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1950 1960 1970 1980 1990 2000 2010

Additive synthesis

(Risset)

Wavetable synthesis

(Mathews)

Wave digital filters

(Fettweis)

Direct simulation

(Ruiz)

Modal synthesis

(Adrien)

Func. Trans. Method

(Rabenstein)

Digital waveguides

(Smith)

(Karplus−Strong)

(Kelly−Lochbaum)

Digital Speech Synthesis

Lumped Network Models

KW techniques

FM synthesis(Chowning)

Finite Difference Methods

(Chaigne)

(Cadoz−Luciano−Florens)

Figure 1.1: Historical timeline for digital sound synthesis methods. Sound synthesis techniques are
indicated by dark lines, antecedents from outside of musical sound synthesis by solid grey lines, and
links by dashed grey lines. Authors’/inventors’ names appear parentheses; dates are approximate,
and in some cases have been fixed here by anecdotal information, rather than publication dates.

1.1 Abstract Digital Sound Synthesis

The earliest synthesis work, beginning in the late 1950s, saw the development of abstract synthesis

techniques, based primarily on operations which fit well into a computer programming framework:

the basic components are digital oscillators, filters, and stored “lookup” tables of data, read at

varying rates. Though the word “synthesis” is used here, it is important to note that in the case

of tables, as mentioned above, it is of course possible to make use of non-synthetic sampled audio

recordings. Nonetheless, such methods are often lumped in with synthesis itself, as are so-called

analysis-synthesis methods which developed in the 1970s after the appearance of the Fast Fourier

transform [67] some years earlier.

It would be cavalier (not to mention wrong) to assume that abstract techniques have been

superseded; some are extremely computationally efficient, and form the synthesis backbone of many

of the most popular music software packages, such as Max/MSP [288], Pd [193], Csound [39],

SuperCollider [167], etc. Moreover, because of their reliance on accessible signal processing constructs

such as tables and filters, they have entered the lexicon of the composer of electroacoustic music in

a definitive way, and, as a result, have undergone massive experimentation. Not surprisingly, a huge
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variety of hybrids and refinements has resulted; only a few of these will be detailed here.

The word “abstract,” though it appears seldom in the literature [240, 254], is used to describe

the techniques mentioned above because, in general, they do not possess an associated underlying

physical interpretation—the resulting sounds are produced according to perceptual and mathemati-

cal, rather than physical principles. There are some loose links with physical modeling, most notably

between additive methods and modal synthesis (see §1.1.1), subtractive synthesis and source-filter

models (see §1.1.2), and wavetables and wave propagation in one-dimensional media (see §1.1.3),

but in general, it is best to think of these methods as pure constructs in digital signal processing,

informed by perceptual, programming and sometimes efficiency considerations. For more discussion

of the philosophical distinctions between abstract techniques and physical modeling, see the articles

by Smith [240] and Borin et al. [36].

1.1.1 Additive Synthesis

Additive synthesis, which dates back at least as far as the work of Risset in the 1960s [202], though

not the oldest digital synthesis method, is a convenient starting point; for more information on the

history of the development of such methods, see [205] and [163]. A single sinusoidal oscillator, with

output u(t) is defined, in continuous time, as

u(t) = A cos(2πf0t + φ) (1.1)

Here, t is a time variable, and A, f0 and φ are the amplitude, frequency, and initial phase of the

oscillator, respectively. In the simplest, strictest configuration of additive synthesis, these parameters

are constants: A scales roughly with perceived loudness, and f0 with pitch. For a single oscillator

in isolation, the initial phase φ is of minimal perceptual relevance, and is usually not represented in

typical symbolic representations of the oscillator—see Figure 1.2. In discrete time, where the sample

rate is given by fs, the oscillator with output un is defined similarly by

un = A cos(2πf0n/fs + φ) (1.2)

where n is an integer, indicating the time step.

The sinusoidal oscillator, in computer music applications, is often represented using the symbolic

shorthand shown in Figure 1.2(a). Using Fourier theory, it is possible to show that any real-valued

continuous or discrete waveform (barring some technical restrictions relating to continuity) may be

decomposed into an integral over a set of such sinusoids. In continuous time, if the waveform to

be decomposed is periodic with period T , then an infinite sum of such sinusoids, with frequencies

which are integer multiples of 1/T suffices to describe the waveform completely. In discrete time,

if the waveform is periodic with integer period 2N , then a finite collection of N oscillators yields a

complete characterization.

The musical interest of additive synthesis, however, is not necessarily in exact decompositions

of given waveforms. Rather, it is a loosely defined body of techniques based around the use of

combinations of such oscillators in order to generate musical sounds, given the underlying assumption

that sinusoids are of perceptual relevance in music. (Some might find this debatable, but the

importance of pitch throughout the history of acoustic musical instruments across almost all cultures
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(a) (b)

A f A1 f1 A2 f2 A3 f3 AN fN

. . .

Figure 1.2: (a) Symbolic representation of a single sinusoidal oscillator, output at bottom, dependent
on the parameters A, representing amplitude, and f , representing frequency. In this representation,
the specification of the phase φ has been omitted, though some authors replace the frequency control
parameter by a phase increment, and indicate the base frequency in the interior of the oscillator
symbol. (b) An additive synthesis configuration, consisting of a parallel combination of N such
oscillators, with parameters Al, and fl, l = 1, . . . , N , according to (1.3).

appears to favor this assertion.) A simple configuration is given, in discrete time, by the sum

un =

N∑

l=1

Al cos(2πfln/fs + φl) (1.3)

where in this case, N oscillators, of distinct amplitudes, frequencies and phases Al, fl and φl, for

l = 1, . . . , N are employed. See Figure 1.2(b). If the frequencies fl are close to integer multiples

of a common “fundamental” frequency f0, then, in general, the result will be a tone at a pitch

corresponding to f0. But unpitched inharmonic sounds (such as those of bells) may be generated

as well, through avoidance of common factors among the chosen frequencies. With a large enough

N , one can, as mentioned above, generate any imaginable sound. But the generality of such an

approach is mitigated by the necessity of specifying perhaps thousands of amplitudes, frequencies

and phases. For a large enough N , and taking the entire space of possible choices of parameters,

the set of sounds which will not sound simply like a steady unpitched tone, is vanishingly small.

Unfortunately, using such a simple sum of sinusoids, almost any musically interesting sound will

certainly lie in the realm of large N .

Various strategies (probably hundreds) have been employed to render additive synthesis more

musically tractable. Perhaps the simplest is to employ slowly time-varying amplitude envelopes

to the outputs of single oscillators or combinations of oscillators, allowing global control of the

attack/decay characteristics of the resulting sound without having to rely on delicate phase cancel-

lation phenomena. Another is to allow oscillator frequencies to vary, at sub-audio rates, so as to

approximate changes in pitch. In this case, the definition (1.1) should be extended to include the

notion of instantaneous frequency—see §1.1.4. For an overview of these techniques, and others, see

the standard texts mentioned in the opening remarks of this chapter.

Another related approach adopted by many composers has been that of analysis-resynthesis,

based on sampled waveforms. This is not, strictly speaking, a pure synthesis technique, but it has
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become so popular that it is worth mentioning here. Essentially, an input waveform is decomposed

into sinusoidal components, at which point the frequency-domain data (amplitudes, phases, and

sometimes frequencies) are modified in a perceptually meaningful way, and the sound is then recon-

structed through inverse Fourier transformation. Perhaps the best known tool for analysis-synthesis

is the phase vocoder [94, 191, 76], which is based on the use of the short-time Fourier transformation,

which employs the fast Fourier transformation [67]. Various effects, including pitch transposition

and time-stretching, as well as cross-synthesis of spectra can be obtained, through judicious modifi-

cation of frequency domain data. Even more refined tools, such as spectral modeling synthesis (SMS)

[230], based around a combination of Fourier and stochastic modeling, as well as methods employing

tracking of sinusoidal partials [165], allow very high quality manipulation of audio waveforms.

1.1.2 Subtractive Synthesis

If one is interested in producing sounds with rich spectra, additive synthesis, requiring a separate

oscillator for each desired frequency component, can obviously become quite a costly undertaking.

Instead of building up a complex sound, one partial at a time, another way of proceeding is to begin

with a very rich sound, typically simple to produce and lacking in character such as white noise or

an impulse train, and then shape the spectrum using digital filtering methods. This technique is

often referred to as subtractive synthesis—see Figure 1.3. It is especially powerful when the filtering

applied is time-varying, allowing for a good first approximation to the timbre of many musical tones

of unsteady timbre (this is generally the norm).

Subtractive synthesis is often associated with physical models [170], but this association is a very

loose one at best. What is meant is that many linear models of sound production may be broken

down into source and filtering components [285]. This is particularly true of models of human

speech, in which case the glottis is assumed to produce a wide band signal (i.e., a signal somewhat

like an impulse train under voiced conditions, and white noise under unvoiced conditions) which is

filtered by the vocal tract, yielding a spectrum with pronounced peaks (formants) which indicate a

particular vocal timbre. In this book, however, because of the emphasis on time domain methods,

the source/filter methodology will not be explicitly employed. Indeed, for distributed nonlinear

problems, for which frequency domain analysis is not well suited, it is of little use, and relatively

uninformative. Even in the linear case, it is worth keeping in mind that the connection of two objects

will, in general, modify the characteristic frequencies of both—strictly speaking, one cannot speak

of the “frequencies” of the individual components in a coupled system. Still, the breakdown of a

system into an lumped/distributed pair representing an excitation mechanism and the instrument

body is a very powerful one, even if, in some cases, the behaviour of the body cannot be explained

in terms of filtering concepts.

1.1.3 Wavetable Synthesis

The most common computer implementation of the sinusoidal oscillator is not through direct cal-

culation of values of the cosine or sine function, but, rather, through the use of a stored table

containing values of one period of a sinusoidal waveform. A sinusoid at a given frequency may then

be generated by reading through the table, circularly, at an appropriate rate. If the table contains

N values, and the sample rate is fs, then the generation of a sinusoid at frequency f0 will require

a jump of fs/f0N values in the table over each sample period, using interpolation of some form.

Clearly, the quality of the output will depend on the number of values stored in the table, as well
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freq. freq. freq.

ampl. ampl. ampl.

Source
Waveform

Filtering
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Output
Waveform

Figure 1.3: Subtractive synthesis.

as on the type of interpolation employed. Linear interpolation is the norm [170], but other more

accurate methods, built around higher order Lagrange interpolation are also used—some material

on fourth order interpolation appears in §5.2.4. Allpass filter approximations to fractional delays

are also possible, and are of special interest in physical modeling applications [153].

output samples

interpolation

1/fs 1/fs 1/fs 1/fs

Figure 1.4: Wavetable synthesis. A buffer, filled with values, is read through at intervals of 1/fs s,
where fs is the sample rate. Interpolation is employed.

It should be clear that one can store values of an arbitrary waveform in the table, not merely

those corresponding to a sinusoid. See Figure 1.4. Reading through such a table at a fixed rate will

generate a quasi-periodic waveform with, in general, a full harmonic spectrum, all at the price of a

single table read and interpolation operation per sample period—it is no more expensive, in terms of

computer arithmetic, than a single oscillator. As will be seen shortly, there is an extremely fruitful

physical interpretation of wavetable synthesis, namely the digital waveguide, which revolutionized

physical modeling sound synthesis through the same efficiency gains—see §1.2.3. Various other

variants of wavetable synthesis have seen use, in particular wavetable stacking, involving multiple
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wavetables, the outputs of which are combined using crossfading techniques [205]. The use of tables

of data in order to generate sound is perhaps the oldest form of sound synthesis, dating back to the

work of Mathews in the late 1950s.

Tables of data are also associated with so-called sampling synthesis techniques, as a de facto

means of data reduction. Many musical sounds consist of a short attack, followed by a steady

pitched tone. Such a sound may be efficiently reproduced through storage of only the attack and a

single period of the pitched part of the waveform, which is stored in a wavetable and looped [254].

Such methods are the norm in most commercial digital piano emulators.

1.1.4 AM and FM Synthesis

Some of the most important developments in early digital sound synthesis derived from extensions

of the oscillator, through time-variation of the control parameters at audio rates.

AM, or amplitude modulation synthesis, in continuous time, and employing a sinusoidal carrier

(of frequency f0), and modulator (of frequency f1) generates a waveform of the following form:

u(t) = (A0 + A1 cos(2πf1t)) cos(2πf0t)

where A0 and A1 are free parameters. The symbolic representation of AM synthesis is shown in

Figure 1.5(a). Such an output consists of three components, as also shown in Figure 1.5(a), where

the strength of the component at the carrier frequency is determined by A0, and those of the side

components, at frequencies f0±f1 by A1. If A0 = 0, then ring modulation results. Though the above

example is concerned with the product of sinusoidal signals, the concept of amplitude modulation

(and frequency modulation, discussed below) extends to more general signals with ease.

Frequency modulation (FM) synthesis, the result of a serendipitous discovery by John Chowning

at Stanford in the late 1960s, was perhaps the greatest single breakthrough in digital sound synthesis

[56]. Instantly, it became possible to generate a wide variety of spectrally rich sounds using a bare

minimum of computer operations. FM synthesis requires no more computing power than a few digital

oscillators, which is not surprising, considering that FM refers to the modulation of the frequency

of a digital oscillator. As a result, real-time synthesis of complex sounds became possible in the

late 1970s, as the technique was incorporated into various special purpose digital synthesizers—see

[207] for details. In the 1980s, FM synthesis was very successfully commercialized by the Yamaha

corporation, and thereafter permanently altered the synthetic soundscape.

FM synthesis, like AM, is also a direct descendant of synthesis based on sinusoids, in the sense

that in its simplest manifestation, it makes use of only two sinusoidal oscillators, one behaving as

a carrier, and the other as a modulator. See Figure 1.5(b). The functional form of the output, in

continuous time, is usually written in terms of sine functions, and not cosines, as

u(t) = A0(t) sin(2πf0t + I sin(2πf1t)) (1.4)

where here, f0 is the carrier frequency, f1 the modulation frequency, and I the so-called modulation

index. It is straightforward to show [56] that the spectrum of this signal will exhibit components at

frequencies f0+qf1, for integer q, as illustrated in Figure 1.5(b). The modulation index I determines

the strengths of the various components, which can vary in a rather complicated way, depending on

the values of associated Bessel functions. A0(t) can be used to control the envelope of the resulting

sound.
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In fact, a slightly better formulation of the output waveform (1.4) is:

u(t) = A0(t) sin

(

2π

∫ t

0

f0 + If1 cos(2πf1t
′)dt′

)

where the instantaneous frequency at time t may be seen to be (or rather defined as) f0+If1 cos(2πf1t).

The quantity If1 is often referred to as the peak frequency deviation, and written as ∆f [170].

Though this is a subtle point, and not one which will be returned to in this book, the symbolic

representation in Figure 1.5(b) should be viewed in this respect.

(a) (b)

f0

f1 A0A1

f0

freq. freq.

ampl. ampl.

f0 f0+f1f0−f1
f0+2f1f0−2f1 f0

f0+f1f0−f1

A0

f0 If1 f1

Figure 1.5: Symbolic representation, and frequency domain description of output for (a) amplitude
modulation and (b) frequency modulation.

FM synthesis has been exhaustively researched, and many variations have resulted. Among

the most important are feedback configurations, useful in regularizing the behaviour of the side

component magnitudes and various series and parallel multiple oscillator combinations.

1.1.5 Other Methods

There is no shortage of other techniques which have been proposed for sound synthesis; some are

variations on the techniques described in the above sections, but there are several which do not

fall neatly into any of the above categories. This is not to say that such techniques have not

seen success; it is rather that they do not fit naturally into the evolution of abstract methods into

physically-inspired sound synthesis methods, the subject of this book.

One of the more interesting is a technique called waveshaping [155, 8, 204], in which case an

input waveform (of natural or synthetic origin) is used as a time-varying index to a table of data.

This, like FM synthesis, is a nonlinear technique—generally, a sinusoid at a given frequency used as

the input will generate an output which contains a number of harmonic components, whose relative

amplitudes depend on the values stored in the table. Similar to FM, it is capable of generating rich

spectra for the computational cost of a single oscillator, accompanied by a table read; a distinction

is that the level of control over the amplitudes of the various partials can be controlled in a direct

way, through the use of Chebyshev polynomials expansions as a representation of the table data.
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Granular synthesis [50], which is very popular among composers, refers to a large body of tech-

niques, sometimes very rigorously defined (particularly when related to wavelet decompositions [85]),

sometimes very loosely. In this case, the idea is to build complex textures using short duration sound

“grains,” which are either synthetic, or derived from analysis of an input waveform. The grains,

regardless of how they are obtained, may then be rearranged and manipulated in a variety of ways.

Granular synthesis encompasses so many different techniques and methodologies that it is perhaps

better thought of as a philosophy, rather than a synthesis technique. See [203] for a historical

overview.

Distantly related to granular synthesis are methods based on overlap-adding of pulses of short

duration, sometimes, but not always, to emulate vocal sounds. The pulses are of a specified form,

and depend on a number of parameters which serve to alter the timbre; in a vocal setting, the rate

at which the pulses recur determines the pitch, and a formant structure, dependent on the choice

of the free parameters, is imparted to the sound output. Perhaps the best known are the so-called

FOF [212], and the VOSIM [130] techniques.

1.2 Physical Modeling

The algorithms mentioned above, despite their structural elegance and undeniable power, share

several shortcomings. The issue of actual sound quality is difficult to address directly, as it is

inherently subjective—it is difficult to deny, however, that in most cases, abstract sound synthesis

output is synthetic-sounding. This can be desirable or not, depending on one’s taste. On the other

hand, it is worth noting that perhaps the most popular techniques employed by today’s composers

are based on modification and processing of sampled sound, indicating that the natural quality

of acoustically-produced sound is not easily abandoned. Indeed, many of the earlier refinements of

abstract techniques such as FM were geared towards emulating acoustic instrument sounds [171, 228].

The deeper issue, however, is one of control. Some of the algorithms mentioned above, such as

additive synthesis, require the specification of an inordinate amount of data, perhaps thousands of

parameters to describe a single sound. Others, such as FM synthesis, involve many fewer parameters,

but it can be extremely difficult to determine rules for the choice and manipulation of parameters,

especially in a complex configuration involving more than a few such oscillators. See [37, 36, 254]

for a fuller discussion of the difficulties inherent in abstract synthesis methods.

Physical modeling synthesis, which has developed more recently, involves a physical description

of the musical instrument as the starting point for algorithm design. For most musical instruments,

this will be a coupled set of partial differential equations, describing, e.g., the displacement of a

string, membrane, bar, or plate, or the motion of the air in a tube, etc. The idea, then, is to solve

the set of equations, invariably through a numerical approximation, to yield an output waveform,

subject to some input excitation (such as glottal vibration, bow or blowing pressure, etc.). The issues

mentioned above, namely those of the synthetic character and control of sounds are rather neatly

dealt with in this case—there is a virtual copy of the musical instrument available to the algorithm

designer or performer, embedded in the synthesis algorithm itself, which serves as a reference. For

instance, simulating the plucking of a guitar string at a given location may be accomplished by

sending an input signal to the appropriate location in computer memory, corresponding to an actual

physical location on the string model; plucking it strongly involves sending a larger signal. The

control parameters, for a physical modeling sound synthesis algorithm are typically few in number,

and physically and intuitively meaningful, as they relate to material properties, instrument geometry,
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and input forces and pressures.

The main drawback to using physical modelling algorithms is, and has been, their relatively

large computational expense; in many cases, this amounts to hundreds, if not thousands of arith-

metic operations to be carried out per sample period, at a high audio sample rate (such as 44.1

kHz). In comparison, a bank of six FM oscillators will require probably at most twenty arithmetic

operations/table lookups per sample period. For this reason, research into such methods has been

slower to take root, even though the first such work on musical instruments began with Ruiz in

the late 1960s and early 1970s [220], and digital speech synthesis based on physical models can be

dated back even further, to the work of Kelly and Lochbaum [141]. On the other hand, computer

power has grown enormously in the past decades, and presumably will continue to do so, and, thus,

efficiency (an obsession in the earlier days of digital sound synthesis) will become less and less of a

concern.

1.2.1 Lumped Mass-Spring Networks

The use of a lumped network, generally of mechanical elements such as masses and springs, as a

musical sound synthesis construct, is an intuitively appealing one. It was proposed by Cadoz, Luciani

and Florens in the early 1980s [44], and became the basis for the CORDIS, and CORDIS-ANIMA

synthesis environments [97, 45, 248]; as such, it constituted the first large scale attempt at physical

modeling sound synthesis. It is also the technique which is most similar to the direct simulation

approaches discussed throughout the remainder of this book, though the emphasis here is entirely

on fully distributed modelling, rather than lumped representations.

The framework is very simply described in terms of interactions among lumped masses, con-

nected by springs and damping elements; when Newton’s laws are employed to describe the inertial

behaviour of the masses, the dynamics of such a system may be described by a set of ordinary

differential equations. Interaction may be introduced through so-called “conditional links,” which

can represent nonlinear contact forces. Time integration strategies, similar to those introduced in

Chapter 3 in this book, operating at the audio sample rate (or sometimes above, in order to reduce

frequency warping effects), are employed in order to generate sound output. The basic operation of

this method will be described in more detail in §3.4.

(a) (b) (c)

Figure 1.6: Lumped mass-spring networks: (a) In a linear configuration corresponding to a model
of a lossless string, (b) in a 2D configuration corresponding to a model of a lossless membrane, and
(c) an unstructured network, without a distributed interpretation.

A little imagination might lead one to guess that, with a large enough collection of interconnected

masses, a distributed object such as a string, as shown in Figure 1.6(a), or membrane, as shown in
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Figure 1.6(b), may be modelled. Such configurations will be discussed explicitly in §6.1.1 and §11.1.7,

respectively. A rather large philosophical distinction between the CORDIS framework and that

described here is that one can develop lumped networks which are, in a sense, only quasi-physical, in

that they do not correspond to recognizable physical objects, though the physical underpinnings of

Newton’s Laws remain. See Figure 1.6(c). Accurate simulation of complex distributed systems has

not been a major concern of the designers of the CORDIS; rather, the interest is in user issues such

as the modularity of lumped network structures, and the ability to interact through external control.

In short, it is perhaps best to think of CORDIS as a system designed for artists and composers,

rather than scientists.

1.2.2 Modal Synthesis

A different approach, with a long history of use in physical modeling sound synthesis, is based on a

frequency-domain, or modal description of vibration of distributed objects. Modal synthesis [2, 172],

as it is called, is appealing, in that the complex dynamic behaviour of a vibrating object may be

decomposed into contributions from a set of modes (the spatial forms of which are eigenfunctions of

the particular problem at hand, and are dependent on boundary conditions). Each such mode oscil-

lates at a single complex frequency. (Generally, for real-valued problems, these complex frequencies

will occur in complex conjugate pairs, and the “mode” may be considered to be the pair of such

eigenfunctions and frequencies.) Considering the particular significance of sinusoids in human audio

perception, such a decomposition can lead to useful insights, especially in terms of sound synthesis.

Modal synthesis forms the basis of the popular MOSAIC [172] and Modalys [79] sound synthesis

software packages (among others [35]), and, along with CORDIS, was one of the first such com-

prehensive systems to make use of physical modeling principles. More recently, various researchers,

primarily Rabenstein have developed a related method, called the functional transformation method

(FTM) [257] which uses modal techniques to derive point-to-point transfer functions. Sound synthe-

sis applications of FTM are under development. Independently, Hélie and his associates at IRCAM

have developed a formalism suitable for broad nonlinear generalizations of modal synthesis, based

around the use of Volterra series approximations [218]. Such methods include FTM as a special case.

A finite element based approach to modal synthesis has been discussed recently by Bruyns [43]. An

interesting general viewpoint on the relationship between time and frequency domain methods is

given by Rocchesso [208].

A physical model of a musical instrument, such as a vibrating string or membrane, may be de-

scribed in terms of two sets of data: 1) the PDE description itself, including all information about

material properties and geometry, and associated boundary conditions, and 2) excitation informa-

tion, including initial conditions and/or an excitation function and location, and readout location(s).

The basic modal synthesis strategy is as outlined in Figure 1.7. The first set of information is used,

in an initial offline step, to determine modal shapes and frequencies of vibration; this involves, es-

sentially, the solution of an eigenvalue problem, and may be performed in a variety of ways. (In the

functional transformation approach, this is referred to as the solution of a Sturm-Liouville problem

[257]). Generally, this information must be stored, the modal shapes themselves in a so-called shape-

matrix. Then, the second set of information is employed: the initial conditions and/or excitation

are expanded onto the set of modal functions (which under some conditions form an orthogonal set)

through an inner product, giving a set of weighting coefficients. The weighted combination of modal

functions then evolves, each at its own natural frequency. In order to obtain a sound output at a

given time, the modal functions are projected (again through inner products) onto an observation
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state, which, in the simplest case, is of the form of a delta function at a given location on the object.

Though modal synthesis had been called a “frequency domain” method here, this is not quite

a correct description of the workings of a modal synthesis algorithm, and is worth clarifying. In

particular, temporal Fourier transforms are not employed, and the output waveform is generated

directly in the time domain. Essentially, the behaviour of each mode is described by a scalar second-

order ordinary differential equation, and various time-integration techniques (some of which will be

described in Chapter 3) may be employed to obtain a numerical solution. In short, it is perhaps

better to think of modal synthesis not as a frequency domain method, but rather a numerical method

for a linear problem which has been diagonalized (to borrow a term from state space analysis [71]).

As such, in contrast with a direct time domain approach, the state itself is not observable directly,

except through reversal of the diagonalization process (i.e., the projection operation mentioned

above). This lack of direct observability has a number of implications in terms of multiple channel

output, time-variation of excitation and readout locations, and, most importantly, memory usage.

Modal synthesis continues to develop, with newer research directions focussing on the problem of

interaction with nonlinear point excitation mechanisms.

Modal synthesis techniques will be discussed at various points in this book, in a general way

towards the end of this chapter, and in full technical detail in Chapters 6 and 12.

Time-dependent

distributed problem

defined by:

system of PDEs

+ boundary conditions

+ excitation information

+ readout information

Eigenvalue problem: determine

modal functions

modal frequencies ω1, ω2, . . .

From excitation/output parameters:

Determine modal weights, phases Ai, φi

and synthesize solution

A1 cos(ω1t + φ1)

A2 cos(ω2t + φ2)

A3 cos(ω3t + φ3)

A4 cos(ω4t + φ4)

ω1

ω2

ω3

ω4

Figure 1.7: Modal synthesis: The behaviour of a linear, distributed time-dependent problem can
be decomposed into contributions from various modes, each of which possesses a particular vibrat-
ing frequency. Sound output may be obtained through a precise recombination of such frequencies,
depending on excitation and output parameters.
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1.2.3 Digital Waveguides

Physical modeling sound synthesis is, to say the least, computationally very intensive. Compared

with earlier methods, and in particular FM synthesis, which requires only a handful of operations

per clock cycle, physical modeling methods may need to make use of hundreds or thousands of

such operations per sample period in order to create reasonably complex musical timbres. Physical

modeling sound synthesis, twenty years ago, was a distinctly offline activity.

In the mid 1980s, however, with the advent of digital waveguide methods [242] due to Julius

Smith, all this changed. These algorithms, with their roots in digital filter design and scattering

theory, and closely allied to wave digital filters [88], offered a convenient solution to the problem of

computational expense for a certain class of musical instrument, in particular those whose vibrating

parts can be modelled as one-dimensional linear media described, to a first approximation, by the

wave equation. Among these may be included many stringed instruments, as well as most woodwind

and brass instruments. In essence, the idea is very simple: the motion of such a medium may be

modelled as two travelling non-interacting waves, and in the digital simulation, this is dealt with

elegantly by using two “directional” delay lines, which require no computer arithmetic at all! Digital

waveguide techniques have formed the basis for at least one commercial synthesizer (the Yamaha

VL1), and serve as modular components in many of the increasingly common software synthesis

packages (such as Max/MSP [288], STK [65], and Csound [39]). Now, some twenty years on, they

are considered the state of the art in physical modelling synthesis, and the basic design has been

complemented by a great number of variations intended to deal with more realistic effects (discussed

below), usually through more advanced digital filtering blocks. In general, digital waveguides will not

be covered in this book, mainly because there already exists a large literature on this topic, as well

as a comprehensive, and perpetually growing monograph by Smith himself [242]. The relationship

between digital waveguides and more standard time domain numerical methods has been addressed

by various authors [241, 135, 24], and will be revisited in some detail in §6.2.11. A succinct overview

is given in [238] and [206].

The path to the invention of digital waveguides is an interesting one, and is worth elaborating

here. In approximately 1983, Karplus and Strong [138] developed an efficient algorithm for gen-

erating musical tones strongly resembling string tones, which was almost immediately noticed and

subsequently extended by Jaffe and Smith [124]. The Karplus Strong structure is no more than a de-

lay line, or wavetable, in a feedback configuration, in which data is recirculated; generally, the delay

line is initialized with random numbers, and is terminated with a low order digital filter,usually with

a low-pass characteristic—see Figure 1.8. Tones produced in this way are spectrally rich, and exhibit

a decay which is indeed characteristic of plucked string tones, due to the terminating filter. The

pitch is determined by the delay-line length and the sample rate: generally, for an N -sample delay

line, as pictured in Figure 1.8, with an audio sample rate of fs Hz, the pitch of the tone produced

will be at fs/N , though this may be modified through interpolation, just as in the case of wavetable

synthesis. In all, the only operations required in a computer implementation are the digital filter

additions and multiplications, and the shifting of data in the delay line. The computational cost is

on the order of that of a single oscillator, yet instead of producing a single frequency, Karplus-Strong

yields an entire harmonic series. The Karplus-Strong plucked string synthesis algorithm is an ab-

stract synthesis technique, in that in its original formulation, though the sounds produced resembled

those of plucked strings, there was no immediate physical interpretation offered.

There are two important conceptual steps leading from the Karplus-Strong algorithm to a digital

waveguide structure. The first is to associate a spatial position with the values in the wavetable—in
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filter

output

N -sample delay line

Figure 1.8: The Karplus-Strong plucked string synthesis algorithm. An N -sample delay line is
initialized with random values, which are allowed to recirculate, while undergoing a filtering operation.

other words, a wavetable has a given physical length. The other is to show that the values prop-

agated in the delay lines behave as individual traveling wave solutions to the 1D wave equation;

only their sum is a physical variable (such as displacement, or pressure, etc.). The link between

the Karplus-Strong algorithm and digital waveguide synthesis, especially in the “single-delay-loop”

form, is elaborated by Karjalainen et al. [137]. Excitation elements, such as bows, hammer interac-

tions, reeds, etc., are usually modelled as lumped, and are connected to waveguides via scattering

junctions, which are, essentially, power-conserving matrix operations (more will be said about scat-

tering methods in the next section). The details of the scattering operation will be very briefly

covered here in §3.3.3. These were the two steps taken initially by Smith in work on bowed strings

and reed instruments [235], though it is important to note the link with earlier work by McIntyre

and Woodhouse [169], McIntyre, Schumacher and Woodhouse [168], which was also concerned with

efficient synthesis algorithms for these same systems, though without an explicit use of delay line

structures.

(a)

u(x, t)

(b)

x

x

x

c

c

(c)

Figure 1.9: The solution to the 1D wave equation, (a), may be decomposed into a pair of traveling
wave solutions, which move to the left and right at a constant speed c determined by the system
under consideration. This constant speed of propagation leads immediately to a discrete time imple-
mentation employing delay lines, as shown in (c).

Waveguide models have been successfully to a multitude of systems; several representative con-

figurations are shown in Figure 1.10.

String vibration has seen perhaps the most activity, probably owing to the relationship between

waveguides and the Karplus-Strong algorithm. As shown in Figure 1.10(a), the basic picture is

of a pair of waveguides separated by a scattering junction connecting to an excitation mechanism,

such as a hammer or plectrum; at either end, the structure is terminated by digital filters which
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model boundary terminations, or potentially coupling to a resonator or other strings. The output

is generally read from a point along the waveguide, through a sum of wave variables traveling in

opposite directions. Early work was due to Smith [241] and others. In recent years, the Acoustics

group at the Helsinki University of Technology has systematically tackled a large variety of stringed

instruments using digital waveguides, yielding sound synthesis of extremely high quality. Some

of the target instruments have been standard keyboard instruments such as the harpsichord [268]

and clavichord [266], but more exotic instruments, such as the Finnish kantele [82, 188], have been

approached as well. There has also been a good deal of work on the extension of digital waveguides

to deal with the particular “tension-modulation,” or pitch-glide nonlinearity in string vibration

[269, 81, 255], a topic which will be taken up in great detail in §8.1. Some more related recent

areas of activity have included banded waveguides [83, 84], which are designed to deal with systems

with a high degree of inharmonicity, commuted synthesis techniques [239, 136], which allow for

the interconnection of string models with harder-to-model resonators, through the introduction of

sampled impulse responses, and the association of digital waveguide methods with underlying PDE

models of strings [19].

Woodwind and brass instruments are also well-modelled by digital waveguides; a typical waveg-

uide configuration is shown in Figure 1.10(b), where a digital waveguide is broken up by scattering

junctions connected to models of (in the case of woodwind instruments) toneholes. At one end, the

waveguide is connected to an excitation mechanism, such as a lip or reed model, and at the other

end, output is taken after processing by a filter representing bell and radiation effects. Early work

was carried out by Smith, for reed instruments [235], and for brass instruments by Cook [61]. Work

on tone hole modeling has appeared [226, 78, 276], sometimes involving wave digital filter imple-

mentations [277], and efficient digital waveguide models for conical bores have also been developed

[237, 264].

Vocal tract modeling using digital waveguides was first approached by Cook [60, 62]; see Figure

1.10(c). Here, due to the spatial variation of the cross-sectional area of the vocal tract, multiple

waveguide segments, separated by scattering junctions, are necessary. The model is driven at one

end by a glottal model, and output is taken from the other end after filtering to simulate radiation

effects. Such a model is reminiscent of the Kelly-Lochbaum speech synthesis model [141], which in

fact predates the appearance of digital waveguides altogether, and can be calibrated using linear

predictive techniques [197], and wave digital speech synthesis models [245]. The Kelly Lochbaum

model is presented in §9.5.4.

Networks of digital waveguides have also been used in a quasi-physical manner in order to effect

artificial reverberation—in fact, this was the original application of the technique [234]. In this case,

a collection of waveguides, of varying impedances and delay lengths is used; such a network is shown

in Figure 1.10(d). Such networks are passive, so that signal energy injected into the network from a

dry source signal will produce an output whose amplitude will gradually attenuate, with frequency-

dependent decay times dependent on the delays and immittances of the various waveguides—some

of the delay lengths can be interpreted as implementing ‘early reflections’[234]. Such networks

provide a cheap and stable way of generating rich impulse responses. Generalizations of waveguide

networks to feedback delay networks (FDNs) [209] and circulant delay networks [211] have also been

explored, also with an eye towards applications in digital reverberation. When a waveguide network

is constructed in a regular arrangement, in two or three spatial dimensions, it is often referred to

as a waveguide mesh [272, 273, 274, 24]—see Figure 1.10(e). In 2D, such structures are may be

used to model the behaviour of membranes, and in 3D, potentially for full-scale room acoustics
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simulation (i.e., for artificial reverberation), though real-time implementations of such techniques

are probably decades away. Some work on the use of waveguide meshes for the calculation of room

impulse responses has appeared recently [16, 176]. The waveguide mesh is birefly covered here in

§11.1.6.

(a)

(b)

(c)

(d)

(e)
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Figure 1.10: Typical digital waveguide configurations for musical sound synthesis. In all cases,
boxes marked S represent scattering operations. (a) A simple waveguide string model, involving an
excitation at a point along the string and terminating filters, and output read from a point along
the string length, (b) a woodwind model, with scattering at tonehole junctions, input from a reed
model at the left end, and output read from the right end, (c) a similar vocal tract configuration,
involving scattering at junctions between adjacent tube segments of differing cross-sectional areas,
(d) an unstructured digital waveguide network, suitable for quasi-physical artificial reverberation, and
(e) a regular waveguide mesh, modelling wave propagation in a 2D structure such as a membrane.

1.2.4 Hybrid Methods

Digital waveguides are but one example of a scattering-based numerical method [24], for which the

underlying variables propagated are of wave type, which are reflected and transmitted throughout

a network by power-conserving scattering junctions (which can be viewed, under some conditions,

as orthogonal matrix transformations). Such methods have appeared in various guises across a wide

range of (often non-musical) disciplines. Perhaps the best known is the transmission-line matrix

method [57, 123], which is popular in the field of electromagnetic field simulation, and dates back

to the early 1970s [127], but multidimensional extensions of wave digital filters [88, 87] intended

for numerical simulation have also been proposed [92, 24]. Most such methods are designed based

on electrical circuit network models, and make use of scattering concepts borrowed from microwave

filter design [17]; their earliest roots are in the work of Kron in the 1940s [149].
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Scattering-based methods also appear in standard areas of signal processing, such as inverse

estimation [42], fast factorization and inversion of structured matrices [132], and linear prediction

[197] for speech signals (leading directly to the Kelly-Lochbaum speech synthesis model, which is a

direct antecedent to digital waveguide synthesis).

In the musical sound synthesis community, scattering methods, employing wave (sometimes

called “W”) variables are sometimes viewed [38] in opposition to methods which employ physical

(correspondingly called “K,” for Kirchhoff) variables, such as lumped networks, and, as will be men-

tioned shortly, direct simulation techniques, which are employed in the vast majority of simulation

applications in the mainstream world.

In recent years, moves have been made towards modularizing physical modeling [267]; instead of

simulating the behaviour of a single musical object, such as a string or tube, the idea is to allow the

user to interconnect various predefined objects in any way imaginable. In many respects, this is the

same point of view as that of those working on lumped network models—this is reflected by the use

of hybrid or “mixed” K-W methods, i.e., methods employing both scattering methods, such as wave

digital filters and digital waveguides, and finite difference modules (typically lumped) [135, 134].

See Figure 1.11. In some situations, particularly those involving the interconnection of physical

“modules,” representing various separate portions of a whole instrument, the wave formulation may

be preferable, in that there is a clear means of dealing with the problem of non-computability, or

delay-free loops—the concept of the reflection-free wave port, introduced by Fettweis long ago in

the context of digital filter design [91], can be fruitfully employed in this case. The automatic

generation of recursible structures, built around the use of wave digital filters, is a key component

of such methods [187], and can be problematic when multiple nonlinearities are present, requiring

specialized design procedures [223]. One result of this work has been a modular software system for

physical modeling sound synthesis, incorporating elements of both types, called BlockCompiler [133].

More recently the scope of such methods has been hybridized even further through the incorporation

of functional transformation (modal) methods into the same framework [189, 196].

(a) (b)

-1

-1

-1S S

S

Figure 1.11: (a) A distibuted system, such as a string, connected with various lumped elements, and
(b) a corresponding discrete scattering network. Boxes marked S indicate a scattering operation.

1.2.5 Direct Numerical Simulation

Digital waveguides and related scattering methods, as well as modal techniques have undeniably

become a very popular means of designing physical modeling sound synthesis algorithms. There

are several reasons for this, but the main one is that such structures, built from delay lines, digital

filters and Fourier decompositions, fit naturally into the framework of digital signal processing, and
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form a natural extension of more abstract techniques from the pre-physical modeling synthesis era—

note, for instance, the direct link between modal synthesis and additive synthesis, as well as that

between digital waveguides and wavetable synthesis, via the Karplus Strong algorithm. Such a body

of techniques, with linear system theory at its heart, is home turf to the trained audio engineer.

See §1.3.1 for more comments on the relationship between abstract methods and physical modeling

sound synthesis.

For some time, however, a separate body of work in the simulation of musical instruments has

grown; this work, more often than not, has been carried out by musical acousticians whose primary

interest is not so much synthesis, but rather the pure study of the behaviour of musical instruments,

often with an eye towards comparison between a model equation and measured data, and possibly

potential applications towards improved instrument design. The techniques used by such researchers

are of a very different origin, and are couched in a distinct language; as will be seen throughout the

rest of this book, however, there is no shortage of links to be made with more standard physical

modeling sound synthesis techniques, provided one takes the time to “translate” between the sets of

terminology! In this case, one speaks of time-stepping, and grid resolution; there is no reference to

delays or digital filters, and sometimes, the frequency domain is not invoked at all, which is unheard

of in the more standard physical modeling sound synthesis setting.

Perhaps the most straightforward approach makes use of a finite difference approximation to a

set of partial differential equations [244, 113, 201], which serves as a mathematical model of a musical

instrument. (When applied to dynamic, or time-dependent systems, such techniques are sometimes

referred to as “finite difference time domain” (FDTD) methods, a terminology which originated in

numerical methods for the simulation of electromagnetics [249, 286, 250].) Such methods have a

very long history in applied mathematics, which can be traced back at least as far as the work of

Courant, Friedrichs and Lewy in 1928 [68], especially as applied to the simulation of fluid dynamics

[121] and electromagnetics [249]. Needless to say, the literature on finite difference methods is vast.

As mentioned above, they have been applied for some time for sound synthesis purposes, though

definitely without the success or widespread acceptance of methods such as digital waveguides,

primarily because of computational cost—or, rather, preconceived notions about computational

cost—relative to other methods.

The procedure, which is similar across all types of systems, is very simply described: the spatial

domain of a continuous system, described by some model PDE, is restricted to a grid composed of a

finite set of points (see Figure 1.12), at which values of a numerical solution are computed. Time is

similarly discretized, and the numerical solution is advanced, through a recursion derived from the

model PDE. Derivatives are approximated by differences among values at nearby grid points. The

great advantage of finite difference methods (among other time domain techniques), in comparison

with all the other methods discussed here, is their generality and simplicity, and the wide range of

systems to which they may be applied, including strongly nonlinear distributed systems; these can

not be approached using waveguides or modal synthesis, and by lumped models only in a very ad

hoc and non-rigorous manner. The primary disadvantage is that one must pay great attention to the

problem of numerical instability—indeed numerical stability, and the means for ensuring it in sound

synthesis algorithms is one of the subjects that will dealt with in depth in this book. Computational

cost is an issue, but no more so than in any other synthesis method (with the exception of digital

waveguides), and so cannot be viewed as a disadvantage of finite difference methods in particular.

The most notable early finite difference sound synthesis work was concerned with string vibration,

dating back to the work of Ruiz in 1969 [220] and others [119, 10, 40]; the first truly sophisticated
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Time-dependent distributed

problem defined by:

system of PDEs

+ boundary conditions

+ excitation information

+ readout information

Time-space discretization

yielding recursion 1/fs

1/fs

Figure 1.12: Direct simulation via finite differences. A distributed problem (at left) is discretized in
time and space, yielding a recursion over a finite set of values (at right), to be updated with a given
time step (usually corresponding to the inverse of the audio sample rate fs).

use of finite difference methods for sound synthesis was due to Chaigne in the case of plucked

string instruments [51] and piano string vibration [52, 53]; this latter work has been extended

considerably by Giordano through connection to a soundboard model [106, 108]. Finite difference

methods have also been applied to various percussion instruments, including those based on vibrating

membranes [98] (i.e., for drum heads), such as kettledrums [199], stiff vibrating bars such as those

used in xylophones [116, 77] (i.e., for xylophones), and plates [54, 227]. Finite difference schemes for

nonlinear musical systems, such as strings and plates, have been treated by this author [33, 25, 26]

and others [13, 12, 14]. Sophisticated difference scheme approximations to lumped nonlinearities in

musical sound synthesis (particularly in the case of excitation mechanisms and contact problems)

have appeared [9, 198, 229] under the remit of the Sounding Object project [210]. A useful text,

which discusses finite difference methods (among other techniques) in the context of musical acoustics

of wind instruments, is that of Kausel [139].

Finite difference methods, in the mainstream engineering world, are certainly the oldest method

of designing a computer simulation. They are simply programmed, generally quite efficient, and

there is an exhaustive literature on the subject. Best of all, in many cases they are sufficient for

high-quality physical modeling sound synthesis. For the above reasons, they will form the core of

this book. On the other hand, time domain simulation has undergone many developments, and some

of these will be discussed in this book. Perhaps best known, particularly to mechanical engineers,

are finite element methods (FEM) [86, 66] which also have long roots in simulation, but crystallized

into their more modern form some time in the 1960s. The theory behind FEM is somewhat different

from finite differences, in that the deflection of a vibrating object is modeled in terms of so-called

shape functions, rather than in terms of values at a given set of grid points. Perhaps the biggest

benefit of finite element methods is the ease with which relatively complex geometries may be

modeled; this is of great interest for model validation in musical acoustics. In the end, however, the

computational procedure is quite similar to that of finite difference schemes, involving a recursion

of a finite set of values representing the state of the object. Finite element methods are briefly
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introduced in Chapter 14. Various researchers, [11, 199] have applied finite element methods to

problems in musical acoustics, though generally not for synthesis. A number of other techniques

have appeared more recently, which could be used profitably for musical sound synthesis. Perhaps the

most interesting are so-called spectral or pseudospectral methods [260, 100], which will be discussed

in Chapter 15. Spectral methods, which may be thought of, crudely speaking, as limiting cases of

finite difference schemes, allow for computation with extreme accuracy, and, like finite difference

methods, are well-suited to problems in regular geometries. They have not, at the time of writing,

appeared in physical modeling applications, but would appear to be a very good match—indeed,

modal synthesis is an example of a very simple Fourier-based spectral method.

For linear musical systems, and some distributed nonlinear systems, finite difference schemes

(among other time-domain methods) have a state space interpretation [131], which is often referred

to, in the context of stability analysis, as the “matrix method” [244]. Matrix analysis/state space

techniques will be discussed at various points in this book (see, e.g., §6.2.8). State-space meth-

ods have seen some application in musical sound synthesis, though not through finite difference

approximations [71].

1.3 Physical Modeling: A Larger View

This is perhaps a good moment to step back and examine some general constraints on physical

modeling sound synthesis, connections among the various existing methods and with earlier abstract

techniques, and to address some general philosophical questions about the utility of such methods.

1.3.1 Physical Models as Descended from Abstract Synthesis

Among the most interesting observations one can make about some (but not all) physical modeling

methods concerns their relationship to abstract methods, which is somewhat deeper than it might

appear to be. Abstract techniques, especially those described in §1.1, set the stage for many later

developments, and determined some of the basic building blocks for synthesis, as well as the ac-

companying notation, which is derived from digital signal processing. This influence has had its

advantages and disadvantages, as will be detailed below.

As mentioned earlier, digital waveguides, certainly the most successful physical modeling tech-

nique to date, can be thought of as a physical interpretation of wavetable synthesis. Perhaps even

more important than the direct association between a lossless string and a wavetable was the recog-

nition that systems with a low degree of inharmonicity could be efficiently modelled using a pair of

delay lines terminated by lumped low-order digital filters—this effectively led the way to efficient

synthesis algorithms for many 1D musical systems producing pitched tones. No such efficient tech-

niques have been reported for similar systems in the mainstream literature, and it is clear that such

efficiency gains were made possible only by association with abstract synthesis methods (and digital

signal processing concepts in particular), and through an appreciation of the importance of human

auditory perception to the resulting sound output. On the other hand, such lumped modeling of

effects such as loss and inharmonicity is also a clear departure from physicality; this is also true of

newer developments such as banded waveguides and commuted synthesis.

Similarly, modal synthesis may be viewed as a direct physical interpretation of additive synthesis;

a modal interpretation (like that of any physical model) has the advantage of drastically reducing

the amount of control information which must be supplied. On the other hand, it is restrictive in
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the sense that, with minor exceptions, it may only be applied usefully to linear and time invariant

systems, which is a side-effect of a point of view informed by Fourier decomposition.

As mentioned above, there is not always a direct link between abstract and physical modeling

techniques. Lumped network models and direct simulation methods, unlike the other techniques

mentioned above, have distinct origins in numerical solution techniques, and not in digital signal

processing. Those working on hybrid KW methods have gone a long way towards viewing such

methods in terms of abstract synthesis concepts [196, 135]. Similarly, there is not a strong physical

interpretation (to the knowledge of this author) of abstract techniques such as FM or granular

synthesis.

1.3.2 Connections: Direct Simulation and Other Methods

Because direct simulation methods are, in fact, the subject of this book, it is worth saying a few

words about the correspondence with the various other physical modeling methods discussed in the

previous section. Indeed, after some exposure to these methods, it becomes clear that all can be

related to one another, and to mainstream simulation methods.

Perhaps the closest relative of the direct techniques discussed here is the lumped mass-spring

network methodology [44]; in some ways, this is more general than direct simulation approaches for

distributed systems, in that one could design a lumped network without a distributed counterpart—

this could indeed be attractive to a composer. As a numerical method however, it is designed as a

large ordinary differential equation solver, which puts it in line with various simulation techniques

based on semi-discretization, and in particular finite element methods. As mentioned in §1.2.1,

distributed systems may be dealt with through large collections of lumped elements, and in this

respect, the technique differs considerably from purely distributed models based on the direct solution

of PDEs, because it can be quite cumbersome to design more sophisticated numerical methods, and

to deal with systems more complex than a simple linear string or membrane using a lumped approach.

The main problem is the “local” nature of connections in such a network; in more modern simulation

approaches (such as, e.g., spectral methods [260]), approximations at a given point in a distributed

system are rarely modelled using nearest-neighbour connections between grid variables. From the

distributed point of view, network theory may be dispensed with entirely. Still, it is possible to view

the integration of lumped network systems in terms of distributed finite difference schemes—see

§6.1.1 and §11.1.7 for details.

It should also come as no surprise that digital waveguide methods may also be rewritten as finite

difference schemes. It is interesting that although the exact discrete traveling wave solution to the

1D wave equation has been known in the mainstream simulation literature for some time (since the

1960s at least [3]), and is a direct descendant of the method of characteristics [103], the efficiency

advantage was apparently not taken advantage of to the same spectacular effect as in musical sound

synthesis. (This is perhaps because the 1D wave equation is seen, in the mainstream world, as a

model problem, and not of inherent practical interest.) Equivalences between finite differences and

digital waveguide methods, in the 1D case and the multidimensional case of the waveguide mesh,

have been established by various authors [272, 274, 242, 241, 24, 81, 225], and, as mentioned earlier,

those at work on scattering based modular synthesis have incorporated ideas from finite difference

schemes into their strategy [134, 135]. This correspondence will be revisited with regard to the 1D

wave equation in §6.2.11, and the 2D wave equation in §11.1.6. It is worth warning the reader, at

this early stage, that the efficiency advantage of the digital waveguide method with respect to an

equivalent finite difference scheme does not carry over to the multidimensional case [241, 24].
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Modal analysis and synthesis was in extensive use long before it appeared in musical sound synthe-

sis applications, particularly in association with finite element analysis of vibrating structures—see

[180] for an overview. In essence, a time-dependent problem, under some conditions, may be reduced

to an eigenvalue, or statics problem, greatly simplifying analysis. It may also be viewed under the

umbrella of more modern so-called spectral or pseudo-spectral methods [48], which predate modal

synthesis by many years. Spectral methods essentially yield highly accurate numerical approxima-

tions through the use of various types of function approximations to the desired solution; many

different varieties exist. If the solution is expressed in terms of trigonometric functions, the method

is often referred to as a Galerkin Fourier method—this is exactly modal synthesis in the current

context. Other types of spectral methods, perhaps more appropriate for sound synthesis purposes

(and in particular collocation methods) will be discussed in Chapter 15. Modal synthesis methods

will be discussed in more detail in §6.1.11 and §11.1.8.

Modular or “hybrid” methods, though nearly always framed in terms of the language of signal

processing may also be seen as finite difference methods; the correspondence between lumped models

and finite difference methods is direct, and that between wave digital filters and numerical integration

formulae has been known for many years [93], and may be related directly to the even older concept

of absolute-, or A-stability [105, 70]. The key feature of modularity, however, is new to this field,

and is not something which has been explored in depth in the mainstream simulation community.

This is not the place to evaluate the relative merit of the various physical modeling synthesis

methods; this will be performed exhaustively with regard to two useful model problems, the 1D and

2D wave equations, in Chapters 6 and 12, respectively. For the impatient reader, some concluding

remarks on relative strengths and weaknesses of these methods with respect to direct simulation

methods appear in Chapter 16.

1.3.3 Complexity of Musical Systems

In the physical modeling sound synthesis literature (as well as that of the mainstream) it is common-

place to see claims of better performance of a certain numerical method over another. Performance

may be measured in terms of the number of floating point operations required, or memory require-

ments, or, more characteristically, better accuracy for a fixed operation count. It is worth keeping

in mind, however, that even though these claims are (sometimes) justified, for a given system, there

are certain limits as to “how fast” or “how efficient” a simulation algorithm can be. These limits are

governed by system complexity; one cannot expect to reduce an operation count for a simulation

below that which is required for an adequate representation of the solution.

System complexity is, of course, very difficult to define. Perhaps most amenable to discussions

of complexity are linear and time-invariant (LTI) systems, which form a starting point for many

models of musical instruments. Consider any lossless distributed LTI system (such as a string,

bar, membrane, plate, or acoustic tube), freely vibrating at low amplitude due to some set of

initial conditions, without any external excitation. Considering the continuous case, one is usually

interested in reading an output y(t) from a single location on the object. This solution can almost

always1 be written in the form:

y(t) =

∞∑

q=1

Aq cos(2πfqt + φq) (1.5)

1The formula must be altered slightly if the frequencies are not all distinct.
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the form is exactly that of pure additive synthesis or modal synthesis; here, Aq and φq are determined

by the initial conditions and constants which define the system, and the frequencies fq are assumed

non-negative, and to lie in an increasing order. Such a system has a countably infinite number of

degrees of freedom; each oscillator at a given frequency fq requires the specification of two numbers,

Aq and φq.

Physical modeling algorithms generally produce sound output at a given sample rate, say fs.

This is true of all the methods discussed in the previous section. There is thus no hope of (and no

need for) simulating frequency components2 which lie above fs/2. Thus, as a prelude to a discrete

time implementation, the representation (1.5) may be truncated to

y(t) =

N∑

q=1

Aq cos(2πfqt + φq) (1.6)

where only the N frequencies f1 to fN are inferior to fs/2. Thus the number of degrees of freedom

is now finite: 2N .

Even for a vaguely defined system such as this, from this information one may go slightly farther

and calculate both the operation count and memory requirements, assuming a modal-type synthesis

strategy. As described in §1.2.2, each frequency component in the expression (1.5) may be computed

using a single two-pole digital oscillator, which requires two adds, one multiply, and two memory

locations, giving, thus, 2N adds and N multiplies per time step, and a necessary 2N units of memory.

Clearly if fewer than N oscillators are employed, the resulting simulation will not be complete, and

the use of more than N oscillators is superfluous. Not surprisingly, such a measure of complexity is

not restricted to frequency domain methods only; in fact, any method (including direct simulation

methods such as finite differences and finite element methods) for computing the solution to such

a system must require roughly the same amount of memory and number of operations; for time

domain methods, complexity is intimately related to conditions for numerical stability. Much more

will be said about this in Chapters 6 and 11, which deal with time domain and modal solutions for

the wave equation.

There is, however, at least one very interesting exception to this rule. Consider the special case

of a system for which the modal frequencies are multiples of a common frequency f1, i.e., in (1.5),

fq = qf1. In this case, (1.5) is a Fourier series representation of a periodic waveform, of period

T = 1/f1, or, in other words,

y(t) = y(t − T )

The waveform is thus completely characterized by an single period of duration T . In a discrete set-

ting, it is obvious that it would be wasteful to employ separate oscillators for each of the components

of y(t); far better would be to simply store one period of the waveform in a table, and read through

it at the appropriate rate, employing simple interpolation, at a cost of O(1) operations per time step

instead of O(N). Though this example might seem trivial, it is worth keeping in mind that many

2In the nonlinear case, however, one might argue that the use of higher sampling rates is justifiable, due to the
possibility of aliasing. On the other hand, in most physical systems, loss becomes extremely large at high frequencies,
so a more sound, and certainly much more computationally efficient approach is to introduce such losses into the model
itself. Another argument for using an elevated sample rate, employed by many authors, is that numerical dispersion
(leading to potentially audible distortion) may be reduced; this, however, is disastrous in terms of computational
complexity, as the total operation count often scales with the square or cube of the sample rate. It is nearly always
possible to design a scheme with much better dispersion characteristics, which still operates at a reasonable sample
rate.
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pitched musical sounds are approximately of this form, and in particular those produced by musical

instruments based on strings and acoustic tubes. The efficiency gain noted above is at the heart of

the digital waveguide synthesis technique. Unfortunately, however, for musical sounds which do not

generate harmonic spectra, there does not appear to be any such efficiency gain possible; this is the

case, in particular, for 2D percussion instruments, and moderately stiff strings and bars. Though

extensions of digital waveguides do indeed exist in the multidimensional setting, in which case they

are usually known as digital waveguide meshes), there is no efficiency gain relative to modal tech-

niques, or standard time differencing methods; indeed, the computational cost of solution by any of

these methods is roughly the same3.

For distributed nonlinear systems, such as strings and percussion instruments, it is difficult to

even approach a definition of complexity—perhaps the only thing one can say is that for a given

nonlinear system, which reduces to an LTI system at low vibration amplitudes (this is the usual case

in most of physics, and musical acoustics in particular), the complexity, or required operation count

and memory requirements for an algorithm simulating the nonlinear system will be at least that of

the associated linear system. Efficiency gains through digital waveguide techniques are no longer

possible, except under very restricted conditions—one of these, the string under a tension-modulated

nonlinearity, will be discussed in §8.1.6.

One question that will not be approached in detail in this book is of model complexity in the

perceptual sense. This is a very important issue, in that psychoacoustic criteria could lead to

reductions in both the operation count and memory requirements of a synthesis algorithm, in much

the same way as they have impacted on audio compression. For instance, the description of the

complexity of a linear system in terms of the number of modal frequencies up to the Nyquist frequency

is mathematically sound, but for many musical systems (particularly in 2D), the modal frequencies

become very closely spaced in the upper range of the audio spectrum. Taking into consideration the

concepts of the critical band and frequency domain masking, it may not be necessary to render the

totality of the components. Such psychoacoustic model reduction techniques have been used, with

great success, in many efficient (though admittedly non-physical) artificial reverberation algorithms.

The impact of psychoacoustics on physical models of musical instruments has seen some investigation

recently, in the case of string inharmonicity[125], and also for impact sounds [7], and it would be

extremely useful to develop practical complexity-reducing principles and methods, which could be

directly related to numerical techniques.

This main point of this section is to signal to the reader that for general systems, there is not

a physical modeling synthesis method which acts as a magic bullet. There is a minimum price

to be paid for the proper simulation of any system. For a given system, the operation counts for

modal, finite difference and lumped network models are always nearly the same; in terms of memory

requirements, modal synthesis methods can incur a much heavier cost than time domain methods.

One great misconception which has appeared time and time again in the literature [37] is that time

domain methods are wasteful, in the sense that the entire state of an object must be updated, even

though one is interested, ultimately, in only a scalar output, generally from a single location on

the virtual instrument. Thus point-to-point “black-box” type models, perhaps based on a transfer

function representation are more efficient. But, as will be shown repeatedly throughout this book,

the order of any transfer function description (and thus the memory requirements) will be roughly

3It is possible, for certain systems such as the ideal membrane, under certain conditions, to extract groups of
harmonic components from a highly inharmonic spectrum, and deal with them individually using waveguides [6, 28],
leading to an efficiency gain, albeit a much more modest one than in the 1D case. Such techniques, unfortunately, are
rather restrictive in that only extremely regular geometries may be dealt with.
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the same as the size of the physical state of the object in question.

1.3.4 Why?

The question most often asked by musicians and composers (and perhaps least often by engineers)

about physical modeling sound synthesis is: Why? More precisely: Why bother to simulate the

behaviour of an instrument which already exists? Surely the best that can be hoped for is an exact

reproduction of the sound of an existing instrument. This is not an easy question to answer, but

nonetheless, various answers do exist.

The most common answer is almost certainly: Because it can be done. This is a very good answer

from the point of view of musical acoustician, whose interest may be to prove the validity of a model of

a musical instrument, perhaps by comparing simulation results (i.e., synthesis) to measured output,

or perhaps by psychoacoustic comparison of recorded and model-synthesized audio output. Beyond

the academic justification, there are boundless opportunities for improvement in musical instrument

design using such techniques. From a commercial point of view, too, it would be extremely attractive

to have a working sound synthesis algorithm to replace sampling synthesis, which relies on a large

database of recorded fragments. (Consider, for example, the number of samples that would be

required to completely represent the output of an acoustic piano, with 88 notes, with 60 dB decay

times on the order of tens of seconds, struck over a range of velocities and pedal configurations.)

On the other hand, such an answer will satisfy neither a composer of modern electroacoustic music

in search of new sounds, nor a composer of acoustic orchestral music, who will find the entire idea

somewhat artificial and pointless.

Another answer, closer in spirit to the philosophy of this author, is that physical modeling sound

synthesis is far more than just a means of aping sounds produced by acoustic instruments, and it

is much more than merely a framework for playing mix and match with components of existing

acoustic instruments (the bowed flute, the flutter-tongued piano, etc.); though interesting, this

might well be an application which would appeal to engineers only. Acoustically-produced sound is

definitely a conceptual point of departure for many composers of electroacoustic music, given the

early body of work on rendering the output of abstract sound synthesis algorithms less synthetic-

sounding [171, 228], and, more importantly, the current preoccupation with real-time transformation

of natural audio input. In this latter case, though, it might well be true (and one can never really

guess these things) that a composer would jump at the chance to be freed from the confines of

acoustically-produced sound if indeed an alternative, possessing all the richness and interesting

unpredictability of natural sound, yet somehow different, were available. This is what physical

modeling is all about, at least for this author.
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Chapter 2

Time Series and Difference

Operators

In this short chapter, the basics of finite difference operations, as applied to time-dependent ordinary

differential equations (ODEs) in the next two chapters, and subsequently to partial differential

equations (PDEs) are presented. Though the material that appears here is rudimentary, and may

be skipped by any reader with experience with finite difference schemes, it is advisable to devote at

least a few minutes to familiarizing oneself with the notation, which is necessarily a bit of a hybrid

between that used by those in the simulation field, and by audio and electrical engineers (but skewed

towards the former). There are many old and venerable texts [201, 3, 233] and some more modern

ones which may be of special interest to those with a background in electrical engineering or audio

[244, 113, 281, 86, 263] which cover this material in considerably more detail, as well as the text of

Kausel [139] which deals directly with difference methods in musical acoustics, but the focus here

is on those aspects which will later pertain directly to physical modeling sound synthesis. Though

the following presentation is mainly abstract and context-free, there are many comments (as well as

problems and programming exercises) which relate specifically to digital audio.

The use of discrete time series, taking on values at a finite set of time instants, in order to

approximate continuous processes is natural in audio applications, but its roots far predate the

appearance of digital audio, and even the modern digital computer itself. Finite difference type

approximations to ordinary differential equations go back a very long way, and modern methods

have their roots in work from the early 20th century—see the opening pages of Ames [3] for a

historical overview and references. Time series and simple difference operators are presented in §2.1

and §2.2, followed by a review of frequency domain analysis in §2.3, which includes some discussion

of the z transform, and the association between difference operators and digital filter designs, which

are currently the methodology of choice in musical sound synthesis. Finally, energy concepts are

introduced in §2.4; these are rather nonstandard and do not appear in most introductory texts on

finite difference methods. They are geared towards the construction and analysis of finite difference

schemes for nonlinear systems, which are of great importance in musical acoustics and physical

modeling sound synthesis, and will be heavily used in the later sections of this book.

27
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2.1 Time Series

In a finite difference setting, continuously variable functions of t, such as u(t), are approximated by

time series, often indexed by integer n. For instance, the time series un
d represents an approximation

to u(tn), where tn = nk, for a time step1 k. In audio applications, perhaps more familiar is the

sampling frequency fs is defined as

fs = 1/k

Note here that the symbol u has been used here to denote both the continuously variable function

u(t) and the approximating time series un
d ; the “d” appended in the subscript for the time series

stands for “discrete” and is simply a reminder of the distinction between the two quantities. In

subsequent chapters, it will be dropped, in an attempt at avoiding a proliferation of notation; this

ambiguity should lead to little confusion, as such forms rarely appear together in the same expression,

except in the initial stages of definition of finite difference operators. The use of the same notation

also helps to indicate the fundamental similarities in the bodies of analysis techniques which may

be used in the discrete and continuous settings.

Before introducing these difference operators and examining discretization issues, it is worth

making a few comments which relate specifically to audio. First, consider a function u(t) which

appears as the solution to an ODE. If some difference approximation to the ODE is derived, which

generates a solution time series un
d , it is important to note that in all but a few pathological cases,

un
d is not simply a sampled version of the true solution, i.e.,

un
d 6= u(nk)

Though obvious, it is especially important for those with an electrical or audio engineering back-

ground (i.e., those accustomed to dealing with sampled data systems) to be aware of this at the

most subconscious level, so as to avoid arriving at false conclusions based on familiar results such as,

e.g., the Shannon sampling theorem [183]. In fact, one can indeed incorporate such results into the

simulation setting, but in a manner which may be counterintuitive (see §3.2.4). In sum, it is best to

remember that in the strict physical modeling sound synthesis framework, there occurs no sampling

of recorded audio material (though in practice, and particularly in commercial applications, there

are many exceptions to this rule). Second, in audio applications, as opposed to standard simulation

in other domains, the sample rate fs and thus the time step k are generally set before run time,

and are not varied; in audio, in fact, one nearly always takes fs as constant, not merely over the

duration of a single run of a synthesis algorithm, but over all applications (most often it is set to 44.1

kHz, sometimes to 32 kHz or 48 kHz). This, in contrast to the first comment above, is intuitive for

audio engineers, but not for those involved with numerical simulation in other areas, who often are

interested in developing numerical schemes which allow a larger time step with little degradation in

accuracy. Though the benefits of such schemes may be interpreted in terms of numerical dispersion

(see §6.2.3), in an audio synthesis application, there is no point in developing a scheme which runs

with increased efficiency at a larger time step (i.e., at a lower sampling rate), as such a scheme

will be incapable of producing potentially audible frequencies in the upper range of human hearing.

A third major distinction is that the duration of a simulation, in sound synthesis applications, is

extremely long by most simulation standards (on the order of hundreds of thousands, or millions of

1Though k has been chosen as the symbol representing the time step in this book, the same quantity goes by a
variety of different names in the various sectors of the simulation literature, including T , ∆t, ht, etc.



2.2. SHIFT, DIFFERENCE AND AVERAGING OPERATORS 29

time steps). A variety of techniques which are commonly used in mainstream simulation can lead to

audible distortion over such long durations. As an example, the introduction of so-called artificial

viscosity into a numerical scheme in order to reduce spurious oscillations will result in long-time

solution decay, which will have an impact on the global envelope of the resulting sound output.

Fourth, and finally, due to the nature of the system of human aural perception, synthesis output is

always scalar—that is, it can be represented by a single time series, or, in the multichannel case, a

small number of such series, which is not the case in other applications. There are thus opportunities

for algorithmic simplification, with digital waveguides as a supremely successful example. Again,

the perceptual considerations listed above are all peculiar to digital audio.

2.2 Shift, Difference and Averaging Operators

In time domain simulation applications, just as in digital filtering, the fundamental operations which

may be applied to a time series un
d are shifts. The forward and backward shifts, and the identity

operation “1” are defined as

et+un
d = un+1

d et−un
d = un−1

d 1un
d = un

d

and are to be regarded as applying to the time series un
d at all values of the index n. The identity

operator behaves as a simple scalar multiplication by unity; multiples of the identity behave accord-

ingly, and will be indicated by multiplicative factors, such as “2” or “α,” where α is a real constant.

A set of useful difference and averaging operations may be derived from these elementary shifts. For

example, various approximations to the first derivative operator (the nature of this approximation

will be explained shortly) may be given as

δt+ ,
1

k
(et+ − 1) ≅

d

dt
(2.1a)

δt− ,
1

k
(1 − et−) ≅

d

dt
(2.1b)

δt· ,
1

2k
(et+ − et−) ≅

d

dt
(2.1c)

These are often called forward, backward, and centered difference approximations, respectively. The

behaviour of any such operator is most easily understood by expanding its action onto a time series

un
d , where the time index n is made explicit. For the operators defined above, for example, one has

δt+un
d =

1

k

(
un+1

d − un
d

)
δt−un

d =
1

k

(
un

d − un−1
d

)
δt·u

n
d =

1

2k

(
un+1

d − un−1
d

)
(2.2)

Also useful, especially in the construction of so-called implicit schemes (which will be touched

upon briefly with regard to the oscillator in §3.3 and in much more detail in the distributed setting
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in §6.3 and subsequently) and in energetic analysis (see §2.4) are various averaging operators:

µt+ ,
1

2
(et+ + 1) ≅ 1 (2.3a)

µt− ,
1

2
(1 + et−) ≅ 1 (2.3b)

µt· ,
1

2
(et+ + et−) ≅ 1 (2.3c)

All of these averaging operators are approximations to the identity operation. (One might wonder

why one would introduce an approximation to the continuous time identity operation, which, after

all, may be perfectly approximated through the identity in discrete time. The answer comes when

examining finite difference schemes in their entirety; in many cases, the accuracy of a scheme involves

the counterbalancing of the effects of various operators, not just one in isolation. See, e.g., §3.3.4

and §6.2.4)

To avoid doubling of terminology, averaging and difference operators will be referred to as “dif-

ference” operators in this book, although “discrete” would probably be a better term. It should be

clear that all the operators defined in (2.1) and (2.3) commute with one another individually. The

Greek letters δ and µ are mnemonics for “difference” and “mean,” respectively.

When combined, members of the small set of “canonical” simple difference operators in (2.1) and

(2.3) above can yield almost any imaginable type of approximation or difference scheme for an ODE

or system of ODEs. As an important example, an approximation to the second derivative may be

obtained through the composition of the operators δt+ and δt−:

δtt , δt+δt− =
1

k2
(et+ − 2 + et−) ≈ d2

dt2
(2.4)

Again, the constant “2” is to be thought of as twice the identity operation, under the application of

δtt to a grid function.

In musical acoustics, the appearance of time derivatives of order higher than two is extremely

rare (one case is that of higher-order models of beam and plate vibration [111], another being that of

frequency dependent loss in some models of string vibration [52, 220]), and for this reason, difference

approximations to higher time derivatives will not be discussed further in any detail in this book.

See Problem 2.2. Approximations to higher spatial derivatives, however, play a central role in

various models of bar and plate vibration, but a treatment of the related difference operators will

be postponed until Chapter 5.

2.2.1 Temporal Width of Difference Operators

Though the property of width, or stencil width of a difference operator is usually discussed with

reference to spatial difference operators, this is good place to introduce the concept. The temporal

width of an operator, such as any of those defined at the beginning of §2.2, is defined as the number

of distinct time steps (or levels) required to form the approximation. For example, the operator δt+,

as defined in (2.1a), when expanded out as in (2.2), clearly requires two adjacent values of the time

series ud in order to be evaluated. The same is true of the operator δt−, as well as the averaging

operators µt+ and µt−; all such operators are thus of width two. The operators δt· and µt·, as well

as δtt will be of width three. See Figure 2.1. In general, greater accuracy (to be discussed in §2.2.3)
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n − 1

n

n + 1

δt+ µt+ δt− µt− δt· µt· δtt

Figure 2.1: Illustration of temporal widths for various operators (as indicated above), when operating
on a grid function at time step n.

is obtained at the expense of greater operator width, which can complicate an implementation in

various ways. For time difference operators, there will be additional concerns with initialization of

difference schemes, as well as the potential appearance of parasitic solutions, and stability analysis

can become enormously complex. For spatial difference operators, finding appropriate numerical

boundary conditions becomes more difficult. When accuracy is not a huge concern, it is often wise

to stick with simple, low-width operators. In audio synthesis, the importance of greater accuracy

may be evaluated with respect to psychoacoustic criteria—this issue will be broached in more detail

in §2.3.4, and in §3.2.4.

2.2.2 Combining Difference Operators

For any collection of difference operators, each of which approximates the same continuous operator,

any linear combination will approximate the same operator to within a multiplicative factor. For

instance, one may form a difference operator approximating a first derivative by

αδt+ + (1 − α)δt−

for any α (generally constrained to be a real number). In this case, the operator δt·, defined in

(2.1c), can be obtained with α = 1/2.

Similarly, for averaging operators, one may form the combination

αµt+ + βµt− + (1 − α − β)µt·

for any scalar α and β (again generally constrained to be real).

Difference operators may also be combined by composition (operator multiplication) as well, as

was seen in the definition of the second difference δtt, in (2.4) which can be viewed as the composition

of the operators δt+ and δt−. It is easy to show that any composition of averaging operators, such

as

µt+µt−, µt+µt−µt·, µt−µt−µt·µ·, . . .

is itself an averaging operator. See Problem 2.6. The first such combination above is useful enough

to warrant the use of a special symbol:

µtt , µt+µt− (2.5)
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Any composition of averaging operators, which is itself composed with a single first difference oper-

ator, such as

µt+δt−, µt+µt·δt·, µt+µt−µt·δt+, . . .

itself behaves as an approximation to a first derivative. See Problem 2.7. In general, the composition

of difference operators tends to increase temporal width.

2.2.3 Taylor Series and Accuracy

The interpretation of the various operators defined in the previous section as approximations to

differential operators is direct—indeed, the definitions of the first differences δt+ and δt− are in

fact none other than the approximate forms (right-hand limit and left-hand limit) from which the

classical definition of the derivative follows, in the limit as k approaches 0. It is useful, however, to

be slightly more precise about the accuracy of these approximations, especially from the point of

view of sound synthesis.

A good starting point is in the standard comparison between the behaviour of difference operators

and differential operators as applied to continuous time functions, through simple Taylor series

analysis. In a slight abuse of notation, one may apply such difference operators to continuous time

functions as well as to time series. For instance, for the forward time difference operator δt+ applied

to the function u at time t, one may write

δt+u(t) =
1

k
(u(t + k) − u(t))

Assuming u(t) to be infinitely differentiable, and expanding u(t + k) in Taylor series about t, one

then has

δt+u(t) =
du

dt
+

k

2

d2u

dt2
+ . . .

where . . . refers to terms which depend on higher derivatives of u, and which are accompanied by

higher powers of k, the time step. The operator δt+ thus approximates the first time derivative to

an accuracy which depends on the first power of k, the time step; as k is made small, the difference

approximation approaches the exact value of the derivative with an error proportional to k. Such

an approximation is thus often called first-order accurate. (This can be slightly misleading in the

case of operators acting in isolation, as the order of accuracy is dependent on the point at which

the Taylor series is centered. See Problem 2.1. Such ambiguity is removed when finite difference

schemes are examined in totality.) The backward difference operator is, similarly, a first-order

accurate approximation to the first time derivative.

The centered difference operator, as might be expected, is more accurate. One may write,

employing Taylor series centered about t,

δt·u(t) =
1

2k
(u(t + k) − u(t − k)) =

du

dt
+

k2

6

d3u

dt3
+ . . .

which illustrates that the centered approximation is accurate to second order (i.e., the error depends

on the second power of k, the time step). Notice, however, that the width of the centered operator is

three, as opposed to two for the forward and backward difference operators—in general, as mentioned

in §2.2.1, the better the accuracy of the approximation, the more adjacent values of the time series

will be required. This leads to the usual tradeoff between performance and latency that one sees in,
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e.g., digital filters. Fortunately, in physical modeling sound synthesis applications, due to perceptual

considerations, it is probably true that only rarely will one need to make use of highly accurate

operators. This issue will be discussed in a more precise way in §3.3.2, in the context of the simple

harmonic oscillator.

The orders of accuracy of the various averaging operators may also be demonstrated in the same

manner, and one has

µt+ = 1 + O(k) µt− = 1 + O(k) µt· = 1 + O(k2)

where again, “1” refers to the identity operation, and O() signifies “order of.” Similarly, the approx-

imation to the second derivative δtt is second order accurate; it will be useful later to have the full

Taylor series expansion for this operator:

δtt =

∞∑

l=1

2k2(l−1)

(2l)!

d2l

dt2l
=

d2

dt2
+ O(k2) (2.6)

It is straightforward to arrive at difference and averaging approximations which are accurate

to higher order. This is a subject which was explored extensively early on in the literature—see

Problem 2.4 for an example. As mentioned previously, higher-order accurate difference operators

are more difficult to employ with regard to time rather than space differentiation due to stability

considerations.

It is important to keep in mind that though these discussions of accuracy of difference and

averaging operators have employed continuous time functions, the operators themselves will be

applied to time series; in a sense, the analysis here is incomplete until an entire equation (i.e., an

ODE) has been discretized, at which point one may determine the accuracy of the approximate

solution computed using a difference scheme with respect to the true solution to the ODE. As a rule

of thumb, the accuracy of an operator acting in isolation is indeterminate—in this section, it has

been taken to refer to the order of the error term when an expansion is taken about the “reference”

time instant t = nk.

2.2.4 Identities

Various equivalences exist among the various operators defined in this section. Here are a few of

interest:

µt· = 1 +
k2

2
δtt (2.7a)

δt· = δt+µt− = δt−µt+ (2.7b)

δtt =
1

k
(δt+ − δt−) (2.7c)

1 = µt± ∓ k

2
δt± (2.7d)

et± = µt± ± k

2
δt± (2.7e)

et± = 1 ± kδt± (2.7f)
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2.3 Frequency Domain Analysis

In this section, a very brief introduction to frequency domain analysis of finite difference operators is

presented. As may be expected, such techniques can allow one to glean much perceptually important

information from the model system, and also to compare the performance of a given difference scheme

to the model system in an intuitive manner. It also allows a convenient means of analyzing numerical

stability, if the model problem is linear and time invariant; this is indeed the case for many simplified

systems in musical acoustics. For the same reason, however, one must be wary of any attempts to

make use of such techniques in a nonlinear setting, though one can indeed come to some (generally

qualitative) conclusions under such conditions.

2.3.1 Laplace and z transforms

For a continuously variable function u(t), one definition of the Laplace transform û(s) is as follows:

û(s) =

∫ ∞

−∞
u(t)e−stdt (2.8)

where s = jω + σ is a complex-valued frequency variable. In this case, the definition is two-sided,

allowing one to ignore initial conditions. The transformation may be abbreviated as

u(t)
L

=⇒ û(s)

If the transformation may be restricted to s = jω, then the Laplace transform reduces to a Fourier

transform.

The definition of the Laplace transform above is two-sided or bilateral, and useful in steady state

applications—in many parts of the literature, however, a one-sided definition is employed, allowing

initial conditions to be directly incorporated into the resulting frequency domain analysis:

û(s) =

∫ ∞

0

u(t)e−stdt (2.9)

In general, for the analysis of well-posedness of differential equations and numerical stability, a two-

sided definition may be used. Though it might be tempting to make use of Fourier transforms in

this case, it is important to retain the complex frequency variable s in order to simplify the analysis

of loss.

For a time series un
d , the z-transform ûd(z), again two-sided, may be defined as

ûd(z) =

∞∑

n=−∞
z−nun

d

where z = esk is the discrete frequency variable, again with s = jω + σ, and where the superscript

of z now indicates a power. The z transform may be abbreviated as

un
d

Z
=⇒ ûd(z)

Again, as for the case of the Laplace transform, a one-sided definition could be employed. The
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symbol z is often written as g, and called the amplification factor in the analysis of finite difference

recursions). If z is restricted to z = ejωk, the z transformation becomes a discrete-time Fourier

transformation.

The Laplace and z-transforms are covered in great detail in hundreds of other texts, and some

familiarity with them is assumed—see, e.g., [197] or [192] for more information. In particular, the

subject of inverse Laplace and z transformations, though important in its own right, is not covered

here, as it seldom appears in practical analysis and design of finite difference schemes.

Frequency Domain Ansatz

In PDE and numerical analysis, full Laplace and z transform analysis is usually performed through

the use of an ansatz. For instance, for a continuous time LTI problem, it is wholly sufficient to

simplify frequency domain analysis by examining a single-frequency solution

u(t) = est

Similarly, in discrete time, the ansatz

un
d = zn

is also frequently employed. Various authors discuss the equivalence between this approach and full

Laplace or z transform analysis [113, 244].

2.3.2 Frequency Domain Interpretation of Differential and Difference Op-

erators

The frequency domain interpretation of differential operators is well-known to anyone who has

taken an undergraduate course in electric circuits. In continuous time, at steady state, one has,

immediately from (2.8),
dm

dtm
u(t)

L
=⇒ smû(s)

In discrete time, for the unit shift, one has

et±un
d

Z
=⇒ z±1ûd(z)

and for the various first differences and averaging operators, one has:

δt+un
d

Z
=⇒ 1

k
(z − 1) ûd(z) δt−un

d
Z

=⇒ 1

k

(
1 − z−1

)
ûd(z) δt·u

n
d

Z
=⇒ 1

2k

(
z − z−1

)
ûd(z)

µt+un
d

Z
=⇒ 1

2
(z + 1) ûd(z) µt−un

d
Z

=⇒ 1

2

(
1 + z−1

)
ûd(z) µt·u

n
d

Z
=⇒ 1

2

(
z + z−1

)
ûd(z)

The second difference operator δtt transforms according to

δttu
n
d

Z
=⇒ 1

k2

(
z − 2 + z−1

)
ûd(z)

Under some conditions, it is useful to look at the behaviour of these discrete time operators when

z is constrained to be of unit modulus (in other words, when z = ejωk). For instance, the operators
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δtt and µt· transform according to

δttu
n
d =⇒ − 4

k2
sin2(ωk/2)ûd(e

jωk) µt·u
n
d =⇒ cos(ωk)ûd(e

jωk)

where the =⇒ is now interpreted as referring to a discrete-time Fourier transform.

The Taylor series analysis of the accuracy of difference and averaging operators may be viewed

simply in the frequency domain. Considering, for example, the operator δt+, one may write, by

expanding z = esk in powers of s about s = 0,

δt+un
d

Z
=⇒ 1

k
(z − 1) ûd(z) =

1

k

(
esk − 1

)
ûd(e

sk) = (s + O(k)) ûd(e
sk)

In other words, the difference operator δt+ behaves, in the frequency domain, as a multiplication by

a factor s + O(k), corresponding to first derivative plus a correction of the order of the time step k,

and is thus first order accurate.

2.3.3 Recursions and Polynomials in z

Finite difference schemes are recursions. Though concrete examples of such recursions, as derived

from ordinary differential equations will appear at many instances in the following two chapters, a

typical example is the following:

un
d = −

N∑

n′=1

a(n′)un−n′

d (2.10)

The value of the time series un
d is calculated from a weighted combination of the last N values,

and a(n′) are the weighting coefficients. Such a recursion corresponds to an ODE without a forcing

term, and for those with a signal processing background, is no more than an all-pole digital filter

operating under zero-input (transient) conditions. If the coefficients a(n′) are constants (i.e., the

underlying problem is LTI), the usual analysis technique, here as in standard filter design, is to take

a z transform of (2.10), to get

P (z)ûd = 0 with P (z) =

N∑

n′=0

a(n′)zN−n′

(2.11)

Frequency domain stability analysis of finite difference schemes is concerned with finding the roots

of the polynomial P (z), i.e.,

P (z) = 0 (2.12)

where a(0) = 1. These roots correspond to the natural frequencies of oscillation of the recursion

(2.10). Polynomials such as the above arise when analyzing finite difference schemes for linear

and shift-invariant PDEs as well, in which case the set of values a(n′) may themselves be cosntant

coefficient functions of spatial frequency variables. It is worth introducing some useful conditions

on root locations here.

For numerical stability, it is usually the case that, just as for digital filters, one needs to bound

any solution z to (2.11) by

|z| ≤ 1 → σ ≤ 0

In other words, the roots must have magnitude less than or equal to unity, corresponding to damped
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complex frequencies2. One way of proceeding is to find the roots z to (2.11) explicitly, but if one is

interested in merely finding out the conditions under which the roots are bounded, simpler tests exist,

such as the Schur-Cohn recursive procedure [244], which is analogous to the Routh-Hurwitz stability

test [275] for checking root locations of polynomials associated with continuous time systems. In

many cases in physical modeling sound synthesis, however, the polynomial (2.11) is of second order,

i.e.,

z2 + a(1)z + a(2) = 0 (2.13)

It is possible to show, either through an explicit calculation of the roots, or through the use of the

Schur-Cohn recursion, that the roots of this quadratic will be bounded by unity if

|a(1)| − 1 ≤ a(2) ≤ 1 (2.14)

See Problem 2.10. These conditions are plotted as a region in the (a(1), a(2)) plane in Figure 2.2.

This relatively simple pair of conditions will be used repeatedly throughout this book. It is also

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a(2)

a(1)

Figure 2.2: Region of the (a(1), a(2)) plane (in grey) for which the roots of Eq. (2.13) are bounded by
unity in magnitude.

worth noting that under certain conditions (namely losslessness of the underlying model problem),

polynomials appear in which a(2) = 1, implying the simpler condition

|a(1)| ≤ 2 (2.15)

2This condition is, in fact, a little too simple to catch many special cases which may occur in practice. For example,
through analysis of finite difference schemes, one can arrive at polynomials possessing double roots on the unit circle,
leading, potentially, to linear growth of solutions; sometimes this is a natural consequence of the underlying model
equations, sometimes not. Also, in some cases one may need to beware if the coefficients themselves are functions of
parameters such as k, the time step, in order to ensure that roots are bounded in the limit as k becomes small.
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2.3.4 Difference Operators and Digital Filters

As discussed in Chapter 1, the most prominent current physical modeling sound synthesis techniques,

such as digital waveguides and scattering methods, are based, traditionally, around the use of digital

filters, and the accompanying frequency domain machinery. It should be somewhat comforting then,

that, at least in the LTI case, many of the primary results in the numerical simulation field (especially

von Neumann analysis, to be introduced in Chapter 5) are described in a nearly identical language,

employing Fourier, Laplace and z transforms, though spatial Fourier transforms and filters will be

familiar only to those engineers with a background in image processing or optics. In this short

section, some connections between the difference operators described in the preceding sections, and

very simple digital filter designs are indicated.

Digital filters of high order play a central role in signal processing, including that of audio

signals. Yet in physical modeling applications, due to the more strict adherence to an underlying

model problem, higher order difference operators, especially in time, are much more difficult to use.

One reason for this has to do with numerical stability—though moderately higher order schemes for

ODEs, such as those of the Runge-Kutta variety are commonly seen in the literature, for distributed

problems, the coupling with spatial differentiation can lead to severe difficulties in terms of analysis,

even in the linear case. In general, complex behaviour in musical instrument simulations results from

coupled low-order time-differences—in digital filtering terminology, one might of such a configuration

in terms of “parallel banks of oscillators.” Though a conventional analysis technique, particularly

for finite element methods [86, 66] involves reducing a spatially distributed problem to a system

of ODEs (i.e., through so-called semi-discretization), in the nonlinear case, any stability results

obtained in this way are generally not sufficient, and can be interpreted only as rules of thumb.

Another reason is that in conventional audio filtering applications, the emphasis is generally on the

steady state response of a given filter. But in physical modeling applications, in some cases, one

is solely interested in the transient response of a system (percussive sound synthesis is a particular

example). The higher the order of the time differentiation employed, the higher the number of

initial conditions which must be supplied; as most systems in musical acoustics are of second order

in time differentiation, time difference operators of degree higher than two will necessarily require

the setting of extra “artificial” initial conditions.

It is useful to examine the difference operators defined in §2.2 in this light. Consider any LTI

operator p (such as d
dt , the identity operator 1, or d2

dt2 ), applied to a function x(t), and yielding a

function y(t). When viewed in an input output sense, one arrives, after Laplace transformation, at

a transfer function form, i.e.,

y(t) = px(t)
L

=⇒ ŷ(s) = h(s)x̂(s)

where h(s) is the transfer function corresponding to the operator p. When s = jω, one may find the

magnitude and phase of the transfer function, as a function of ω, i.e.,

magnitude = |h(jω)| phase = ∠h(jω)

Similarly, for a discrete time operator pd, applied to a time series xn
d , yielding a time series yn

d ,

one has, after applying a z transformation,

yn
d = pdx

n
d

Z
=⇒ ŷd(z) = hd(z)x̂d(z)
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Table 2.1: Comparison between continuous time operators d
dt , the identity 1, and d2

dt2 , and various
difference approximations, viewed in terms of transfer functions. For each operator, the continuous
time transfer function is given as a function of s, and the discrete time transfer function as a function
of z. Magnitude and phase are given for s = jω or z = ejωk.

C.T. op. h(s) |h(jω)| ∠h(jω) D.T. op. hd(z) |hd(ejωk)| ∠hd(ejωk)

δt+
1
k

(z − 1) 2
k
| sin( ωk

2 )|
π
2 + ωk

2 , ω > 0

−π
2 + ωk

2 , ω < 0

d
dt

s |ω|
π
2 , ω > 0

−π
2 , ω < 0 δt−

1
k

(
1 − z−1

)
2
k
| sin( ωk

2 )|
π
2 − ωk

2 , ω > 0

−π
2 − ωk

2 , ω < 0

δt·
1
2k

(
z − z−1

)
1
k
| sin(ωk)|

π
2 , ω > 0

−π
2 , ω < 0

µt+
1
2 (z + 1) | cos( ωk

2 )| ωk
2

1 1 1 0 µt−
1
2

(
1 + z−1

)
| cos( ωk

2 )| −ωk
2

µt·
1
2

(
z + z−1

)
| cos(ωk)| 0, |ω| < π

2k
π, ω > π

2k
d2

dt2
s2 ω2 π δtt

1
k2

(
z − 2 + z−1

)
4

k2 sin2( ωk
2 ) π

where hd(z) is the transfer function corresponding to the operator pd. Again, one can find the

magnitude and phase by restricting z to z = ejωk, i.e.,

magnitude = |hd(e
jωk)| phase = ∠hd(e

jωk)

In Table 2.1, transfer functions for various differential and difference operators are given, as well

as their magnitudes and phases. The discrete time transfer functions are readily interpreted in terms

of well-known filter structures. Leaving issues of causality aside, the operators δt+ and δt− behave as

high-pass filters with a single zero at the DC frequency z = 1, and δt· is a two zero filter with zeros

at DC and the Nyquist frequency z = −1. The averaging operators µt+ and µt− behave similarly

as low pass filters, each with a single zero at the Nyquist frequency z = 1, and µt· is a two zero

filter with zeros at z = ±j, or at one quarter the sample rate. δtt behaves as a two zero filter with

a double zero at DC.

Notice that for all the difference operators presented in the table, the approximation to the

magnitude response of the associated continuous time operator is second order accurate about ω =

0—that is, if one expands the magnitude of |h(ejωk)|, for ω ≥ 0, in powers of ω, one has

|hd(e
jωk)| = |h(jω)| + O(k2)

But the same is not true of the phase response; for centered operators, such as δt·, µt· and δtt, the

phase response is exact, at least in some neighbourhood around ω = 0. For the other non-centered

operators, it is not, and differs from the phase response of the associated continuous time operator

by a term of order k. Thus the “first order accuracy” of such non-centered operators manifests itself

in the phase behaviour, which is to be expected. Such behaviour may be directly related to the

discussion of indeterminacy of accuracy of difference operators in isolation, from §2.2.3.

This behaviour is perhaps more easily viewed in frequency domain plots of the magnitude and

phase of these operators, as given in Figure 2.3, as are certain other interesting features. For example,

notice that, in terms of the magnitude response alone, the first-order accurate operators δt+ and

δt− better approximate the first derivative near ω = 0 than the second-order accurate operator

δt·, which might seem somewhat surprising. This is due to the fact that the simple forward and

backward differences employ values of the time series which are only one time step apart, rather
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than two, in the case of the centered difference operator. Also note the “doubling” of the magnitude

response in the case of δt·, about one-quarter the sampling rate; this is also surprising, but then, the

centered difference operator, which operates on values of the time series separated by two time steps,

can be viewed as operating at a downsampled (by a factor of two) rate. This interesting doubling

effect appears in finite difference schemes under certain conditions for various systems of interest in

musical sound synthesis, such as the wave equation in 1D or 2D, which are discussed in Chapters 6

and 12, respectively.
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Figure 2.3: Magnitude (top) and phase (bottom) of difference approximations to (a) d
dt , (b) the

identity operator 1, and (c) d2

dt2 . In all cases, the exact response of the continuous operator is plotted
as a thick black line, over the interval ω ∈ [−π/k, π/k]. The responses of the centered operators δt·,
µt· and δtt, when distinct from those of the continuous time operator, appear as solid grey lines. In
the case of magnitude plots, the responses of the non-centered operators δt+, δt−, µt+ and µt− appear
as dotted black lines, and in the case of phase plots, as distinct dotted grey (forward operators) and
black (backward operators) lines.

In the case of all the operators discussed here except for µt− and δt−, the resulting recursion

appears to imply a non-causal relationship between an input sequence xn
d and an output sequence

yn
d , but it is important to keep in mind that in numerical applications, this is not quite the correct

interpretation. Generally, in a physical modeling sound synthesis application, there is not an input

sequence as such (at least not at the audio rate), and no risk of the need for “looking into the

future.” But the use of such “non-causal” operations can lead to implicit behaviour [244] in finite

difference schemes in some cases—see §6.3.



2.4. ENERGETIC MANIPULATIONS AND IDENTITIES 41

The Trapezoid Rule

One difference approximation, of special importance in sound synthesis applications (and in partic-

ular, those built around the use of scattering based methods—see §1.2.4), is the trapezoid rule. In

operator form, it looks like

(µt+)
−1

δt+ (2.16)

where the (µt+)
−1

is to be understood here as an operator inverse. As (µt+)
−1

remains an approxi-

mation to the identity operator, the operator as a whole still behaves as an approximation to a first

time derivative. Like the operators δt+ and δt−, it can be viewed as second-order accurate about a

midpoint between adjacent values of the time series. Operationally, the best way to examine it is in

the input output sense, for an input sequence xn
d and output sequence yn

d :

yn
d = (µt+)

−1
δt+xn

d or
1

2

(
yn+1

d + yn
d

)
=

1

k

(
xn+1

d − xn
d

)
(2.17)

The trapezoid rule transforms as

yn
d = (µt+)

−1
δt+xn

d
Z

=⇒ ŷd(z) =
2

k

z − 1

z + 1
x̂d(z) (2.18)

In the frequency domain form, the trapezoid rule is often referred to as a bilinear transformation.

As mentioned above, the trapezoid rule figures prominently in scattering based approaches to

synthesis, and is one of the cornerstones of wave digital filters [88]. An example of a wave digital

structure employing the trapezoid rule, as well as a discussion of the relationship with other finite

difference methods, appears in §3.3.3.

2.4 Energetic Manipulations and Identities

The frequency domain techniques presented in the previous section are of great utility in the analysis

of linear and time-invariant (LTI) systems and difference schemes, and extend naturally to the

distributed setting, in which case they are often referred to as von Neumann analysis [244]; such

techniques can yield a great deal of important information regarding numerical stability, as well

as the perceptual effects of discretization, in the form of so-called numerical phase velocity and

dispersion. LTI systems, however, are only the starting point in musical sound synthesis based on

physical models, and are not sufficiently complex to capture many of the more subtle and perceptually

salient qualities of real musical sounds.

Frequency-domain techniques do not apply directly to nonlinear systems, nor to finite difference

schemes which approximate them. It is often tempting to view nonlinear systems in musical acoustics

as perturbations of linear systems and to apply frequency domain analysis in a loose sense. If the

perturbations are small, this approach is justifiable, and can yield additional information regarding,

say, the evolution of natural frequencies of oscillation. In many cases, however, these perturbations

are not small; the vibration of percussion instruments such as gongs serve as an excellent example

of the perceptual importance of highly nonlinear effects. Frequency domain analysis applied in

such cases can be dangerous in the case of analysis, in that important transient effects are not well-

modelled, and potentially disastrous in the case of sound synthesis based on finite difference schemes,

in that numerical stability is impossible to rigorously ensure. Energetic techniques, which are based

on direct time-domain analysis of finite difference schemes, yield less information than frequency
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domain methods, but may be extended to deal with nonlinear systems and difference schemes quite

easily, and deal with many issues, including numerical stability analysis and the proper choice of

numerical boundary conditions, in a straightforward way. In fact, though these techniques are, as a

rule, far less familiar than frequency domain methods, they are not much more difficult to employ.

In this section, some basic manipulations are introduced.

2.4.1 Time Derivatives of Products of Functions or Time Series

Though, in this chapter, no systems have been defined as yet, and it is thus impossible to discuss

quantities such as energy, or the Hamiltonian, some of the algebraic manipulations may be intro-

duced. Energetic quantities are always written in terms of products of functions or, in the discrete

case, time series. Consider, for example, the following products:

du

dt

d2u

dt2
du

dt
u (2.19)

In energetic analysis, whenever possible, it is useful to rewrite terms such as these as time derivatives

of a single quantity (in this case, some function of u or its time derivatives). For instance, the terms

above may be simply rewritten as

d

dt

(

1

2

(
du

dt

)2
)

d

dt

(
1

2
u2

)

These are time derivatives of quadratic forms; in the context of the simple harmonic oscillator,

which will be discussed in detail in Chapter 3, the quadratic forms above may be identified with the

kinetic and potential energies of the oscillator, when u is taken as the dependent variable. Notice

in particular that both quantities are squared quantities, and thus non-negative, regardless of the

values taken by u or du/dt. It is useful to be able to isolate these energetic quantities, combinations

of which are often conserved or dissipated, because from them, one may derive bounds on the size

of the solution itself. Arriving at such bounds in the discrete case is, in fact, a numerical stability

guarantee.

For linear systems, the energetic quantities are always quadratic forms. For nonlinear systems,

they will generally not be, but manipulations similar to the above may still be performed. For

instance, it is also true that
du

dt
u3 =

d

dt

(
1

4
u4

)

(2.20)

This signals the utility of such analysis tools for nonlinear systems, where Fourier or Laplace based

techniques become extremely unwieldy.

There are analogous manipulations in the case of products of time series under difference opera-

tors; the number is considerably greater, though, because of the multiplicity of ways of approximating

differential operators, as was seen in §2.2. Consider, for instance, the products

(δt·ud) δttud udδt·ud

where now, ud = un
d is a time series; these are clearly approximation to the expressions given in Eq.
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(2.19). Expanding the first of these at time step n gives

(δt·u
n
d) δttu

n
d =

1

2k

(
un+1

d − un−1
d

) 1

k2

(
un+1

d − 2un
d + un−1

d

)

=
1

2k

((
un+1

d − un
d

k

)2

−
(

un
d − un−1

d

k

)2
)

= δt+

(
1

2
(δt−un

d )2
)

Expanding the second gives

(δt·u
n
d )un

d =
1

2k

(
un+1

d − un−1
d

)
un

d =
1

2k

(
un+1

d un
d − un

dun−1
d

)
= δt+

(
1

2
un

det−un
d

)

These particular instances of products of time series under difference operators can thus be reduced

to total differences of quadratic forms; but when one moves beyond quadratic forms to the general

case, it is not true that every such approximation will behave in this way. As an illustration, consider

two approximations to the quantity given on the left of Eq. (2.20) above:

(δt·u
n
d) (un

d)3 (δt·u
n
d ) (µt·u

n
d ) (un

d )2

The first expression above cannot be interpreted as the total difference of a quartic form, as per the

right side of Eq. (2.20) in continuous time. But the second can—one may write:

(δt·u
n
d) (µt·u

n
d ) (un

d )
2

=
1

2k

(
un+1

d − un−1
d

) 1

2

(
un+1

d + un−1
d

)
(un

d )
2

(2.21a)

=
1

4k

(
(un+1

d )2(un
d )2 − (un

d )2(un−1
d )2

)
(2.21b)

= δt+

(
1

4
(un

d )2(et−un
d )2
)

(2.21c)

These distinctions between methods of approximation turn out to be crucial in the stability analysis

of finite difference schemes through conservation or energy-based methods.
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2.4.2 Product Identities

For the sake of reference, presented here are various identities which are of use in the energetic

analysis of finite difference schemes. For a time series un
d , it is always true that

(δt·ud) (δttud) = δt+

(
1

2
(δt−ud)

2

)

(2.22a)

(δt·ud)ud = δt+

(
1

2
udet−ud

)

(2.22b)

(δt+ud)µt+ud = δt+

(
1

2
u2

d

)

(2.22c)

(µt·ud)ud = µt+ (udet−ud) (2.22d)

(µt·ud) (δt·ud) = δt·

(
1

2
u2

d

)

(2.22e)

udet−ud = (µt−ud)
2 − k2

4
(δt−ud)

2 (2.22f)

For two grid functions, un
d and wn

d , the following identity (which corresponds to the product rule of

differentiation) is also useful:

δt+ (uw) = (δt+u) (µt+w) + (µt+u) (δt+w) (2.23)

Proofs of these identities are direct; see Problem 2.8. All these identities generalize in an obvious

way to the distributed case—see the comment on page 110 for more on this.

An inequality of great utility, especially in bounding the response of systems subject to external

excitations, is the following bound on the product of two numbers u and w:

|uw| ≤ u2

2α2
+

αw2

2
(2.24)

which holds instantaneously for any real number α 6= 0, including values of any two time series un

and wn, or functions u(t) and w(t).

2.4.3 Quadratic Forms

In the energetic analysis of finite difference schemes for both linear and nonlinear systems, quadratic

forms play a fundamental role—this is because the energy function for a linear system is always a

quadratic function of the state, usually positive definite or semi-definite. Many nonlinear systems,

some examples of which will be discussed in this book, may be written as linear systems incorporating

extra nonlinear perturbation terms, and as a result, the energy for such a system can be written as

a quadratic form plus an additional perturbation, which may be non-negative.

Consider a particular such form in two real variables, x and y:

H(x, y) = x2 + y2 + 2axy (2.25)

where a is a real constant. It is simple enough to show that for |a| < 1, H(x, y) is a paraboloid, and

is positive definite (it is non-negative for all values of x and y, and possesses a unique minimum of
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zero at x = y = 0). For a = ±1, the form H(x, y) is still non-negative, but not positive definite,

i.e., it takes the value zero over the family of points given by x = ∓y. Considering the case |a| < 1,

consider level curves of H, at some value H = H0 which are ellipses oriented at 45 degrees with

respect to the x or y axis. It should be clear, by visual inspection of Figure 2.4(a), that for a given

value of H0, the magnitudes of x and y are bounded, and in fact by

|x|, |y| ≤
√

H0

1 − a2
(2.26)

See Problem 2.11. If |a| > 1, the level curves at H(x, y) = H0 are hyperbolas, and it is simple to

y y

x x
(

H0
1−a2

) 1
2

(
H0

1−a2

) 1
2

(
Ĥ0

1−a2

) 1
2

(
Ĥ0

1−a2

) 1
2

H = H0 H = Ĥ0 Ĥ = Ĥ0

(a) (b)

Figure 2.4: (a) A level curve of the quadratic form (2.25), for H = H0. (b) A level curve of the
nonlinear form (2.27) (solid line), and an associated level curve for the linear part (dotted line).

show that it is not possible to bound x or y in terms of H0. The same is true of the borderline case

of |a| = 1.

Quadratic forms such as H(x, y), as mentioned above, appear naturally as energy functions of

finite difference schemes for linear systems. For nonlinear systems, one almost always3 has energy

functions of the form

Ĥ(x, y) = H(x, y) + H′(x, y) (2.27)

where H′(x, y) is another function of x and y, assumed non-negative, but not necessarily a quadratic

form. Consider now a level curve of the function Ĥ(x, y), at Ĥ = Ĥ0. Because H ≤ Ĥ, one may

3While it is true that LTI systems always possess energy functions which are quadratic forms, the converse is not
necessarily true—that is, there do exist nonlinear systems for which the energy is still a quadratic form. An interesting
(and rare) example is the so-called simplified von Karman model of plate vibration, discussed in depth in §13.2, which
serves as an excellent model of strongly nonlinear behaviour in percussion instruments such as cymbals and gongs, for
which the Hamiltonian is indeed a quadratic form. Though this may be counterintuitive, it is worth recalling certain
nonlinear circuit components which are incapable of storing energy (such as an ideal transformer with a nonlinear
winding ratio). A closed circuit network, otherwise linear except for such elements, will also possess a stored energy
expressible as a quadratic function in the state variables.
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deduce that

x2 + y2 + 2axy = H(x, y) ≤ Ĥ(x, y) = Ĥ0

and thus, using the same reasoning as in the case of the pure quadratic form, one may obtain the

bounds

|x|, |y| ≤

√

Ĥ0

1 − a2

This bound is illustrated in Figure 2.4(b). Thus even for extremely complex nonlinear systems,

one may determine bounds on x and y provided that the additional perturbing energy term is non-

negative, which is, in essence, no more than Lyapunov-type stability analysis [162]. This generality

is what distinguishes energy-based methods from frequency domain techniques. Notice, however,

that the bound is now not necessarily tight—it may be overly conservative, but through further

analysis, it might well be possible to determine more strict bounds on x and y. In general, in the

analysis of numerical schemes, these simple techniques allow one to deduce conditions for numerical

stability for nonlinear systems, using no more than linear system techniques, but the price paid for

such simplicity of analysis is that conditions derived may be only sufficient, and perhaps quite far

from necessary.

In dynamical systems terminology, the level curve shown in Figure 2.4 may represent the path

that a lossless system’s state traces in the so-called phase plane; such a curve represents the constraint

of constant energy (i.e., H0) in such a system. Though phase plane analysis is not used in this book,

most of the lossless systems (and associated numerical methods) can, and should be imagined in

terms of such curves or surfaces of constant energy. A certain familiarity with phase plane analysis

in the analysis of nonlinear systems is essential to an understanding of the various phenomena which

arise [178], but in this book, only those tools that will be useful for practical robust algorithm design

for sound synthesis will be developed. Symplectic numerical methods, very much related to energy

techniques, are based directly on the analysis of the time evolution of numerical solutions in phase

space [41, 222]

2.5 Problems

Problem 2.1 Consider the difference operator δt−. When applied to a continuous function u(t), it

will require access to the values u(t) and u(t − k). Show that it is a second-order accurate approxi-

mation to the derivative du/dt by expanding in Taylor series about the time t − k
2 .

Problem 2.2 Show that the operators

(a) δt+δtt (b) δt−δtt (c) δt·δtt

are all approximations to a third time derivative. For each, explicitly write the expression which

results when applied to a time series un
d . What is the accuracy of such operators acting in isolation,

when the expansion point is taken to be the instant t = nk? About which time instants should one

expand in Taylor series in order to obtain a maximal order of accuracy in each case? What is the

temporal width (see §2.2.1) for each operator?

Problem 2.3 Describe, in operator notation, the complete family of second-order accurate approx-

imations to a second time derivative which operates over a width of five levels. Using Taylor series
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expansions, find the unique member of this family which is fourth order accurate, when the expansion

point is taken to be the central point of the five-point set of values.

Problem 2.4 Show that the operator defined by

δt· −
k2

6
δt+δtt

approximates a first time derivative to third order accuracy, and find the appropriate time instant

about which to perform a Taylor expansion. Show that this operator is of width four, and it is the

only such operator of third order accuracy.

Problem 2.5 For all the difference operators described in Problems 2.2, 2.3 and 2.4 above, find the

transfer function description hd(z). Where do the zeros lie in each case? What is the multiplicity of

each zero? Plot the magnitude and phase response in each case.

Problem 2.6 Prove that the composition of any number of operators of the form µt+, µt− or µt· is

an approximation to the identity operator.

Problem 2.7 Prove that the composition of any number of operators of the form µt+, µt− or µt·
with a single operator of type δt+, δt− or δt· is an approximation to a first time derivative.

Problem 2.8 Prove the identities given in Eqs. (2.22) and (2.23).

Problem 2.9 Consider the quadratic polynomial equation (2.13) in the variable z when a2 = 1,

namely

z2 + a(1)z + 1 = 0

where a(1) is a real constant. Show that, depending on the value of a(1), the roots z+ and z− of

the above equation will be either a) complex conjugates, or b) real, and find the condition on a(1)

which distinguishes these two cases. Also show that the product z+z− is equal to one in either case,

without using the explicit forms of z+ and z−, and deduce that in case a) above, z+ and z− are of

unit modulus, and in case b), if the roots are distinct, one must be of magnitude greater than unity.

Problem 2.10 Prove condition (2.14) for the quadratic 2.13. You should use the method described

in the previous problem as a starting point.

Problem 2.11 Consider the quadratic form (2.25), and show that if |a| ≥ 1, it is possible to find

arbitrarily large values of x and y which solve the equation H = H0, for any value of H0.

Problem 2.12 Consider the function H defined as

H =
1

2
(δt−ud)

2 +
ω2

0

2
udet−ud

where ω0 is a real constant, and ud = un
d is a time series, with time step k. Evaluating H at

time step n, show that it is a quadratic form as given in Eq. 2.25, in the variables un
d and un−1

d ,

except for a constant scaling. Find a condition on k, the time step, such that H is positive definite.

Under this condition, determine a bound on un
d in terms of H, ω0 and k. (H as defined here is an

energy function for a particular finite difference scheme for the simple harmonic oscillator, which is

discussed in §3.2. The analysis performed in this problem leads, essentially, to a numerical stability

condition for the scheme.)
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Problem 2.13 Consider the function H defined as

H =
1

2
(δt−ud)

2
+

ω2
0

2
udet−ud +

b2

4
u2

det−(u2
d)

where ω0 and b are real constants, and ud = un
d is a time series, with time step k. Evaluating H at

time step n, show that it is a positive definite form as given in Eq. (2.27), in the variables un
d and

un−1
d , except for a constant scaling. Perform an analysis similar to that of the previous problem,

determining a bound on the size of un
d in terms of H, ω0 and k. (H as defined here is an energy

function for a particular finite difference scheme for a nonlinear oscillator, which is discussed in

§4.2.1. The analysis performed in this problem leads, again, to a numerical stability condition for

the scheme, now in the nonlinear case.)



Chapter 3

The Oscillator

An oscillator of some kind is the sound producing mechanism in nearly every music-making device,

including most acoustic Western orchestral instruments, many from outside the Western tradition,

electromechanical instruments, analogue synthesizers, and digital synthesis algorithms. In the con-

text of the latter case, which is the subject in this book, the oscillator was one of the first digital

sound synthesis modules to appear (see §1.1.1), and continues to play a key role in physical modelling

algorithms—indeed, every system described in this book is, at its most basic level, an oscillator.

It is interesting, however, that the reasons underlying the predominance of the oscillator in digital

sound synthesis are distinct in the case of early, or abstract sound synthesis algorithms, discussed

in §1.1 and physical modelling algorithms, described in §1.2. For abstract methods, sinusoids were

seized upon at an early stage, apparently because of their particular perceptual significance in

human audition: a sinusoid is perceived as a unit, characterized by a bare minimum of parameters,

namely amplitude and frequency, which correlate well with perceived loudness and pitch. This is

particularly true of additive and FM synthesis, but also of subtractive synthesis methods, in which

case a non-sinusoidal oscillator is often used as the excitation, as well as wavetable methods, for

which values are often read periodically from the table. In physical modelling synthesis, which is

based on descriptions of objects which are subject to the laws of physics, sinusoids (more properly

complex exponentials, or damped sinusoids) appear naturally as eigenfunctions of linear and time

invariant systems, and many musical instruments can be well-described to a first approximation as

such. That sinusoids play such a dual perceptual/physical role is certainly not a coincidence—if the

world is, to a first approximation, a linear system, then humans will be well-adapted to perceive

collections of sinusoids. Thus the distinction made above is not as clear as it might first appear

to be. Regardless of one’s point of view, the linear oscillator is clearly the starting point for any

description of sound synthesis, through physical modeling or any other method.

It is interesting to note that in many parts of the numerical simulation literature, the second-order

simple harmonic oscillator is not the point of departure for descriptions of numerical methods—

rather, a first-order linear ODE is usually taken to be the basic equation. The reason for this is

that much research into numerical simulation is geared towards dealing with highly nonlinear fluid

dynamics problems, which are often most easily expressed as systems of first order equations. It

would be simple enough to begin with such a first order system here as well, and then progress to

the second order oscillator by writing it as a first order system in two variables (see §3.1.3), but in

fact, most systems of interest in musical acoustics (and in particular those involving the vibration of

solids) can be expressed directly as second-order in time ODEs or PDEs; the finite element literature,

also concerned first and foremost with the vibration of solids, shares this point of view.

49
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This chapter is concerned, generally, with outlining the properties of the second order linear

oscillator, introduced in §3.1, as well as some simple, and practically useful finite difference schemes,

in §3.2 and §3.3. There is an emphasis here on obtaining bounds on solution size; though this is of

course a simple matter in the case of a linear oscillator, the tools and techniques introduced here will

play a role in determining numerical stability conditions for simulations of musical systems which

are far more complex. Both frequency domain analysis, which is familiar to most students of signal

processing, and energetic methods, which will be much less so, are presented here. The former set of

methods is useful for linear problems, but the latter is more general, and extends well to interesting

nonlinear musical systems, many examples of which will appear subsequently in this book. Such

methods are applied to lumped systems of masses and springs in §3.4. Finally, the simple harmonic

oscillator with loss, and associated finite difference schemes, are discussed in §3.5.

3.1 The Simple Harmonic Oscillator

The simple harmonic oscillator, perhaps the single most important ordinary differential equation

(ODE) in physics, and of central importance to musical sound synthesis, is defined as

d2u

dt2
= −ω2

0u (3.1)

It is a second order ODE, and depends on the single parameter ω0, also known as the angular

frequency of oscillation. The frequency f0, in Hertz, is given by f0 = ω0/2π. The harmonic

oscillator, as it is second order, requires the specification of two initial conditions, normally

u(0) = u0
du

dt

∣
∣
∣
t=0

= v0

Equation (3.1) above may be arrived at in a variety of different contexts. In mechanics and

acoustics, the canonical example is that of the mass/spring system, illustrated in Figure 3.1(a). A

mass M is connected, via a linear spring of spring constant K to a rigid support, and u(t) represents

the variation of the displacement of the mass about an equilibrium spring extension. Under these

conditions, and if initial conditions such as u0 and v0 above are given, u(t) satisfies (3.1) with

ω0 =
√

K/M . The oscillator also appears naturally in electrical circuit theory, as illustrated in

Figure 3.1(b)—here, u(t) represents the voltage across a linear capacitor, of capacitance C in series

with an linear inductor of inductance L. Again, if appropriate initial conditions are supplied, the

voltage will evolve according to (3.1), with ω0 = 1/
√

LC. Though electrical circuit theory would

appear to be a poor match for problems involving musical instrument modelling, and in fact will

appear only fleetingly in the present treatment, it is worth keeping in mind that scattering methods

such as digital waveguides [242] and wave digital filters [88], which are heavily used in physical

modelling sound synthesis, were all first developed using concepts borrowed from electrical network

theory. See §1.2.4 for some general remarks on the use of scattering methods in synthesis, and §3.3.3

for a brief technical discussion of wave digital filters. There is also, of course, a long tradition in

acoustics of modeling lumped systems in terms of equivalent circuit elements, primarily for simplicity

of representation [174].

3.1.1 Sinusoidal Solution

It is well-known that the solution to (3.1), if u(t) is constrained to be real-valued, and if ω0 6= 0, has

the form

u(t) = A cos(ω0t) + B sin(ω0t) (3.2)
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M K

u(t)

0

(a)

L Cu(t)

(b)

Figure 3.1: (a) Mass-spring system, with a mass M and a spring of stiffness K, for which the
displacement u(t), measured about an equilibrium distance (marked as 0) solves (3.1). (b) A series
connection of an inductor, of inductance L, and a capacitor of capacitance C, for which the voltage
u(t) across the capacitor solves (3.1).

where clearly, one must have

A = u0 B = v0/ω0

Another way of writing (3.2) is as

u(t) = C0 cos(ω0t + φ0) (3.3)

where

C0 =
√

A2 + B2 φ0 = tan−1(−B/A) (3.4)

C0 is the amplitude of the sinusoid, and φ0 is the initial phase. See Figure 3.2.
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Figure 3.2: Sinusoid, of the form given in (3.3), with C0 = 1, f0 = ω0/2π = 100, and φ0 = π/4.

From the sinusoidal form (3.3) above, it is easy enough to deduce that

|u(t)| = C0| cos(ω0t + φ0)| ≤ C0 for t ≥ 0 (3.5)

which serves as a convenient bound on the size of the solution for all t, purely in terms of the initial

conditions and the system parameter ω0. Such bounds, in a numerical sound synthesis setting, are

extremely useful, especially if a signal such as u is to be represented in a limited precision audio

format. Note however, that the bound above is obtained only through a priori knowledge of the

form of the solution itself (i.e., it is a sinusoid). As will be shown in the next section, it is not really

necessary to make such an assumption.

The use of sinusoidal, or more generally complex exponential solutions to a given system in order

to derive bounds on the size of the solution was developed, in the discrete setting, into a framework

for determining numerical stability of a simulation algorithm, also known as von Neumann analysis
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[244, 113]. Much more will be said about this from Chapter 5 onwards.

3.1.2 Energy

In is straightforward to derive an expression for the energy of the simple harmonic oscillator. Re-

calling the discussion at the beginning of §2.4.1, after multiplying (3.1) by du
dt , one arrives at

du

dt

d2u

dt2
+ ω2

0

du

dt
u = 0 → d

dt

(

1

2

(
du

dt

)2

+
ω2

0

2
u2

)

= 0 (3.6)

Writing

H = T + V with T =
1

2

(
du

dt

)2

and V =
ω2

0

2
u2 (3.7)

one has
dH

dt
= 0 → H(t) = constant ≥ 0

When scaled by a constant with dimensions of mass, T, V and H are the kinetic energy, potential

energy, and total energy (or Hamiltonian) for the simple harmonic oscillator.

In order to arrive at a bound on solution size in this case, one may first observe that

H(t) = H(0) =
1

2
v2
0 +

1

2
ω2

0u
2
0 =

1

2
ω2

0C
2
0

where C0 is defined in (3.4). Then, noting the non-negativity of T and V, as defined in (3.7), one

has

0 ≤ V(t) ≤ H(t) = H(0) =
1

2
ω2

0C
2
0

and, using the form of V(t), finally,

|u(t)| ≤ C0 for t ≥ 0 (3.8)

which is the same as the bound obtained in the previous section. In this case, however, one has

made no a priori assumptions about the form of the solution. A bound on du/dt can clearly also be

obtained; though not so useful for the SHO given the strength of the above condition on u itself, such

bounds do come in handy when dealing with distributed systems under free boundary conditions.

See Problem 3.1.

This type of analysis, in which frequency domain analysis is avoided, has also been applied to

the analysis of numerical simulation techniques, and is sometimes referred to as the energy method

[201]. It is worth noting that even though it was stated at the beginning of this section that an

energy would be “derived” from system (3.1), one could equally well begin from the expressions for

kinetic and potential energy given in (3.7), and, through the application of variational principles,

arrive at (3.1). This variational point of view dominates in the modern finite element simulation

community.

3.1.3 As First-Order System

In the literature, many numerical time-integration techniques are introduced with regard to first

order ODE systems. It is simple enough to expand the definition of the simple harmonic oscillator,

from (3.1), to a first order system in two variables, i.e., in matrix form,

d

dt

[
u

v

]

=

[
0 1

−ω2
0 0

] [
u

v

]
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All frequency domain and energy analysis of course applied equally to this equivalent system. Though

first-order systems will only rarely appear in this book, it is worth being aware of such systems, as

many time-integration techniques, including the ubiquitous Runge-Kutta family of methods and

wave digital filters [88], are indeed usually presented with reference to first order systems. In the

distributed case, the important “finite-difference time domain” family of methods [249], is also

usually applied to first order systems, such as the defining equations of electromagnetics.

3.1.4 Coupled Systems of Oscillators

Coupled second order ODE systems appear frequently in finite element analysis, and, in musical

sound synthesis, directly as descriptions of the dynamics of lumped networks, as per §1.2.1; what

often remains, after spatial discretization of an LTI distributed system, is a system of the form:

M
d2

dt2
u = −Ku (3.9)

where here, u is an N × 1 column vector, and M and K are known as, respectively, the N ×N mass

and stiffness matrices, which are constants. M is normally diagonal, and K is usually symmetric,

reflecting reciprocity of forces acting within the system defined by (3.9). If the product M−1K exists

and is diagonalizable, with M−1K = UΛU−1, then the system may be immediately decoupled as

d2

dt2
v = −Λv (3.10)

where u = Uv, and Λ is the diagonal matrix containing the eigenvalues of M−1K, which are

normally real and non-negative. The system (3.9) will then have N distinct frequencies ω, given by

ωp =
√

Λp,p for p = 1, . . . , N (3.11)

Energy analysis also extends to systems such as (3.9). Left-multiplying by the row vector duT /dt,

where T indicates a transposition operation gives

duT

dt
M

d2u

dt2
+

duT

dt
Ku = 0

or, using the symmetry of M and K,

dH

dt
= 0 with H = T + V and T =

1

2

duT

dt
M

du

dt
V =

1

2
uTKu

If M and K are positive definite, then the energy H will also be non-negative, and bounds on solution

size may be derived as in the case of a single oscillator.

Lumped network approaches to sound synthesis, mentioned in §1.2.1, are built, essentially, around

such coupled oscillator systems. The numerical treatment of such systems will appear later in §3.4.

See Problems 3.2 and 3.3 for some simple concrete examples of mass spring networks.

3.2 A Simple Scheme

The simplest possible finite difference scheme for the simple harmonic oscillator (3.1) is obtained by

introducing a time step k, a time series un intended to approximate the solution at time t = nk, and

by replacing the second time derivative by a second time difference, as defined in (2.4). One has, in

operator form,

δttu = −ω2
0u (3.12)

Note the compactness of the above representation, and in particular the absence of the time index,

which is assumed to be n for each occurrence of the variable u. The finite difference scheme (3.12)
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is a second order accurate approximation to (3.1)—see §3.2.5. For reference, a code example in the

Matlab programming language is provided in §A.1.

3.2.1 As Recursion

By expanding out the behaviour of the operator δtt, and reintroducing the time index n, one loses

compactness of representation, but has a clearer picture of how to program such a scheme on a

computer. One has
1

k2

(
un+1 − 2un + un−1

)
= −ω2

0u
n (3.13)

which relates values of the time series at three levels n + 1, n, and n − 1. Rewriting (3.13) so that

un+1 is isolated gives

un+1 =
(
2 − ω2

0k
2
)
un − un−1 (3.14)

which is a two-step recursion in the time series un. This difference equation is identical in form to

that of a two-pole digital filter under zero-input conditions [183].

3.2.2 Initialization

The difference equation (3.14) must be initialized with two values, typically u0 and u1. This pair

of values is slightly different from what one would normally use to initialize the continuous time

harmonic oscillator, namely the values u(0) and du
dt |t=0. In the distributed case, especially under

striking conditions, it is often the initial velocity which is of interest. Supposing that one has, instead

of the two values u0 and u1, an initial value u0 and an initial velocity condition (call it v0), a very

simple way of proceeding is to write

u0 = u0 and δt+u0 = v0 → u1 = u0 + kv0

This approximation is only first-order accurate. More accurate settings may be derived—see Problem

3.4—but, in general, there is not much point in setting initial conditions to an accuracy greater than

that of the scheme itself. Since many of the schemes used in this book will be of relatively low

accuracy, the above condition is wholly sufficient for most sound synthesis applications, especially if

one is operating at an elevated audio sampling rate (i.e., for a small value of k), which is usully the

case. In many cases, in fact, an initial condition is not employed, as the physical model is excited

by a continuously varying source (such as a bow, or reed mechanism).

3.2.3 Numerical Instability

It is easy enough to arrive at a numerical scheme such as (3.12) approximating the SHO, and, indeed,

under some conditions it does generate reasonable results, such as the sinusoidal output shown in

Figure 3.3(a). But this is not necessarily the case—sometimes, the solution exhibits explosive growth,

as shown in Figure 3.3(b). Such explosive growth clearly does not correspond, in any sense, to an

approximation to the SHO, and is referred to as unstable.

Stability analysis is a key aspect of all numerical methods, and is given an involved treatment

throughout the rest of this book. It is particular importance in the case of physical models of

musical instruments, which almost always operate under nearly lossless conditions, and which are

thus especially prone to such instability. There are various ways of analyzing this behaviour—in the

present case of the SHO, frequency domain methods, described in the following section are a natural

choice. Energy methods, which extend well to more complex (nonlinear) problems appear in §3.2.6.
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Figure 3.3: Output of scheme (3.12), running at a sample rate fs = 44100 Hz. In (a), sinusoidal
output when f0 = ω0/2π = 8000 Hz, and in (b) unstable, explosive numerical behavior when f0 =
ω0/2π = 14040 Hz.

3.2.4 Frequency Domain Analysis

The frequency domain analysis of scheme (3.12) is very similar to that of the simple harmonic

oscillator, as outlined in §3.1.1. Applying a z-transformation, or, simply inserting a test solution of

the form un = zn, where z = esk (see comments on the frequency domain ansatz in §2.3), leads to

the characteristic equation

z + (k2ω2
0 − 2) + z−1 = 0

which has the solution

z± =
2 − k2ω2

0 ±
√

(2 − k2ω2
0)

2 − 4

2
(3.15)

When z± are distinct, the solution to (3.12) will evolve according to

un = A+zn
+ + A−zn

− (3.16)

Under the condition

k <
2

ω0
(3.17)

the two roots z± will be complex conjugates of magnitude unity (see §2.3.3), in which case they may

be written as

z± = e±jωk

where ω 6= ω0, and the solution (3.16) may be rewritten as

un = A cos(ωnk) + B sin(ωnk) = C0 cos(ωnk + φ0) (3.18)

where

A = u0 B =
u1 − u0 cos(ωk)

sin(ωk)
C0 =

√

A2 + B2 φ0 = tan−1 (−B/A)

This solution is clearly well-behaved, and resembles the solution to the continuous time SHO, from

(3.2). From the form of the solution above, the following bound on the numerical solution size, in

terms of the initial conditions and ω0 may be deduced:

|un| ≤ C0 (3.19)

Condition (3.17) may be violated in two different ways. If k > 2
ω0

, then the two roots of

(3.15) will be real, and one will be of magnitude greater than unity. Thus solution (3.16) will grow

exponentially. If k = 2
ω0

, then the two roots of (3.15) coincide, at z± = −1. In this case, the solution

(3.16) does not hold, and there will be a term which grows linearly. In neither of the above cases



56 CHAPTER 3. THE OSCILLATOR

does the solution behave in accordance with (3.2), and its size cannot be bounded in terms of initial

conditions alone. Such growth is called numerically unstable (and in the latter case marginally

unstable), and condition (3.17) serves as a stability condition.

Stability Conditions and Sampling Theory

Condition (3.17) may be rewritten, using sample rate fs = 1/k and the reference oscillator frequency

f0 = ω0/2π as

fs > πf0

which, from the point of view of sampling theory, is counterintuitive—recall the general comments

on this subject at the beginning of §2.1. One might expect that the sampling rate necessary to

simulate a sinusoid at frequency f0 should satisfy fs > 2f0, not the above condition, which is more

restrictive. The reason for this is that the numerical solution does not in fact oscillate at frequency

ω0, but at frequency ω given by

ω =
1

k
cos−1

(
1 − k2ω2

0/2
)

This frequency warping effect is due to approximation error in the finite difference scheme (3.12)

itself; such an effect will be generalized to numerical dispersion in distributed problems seen later

in this book, and constitutes what is perhaps the largest single disadvantage of using time-domain

methods for sound synthesis. Note in particular that ω > ω0. Perceptually, such an effect will

lead to mistuning of “modes” in a simulation of a musical instrument. There are many means of

combating this unwanted effect, perhaps the most crude being to use a higher sampling rate (or

smaller value of k)—the numerical frequency ω approaches ω0 in the limit as k becomes small. This

approach, however, though somewhat standard in the more mainstream simulation community, is

not so useful in audio, as the sample rate is generally fixed1, though downsampling is a possibility.

Another approach, which will be outlined in §3.3.2, involves different types of approximations to

(3.1), and will be elaborated upon extensively throughout the rest of this book.

3.2.5 Accuracy

Scheme (3.12) employs only one difference operator, a second-order accurate approximation δtt to

the operator d2

dt2 . While it might be tempting to conclude that the scheme itself will generate a

solution which converges to the solution of (3.1) with an error that depends on k2 (which is in fact

true in this case), the analysis of accuracy of an entire scheme is slightly more subtle than that

applied to a single operator in isolation. It is again useful to consider the action of the operator δtt

on a continuous function u(t). In this case, scheme (3.12) may be rewritten as
(
δtt + ω2

0

)
u(t) = 0 (3.20)

or, using (2.6),
(

d2

dt2
+ ω2

0

)

u(t) = O(k2)

The left hand side of the above equation would equal 0 for u(t) solving (3.1), but for approximation

(3.12), there is a residual error on the order of the square of the time step k.

In general, the accuracy of a given scheme will be at least that of the constituent operators, and,

1It is also worth mentioning that in a distributed setting, involving approximations in both space and time, the
spatial temporal warping errors often tend to cancel one another to a certain degree (indeed, perfectly, in the case of
the 1D wave equation).
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in some rare cases, higher; two interesting case studies of great relevance to sound synthesis are

presented in §3.3.4 and §6.2.4.

3.2.6 Energy Analysis

Beginning from the compact representation of the difference scheme given in (3.12), one may derive a

discrete conserved energy similar to that obtained for the continuous problem in §3.1.2. Multiplying

(3.12) by a discrete approximation to the velocity, δt·u gives

(δt·u) (δttu) + ω2
0 (δt·u)u = 0

Employing the product identities given in §2.4.2 in the last chapter, one may immediately arrive at

δt+

(
1

2
(δt−u)

2
+

ω2
0

2
uet−u

)

= 0

or

δt+h = 0 (3.21)

with

h = t + v and t =
1

2
(δt−u)

2
v =

ω2
0

2
uet−u (3.22)

here, t, v and h are clearly approximations to the kinetic, potential, and total energies, T, V and

H, respectively, for the continuous problem, as defined in (3.7). All are time series, and could be

indexed as tn, vn and hn, though it should be kept in mind that the above expressions are centered

about time instants t = (n − 1/2)k.

Eq. (3.21) implies that the discrete time series hn, which approximates the total energy H for

the continuous time problem, is constant. Thus the scheme (3.12) is energy conserving, in a discrete

sense. Thus,

hn = constant = h0 (3.23)

Though one might think that the existence of a discrete conserved energy would immediately

imply good behaviour of the associated finite difference scheme, it is important to note that the

discrete approximation to potential energy, given above in (3.22), is of indeterminate sign, and thus,

possibly, so is h. The determination of non-negativity conditions on h leads directly to a numerical

stability condition. Expanding out the operator notation, one may write the function hn at time

step n as

hn =
1

2k2

(
(un)2 + (un−1)2

)
+

(
ω2

0

2
− 1

k2

)

unun−1

which is no more than a quadratic form in the variables un and un−1. Applying the results given in

§2.4.3, one may show that the quadratic form above is positive definite when

k <
2

ω0

which is exactly the condition (3.17) arrived at through frequency domain analysis. See Problem

2.12. Under this condition, one further has that

|un| ≤
√

2k2hn

1 − (1 − ω2
0k

2/2)2
=

√

2k2h0

1 − (1 − ω2
0k

2/2)2
(3.24)

Just as in the case of frequency domain analysis, the solution may be bounded in terms of the initial

conditions (or the initial energy) and the system parameters. In fact, the bound above is identical

to that given in (3.19). See Problem 3.5.

It is important to make some comments about the nature of this numerical energy conservation
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property. In infinite precision arithmetic, the quantity hn remains exactly constant, according to

(3.23). That is, the discrete kinetic energy tn and potential energy vn sum to the same constant,

at any time step n. See Figure 3.4(a). But in a finite precision computer implementation, there

will be fluctuations in the total energy at the level of the least significant bit; such a fluctuation is

shown, in the case of floating point arithmetic, in Figure 3.4(b). In this case, the fluctuations are on

the order of 10−15 of the total energy, and the bit-quantization of these variations is clearly visible.

Numerical energy is conserved to machine accuracy.
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Figure 3.4: (a) Variation of the discrete potential energy vn (solid grey line), discrete kinetic energy
tn (dotted grey line) and total discrete energy hn (solid black line), plotted against time step n, for
the output of scheme (3.12). In this case, the values ω0 = 1 and k = 1/10 were used, and scheme
(3.12) was initialized with the values u0 = 0.2 and u1 = −0.4. (b) Variation of the error in energy
hn

e , defined, at time step n, as hn
e =

(
hn − h0

)
/h0, plotted as black points. Multiples of single bit

variation are plotted as grey lines.

The analysis of conservative properties of finite difference schemes is younger than frequency do-

main analysis, and, as a result, much less well-known. It is, in some respects, far more powerful than

the body of frequency domain analysis techniques which forms the workhorse of scheme analysis.

The energy method [113] is the name given to a class of analysis techniques which do not employ

frequency domain concepts. The study of finite difference schemes which possess conservation prop-

erties (of energy, and other invariants) experienced a good deal of growth in the 1980s [112, 221] and

1990s [159, 282, 102], and is related to more modern symplectic integration techniques [222, 232].

3.2.7 Computational Considerations

The computational requirements of scheme (3.12) are most easily seen through an examination of

the Matlab code in §A.1. In each updating cycle, the algorithm requires one multiplication, and

one addition. Interestingly, this is nearly the same amount of computation required to generate

values of a sinusoid through table reading, as is common practice in sound synthesis applications

[170], as discussed in §1.1.3, but with the advantage of a much reduced cost in terms of memory, as

mentioned below. The use of recursive structures as a generator of sinusoids has been discussed by

Smith and Cook [243]. In fact, with a small amount of additional work, a scheme can be developed

which calculates exact values of the sinusoid—see §3.3.4.

Though, for the sake of clarity of presentation, the algorithm in §A.1 appears to make use of

three memory locations, one for the current value of the computed solution, and two for the previous
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two values, this may be reduced to two locations through overwriting. See Programming Exercise

3.1.

3.3 Other Schemes

Difference scheme (3.12) is but the simplest form of approximation to (3.1), and, though it is indeed

extremely useful, it does suffer from frequency warping error—the sinusoid generated by the scheme

is of a frequency ω which may be different from ω0, the frequency of the exact solution. The degree

of warping becomes more pronounced for high values of ω0 relative to 2πfs, where fs is the sample

rate. In this section, various techniques for the construction of improved finite difference schemes

are presented.

3.3.1 Using Time-averaging Operators

Another way to approximate (3.1) involves the use of temporal averaging operators, as introduced

in §2.2. For example,

δttu = −ω2
0µt·u (3.25)

is also a second order accurate approximation to (3.1), where it is to be recalled that the averaging

operator µt· approximates the identity operation. Second order accuracy is easy enough to determine

by inspection of the centered operators δtt and µt·, which are second order accurate approximations

to d2

dt2 and the identity operation, respectively. See §2.2.3.

This scheme, when the action of the operators δtt and µt· is expanded out, leads to

1

k2

(
un+1 − 2un + un−1

)
= −ω2

0

2

(
un+1 + un−1

)
(3.26)

which again involves values of the time series at three levels n+1, n, and n−1, and which can again

be solved for un+1, as

un+1 =
2

1 + ω2
0k

2/2
un − un+1 (3.27)

The characteristic polynomial is now

z − 2

1 + ω2
0k

2/2
+ z−1 = 0

which has roots

z± =
1 ±

√

1 − (1 + ω2
0k

2/2)
2

1 + ω2
0k

2/2

The solution will again evolve according to (3.16) when z+ and z− are distinct.

In this case, however, it is not difficult to show that the roots z± will be complex conjugates

of unit magnitude for any choice of k. Thus z± = e±jωk, where ω, the frequency of the sinusoid

generated by the scheme, is given by

ω =
1

k
cos−1

(
1

1 + ω2
0k

2/2

)

Again, ω 6= ω0, but, in contrast to the case of scheme (3.12), one now has ω < ω0. The result is a well-

behaved sinusoidal solution of the form of (3.18) for any value of k; there is no stability condition

of the form of (3.17). (This is typical of some types of implicit schemes for partial differential

equations—see §6.3.2.)

The energetic analysis mirrors this behaviour. Multiplying (3.25) by δt·u, and using identities
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(2.22a) and (2.22e) gives

(δt·u) (δttu) + ω2
0(δt·u) (µt·u) = δt+

(
1

2
(δt−u)2 +

ω2
0

2
µt−

(
u2
)
)

= 0

or

δt+h = 0 with h = t + v and t =
1

2
(δt−u)2 v =

ω2
0

2
µt−u2 (3.28)

Now, t and v, and as a result h are non-negative for any choice of k. A bound on solution size follows

immediately. See Problem 3.6.

3.3.2 A Second-order Family of Schemes

Though the stability condition inherent in scheme (3.12) has been circumvented in scheme (3.25),

the problem of warped frequency persists. Using combination properties of the averaging operators,

discussed in §2.2.2, it is not difficult to see that any scheme of the form

δttu = −ω2
0 (α + (1 − α)µt·)u (3.29)

will also be a second-order accurate approximation to (3.1), for any choice of the real parameter α.

In fact, it would be better to say “at least second-order accurate”—see §3.3.4 for more discussion.

There is thus a one-parameter family of schemes for (3.1), all of which operate as two step recursions:

written out in full, the recursion has the form

un+1 =
2 − αω2

0k
2

1 + (1 − α)ω2
0k2/2

un − un−1

Schemes (3.12) and (3.25) are members of this family with α = 1 and α = 0, respectively.

The stability condition for the family of schemes (3.29) is now dependent on the free parameter

α. Using frequency domain techniques (see Problem 3.7), it may be shown that this condition is

k <
2

ω0

√
2α − 1

for α ≥ 1

2
, otherwise stable (3.30)

The scheme (3.29) also possesses a conserved energy, i.e.,

δt+h = 0 with h = t + v and t =
1

2
(δt−u)2 v =

ω2
0

2

(
αuet−u + (1 − α)µt−(u2)

)

(3.31)

Finding a condition such that this energy is non-negative is again equivalent to the stability bound

above obtained using frequency domain techniques. See Problem 3.7.

Frequency Warping

It is interesting to examine the frequency warping characteristics of various members of this family,

as function of ω0, the reference frequency for the simple harmonic oscillator. In Figure 3.5(a), the

frequency ω of the scheme (3.29) is plotted as a function of ω0, for different choices of α. Notice

that for small values of α, lower than about α = 0.7, the difference scheme frequency is artificially

low, and for values closer to α = 1, artificially high. In fact, for high values of α, there is a certain

“cutoff” frequency ω0, for which the difference scheme becomes unstable—this is readily visible in

the figure. In the middle range of values of α (between about α = 0.7 and α = 0.8), the difference

scheme yields a good approximation over nearly the entire range of frequencies ω0 up to the Nyquist

limit. It is useful, from a musical point of view, to plot the frequency deviation in terms of cents,

defined as

deviation in cents = 1200 log2

(
ω

ω0

)
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A deviation of 100 cents corresponds to a musical interval of a semitone. See Figure 3.5(b). For

α = 0.7, the maximum detuning is approximately two semitones, and, if the sample rate is chosen

sufficiently high, occurs in a region of the spectrum for which frequency discrimination in humans

may not be of great importance [291]. See Programming Exercise 3.3. Note also the limited range

of frequencies which can be simulated, for larger values of α, reflecting increased strictness of the

stability condition for the family of schemes, from (3.30).
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Figure 3.5: (a), Frequency ω of the parameterized difference scheme (3.29) for the simple harmonic
oscillator, plotted against ω0 ∈ [0, π/k] as dotted lines, for various values of the free parameter α
(indicated in the figure). The reference frequency is plotted as a solid black line. (b), deviation in
cents of ω from ω0 for the same members of the family, as a function of ω0 ∈ [0, π

k ]. Zero deviation
is plotted as a solid black line. Successive deviations of a musical semitone are indicated by grey
horizontal lines.

As mentioned earlier, the effect of frequency warping in discrete time simulations of lumped

systems generalizes to the issue of numerical dispersion, and thus inharmonicity in schemes for

partial differential equations. Though, as will be seen shortly, in §3.3.4, the problem may be dealt

with neatly in the case of the oscillator in isolation, in general, the only cure is through the use of

more carefully designed schemes, such as those presented in this section.

3.3.3 Wave Digital Filters

Because scattering methods have played such a dominant role in physical modeling sound synthesis

for the past twenty years, it is worth making a short detour at this point to see how they fit into the

standard framework of numerical methods. Wave digital filters [88, 87] were the first such method

to appear, though not, admittedly, in the context of musical sound synthesis—see §1.2.4 for some

general comments on the history of such methods. Though based on ideas from circuit and network

theory, in the end, they can be rather simply viewed as finite difference schemes.
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Consider a parallel combination of an inductor and a capacitor, as shown in Figure 3.6(a). An

electrical network theorist would describe this system in the following way: supposing that the

voltage across and current through the inductor (of inductance L) are u1 and i1, and the voltage

across and current through the capacitor (of capacitance C) are u2 and i2, then the following four

equations describe the dynamics of the parallel combination:

u1 = L
di1
dt

i2 = C
du2

dt
u1 = u2 ii + i2 = 0 (3.32)

The first two equations describe the internal behaviour of the circuit elements themselves, and the

latter two are Kirchhoff’s connection rules for a parallel combination of two circuit elements. The

above system (3.32) of four equations in four unknowns can be reduced to the simple harmonic

oscillator (3.1) with ω0 = 1/
√

LC, with a dependent variable which is any of u1, u2, i1 or i2. (The

analogy of the electrical network with an acoustical system such as that which might arise in a

musical instrument model is direct: replacing currents with velocities, and voltages with forces,

and the inductance and capacitance with mass and the inverse of stiffness respectively, one arrives

immediately at a simple mass-spring system.)

The wave digital discretization procedure relies on essentially two manipulations. The first is the

discrete approximation of the first two of (3.32) through the trapezoid rule(see page 41); in terms

of the difference operators that have been defined in this book, one may write these discretized

equations as

δt+u1 = Lµt+i1 δt+i2 = Cµt+u2 (3.33)

or, expanding out this notation and introducing a time index n,

un+1
1 − un

1 =
kL

2

(
in+1
1 + in1

)
in+1
2 − in2 =

kC

2

(
un+1

2 + un
2

)
(3.34)

The connection rules are assumed to hold instantaneously in discrete time. The second manipulation

is the introduction of wave variables:

a1 =
u1 + R1i1

2
√

R1

b1 =
u1 − R1i1

2
√

R1

a2 =
u2 + R2i2

2
√

R2

b2 =
u2 − R2i2

2
√

R2

Here, two positive constants, R1 and R2, called port resistances have been assigned to the inductor

and capacitor, respectively. Under the special choices of R1 = 2L/k and R2 = k/(2C), the recursions

(3.34) reduce to

bn
1 = −an−1

1 bn
2 = an−1

2 (3.35)

These are the defining equations of the wave digital inductor and capacitor, respectively—notice in
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Figure 3.6: The LC harmonic oscillator—(a) a parallel connection of an inductor, of inductance L
and a capacitor of capacitance C, and (b) the corresponding wave digital network.
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particular that they involve only shifting operations (with sign inversion in the case of the inductor),

and are thus strictly causal. They do, however, act in isolation, and must be connected through the

equations which result from the substitution of wave variables into the connection rules:
[
an
1

an
2

]

=

[

−1 + 2R2

R1+R2

2
√

R1R2

R1+R2
2
√

R1R2

R1+R2
−1 + 2R1

R1+R2

] [
bn
1

bn
2

]

(3.36)

This operation, called scattering, is at the heart of wave digital filtering, and is viewed as a two-port

element in its own right, called an adaptor. Notice in particular that the matrix operation above is

orthogonal, preserving the “energy,” or l2 norm of wave variables through the scattering operation2.

The scattering formulation may be extended to connection of an many elements as desired, all the

while maintaining this property of orthoginality, or losslessness. The wave digital discretization of

the parallel inductor/capacitor combination is complete, and is illustrated in Figure 3.6(b); in each

step in the recursion that the structure implies, there will occur a scattering step (at a wave digital

adaptor), and a shifting of data. Such a mode of operation is also characteristic of digital waveguide

networks.

One of the nice features of wave digital networks is that the energetic properties are fundamentally

built in to the scattering and shifting operations. For example, using the orthogonality of the

scattering matrix, in (3.36) and the simple shifting operations above in (3.35), it is simple to show,

in this case, that

(an
1 )2 + (an

2 )2 = (bn
1 )2 + (bn

2 )2 = (an−1
1 )2 + (an−1

2 )2

or,

(an
1 )2 + (an

2 )2 = constant (3.37)

implying losslessness, using wave variables. This should come as no surprise—combining the two

recursions in (3.33) leads immediately to the difference scheme (in, say, u = u1 = u2)

δttu = −ω2
0µttu

which is a member of the family (3.29) of schemes for the simple harmonic oscillator, with α = 1/2

and ω2
0 = 1/(LC). As was shown earlier, this scheme possesses a conserved energy, given in (3.31);

this is in fact identical to the conserved quantity for the wave digital network, from (3.37). (Notice,

however, that scheme (3.29) with α = 0.5 behaves quite poorly with regard to frequency warping,

as illustrated in Figure 3.5.)

Energy conservation, and the good stability properties that follow from it have been a primary

selling point of wave digital filtering methods; another is the manner in which a complex system

may be broken down into modular components, which behave strictly causally, leading to fully

explicit methods. But, as has been seen throughout this chapter, at least in the case of the simple

harmonic oscillator, energy conservation follows from the simplest imaginable difference schemes;

in fact, one need not restrict oneself to the use of a particular numerical integration method (such

as the trapezoid rule) in order to obtain this property. Indeed, the entire apparatus of network

theory and scattering is not necessary to show such conservation properties, or numerical stability.

The modularity argument is also somewhat misleading—though for certain circuit networks, it

is indeed possible to arrive at fully explicit methods using wave digital discretization principles,

2Though power-normalized waves, which give rise to orthogonal scattering matrices, have been used here, it is by
no means necessary to use such wave variables. Simple “voltage waves” are in fact the norm in most applications of
wave digital filters, including sound synthesis. In this case, scattering matrices are no longer generally orthogonal,
but rather orthogonal with respect to a weighting of the port resistances—energy conservation holds in this case as
well. For nonlinear networks, however, power-normalized waves are necessary in order to ensure passivity. See, e.g.,
[89, 90, 24].
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there are many (in particular those involving nonlinearities) for which this is rather strenuous—a

delicate juggling of port-resistances, through the use of so-called reflection-free ports [91] will be

necessary. This approach has been taken by some in the sound synthesis applications—see §1.2.4 on

hybrid methods. Often, however, simple finite difference schemes are explicit, such as those for the

simple harmonic oscillator, as discussed in this chapter. In short, wave digital filters are intuitively

appealing, but somewhat restrictive, and perhaps overly complicated, and do not lead to any real

gains in terms of efficiency or ease of analysis, at least for simulation purposes. On the other hand,

if one is making use of digital waveguides, which are genuinely more efficient than finite difference

schemes for a certain range of applications, then wave digital filters are an excellent match when

used in order to model, say waveguide terminations, or connections with lumped elements.

3.3.4 An Exact Solution

For this very special case of the simple harmonic oscillator, there is in fact a two-step recursion

which generates the exact solution to (3.1), at times t = nk. It is simply given by

un+1 − 2 cos(ω0k)un + un−1 = 0 (3.38)

This recursion is perhaps more familiar to electrical and audio engineers as a two-pole filter operating

under transient conditions. The z transformation analysis reveals:

z − 2 cos(ω0k) + z−1 = 0

which has solutions

z± = cos(ω0k) ± j sin(ω0k) = e±jω0k → ω = ω0

Thus the oscillation frequency ω of recursion (3.38) is exactly ω0, the frequency of the continuous

time oscillator (3.1).

In a sense, then, all the preceding analysis of difference schemes is pointless, at least in the case

of (3.1). On the other hand, the simple harmonic oscillator is a very special case; more complex

systems, especially when nonlinear, rarely allow for exact numerical solutions. One other case of

interest, however, and the main reason for dwelling on this point here, is the 1D wave equation, to be

discussed in Chapter 6, which is of extreme practical importance in models of musical instruments

which are essentially one-dimensional, such as strings and acoustic tubes. Numerical methods which

are exact also exist in this case, and have been exploited with great success as digital waveguides

[242].

Another question which arises here is that of accuracy. Considering again the one-parameter

family of two-step difference schemes given by (3.29). Using identity (2.7a) relating µt· to δtt, it may

be rewritten as

δttu =
−ω2

0

1 +
ω2

0(1−α)k2

2

u

Under the special choice of α = 2
ω2

0
− cos(ω0k)

1−cos(ω0k) , the difference scheme becomes exactly (3.38), or
(

δtt +
2

k2
(1 − cos(ω0k))

)

︸ ︷︷ ︸

P

u = 0 (3.39)

Consider the action of the operator P as defined above on a continuous function. Expanding the
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operator δtt and the function cos(ω0k) in Taylor series leads to

P =

∞∑

l=1

2k2(l−1)

(2l)!

d2l

dt2l
+ (−1)l−1 2ω2l

0 k2(l−1)

(2l)!
=

∞∑

l=1

2k2(l−1)

(2l)!

(
d2l

dt2l
+ (−1)l−1ω2l

0

)

The various terms of the form
(

d2l

dt2l + (−1)l−1ω2l
0

)

all possess a factor of d2

dt2 + ω2
0. Thus (3.39) may

be rewritten as
(
1 + O(k2)

)
(

d2

dt2
+ ω2

0

)

u = 0

which shows that the solution u indeed solves the equation of the simple harmonic oscillator exactly.

This property of accuracy of a difference scheme beyond that of the constituent operators, under

very special choices of the scheme parameters, is indeed a very delicate one. In the distributed

setting, it has been exploited in the construction of so-called modified equation methods [126, 231,

181, 182, 69] and compact spectral-like schemes [157, 289, 143, 161].

3.3.5 Further Methods

In this book, relatively simple difference strategies will be employed whenever possible. On the

other hand, sometimes more accurate methods are necessary, especially when one is interested in

more delicate modeling of musical instrument physics. There is a large variety of time differencing

methods which are in use for the solutions of ODEs; normally, these are framed in terms of a first-

order system, and so do not fit well into the main development here. Some of the better known are

Adams-Bashforth, Adams-Moulton and Runge-Kutta methods, and will be discussed in the context

of spectral methods in §15.5.

There do exist, however, some families of methods which have been developed directly for use

with second order systems, generally for application to problems in structural dynamics, such as

those which occur in musical acoustics—among these are the Newmark family of schemes [179], as

well as those proposed by Hilber, Hughes and Taylor [118].

3.4 Lumped Mass-Spring Networks

Similar principles of difference approximation may be applied to coupled systems of oscillators,

introduced in §3.1.4. For an N mass system defined by (3.9), one explicit approximation is

Mδttu = −Ku (3.40)

where now, u = un is an N -vector time series. The resulting recursion is

un+1 =
(
2I− k2M−1K

)
un − un−1

where I is the identity matrix. Stability analysis is similar to the scalar case; employing the ansatz

un = φzn gives the following eigenvalue equation:

k2M−1Kφ = −(z − 2 + z−1)φ

This equation possesses N solutions z; the condition that the scheme above is stable is similar to

that of the scheme (3.12) for the simple harmonic oscillator—in order to ensure that all roots z are

bounded by 1 in magnitude, the condition

k ≤ 2
√

max(eig(M−1K))
(3.41)
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must be satisfied. Energy principles may be applied to scheme (3.40) to yield the same result. See

Problem 3.9.

Though scheme (3.40) is explicit, and thus simple to implement, one difficulty is that of stiffness—

if the natural frequencies of the coupled system are widely separated, then it will be necessary to

use a relatively small time step (or high sampling frequency) in order to compute a solution. The

flip side of this difficulty, in the realm of sound synthesis, where the sampling frequency is fixed, is

that one can expect a good degree of frequency warping if the natural frequencies are in the upper

range of the audio spectrum. One remedy is to apply a parameterized scheme such as that discussed

in §3.3.2. For the coupled system (3.9), this will have the form

Mδttu = −K (α + (1 − α)µt·)u (3.42)

and will yield a much lower degree of frequency warping over the entire audio spectrum than scheme

(3.40) for a properly chosen value of the parameter α. In the case of the single oscillator, there is no

computational disadvantage to using such a scheme, but in the case of a coupled system, when K

is not diagonal (this is the case for any interesting problem), linear system solution techniques will

be necessary in order to perform an update. Though, for sparse K, many fast iterative techniques

are available for linear system solution, computational cost is certainly heavier than for an explicit

scheme, and programming complexity is undeniably greater. The deeper issue is that inherent to

all implicit schemes: for most reasonably complex systems in musical acoustics, better accuracy

usually comes with a price. Implicit methods (i.e., those involving a coupling among unknowns in a

difference scheme update) will be revisited in more detail in the distributed setting—see §6.3.2.

Another possibility is to diagonalize system (3.9) before discretization, or, for the coupled system

(3.9), work with (3.10). In this case, the system consists of an uncoupled set of scalar oscillators,

and one may employ a distinct exact scheme (see §3.3.4) to each component of the solution. This is

an example of a modal method, and has the virtue of generating an exact solution with an explicit

method. This is the approach taken by many in the finite element community, and also by

3.5 Loss

Damping intervenes in any musical system, and, in the simplest case, may be modelled through the

addition of a “linear loss” term to a given system. In the case of the simple harmonic oscillator, one

may add damping as
d2u

dt2
= −ω2

0u − 2σ0
du

dt
(3.43)

where σ0 ≥ 0 is the damping parameter for the system. In terms of the mass-spring system and LC

oscillator shown in Figure 3.1, the damping term corresponds to the addition of a linear dashpot

and resistor, respectively.

The characteristic equation for (3.43), obtained through Laplace transformation, or through the

insertion of a test solution u = est, is

s2 + 2σ0s + ω2
0 = 0

which has solutions

s± = −σ0 ±
√

σ2
0 − ω2

0

If damping is small, i.e., if σ0 < ω0, the roots above simplify to

s± = −σ0 ± jω1 with ω1 =
√

ω2
0 − σ2

0
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In this case, the solution (3.3) may be generalized to

u(t) = e−σ0t (A cos(ω1t) + B sin(ω1t)) = C1e
−σ0t cos(ω1t + φ1) (3.44)

where A and B are defined by

A = u0 B =
v0 + σ0u0

ω1
C1 =

√

A2 + B2 φ1 = tan−1(−B

A
)

See Figure 3.7.
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Figure 3.7: Damped dinusoid, of the form given in (3.44), with C1 = 1, σ0 = 10, ω1 = 200π, and
φ0 = π/4.

It should be clear that the bound

|u(t)| ≤ C1e
−σ0t ≤ C1 (3.45)

holds for all t ≥ 0.

The case of large damping, i.e., σ0 ≥ ω0 is of mainly academic interest in musical acoustics. The

main point here is that for σ0 > ω0, the solution will consist of two exponentially damped terms.

For σ0 = ω0, degeneracy of the roots of the characteristic solution leads to some limited solution

growth. See Problem 3.11.

3.5.1 Energy

The energetic analysis of (3.43) is a simple extension of that for system (3.1). One now has, after

again multiplying through by du
dt ,

dH

dt
= −σ0

(
du

dt

)2

≤ 0 → H(t1) ≤ H(t2) ≤ H(0) for t1 ≥ t2 ≥ 0 (3.46)

where H is defined as in (3.7). The energy is thus a positive and monotonically decreasing function

of time. This leads to the bound

|u(t)| ≤ C0 (3.47)

which is identical to that obtained in the lossless case.

Modified Energy Functions

The bounds (3.45) and (3.47) obtained through frequency domain and energetic analysis, respec-

tively, are distinct. Notice, in particular, that bound (3.47) is insensitive to the addition of loss,

and, at the same time, is more general than bound (3.45), which requires the assumption of small

damping (i.e., σ0 < ω0). It is possible to reconcile this difference by extending the energetic analysis

in the following way.
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First, note that although H(t) will be monotonically decreasing in the case of linear loss, by

(3.46), the specifics of its rate of decay are unclear. To this end, define the function H̄ by

H̄ = H + σ0u
du

dt
=

1

2

(
du

dt

)2

+
ω2

0

2
u2 + σ0u

du

dt
(3.48)

Note that H̄ approaches H in the limit as σ0 → 0. It is simple to show that

dH̄

dt
= −σ0H̄ → H̄(t) = e−σ0tH̄(0) (3.49)

Thus H̄ decays exponentially, at decay rate σ0, for any value of σ0. See Problem 3.12.

On the other hand, H̄, in contrast to H, is not necessarily a non-negative function of the state u

and du/dt. This non-negativity property is crucial in obtaining bounds such as (3.8). To this end,

it is worth determining the conditions under which H̄ is non-negative. First note that

u
du

dt
≥ −1

2

(

αu2 +
1

α

(
du

dt

)2
)

for any real constant α > 0. Choosing α = σ0 leads to

H̄ ≥ ω2
0 − σ2

0

2
u2

which is clearly non-negative under the condition of low loss σ0 < ω0 which was assumed in the

frequency domain analysis earlier in this section. Under this condition, one has, from the above

inequality, that

|u(t)| ≤ 1

ω1

√

2H̄(t) ≤ 1

ω1

√

2H̄(0) for t ≥ 0

The bounding quantity on the right of the above inequality is in fact identical to C1, and thus the

bound above is identical to (3.45) obtained using frequency domain analysis.

In general, true energy functions such as H for physical systems are non-negative, and the in-

troduction of modified energetic quantities such as H̄, for which non-negativity conditions must be

determined, might seem to be a needless complication. On the other hand, for numerical approx-

imations, as will be seen shortly, the discrete equivalent of the system energy is not necessarily

non-negative, and the determination of non-negativity conditions leads to numerical stability con-

ditions. Thus the simple analysis above serves as a useful example, in miniature, of what will follow

in this book. Even in the discrete case, it will sometimes be useful to introduce modified energetic

quantities such as H̄, especially when dealing with certain types of non-centered finite difference

schemes.

3.5.2 Finite Difference Scheme

The damped oscillator (3.43) may be dealt with in a variety of ways. A simple scheme is the

following:

δttu = −ω2
0u − 2σ0δt·u (3.50)

which, when the operator notation is expanded out, leads to the recursion

un+1 =
2 − ω2

0k
2

1 + σ0k
un − 1 − σ0k

1 + σ0k
un−1

This is again a recursion of temporal width three.

The characteristic equation will now be

z − 2 − ω2
0k

2

1 + σ0k
+

1 − σ0k

1 + σ0k
z−1 = 0 (3.51)
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The roots may be written explicitly as

z± =
1

1 + σ0k

(

1 − ω2
0k

2

2
±
√

(1 − ω2
0k

2/2)
2 − (1 − σ2

0k
2)

)

(3.52)

Though a direct analysis of the above expressions for the roots is possible, if one is interested in

bounding the magnitudes of the roots by unity, it is much simpler to employ the conditions (2.14),

which yield, simply,

k ≤ 2

ω0
(3.53)

The stability condition for scheme (3.50), which involves a centered difference approximation for the

loss term, is thus unchanged from that of the undamped scheme (3.12). On the other hand, a more

direct examination of the behaviour of the roots given above can be revealing; see Problem 3.13.

Energetic analysis also yields a similar condition. Multiplying (3.50) by δt·u gives, instead of

(3.21),

δt+h = −2σ0 (δt·u)
2 ≤ 0 (3.54)

where h = t + v, with t and v defined as before in (3.22). From the previous analysis, it remains

true that h is non-negative under the condition (3.53), in which case one may deduce that

hn ≤ hn−1 ≤ h0

for all n ≥ 1. The discrete energy function is thus monotonically decreasing. As the expression for

the energy is the same as in the lossless case, one may again arrive at a bound on solution size,

namely

|un| ≤
√

2k2hn

1 − (1 − ω2
0k

2/2)2
≤
√

2k2h0

1 − (1 − ω2
0k

2/2)2
(3.55)

The scheme above makes use of a centered difference approximation to the loss term. Consider

the following non-centered scheme:

δttu = −ω2
0u − 2σ0δt−u (3.56)

The characteristic equation will now be

z −
(
2 − ω2

0k
2 + 2σ0k

)
+ (1 − 2σ0k) z−1 = 0 (3.57)

The condition (2.14) now gives the following condition on k for numerical stability:

k ≤ 2

ω0

(

−σ0 +
√

σ2
0 + ω2

0

)

(3.58)

See Problem 3.14.

This non-centered scheme is only first order accurate, but, if the loss parameter σ0 is small,

as it normally is for most systems in musical acoustics, the solution accuracy will not be severely

degraded. Although in this case, one can arrive at an explicit update using centered or non-centered

difference approximations, in the distributed setting, such backward difference approximations can

be useful in avoiding implicit schemes, which are generally more costly in terms of implementation—

see comments on this topic in §3.4.

3.5.3 Numerical Decay Time

Like frequency, loss is an extremely important perceptual characteristic of a musical system, in that

it determines a characteristic decay time; as has been shown in the case of the SHO, frequency can

be altered through numerical approximation, and, as one might expect, so can the decay time. It is
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thus worth spending a few moments here in determining just how much distortion will be introduced

through typical finite difference approximations.

First consider the solution (3.44) to the SHO with loss, under normal (low-loss) conditions. The

solution is exponentially damped, and the 60 dB decay time T60 (in amplitude) may be defined as

T60 =
6 ln 10

σ0
(3.59)

Considering now the simple difference scheme (3.50), if the stability condition (3.53) is respected,

and again under low-loss conditions, the roots z± of the characteristic polynomial (3.51) will be

complex conjugates, of magnitude

|z| = e−σdk =

√

1 − σ0k

1 + σ0k

Here, σ0 is the loss parameter for the model system (3.43), and σd is that corresponding to the finite

difference scheme. One can then define a numerical 60 dB decay time Td,60 by

Td,60 =
6 ln 10

σd
=

12k ln 10

ln
(

1+σ0k
1−σ0k

) (3.60)

For scheme (3.56), for instance, which uses a non-centered approximation to the loss term, the

magnitudes of the solutions to the characteristic polynomial (3.57) will be, again under low loss

conditions,

|z| = e−σdk =
√

1 − 2σ0k

implying that

Td,60 =
6 ln 10

σd
=

12k ln 10

− ln(1 − 2σ0k)

It is useful to plot the relative decay time Td,60/T60 for the schemes mentioned above—see Figure

3.8.
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Figure 3.8: The relative 60 dB decay time Td,60/T60 for scheme (3.50), as a solid black line, and for
scheme (3.56), as a dotted black line, plotted against σ0k.

For scheme (3.50), the numerical decay time is closer than 99% of the true decay time for

σ0k ≤ 0.17. For a sample rate of 44.1 kHz (implying k = 1/44100), this implies that for decay times

greater than T60 = 0.0018 s, the numerical decay time will not be noticeably different than that of

the model system. For scheme (3.56), the 99% threshold is met for T60 ≥ 0.031 s. These decay times

are quite short by musical standards, and so it may be concluded that numerical distortion of decay

time is not of major perceptual relevance, at least at reasonably high sample rates.
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Although in the two examples of numerical schemes above, the numerical decay time is inde-

pendent of ω0 (as it is for the model system), this is not necessarily always the case. See Problem

3.15.

3.5.4 An Exact Solution

Just as in the case of the SHO, an exact two-step numerical solution is available in the case of the

SHO with loss. Considering the recursion

un+1 = e−σ0k
(

e
√

σ2
0−ω2

0k + e−
√

σ2
0−ω2

0k
)

un − e−2σ0kun−1 (3.61)

the characteristic polynomial is

z − e−σ0k
(

e
√

σ2
0−ω2

0k + e−
√

σ2
0−ω2

0k
)

+ e−2σ0kz−1

which has roots

z± = e

(

−σ0±
√

σ2
0−ω2

0

)

k

The proof that the difference scheme (3.61) solves the loss SHO exactly may be carried out

through the same series expansion methods used in §3.3.4. It is also possible to make a correspon-

dence between scheme (3.61) and a parameterized finite difference scheme—see Problem 3.16.

3.6 Sources

So far in this chapter, only unforced oscillators have been discussed. Though forcing terms almost

never appear in the linear case in applications in musical acoustics, they play a rather important

role in the case of nonlinear excitation mechanisms involving a continuous supply of energy, such as

bows and reed/lip models. See §4.3.1 and §4.3.2.

Considering the case of the oscillator with loss, a force term F (t) may be added as

d2u

dt2
= −ω2

0u − 2σ0
du

dt
+ F (t) (3.62)

In this case, it will be assumed that the force term F (t) is known, though it should be kept in

mind that in certain applications involving connections among objects, the force term may itself be

a function of other unknowns in the system. (??It should be noted that F , as it appears here and

elsewhere in this book does not in fact have dimensions of force, but of acceleration—in the case of

a mass spring system, it is the applied force divided by the mass. This, again, is an example of a

reduction in the number of parameters necessary to specify a system. f will be used instead of F

when a true force is intended.)

Frequency domain analysis of the forced oscillator is carried out in many textbooks—see, e.g.,

[174]. The main result, when the forcing function is sinusoidal, is that one obtains a solution which

is a combination of a steady-state response of the oscillator at the driving frequency, at a magnitude

governed by the impedance of the oscillator, and the free or transient response, at the natural

frequency of the oscillator—see Figure 3.9.

Energy analysis leads immediately to

dH

dt
= −2σ0

(
du

dt

)2

+
du

dt
F

Using inequality (2.24), with a choice of α = 1√
4σ0

gives the bound

dH

dt
≤ F 2

8σ0
⇒ H(t) ≤ H(0) +

1

8σ0

∫ t

0

F 2dt′
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Figure 3.9: Response of the oscillator given in (3.62), with frequency f0 = ω0/2π = 1000 Hz, and
T60 = 0.5 ss, when the forcing function F is given by F = cos(2π100t), for t ≥ 0. The transient
response of the system at f0 = 1000 Hz is superimposed onto the steady state response at 100 Hz.

Thus the energy of the system may be bounded in terms of the initial conditions, through H(0), and

the external forcing function F , both of which are known a priori. This bound is, in most cases,

rather conservative, but is useful especially in cases for which the forcing function F (t) is of finite

support of short duration. Notice, however, that in order to obtain such a bound, one must have a

loss coefficient σ0 which is strictly positive.

The number of possibilities for finite difference schemes is multiplied considerably by the presence

of a forcing term—such is the interest of more involved techniques such as Newmark methods [179].

Keeping with two step methods, one simple set is given by

δttu = −ω2
0u − 2σ0δt·u + [F ] (3.63)

where [F ] = [F ]n is some unspecified second-order accurate approximation to F (t), such as Fn,

µt·Fn, µttF
n. In the case of the forcing term, there is much less difficulty in making use of wide-

stencil approximations, because F is assumed known (though in real-time sound synthesis applica-

tions, it may be sampled from data supplied by a performer).

Energy analysis can be applied to a difference scheme in order to find bounds on the size of the

solution in terms of the initial conditions, and the time series [F ]—see Problem 3.18.

3.7 Problems

Problem 3.1 For the simple harmonic oscillator, find a bound on du/dt in terms of the energy H.
Use this to find another bound on u(t), namely |u(t)| ≤ a1t+a2 for t ≥ 0 and determine the positive
constants a1 and a2 in terms of initial conditions. See §3.1.2.

Problem 3.2 Illustrated below are (a) a two-mass and (b) a three-mass lumped system. In each
case, the masses are constrained to move longitudinally, and the displacement of the lth mass from its
rest position is ul(t), as indicated by distance from the vertical dotted lines. The masses M1, M2, . . .,
are connected to one another by linear springs, of stiffnesses K1, K2, . . ., as indicated in the figure.
The series of masses and springs is terminated by rigid supports. Notice in particular that in each
of (a) and (b), the masses Ml and spring stiffnesses Kl take on values which are distinct for each l
(i.e., they are not all the same).

Given that the forces acting on mass l from the right and left are Kl+1(ul+1 − ul) and −Kl(ul −
ul−1), respectively, and that the total of all forces acting on mass l must be equal to Mld

2ul/dt2,
derive coupled dynamical equations for all the masses. For each of (a) and (b) shown in the figure,
write these equations in the vector-matrix form (3.9), with u = [u1, u2, . . .]

T , and give the explicit
forms of the matrices M and K.
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M1 M2 M1 M2 M3K1 K2 K3 K1 K2 K3 K4

u1 u2 u1 u2 u3

(a) (b)

Problem 3.3 Consider the two mass and three mass systems of the previous problem, under the
simplified conditions that K1 = K2 = . . . = K0, and M1 = M2 = . . . = M0, for positive constants
K0 and M0. For each of cases (a) and (b) shown in the figure, explicitly find the eigenvalues of the
matrix M−1K, and, thus, the frequencies of the system, as per (3.11).

Problem 3.4 For the scheme (3.12), consider the following approach to initialization to second
order accuracy. For a continuous time function u(t) solving (3.1), it is true, through a Taylor series
expansion, that

u(k) = u(0) + k
du

dt

∣
∣
∣
t=0

+
k2

2

d2u

dt2

∣
∣
∣
t=0

+ O(k3)

Given the values u(0) = u0 and du/dt|t=0 = v0, determine, from the above approximation as well as
the defining equation of the SHO, u(k) in terms of u0 and v0. This can be used to set the value u1

in the resulting difference scheme.

Problem 3.5 For scheme (3.12), under the condition (3.17), prove that the bounds (3.19) and
(3.24) obtained using frequency domain analysis and energetic techniques, respectively, are identical.

Problem 3.6 For the scheme (3.25), find a bound on the solution size in terms of the initial con-
ditions and ω0, through the expressions for the energy given in (3.28). the discussion of quadratic
forms in §2.4.3 may be of use here.

Problem 3.7 For the scheme (3.29),
(a) write the characteristic polynomial in z, and prove the stability condition (3.30), and
(b) show that the expression given in (3.31) is indeed a conserved energy, and find conditions

under which it is non-negative.

Problem 3.8 The deviation in cents of a frequency f (in Hertz) from a reference frequency f0 is
defined as

deviation in cents = 1200 log2 (f/f0)

Find an explicit expression for this deviation in the case of schemes (3.12), and (3.25). Recall that
f = ω/2π is the frequency of oscillation of the scheme, and f0 = ω0/2π is the “reference” frequency
of the underlying SHO. For a sample rate of fs = 44100 Hz, find the lowest reference frequency f0

at which the absolute value of this deviation is equal to 100 cents (one semitone) and 10 cents (one
tenth of a semitone). For scheme (3.29), with a value of α = 0.82, what is the minimum value of
this deviation over the band f0 ∈ [0, fs/4]?

Problem 3.9 For difference scheme (3.40) for the coupled system of oscillators, left multiply by the
vector δt·uT , and show that the following numerical energy is a conserved quantity:

h = t + v with t =
1

2
(δt−uT )M(δt−u) v =

1

2
uTKet−u

You may assume that M and K are symmetric.
Generalize the energy analysis of the simple difference scheme for the harmonic oscillator in

§3.2.6. Can you show that the energy h above is positive definite under the condition (3.41) obtained
through frequency domain analysis?

Problem 3.10 Consider the scheme (3.42) for the coupled system (3.9).
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(a) Show that it may be written in the form

un+1 = A−1Bun − un−1

and find the matrices A and B explicitly in terms of M, K, the free parameter α and the time step
k.

(b) Show that, for symmetric K and M, an energy function of the form h = t + v is conserved,
with

t =
1

2
(δt−uT )M(δt−u) v =

α

2
uTKet−u +

1 − α

2
µt−

(
uT Ku

)

Problem 3.11 Find a general real-valued solution to (3.43) under the conditions a) σ0 = ω0 and b)
σ0 > ω0. Determine the values of any constants in terms of initial conditions. Are these situations
that you expect to find in a pratcial acoustics setting? Discuss.

Problem 3.12 Prove that the differential equation given in (3.49) holds in the case of the linear
oscillator with loss (3.43).

Problem 3.13 Consider the expression (3.52) for the roots of the characteristic polynomial for the
difference scheme (3.50) for the simple harmonic oscillator with loss.

(a) Supposing that the stability condition (3.53) is respected, find the conditions under which the
solutions are either both real, or complex conjugates.

(b) Again supposing that the stability condition (3.53) is respected, what form do the roots take
when σ0 > 1/k? What kind of solution will be produced, and will it be physically reasonable?

Problem 3.14 Considering scheme (3.56) for the simple harmonic oscillator with loss, derive the
stability condition (3.58) by using the condition (2.14). Derive the characteristic polynomial equa-
tion and a similar condition for the following scheme, which makes use of a forward difference
approximation to the loss term:

δttu = −ω2
0u − 2σ0δt+u

Problem 3.15 Consider the following approximation to the lossy SHO (3.43):

δttu = −ω2
0µt·u − 2σ0δt·u

(a) Find a stability condition on k.
(b) Calculate the numerical decay time for this scheme, under low loss conditions, and show that

it will be dependent on ω0.

Problem 3.16 Considering the exact two-step recursion (3.61) for the SHO with loss (3.43), it is
reasonable to expect that it may be written in standard operator notation.

(a) Consider first the two-parameter scheme (in α and β),

δttu = −ω2
0 (α + (1 − α)µt·)u − 2σ0 (βδt· + (1 − β)δt−)u

which is a natural candidate for such a correspondence. Show that it is not possible, in general, to
identify it with recursion (3.61). Is it really a two-parameter scheme?

(b) Show that the two-parameter scheme (in γ and ǫ)

δttu = −ω2
0 (γµt− + ǫµt+ + (1 − γ − ǫ))u − 2σ0δt·u

can be identified with (3.61), and find the correct settings for γ and ǫ in terms of σ0 and ω0.

Problem 3.17 Consider the finite difference scheme for the oscillator given by

un+M − 2un + un−M = −ω2
0(Mk)2un

where M ≥ 1 is an integer, and k, as before, is the time step.
(a) Show that this difference scheme approximates the simple harmonic oscillator to second order

accuracy in the time step k.
(b) Find the characteristic polynomial for this scheme, and find the roots, and thus the charac-

teristic frequencies.
(This is an illustration of a digital structure which is capable of producing many frequency com-

ponents, though the operation count is the same as that of a single oscillator. This is the same
principle which underlies the digital waveguide—see §1.2.3.)
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Problem 3.18 For scheme (3.63), for the SHO with a source term, perform energy analysis anal-
ogous to that of the model equation (3.62), and find a bound on the size of the solution un in terms
of initial condntions, and the values of the time series [F ] at time steps between 0 and n.

3.8 Programming Exercises

Exercise 3.1 Adjust the code provided in §A.1 such that only two memory locations are required in
order to represent the state of the scheme (3.12) for the simple harmonic oscillator. This is slightly
trickier than it appears to be—a hint is that you may wish to break the time series un into two sets,
containing values for n odd and even.

Exercise 3.2 Create two matlab scripts which generate output according to the difference scheme
family (3.29), and the exact scheme (3.38). The parameters which should be set in the preamble to
your code should be: fs, the sample rate, Tf , the total duration of the simulation, in seconds, f0,
the reference frequency of the SHO, in Hertz, u0, the initial displacement of the oscillator, v0. For
the script corresponding to the family (3.29), the additional parameter α must be specified. In this
case, be sure to perform a test for numerical stability involving fs, f0 and α, and create an error
message if it is violated. Your code should create plots of: the oscillator output as a function of n,
the time step, the potential, kinetic, and total energy vn, kn, and hn as a function of n, as well as
the variation in energy, i.e., (hn − h0)/h0. You may wish to use the Matlab code provided for the
simple scheme (3.12) in §A.1 as a reference.

Exercise 3.3 Adjust the code provided in §A.1 such that, in addition to the output of the difference
scheme, the exact solution to the differential equation (3.1) is generated, at the sample rate specified.
Your code should play both outputs in succession. At a given sample rate such as fs, find the smallest
value of the reference frequency f0 such that the frequency of the output of the difference scheme is
perceptually distinct from that of the exact solution. Try typical values of the sample rate used in
audio applications, such as fs = 32000 Hz, 44100 Hz, or 48000 Hz.

Exercise 3.4 Generalize the script provided in §A.1 for the simple harmonic oscillator by introduc-
ing loss, according to scheme (3.50). In your code, you should have T60 as a global parameter, from
which the parameter σ0 is then derived.

Exercise 3.5 Program the wave digital version of the simple harmonic oscillator, as discussed in
§3.3.3. Show that its behaviour is identical to that of the scheme (3.29), uder the choice of α = 1/2.
In order to do this, you will need to ensure that both methods are initialized in corresponding ways.

Exercise 3.6 Consider the two mass system shown at left in Problem 3.2 above, with M1 = 1,
M2 = 0.0001, K1 = 1000, K2 = 5000, and K3 = 10000. Write matlab implementations of the
schemes (3.40) and (3.42), running at 44100 Hz, and using a parameter value of α = 0.82 in the
second case. Your code should calculate 1 s worth of output of the displacements u1 and u2, and plot
the spectrum magnitude of each such output. Compare the characteristic frequencies of the output,
in each case, to the exact frequencies of the system (3.9), calculated through (3.11).
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Chapter 4

The Oscillator in Musical Acoustics

Finite difference schemes for the simple harmonic oscillator were introduced in some detail in the

last chapter. Though the SHO is, by itself, not an extremely interesting system, many excitation

mechanisms in musical instruments may be modeled as variants of it, generally nonlinear. Some

examples which will be discussed in this chapter are the hammer/mallet interaction, reeds (including

lip models), and the bow.

When designing a sound synthesis simulation, particularly for nonlinear systems, there are dif-

ferent ways of proceeding. It is sometimes useful, in the first instance, to make use of an ad hoc

numerical method, generally efficient and easily programmed, in order to generate sound output

quickly, perhaps so as to uncover problems in the formulation of the underlying model system. On

the other hand, with some extra work (and generally at some additional computational expense),

better behaved numerical methods may be derived. Robustness, or numerical stability under a

wide variety of possible playing conditions, is an especially useful property for a synthesis algorithm

to possess, particularly if the physical structure it simulates is to be virtually connected to other

such structures. Other difficulties appear as well, including potential non-uniqueness of computed

solutions, which comes up in the case of the bow mechanism.

Frequency domain analysis may indeed be extended to deal with nonlinear systems such as those

discussed in this chapter, through perturbation techniques such as Linstedt-Poincaré methods, or

harmonic balance techniques [178]. The conclusions one may reach in this manner are generally

extremely complex, and are not particularly useful when it comes to the analysis of numerical

stability for associated numerical methods. Energy techniques will thus be employed whenever

possible. It is worth noting that through the use of such techniques, though generally applicable to all

the nonlinear systems discussed in this chapter, simple results are obtained only when nonlinearities

of a smooth type, i.e., those which may be expressed in terms of polynomial terms. See §4.2.1.

Though in the case of excitation mechanisms, the nonlinearities here are not of this form, some time

will be spent on energy methods, mainly because which the nonlinearities which arise in distributed

problems, such as strings and plates, generally are quite smooth (see Chapters 8 and 13).

A simple nonlinear generalization of the simple harmonic oscillator appears in §4.1, followed by

various applications of interest in musical acoustics, such as lossless collision mechanisms (hammers),

in §4.2, and continuous excitations involving loss, such as the bow and reed mechanisms, in §4.3.

All of these systems are presented in a pure lumped form; connections to distributed models of

instrument bodies are dealt with in subsequent chapters.

References for this chapter include: [142, 52, 246, 284, 140, 213, 214, 63, 9, 198, 229]
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4.1 Nonlinear Oscillators

Nonlinear oscillators of lumped type appear in many instances throughout musical acoustics. Nor-

mally, such an oscillator is coupled to a distributed system, but, for the sake of analysis, it is useful to

look at the behaviour of such systems when decoupled. The word “oscillator” employed here brings

to mind an externally-driven source, but, in this chapter, no distinction is made among driven os-

cillators, passive nonlinear systems, and nonlinear systems in musical acoustics which do not really

oscillate at all (as in, say, the case of the hammer). All can be described in roughly the same way.

A general uncoupled nonlinear oscillator may be written as

d2u

dt2
= −F (u,

du

dt
) (4.1)

Here, if u(t) represents a position, then, F has the interpretation, at least in a mechanical system,

of a force, divided by the mass of the oscillating object—see the comments on page ??. The simple

harmonic oscillator (3.1) is a special case of such a form, with F = ω2
0u. As in the linear case, this

is a second-order ODE, and thus requires the specification of two initial conditions, generally u(0)

and du
dt |t=0.

4.2 Lossless Oscillators

A special case of great interest in musical acoustics is that for which F depends only on u,

d2u

dt2
= −F (u) (4.2)

which generally describes lossless systems. It is not difficult to see why—multiplying by du/dt gives

du

dt

d2u

dt2
+

du

dt
F (u) = 0 ⇒ dH

dt
= 0

with

H = T + V T =
1

2

(
du

dt

)2

V =

∫ u

0

F (η)dη (4.3)

Thus, just as in the case of the linear oscillator, the ODE (4.1) possesses a conserved energy. Notice

that the limit in the integral used to define V could be changed, shifting the total energy by a

constant.
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Figure 4.1: Some lossless characteristics F (u). (a) Linear, (b), cubic, (c) semi-linear and semi-
cubic, (d) power law, under various choices of the exponent α, and (e) linear center-limited.

The most obvious discretization of (4.2) is

δttu = −F (u) (4.4)
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This scheme is explicit, and extremely simple to implement. Unfortunately, however, its stability

properties are somewhat obscure—see the following section on the special case of the cubic nonlinear

oscillator for more comments on this topic. Still, it is a good first stab if one wants to put together

a simulation in a hurry, though one should be alert to the potential for instability.

Given the discussion in the last chapter on energy conservation in the case of the linear oscillator,

one might wonder whether a conservative scheme for (4.2) exists. One way of proceeding is to write

F = dV/du = (dV/dt)/(du/dt), and thus obtain the scheme

δttu = −δt·v

δ·u
(4.5)

where vn is a discrete approximation to the potential energy V(t) at time t = nk. This scheme is

indeed conservative (see Problem 4.1), but, unfortunately, uniqueness and existence results are not

forthcoming. There is much more to say about conservative schemes for this oscillator—see [112]

for an introduction, and commentary. Numerical methods for Hamiltonian systems have undergone

a large amount of work in recent years—of particular interest are symplectic methods [222]. A full

discussion here would be rather lengthy, and it is perhaps better to examine several particular cases

of relevance to musical acoustics and sound synthesis.

4.2.1 The Cubic Nonlinear Oscillator

There is one special case of the nonlinear oscillator which is simply expressed, and of extreme utility

in musical acoustics, namely that in which the nonlinearity may be expressed as cubic, i.e.,

d2u

dt2
= −ω4

1u
3 (4.6)

This equation goes by various names—Duffing’s equation (without the linear, damping and forcing

terms), and also the stiffening or hard spring [166]. Though not entirely realistic, it serves as an

excellent model problem—many distributed models of nonlinear string and plate vibration, of crucial

importance in musical acoustics applications, can be expressed as third-order (i.e., cubic) systems.

The third-order oscillator possesses many nice properties, and, by the standards of nonlinear sys-

tems, is comparatively easy to analyze—using perturbation analysis, one can say a great deal about

interesting phenomena such as bifurcations, etc. [178]. As this is relatively well-documented, it is

perhaps better to spend looking at the properties of numerical simulation methods. As will be seen,

the nice properties of this system also carry over to the discrete case.

The energy balance of this system may be found directly. It is:

dH

dt
= 0 with H = T + V T =

1

2

(
du

dt

)2

V =
1

4
(ω1u)4 (4.7)

Just as in the case of the linear oscillator, it is clear that, due to the non-negativity of H, T and V,

one can arrive at the following bounds on the solution size:
∣
∣
∣
du

dt

∣
∣
∣ ≤

√

2H(0) |u| ≤
√

2(H(0))1/4

ω1

Again, the solution size may be bounded in terms of the initial conditions, as well as the parameter

ω1.
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The Mixed Linear/Cubic Oscillator and Qualitative Behaviour

Useful, for conceptual purposes, as an illustration of some of features which appear in much more

complex vibrating systems, is the combined linear-cubic oscillator, of the form

d2u

dt2
= −ω2

1u − ω4
1u

3 (4.8)

This system, like (4.6), also possesses a well-behaved energy—the potential energy is the sum of that

of the cubic oscillator, and of the SHO itself. See Figure 4.2, which shows the solution to system

(4.8), under initial conditions of increasing magnitude. For small values of the initial condition,
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Figure 4.2: Output waveform (top), and spectrum (bottom), for the mixed linear-cubic nonlinear
oscillator (4.8), with ω0 = 100π, and ω1 =

√
20π, under different initial conditions (given in the

figure).

the solution approaches the solution to the SHO, giving a sinusoid at angular frequency ω0. As the

initial conditions are increased, two important phenomena are observed. First, under moderate-sized

excitation, the solution remains approximately sinusoidal—but at a frequency which is different from

that of the solution to the SHO, and, in this case, generally higher. Second, under even stronger

excitation, one begins to see other components appearing in the solution, with the most important

contribution at (in this case) three times that of the “fundamental.” Both these effects play an

important perceptual role in musical acoustics, particularly in the case of string and percussion

instruments, leading to phenomena such as pitch glides in strings plucked at high amplitudes, and

to the spontaneous generation of high-frequency energy in instruments such as cymbals and gongs.
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Finite Difference Schemes

There is a great variety of schemes available in the nonlinear case, even for a basic system such as

(4.8). Consider the following difference approximations to (4.6) above:

δttu = −ω4
1u

3 ⇒ un+1 =
(
2 − ω4

1k
2(un)2

)
un − un−1 (4.9a)

δttu = −ω4
1u

2µt·u ⇒ un+1 =
2

1 + ω4
1k

2(un)2/2
un − un−1 (4.9b)

δttu = −ω4
1µt·(u

2)µt·u ⇒ No Explicit Update Form (4.9c)

All three are centered, and thus second-order accurate schemes. The approximation (4.9a) is perhaps

the most natural, and certainly the simplest in implementation. Unfortunately, it is difficult to say

much about its stability behaviour, as it does not possess a conserved energy analogous to (4.7).

The schemes (4.9b) and (4.9c) are conservative. Through multiplation of these schemes by δt·u, one

may arrive at the energy balances

δt+h = 0 with h = t + v , t =
1

2
(δt−u)2 v =

{
ω4

1

4 u2et−u2 for scheme (4.9b)
ω4

1

4 µt−u4 for scheme (4.9c)
(4.10)

In both cases, the kinetic and potential energy terms are non-negative, and one can proceed to find

a bound on solution size. For instance, one may immediately write, for either scheme,

|δt−u| ≤
√

2h (4.11)

bounding the rate of growth of the solution. With a bit more work, bounds on the solution size

itself may be obtained. See Problem 4.2. In fact, such schemes pose even less difficulty, in terms of

stability analysis, than schemes for the linear oscillator—both schemes are unconditionally stable,

for any choice of the time step k! Though one can use schemes such as (4.9a) (and indeed, when the

nonlinearity is of a different form, schemes like this are really the best option), there is the danger

of instability, which shows itself in a much more obscure way than in the linear case. See Figure 4.3,

which illustrates the unexpected instability of scheme (4.9a) after hundreds of thousands of time

steps of stable behaviour. A provably stable scheme is thus, for synthesis applications, a safe choice.
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Figure 4.3: Numerical solutions to the cubic nonlinear oscillator, with ω1 =
√

20π, and with fs =
44100 Hz, for energy-conserving scheme (4.9b), and for scheme (4.9a), which becomes abruptly
unstable after more than 9 seconds of run time (at time step n = 401562). The initial conditions
used, in this case, are u0 = u1 = 704.8165.

There is, however, a subtle, but extremely significant difference between the two conservative
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schemes. Scheme (4.9b) may be written as an explicit recursion, i.e., one may solve directly for un+1

in terms of un and un−1, which are known. This is not the case for scheme (4.9c)—the unknown

value un+1 is coupled to the known values through a cubic equation, which must be solved, at each

time step. This is not particularly difficult: one may employ a (somewhat formidable) formula for

the roots of a cubic, or, better, use an iterative method. The problem is, however, that the cubic

possesses, in general, three roots. Thus the issue of uniqueness of the numerical solution rears its

head. One can of course go further and look for a condition on k, the time step, such that the cubic

only possesses one real solution, but the point is that such difficulties do not arise for scheme (4.9b).

The distinction between the two types of stable conservative schemes becomes much more important

in the distributed setting, as will be seen in the case of nonlinear string vibration in §8.2. Scheme

(4.9a) corresponds to an explicit scheme, scheme (4.9b) to an implicit scheme, where updating may

be done through the solution of a linear system, and scheme (4.9c) to an implicit scheme requiring

algebraic nonlinear solution techniques.

4.2.2 Power Law Nonlinearities

Many models of nonlinearity in hammers and mallets [40, 52] are based around the use of a power

law, of the form

F (u) = ωα+1sign(u)|u|α (4.12)

where α, the nonlinear exponent is usually determined experimentally (through measurements, say,

of a felt compression characteristic), though it is possible to arrive at a theoretical justification, such

as Hertz’s Contact Law [116]. See Figure 4.1(d). In fact, this nonlinearity most often occurs in

musical acoustics in a “one-sided” form—see the next section.

Explicit energy-conserving schemes for such a nonlinearity are not easily arrived at, except in

the cases α = 1 (linear) and α = 3 (cubic, as discussed above). The difficulty is that the nonlinear

characteristic F is not an analytic function of u unless α is an odd integer. Thus, the simplest

approach is probably to use a straighforward scheme such as (4.4) in such cases. Drawing a lesson

from the success of the partially-implicit discretization of the cubic oscillator, one might guess that

a scheme such as

δttu = −ωα+1µt·u|u|α−1 (4.13)

might possess better stability characteristics that the simple scheme (4.4)—see Programming Exer-

cise 4.1.

4.2.3 One-sided Nonlinearities and Collisions: Hammers and Mallets

So far, the nonlinearities which have been discussed have been two-sided—the function F (u) is

antisymmetric, and thus, when interpreted as a force, acts in the direction opposite to that of u,

when interpreted as a displacement. In many settings in musical acoustics involving collisions, a

one-sided definition is more useful—the force only acts when the displacement is positive (say), and

acts so as to repel the mass. Such characteristics are illustrated in Figure 4.1(c).

The “oscillator” (4.2), in this case, serves as a model of a collision of a mass with a rigid object,

such as a wall, and where F (u) describes the stiffness of the mass. It is useful to adopt the following

notation:
d2u

dt2
= −[F (u)]+ where [F (u)]+ =

{
0, u ≤ 0

F (u), u > 0
(4.14)

As an example, consider a comparison between the case of a collision where, in one case, the

stiffening force is linear, i.e., F (u) = ω2
0u, and in the other, the stiffening force is cubic, i.e., F (u) =
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−ω4
1u

3. Plots of the resulting behaviour are shown in Figure 4.4. The most important thing to note

is that in the case of the linear object, regardless of the velocity with which the object approaches

the barrier, the duration of the collision remains constant. For the stiffening object, the contact

time becomes shorter as approach velocity is increased. Such effects of duration of contact time

obviously have very important perceptual implications in sound synthesis: for a linear object, the

resulting dynamics are simply scaled up in amplitude as collision velocity in increased—there will

be no variation in timbre. For the nonlinear stiffening object, faster collision velocity leads to a

sharper, brighter sound. There is little doubt that most collisions of interest in musical acoustics

(such as, e.g., piano hammer excitation) exhibit the latter behaviour. Thus a good nonlinear model

is necessary in any percussive instrument, otherwise the resulting sound will be rather uniform, and

insensitive to a player’s gesture.
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Figure 4.4: Plots of displacement u against time t, for the collision of a mass with a rigid barrier,
in operation when u, the center of mass of the object, is positive. In this case, the mass approaches
the barrier from below, with initial position u(0) = −0.1, and initial velocities as indicated. The top
row shows the case of an object with linear stiffness, with ω0 = 50, and the bottom row that of an
object with a cubic stiffening characteristic, with ω1 =

√
5000. The contact duration is indicated by

a shaded grey area.

Partial Conservation

As mentioned above, in §4.2.2, when the characteristic f(u) is not analytic, it becomes much more

difficult to design a conservative numerical method (i.e., one for which numerical stability is easy

to guarantee). The same is true of one-sided nonlinearities. One might expect, however, that if the

one-sided nonlinearity is of linear or cubic type, conservative behaviour can at least be ensured over

intervals for which u > 0 or u ≤ 0. Consider the following finite difference approximations to such

one-sided nonlinearities:

δttu = −ω2
0[u]+ δttu = −ω4

1([u]+)2µt·u (4.15)
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where the [·]+ notation is as in (4.14). Such algorithms are not strictly conservative, and thus there

is no global expression for energy. Consider, however, the energy-like functions

h̄ =
1

2
(δt−u)2 +

ω2
0

2
[u]+[et−u]+ h̄ =

1

2
(δt−u)2 +

ω4
1

4

(
[u]+

)2 (
[et−u]+

)2

Such expressions are at least partially conserved by schemes (4.15) for intervals over which u does

not change signs—on the other hand, an energy jump will be observed, as illustrated in Figure 4.5.

The jump is larger in the case of the one-sided linear collision than for the one-sided cubic collision,

for which the total jump is on the order of machine precision. One effect of such an energy jump

is that an object undergoing a theoretically lossless collision will exhibit an difference in exit speed

from entry speed. In general, however, such an effect is quite small over normal ranges of parameters.

One could go further here, and look at possible ways around this problem (some of shich are very

involved), but for sound synthesis purposes, schemes such as the above are quite sufficient.
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Figure 4.5: Plots of displacement u against time t, for the collision of a mass with a rigid barrier
(top) and the variation in numerical energy he =

(
h − h0

)
/h0 (bottom), in the case of (a) a linear

collision characteristic, and (b) a cubic collision characteristic. In each case, the mass approaches
the barrier from below, with initial position u(0) = −0.1, with an initial velocity of 5. The stiffness
parameters are chosen as ω0 = 50, for the linear collision, and ω1 =

√
5000 for the cubic collision.

The algorithms in (4.15) are employed, with a sample rate of fs = 44100 Hz.

Hammer and Lumped Oscillator

With a very slight added degree of complexity, the collision model above becomes very close to that

which is often used in models of hammer or mallet interaction with a distributed object. Consider

the case of a one-sided nonlinearity acting between a hammer-like object, with an inherent nonlinear

stiffening characteristic and a linear lumped mass-spring system, as shown at left in Figure 4.6. Here,

it is useful, in a first step, to write the equations of motion of this coupled system as

M
d2u

dt
= −Ku + f(u − uH) MH

d2uH

dt
= −f(u − uH) f(u − uH) = KH

(
[uH − u]+

)α

where here, u is the displacement of the “target,” a mass-spring system of mass M and stiffness

parameter K, and uH is the displacement of the hammer, of mass MH , and with a stiffness parameter
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KH . Notice that the interaction force f only acts when the hammer position is greater than that of

the target. The nonlinearity has been chosen to be of the form of a power law, a common choice in

the musical acoustics of hammers [52].

For the sake of the musician-programmer, it is always useful to reduce the number of parameters

which define a system to the bare minimum. In the above case, it is clear that not all of M , K, MH

and KH need be independently specified, and one may write

d2u

dt
= −ω2

0u +MF (u− uH)
d2uH

dt
= −F (u− uH) F (u− uH) = ωα+1

H

(
[uH − u]+

)α
(4.16)

where ω0 =
√

K/M , ωH = (KH/MH)
1

α+1 , the hammer mass/target mass ratio M = MH/M . and

F = f/MH . System (4.16) may be easily shown to be exactly lossless—see Problem 4.3.
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Figure 4.6: Collision between a hammer and a mass-spring system, as described by (4.16), illustrated
in (a). Various resulting displacements (top) and interaction forces (bottom) are shown at right—in
each case, the initial hammer velocity is 1, its initial displacement is 0.01 m below the target mass,
and the mass spring system has angular frequency ω0 = 1000, and the nonlinear exponent α = 3. In
(b) is shown a simple interaction, in the case of ωH =

√
100000, and M = 10, in (c) a more complex

force interaction showing the reaction of the mass spring system on the hammer, for ωH =
√

100000
and M = 0.01, and in (d), a contact/recontact phenomenon, when ωH =

√
2000000, and M = 1.

As expected, the behaviour of such a system is enormously more complex than that of the collision

of a hammer with a rigid barrier—the force experienced by the mass can undergo oscillations due to

the reaction of the mass-spring system back on the hammer, and recontact with the hammer is also

possible—see Figure 4.6. Such complex behaviour is also very much characteristic of the interaction

between a hammer and a distributed object such as a string. See, e.g., [52], and the comprehensive

series of articles by Hall [115]. The subject of hammer/string interaction will be taken up again in

§7.5. It is not difficult to extend this system to cover a collision between a hammer and multiple

mass-spring systems—see Problem 4.5, and Programming Exercise 4.2—such multiple interactions

are rather important in the case of, e.g., the piano, for which a hammer strikes several strings at

once. See §7.6.

The simplest finite diffeference scheme for (4.16) is the following:

δttu = −ω2
0u +MF (u− uH) δttuH = −F (u− uH) F (u− uH) = ωα+1

H

(
[uH − u]+

)α
(4.17)
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Such a scheme, which is entirely explicit, is very easy to implement—see the code example in §A.2.

The scheme is not conservative, but when α = 1 or α = 3, there is a modified form which is at least

partially conservative—see Problem 4.4.

4.2.4 Center-limited Nonlinearities

A musically interesting extension of the one-sided nonlinearity is the oscillator (4.2) under a center-

limited lossless nonlinear characteristic—see Figure 4.1(e). In this case, the nonlinearity is only

active when the magnitude of the displacement u is greater than some threshhold—as such it serves

as a simple model of an element which is able to rattle. The coupling of an element such as this to

a string, as a form of preparation, is discussed in §7.7.3.

As an example of such a nonlinear characteristic, consider the following:

F (u) =







ωα+1 (u − ǫ/2)
α

, u ≥ ǫ/2

0, |u| < ǫ/2

−ωα+1 (−u − ǫ/2)
α

, u ≤ −ǫ/2

(4.18)

The object to which this characteristic corresponds can be thought of as a “dumbbell,” of length

ǫ (which is an extra design parameter), with a stiffness described by a power-law nonlinearity. See

Figure 4.7(a). The system is conservative, with an energy given by (4.3), and one may develop

finite difference schemes with a partial conservation property when α = 1 or α = 3, in a manner

very similar to the one-sided collision model of the previous section. See Figure 4.7 for some typical

simulation results, generated using a straightforward scheme of the type (4.4), and also Programming

Exercise 4.3. Loss and the effect of gravity play a rather important role when one is dealing with

rattling elements—see Programming Exercise 4.4 for some exploration of these features.
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Figure 4.7: (a) Diagram representing a center-limited oscillating object, of length ǫ, and simulations
of such an object, of length ǫ = 0.01, and with nonlinear stiffness parameter ω = 500, under different
choices of the nonlinear exponent α: in (b), α = 1, in (c), α = 2 and in (d), α = 4. The object
displacement u is shown at top, and the force F at bottom. In all cases, the initial position of the
object is u(0) = 0.003, and the initial velocity is du/dt|t=0 = −10. Notice that the gross period of
oscillation of the element depends strongly on the nonlinear exponent.



4.3. LOSSY OSCILLATORS 87

4.3 Lossy Oscillators

One could easily introduce a linear loss term into the equation for the lossless oscillator (4.2), but, for

collisions of short duration, this will yield results of minor perceptual significance. The real interest

in lossy osillator models in musical acoustics relates to the case of continuous forced excitation, as

occurs in bowed string instruments, as well as in woodwind and brass instruments.

4.3.1 The Bow

Before examining more realistic bow models, it is useful to look at an archetypical test problem of

the form
d2u

dt2
= −αφ

(
du

dt

)

(4.19)

Here, α ≥ 0 is a free parameter, and the function φ is a given nonlinear characteristic. Normally,

in models of bow friction, the function φ(η) is antisymmetric about η = 0, and possesses a region

of steep positive slope near the origin (sticking regime), outside of which it is of negative slope

(sliding regime). This will be discussed further in some examples which follow and in §7.4, but for

reference, some typical examples of such bow characteristics appear in Figure 4.8. For most models,

the sticking portion of the curve is in fact of infinite slope—two examples are shown in (a) and (b).

A continuous curve, as shown in (c), though less physically reasonable, is somewhat easier to work

with numerically.
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Figure 4.8: Some bow friction characteristics φ(η). (a) A hard characteristic defined by φ(η) =
sign(η)e−σ|η|, for some σ ≥ 0, (b) a hard characteristic with a non-zero limiting sliding friction
value, defined by φ(η) = sign(η)

(
ǫ + (1 − ǫ)e−σ|η|), and (c) a soft characteristic of the form φ(η) =√

2σηe−ση2+1/2.

This equation is of the form of an oscillator, without a stiffness term. The variable u itself,

undifferentiated, does not appear in the equation, implying a single mechanism for storing energy

(through a kinetic term), and that furthermore, it will not be possible to obtain bounds on u itself.

Indeed, one could write the above equation in terms of du/dt alone, though it is simpler to retain the

second-order form, especially when the above model of an nonlinear excitation is to be coupled to

a distributed model. First order forms equivalent to the above do occur in models of nonlinearities

in nonlinear electric circuit components used in analogue synthesizers such as the Moog [117]—see

Problem 4.6 for an example. As yet, this remains an unforced problem—the important forcing term

will be introduced shortly.
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Energy analysis indicates a constraint on φ: multiplying by du/dt, one obtains, immediately,

dH

dt
= −α

du

dt
φ

(
du

dt

)

with H =
1

2

(
du

dt

)2

Clearly then, if the quantity H is to be monotonically decreasing, one must require that the charac-

teristic φ(η) satisfy

φ(η)η ≥ 0 or sign(φ(η)) = sign(η) (4.20)

which is a requirement for passivity. If such a condition does not hold, it becomes possible for the

nonlinearity to behave at certain instants as a source of energy, which is clearly not the case in any

musical instrument.

As in the case of the lossless oscillator, various difference schemes are possible. Here are two:

δttu = −αφ(δt−u) (4.21a)

δttu = −αφ(δt·u) (4.21b)

Scheme (4.21a), the simpler of the two, is clearly explicit, due to the use of a backward difference

inside the nonlinear characteristic. As one might guess, however, it is rather difficult to say anything

conclusive about its behaviour, especially in terms of stability. The scheme (4.21b) permits some

such analysis. Multiplying by δt·u yields

δt+h = −α (δt·u)φ(δt·u) ≤ 0 with h =
1

2
(δt−u)

2
(4.22)

Thus, as in the continuous case, h is non-negative, and monotonically decreasing, and the behaviour

of scheme (4.21b) is thus stable, as long as the characteristic satisfies (4.20).

On the other hand, scheme (4.21b) is implicit. It is useful to rewrite it in the following form,

− 2

αk
δt·u +

2

αk
δt−u = φ(δt·u)

for which solutions may be examined graphically in terms of the unknown δt·u—see Figure 4.9.
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Figure 4.9: Graphical representation of solutions to the equation φ(q) = −mq + b, for a given bow-
like characteristic φ(q) (shown as a solid gray line). The lines y(q) = −mq + b, for m > 0, and for
various values of b, are plotted as dotted grey lines. Left, a choice of m for which multiple solutions
may exist, for certain values of b, and right, a choice of m for which the solution is always unique,
for any choice of b.

Clearly, there will always be at least one solution to this nonlinear equation, regardless of the

form of φ. Though existence follows immediately, uniqueness does not—depending on the form of

φ, there may be multiple solutions to the equation. The issue of multiple solutions in the case of

the bow coupled to the string is an interesting one, and the continuous-time case has been discussed
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extensively by various authors, beginning with Friedlander [101], and in particular McIntyre and

Woodhouse [169]. Here, in the discrete case, the following condition is sufficient:

k ≤ − 2

α minη φ′(η)
when min

η
φ′(η) ≤ 0 (4.23)

This condition is a purely numerical one, and applies only to scheme (4.21b), though similar condi-

tions exist for other schemes—see Problem 4.7. It is worth keeping in mind that the above condition

has no bearing on numerical stability, which is already ensured for scheme (4.21b) under condition

(4.20). That is, even when multiple solutions do exist, any choice will lead to strictly passive numer-

ical behaviour (though such a solution may be physically meaningless). It is, however, of the same

form as stability conditions which typically arise in the design of explicit schemes for oscillators.

See, e.g., §3.2.4, and the following example.

Connection to a Mass-Spring System and Auto-oscillatory Behaviour

To get a better idea of how the bow actually functions, it is better to move to a more concrete setting

involving a coupling of a bow model with a single mass-spring system, as shown in Figure 4.10(a).

(In fact, it is only a small further step to connect the bow to a fully distributed string model—see

§7.4.) Here, the motion of the mass is described by

d2u

dt2
= −ω2

0u − FBφ (vrel) where vrel =
du

dt
− vB (4.24)

Here, FB ≥ 0 is a given bow force (again, it is the bow force divided by the object mass, and has

dimensions of acceleration), and vB is a bow velocity. Notice that it is only the relative velocity vrel

of the bow to the mass which appears in the model.

Energy analysis now yields

dH

dt
= −FB

du

dt
φ (vrel) = −FBvrelφ (vrel)

︸ ︷︷ ︸

power dissipatedby bow

−FBvBφ (vrel)
︸ ︷︷ ︸

power supplied by bow

where H is the Hamiltonian for a linear oscillator, as given in (3.7), and where the terms on the

right hand side of the energy balance may be interpreted as power dissipated and supplied by the

bow, as indicated. Because, by (4.20), the dissipated power is negative, one has immediately

dH

dt
≤ −FBvBφ (vrel) ≤ |FBvBφ (vrel) |

For many choices of bow characteristic (such as those pictured in Figure 4.8), FB represents a

maximum bow force—in other words, the characteristic φ is bounded such that

|φ| ≤ 1 (4.25)

In this case, the energy inequality above may be weakened to

dH

dt
≤ |FBvB | ⇒ H(t) ≤ H(0) +

∫ t

0

|FBvB|dt′

This is a useful bound on the growth of the solution, purely in terms of the given numbers FB and

vB.

The above analysis remains unchanged if the values FB and vB are generalized to functions

FB(t) ≥ 0 and vB(t), representing the gestural control signals of bow force/object mass and velocity.

The obvious generalization of scheme (4.21b) to the case of coupling to a mass-spring system is

δttu = −ω2
0u − FBφ(vrel) where vrel = δt·u − vB (4.26)

The energy analysis of this scheme mirrors that of the continuous time system above. Using familiar
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techniques, one arrives at the discrete energy balance

δt+h = −FBvrelφ(vrel) − FBvBφ(vrel) ≤ |FBvB |
where h is the energy of the SHO, as discussed in §3.2.6. Again, energy growth is bounded in terms

of the input values (or sequences) FB and vB. Two conditions on k, the time step appear:

k <
2

ω0
, k ≤ 2

−max(FB)min(φ′)
when min(φ′) ≤ 0

The first condition is the familiar stability condition (3.17) for scheme (3.12) for the SHO, which

ensures non-negativity of the numerical energy h. The second condition is that required for unique-

ness of numerically computed solutions. One could go further and employ a more accurate difference

strategy to the linear part of the system, along the lines of the scheme presented in §3.3.4, but the

principle of stability analysis remains the same. An implementation of scheme (4.26) appears in

§A.3, and makes use of a Newton-Raphson iterative root finder (see Problem 4.8 and Programming

Exercise 4.6). For simplicity, the continuous friction characteristic shown in Figure 4.8(c) is used—

when a discontinuous characteristic is used, such root finders may also be used, though programming

complexity increases somewhat.

The behaviour of the bowed mass system is a simple example of an auto-oscillatory system—

given a slowly varying input signal (such as that derived from a player’s gesture), the system can

reach of state of continuous oscillation. Even in this rudimentary case, there is a great variety of

complex behaviour which appears, and many of the key features of bowed string dynamics may be

observed. The most crucial phenomenon is the stick-slip motion of the mass, as illustrated in Figure

4.10(b). The mass “sticks” to the bow for an interval, as the spring is being extended or compressed,

exhibiting little displacement relative to the bow, until the force of the spring is sufficient to set the

mass into motion, in a direction opposing that of the bow motion, after which it then becomes

stuck to the bow once again, etc. The resulting displacement waveform is roughly of the form of an

asymmetric triangle.
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Figure 4.10: (a) A bowed mass, as described by (4.24). (b) Simulation results for the bow mass
system, with f0 = ω0/2π = 100, FB = 4000, and vB = 0.2. The friction characteristic is of
the form given in Figure 4.8(c), with σ = 100. Displacement of mass (top), and relative velocity
vrel = du

dt − vB , with shaded regions illustrating intervals during which the mass slips from the
bow—otherwise it “sticks.”
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Some other phenomena are illustrated in Figure 4.11. In particular, as shown at left, increase

in bow force can lead to a characteristic “sharpening” of the displacement waveform, and also an

increased period of oscillation—this is a minor effect in bowed string dynamics, and is often referred

to as pitch flattening [?]. At right, one may also observe a variation in the length of time necessary

to reach steady oscillatory behaviour, also generally decreasing with increased bow force.
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Figure 4.11: Displacement waveforms for the bowed mass system (4.24), under different choices of
FB , as indicated, and assumed constant. In all cases, vB = 0.2, and f0 = ω0/2π = 100Hz , and the
bow friction characteristic is of the form shown in Figure 4.8(c), with σ = 100. (a), Pitch flattening
and waveform sharpening effects with increased bow force, and (b) shortening of the time of onset
of a stable auto-oscillatory regime with increased bow force.

4.3.2 Reed and Lip Models

4.4 Problems

Problem 4.1 Show that the scheme (4.5) for the lossless nonlinear oscillator is indeed conservative,
with a conserved energy given by

h =
1

2
(δt−u)

2
+ µt−v

Problem 4.2 Consider scheme (4.9b) for the cubic nonlinear oscillator. From the expression for
the potential energy in (4.10), one may deduce that

|uet−u| ≤ 2
√

h

ω2
1

A bound on |u| itself does not immediately follow. Use the bound (4.11), along with the above, in
order to find a bound on |u|. Hint: Square the bound in (4.11), and rewrite δt−u in terms of u and
et−u.
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Problem 4.3 For the hammer/mass-spring collision defined in (4.16), prove that the following
quantity,

H =
1

2

(
du

dt

)2

+
ω2

0

2
u2 +

M
2

(
duH

dt

)2

+
M

α + 1

(
ωH [uH − u]+

)α+1

is conserved.

Problem 4.4 For the collision between a hammer and a mass-spring system described by (4.16),
consider the following finite difference scheme:

δttu = −ω2
0u+MF (u, uH) δttuH = −F (u, uH) F (u, uH) = ωα+1

H µt· (uH − u)
(
[uH − u]+

)α−1

This is a variation on scheme (4.17), where the nonlinear discretization has a partially implicit
character.

a) Show that this scheme exhibits partial energy conservation when α = 1 or α = 3 (i.e., show
that the scheme possesses an energy function which is conserved except at instants when the hammer
either comes into contact with, or loses contact with the target mass spring system).

b) Show that the scheme allows for a unique update of uH and u at each time step.

Problem 4.5 Suppose that, instead of coming into contact with one mass-spring system, a hammer
strikes two such systems simultaneously, as illustrated in Figure 4.12. For this system, u1 and

d2u1

dt2 = −ω2
1u1 + MF1 F1 = ωα+1

H ([uH − u1]
+)

α

d2u2

dt2 = −ω2
2u2 + MF2 F2 = ωα+1

H ([uH − u2]
+)

α

d2uH

dt2 = −F1 − F2

uH

u1

u2

Figure 4.12: Collision between a hammer and two mass-spring systems.

u2 are the displacements of the two masses, uH is the hammer displacement, F1 and F2 are the
forces/mass acting on the two target masses, ω1 and ω2 are the angular frequencies of the two mass-
spring systems, ωH the stiffness parameter for the hammer (of nonlinearity exponent α), and M is
the mass ratio of the hammer to either of the two target masses (assumed equal).

(a) Find an expression for the energy of the system as a whole, and show that it is conserved.
(b) Extend the system above to the case of a hammer striking N equal masses.
(c) Extend the system above to the case of a hammer striking two unequal masses, and find a

generalized expression for the conserved energy.

Problem 4.6 A single stage in a Moog ladder filter [117] is often modelled using a first-order
differential equation similar to the following:

du

dt
= −ω tanh(u)

This is the zero-input case—suppose that the system possesses a single initial condition u(0) = u0.
(a) Show that if one defines the energy of this system as H = 1

2u2, then it must be true that
dH/dt ≤ 0, and thus that |u(t)| is a monotonically decreasing function of time, and is bounded by
|u0|.

(b) Suppose that the differential equation is discretized as

δt−u = −ω tanh(µt−u)

where u = un is a time series, initialized with a value u0. Show that again, if one defines the energy
as 1

2u2, |un| is a monotonically decreasing function of time index n, and is bounded by |u0|.
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(c) The difference scheme above is implicit. Using identity (2.7e), it may be written as

µt−u = −kω

2
tanh(µt−u) + et−u

Using a diagram, and the fact that et−u is known, show that the recursion possesses a unique solution
at each time step.

Problem 4.7 Consider again the uncoupled bow-like oscillator, as given in (4.19). Instead of
scheme (4.21b), examine the scheme given by

δttu = −αµt−φ(δt+u)

(a) Show that the above scheme, which is implicit, may be written as

φ(δt+u) =
−2α

k
δt+u + q

where q depends only on previously computed values of u. Show that a solution to the above implicit
equation for δt+u possesses a unique solution under condition (4.23).

(b) Multiply the above scheme by δt·u, and show that the following energy balance results:

δt+h =
−α

4k
(δt+u + δt−u) (φ(δt+u) + φ(δt−u))

where h is again defined as in (4.22). It is difficult to find simple conditions under which the right
side of the above energy balance is non-positive (which is desirable in order to have passive behaviour,
and thus numerical stability). Can you find a simple sufficient condition on φ such that the scheme
is passive for any value of the time step k? Hint: the characteristics shown in the left and center
panels in Figure 4.8 allow such a simple condition, but that shown at right does not.

Problem 4.8 Consider scheme (4.26) for the bowed mass-spring system. Show that it may be
written as

2

k
vrel + FBφ(vrel) + b = 0 (4.27)

abd determine b, which consists of known values (i.e., of previous computed values of the mass
displacement, and the values of the time series vB). For the two friction characteristics

φ(η) =
√

2σe−ση2+1/2 φ(η) = sign(η)
(

α + (1 − α)e−ση2
)

(4.28)

where 0 ≤ α ≤ 1, explicitly determine the bounds on k for the uniqueness of the solution to the
equation in vrel above.

4.5 Programming Exercises

Exercise 4.1 For the lossless oscillator with a power law characteristic (4.12), compare the perfor-
mance of difference schemes (4.4) and (4.13). For a given value of the power law exponent α > 1
(consider the values α = 1.5, 2, 2.5, 3, 3.5, 4), and with initial conditions u(0) = 1, du/dt(0) = 1, find
the value of ω for which each of the schemes become unstable. How does this instability manifest
itself in the two cases? Can you conclude that one scheme possesses better stability properties than
the other?

Exercise 4.2 Consider the hammer mass-spring interaction, discussed in §4.2.3. Generalize the
finite difference approximation given in (4.17) to the case of a hammer striking two mass-spring
systems, as described in Problem 4.5. Implement this scheme, using the code given in §A.2 as a
starting point. Your code should plot the displacements of the two masses, as well as the combined
force F1 + F2 as a function of time.

Exercise 4.3 Consider a rattling element coupled to a mass-spring system. Not surprisingly, this
system and a finite difference scheme can be written in exactly the same way as the hammer/mass-
spring interaction, as in (4.16) and (4.17), but where the nonlinear characteristic F is replaced
by that which appears in (4.18). Modify the code example in §A.2, so that it simulates such a
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rattle/mass-spring interaction. You will need to introduce the rattle length ǫ as an extra input
parameter.

Exercise 4.4 Extend the simulation of the rattle/mass-spring interaction in Programming Exercise
4.3 above to include the effects of gravity and loss (in the target mass-spring system). Now, the
system must be generalized to

d2u

dt
= −ω2

0u − 2σ0
du

dt
+ MF (u − uR)

d2uR

dt
= −F (u − uR) − g (4.29)

where u and uR are the displacements of the target mass spring system and the rattle, respectively,
σ0 is the usual loss parameter for the SHO (see §3.5), and where g = 9.8m · s2 is the acceleration
due to gravity.

Develop and program a finite difference scheme for the above system. How would you introduce
a loss mechanism into the rattling element itself?

Exercise 4.5 Modify the code example given in §A.3 such that the bow force FB and velocity vB
are time series FB = Fn

B and vB = vn
B. Experiment with different gestural profiles for both of

these control parameter sets. For example, one choice of a control signal for, say, FB might be, in
continuous time and defined over the interval Tf ,

FB(t) = FB,max

{

t/α, 0 ≤ t ≤ α
(Tf − t)/(Tf − α), α ≤ t ≤ Tf

for some peak bow force FB,max and a parameter α, with 0 ≤ α ≤ Tf which determines the time
to the occurrence of the peak. A similar function could be defined for the velocity. Determine, if
possible, the effect on the time taken for the mass-spring system to reach a stable oscillatory regime.

Exercise 4.6 Newton-Raphson Iterative Root Finding In some numerical bow models, such
as that given in (4.26) (as well as in a vast array of other non-musical applications), it is necessary
to solve an equation of the form

f(η) = 0
at each time step. The Newton-Raphson iterative root-finding procedure works as follows: Given
some initial guess at the solution η(0), perform the following update,

η(p+1) = η(p) − f(η(p))

f ′(η(p))

successively, until an adequately stable solution is found. (You might wish to measure convergence in
terms of the error |η(p+1) − η(p)|, and terminate the algorithm when this error is sufficiently small.)

Referring to Problem 4.8, for the bowed mass-spring system, the nonlinear equation to be solved,
in the relative velocity vrel, is exactly (4.27). For given values of b, FB and k, write a Matlab
function which returns vrel, for both choices of friction characteristic given in (4.28), using an
input parameter to indicate the type of characteristic. In the second case, α appears as an addition
parameter, and you will need to take care to divide your algorithm into cases, as the characteristic is
not continuous. Your function should also perform a test to ensure that condition (4.23) is satisfied,
and produce a warning if it is not. You may wish to refer to the code example in §A.3, in which
Netwon-Raphson for the case of the continuous friction characteristic is employed.

Exercise 4.7 Modify the code example given in §A.3 so that it uses the Matlab function for the
Newton-Raphson iterative algorithm that you created in the previous exercise. Compare the behaviour
of the system under the distinct choices of friction characteristic from (4.28).



Chapter 5

Grid Functions and Finite
Difference Operators in One
Dimension

In this short chapter, the basic operations used in the construction of finite difference schemes for 1D

distributed problems are introduced. The treatment will be somewhat abbreviated, partly because

much of this material appears elsewhere, and also because some of the underlying ideas have been in-

troduced in Chapter 2. As was the case in this earlier chapter, the presentation will again encompass

both frequency domain analysis, and pure time-space (energy) techniques. The full power of energy

methods [113] will become evident here, not just because of their capability for arriving at stability

conditions even for strongly nonlinear problems (some important musical examples of which will

appear in subsequent chapters), but because of the ease with which appropriate numerical boundary

conditions may be extracted; the proper setting of boundary conditions is always problematic, and

is not at all well covered even in the best finite difference texts. This is not to say that frequency

domain techniques are not useful; as was mentioned earlier, they are able to yield much important

information regarding numerical dispersion, which, in musical simulations, may lead to perceptually

audible deviations from the solution to a model system.

In §5.1, partial differential operators are introduced, followed by a brief discussion of the clas-

sification of partial differential equations, transform techniques and the concepts of dispersion and

phase velocity, and finally an introduction to inner product spaces and various manipulations of

interest in PDE analysis. The extension of these techniques to the discrete case appears in §5.2,

which introduces grid functions and difference operators, now in a distributed setting. Finally, some

material on coordinate changes, useful when the problem under consideration exhibits some spatial

variation, appears in §5.3. The extension of these concepts to two spatial dimensions is postponed

until Chapter 10.

5.1 Partial Differential Operators

Some elements of musical instruments, in particular strings, bars, and tubes, are well-modelled

by partial differential equations (PDEs) in time t and one spatial dimension x; such systems are

often referred to as “1D.” Various quantities, such as displacement, velocity, and pressure are thus

described by functions of two variables, such as u(x, t).

As in the case of lumped systems such as the harmonic oscillator (see Chapter 3), time t is usually

defined for t ≥ 0, though one may extend this definition to t ∈ [−∞,∞], for purposes of steady-state

95
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(Laplace transform) analysis. One also normally takes x ∈ D, where D represents some subset

of the real line. There are essentially three domains D of interest in problems defined in 1D, the

infinite domain D = R = [−∞,∞], the semi-infinite domain D = R
+ = [0,∞], and the unit interval

D = U = [0, 1]. The first two domains are of use in an analysis setting; in one-dimensional problems

in musical acoustics, D = U is always chosen. It is worth noting that non-dimensionalization

techniques, employed whenever possible in this book (see §6.1.2 for a first example of this in the

case of the 1D wave equation) render the use of other finite intervals unnecessary.

PDEs are equations relating partial temporal and spatial derivatives of one or more functions.

In operator form, such derivatives are written as

∂

∂t
,

∂2

∂t2
,

∂

∂x
,

∂2

∂x2
, etc.

When applied to a function such as u(x, t), the abbreviated subscript notation will be frequently

employed, i.e.,
∂u

∂t
= ut,

∂2u

∂t2
= utt,

∂u

∂x
= ux,

∂2u

∂x2
= uxx, etc.

For total time derivatives of a quantity without spatial dependence, such as those that occur in

energy analysis or a lumped setting, the symbol d
dt is uniformly employed.

A PDE in a single variable u(x, t), under zero-input conditions, may be simply written as

P

(
∂

∂t
,

∂2

∂t2
,

∂

∂x
,

∂2

∂x2
, . . .

)

u = 0 (5.1)

where P is a partial differential operator which is a complete description of the behaviour of the sys-

tem at a given point—many of the systems under consideration in musical acoustics, both linear and

nonlinear, may be written in this form. The notation above is somewhat loose; not indicated is the

possibility of coefficients in the PDE which may depend on x, which may indeed occur in describing

systems with a degree of variation in material parameters. Coefficients which depend on t (rendering

the system time-varying) are possible as well, but occur rarely in musical acoustics. In general, for

the systems of interest here, time derivatives of order greater than two appear infrequently, and for

many (but not all), spatial derivatives are of even order, reflecting independence of the problem to

the direction of propagation of the solution. In some cases, a set of one or more coupled equations of

the form (5.1) in several independent variables is necessary in describing a system; nonlinear systems

such as strings and plates under high amplitude vibration conditions are two such examples—see

Chapters 8 and 13. A description such as (5.1) is not complete until initial and boundary conditions

have been suppied. Appropriate settings for such conditions will be dealt with on an as-needed basis,

and the first description will occur with reference to the 1D wave equation, in the following chapter.

5.1.1 Classification of PDEs

In an abstract setting, there are established ways of classifiying PDEs [103], which are useful in

making general statements about the form of the solution. One often speaks of a PDE of being

time-dependent or not, or of being hyperbolic or parabolic or elliptic, or of being semi-linear versus

quasi-linear. In the more specialized setting of musical acoustics, it is better to abandon this abstract

view, and focus on the three very particular types of systems (always time-dependent, and usually hy-

perbolic) which frequently occur: linear and shift-invariant (LSI) systems, linear and time-invariant

(LTI) systems, and nonlinear systems. As an example, consider the following equation:

utt = γ2uxx
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where u(x, t) is the dependent variable to be solved for. If γ is a constant, this PDE is known

as the 1D wave equation, and is LSI—the medium it describes behaves uniformly at all points in

the domain, and at all time instants. If γ depends on x, the system is still LTI, but not generally

invariant with respect to the spatial variable, and not LSI. Its properties are different from one

spatial location to another. Finally, if γ depends on u itself, the equation is referred to as nonlinear.

This classification follows through to any derived numerical simulation method.

The analysis and numerical method construction techniques which are available are governed

by the type of system under consideration. LSI systems, which form the majority of those under

study in musical acoustics, and employed until recently in physical modeling sound synthesis, are

undeniably the easiest to deal with—the full scope of frequency domain and transform techniques

is available, and as a result, it is possible to obtain a very comprehensive picture of the resulting

dynamics including information about wave propagation speeds and modes, as well as many features

of associated numerical methods, such as stability conditions and dispersion. Such systems and the

accompanying analysis machinery, as they occur in musical acoustics will be examined in Chapters

6, 7, 11 and 12. Systems which are LTI but not LSI still allow a limited analysis: one may still speak

of modes and frequencies, but one loses the convenient notion of a global wave velocity, and the most

useful analyis tools (von Neumann) for numerical simulation methods are no longer available. Some

such systems will be seen in §7.9, and in Chapter 9. In the nonlinear case, the notion of frequency

itself is, strictly speaking, not valid, though if the nonlinearity is a weak one, one may draw some

(generally qualitative) conclusions through linearization, or, with much additional effort, through

perturbation methods [178]. In all cases, however, it is possible, and usually quite easy to arrive at a

numerical simulation routine for synthesis, but depending on the type of the original system, it will

be more or less difficult to say or predict anything about the way in which it behaves. See Chapters

8 and 13.

One attribute of a system which persists in being clearly defined for any of the types of system

mentioned above is its energetic behaviour. PDEs which occur in musical acoustics are not abstract

concoctions—they correspond to real physical systems, and real physical systems always obey laws

of conservation or dissipation of energy. Though energy analysis of a PDE system is, as a rule, much

less revealing than what can be obtained using frequency domain techniques, it unfailingly points in

the right direction as far as simulation design is concerned.

5.1.2 Laplace and Fourier Transforms

As in the lumped case, the Laplace transform of a function such as u(x, t) may be defined as

û(x, s) =

∫ ∞

−∞
u(x, t)e−stdt (5.2)

where s = jω +σ is again the complex-valued frequency variable. See §2.3. As before, the definition

is two-sided, allowing one to ignore initial conditions.

One may also define a spatial Fourier transform, as

ũ(β, t) =

∫ ∞

−∞
u(x, t)e−jβxdx (5.3)

where here, β may be viewed as a real wavenumber; in general, spatial Fourier transforms are only

used for problems defined over D = R, though Fourier series approximations for systems defined over

a finite interval play a fundamental role in so-called modal synthesis methods—see, e.g., §6.1.11.
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The actions of partial derivative operators applied to a function u(x, t) transform according to

∂mu

∂tm
L

=⇒ smû
∂lu

∂xl

F
=⇒ (jβ)lũ

where L and F accompanied by an arrow indicate a Laplace and Fourier transform, respectively.

Just as in the lumped case, as an alternative to full Laplace/Fourier analysis, it is often simpler,

conceptually, to consider the effect of differential operators on a test function of the form

u(x, t) = est+jβx

which behaves as a single wavelike component, of temporal frequency s, and wavenumber β. The

use of this special function is often referred to in the literature as an ansatz [113]. See §2.3.

Dispersion Relation

If the PDE under consideration is LSI, then both Laplace and Fourier transforms may be applied in

order to arrive at a convenient algebraic description of the PDE in the frequency domain:

Pu = 0
L,F
=⇒ ˜̂

P ˜̂u = 0

where
˜̂
P =

˜̂
P (s, jβ), a multinomial in s and jβ, is often referred to as the symbol of the PDE defined

by (5.1). Because
˜̂
P ˜̂u is now a product of two functions of s and jβ, it is easy to see that non-trivial

solutions can only occur when
˜̂
P (s, jβ) = 0

This characteristic equation defines various relations between temporal frequency s and spatial

frequency β. These will be of the form sp = sp(jβ), for p = 1, . . . , M , where M is the order of the

highest temporal derivative appearing in P , or the highest power of s in
˜̂
P (s, jβ). (For most systems

of interest in this book, M = 2, and the two solutions will be denoted by s±, which generally describe

left-going and right-going wavelike solutions to the PDE.) These solutions are known as dispersion

relations, and allow the extraction of much useful information regarding propagation speeds.

Phase and Group Velocity

In lossless problems, it is typical to arrive at solutions sp(jβ) which are purely imaginary, so that

one may write the dispersion relations as ωp = ωp(β) for real frequencies ωp. In this special case,

for any such ω(β), the phase velocity vφ and group velocity vg are defined as

vφ =
ω

β
vg =

dω

dβ
(5.4)

Generally, for a problem of order M in the time variable, there will be M dispersion relations. For

second order systems, these usually occur as a complex conjugate pair, leading, from the above

definitions, to a pair of velocities of opposite sign, representing wave propagation to the left and

right. In this book, the positive root will be taken as the phase velocity. These velocities may

be expressed most directly as functions of wavenumber, but more usefully perhaps as functions of

frequency ω, (or what is more directly comprehensible in musical acoustics, frequency f = ω/2π)

through the substitution of the dispersion relation itself; this is always possible in 1D, but extends

to higher dimensions only for problems which are isotropic. See §10.1.4 for a discussion of the 2D

case.

In general, for a given system, the phase velocity describes the speed of propagation of a single

component of the solution, and the group velocity the gross speed of disturbances. For hyperbolic

systems, such as the wave equation, it must be true that the group velocity is bounded from above
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(i.e., there is a maximum speed at which disturbances may propagate), though this is not necessarily

true of the phase velocity—the case of Timoshenko beam theory is an interesting example of this

[111]. Most systems that will be examined in this book will be of hyperbolic type, with the exception

of thin beams and plates, which do in fact allow infinite group velocities. Such anomalous behaviour

is a result of simplifying assumptions, and disappears when more accurate models are employed. If a

system is exhibits a small degree of loss—this is the majority of systems in musical acoustics—then

one may loosely extend this idea of phase velocity by replacing ω in the definitions above by the

imaginary part of s.

These concepts carry over to derived numerical methods in a natural way—finite difference

schemes, at least for LSI systems, also possess phase and group velocities. Both are of use in

coming to conclusions, in the musical sound synthesis context, about perhaps undesirable numerical

inharmonicity, as well as stability [258].

5.1.3 Inner Products and Energetic Manipulations

Energy analysis of PDE systems is based, usually, around the definition of various types of spatial

inner products [148]. A very useful choice in the continuous case is the L2 inner product. In 1D, it,

along with the accompanying norm, is defined as

〈f, g〉D =

∫

D
fgdx ‖f‖D =

√

〈f, g〉D (5.5)

for functions f(x) and g(x) defined over the interval x ∈ D. For time-dependent problems such as

those encountered in this book, such an inner product when applied to two functions f(x, t) and

g(x, t) will itself be a function of time alone, i.e., 〈f, g〉 = 〈f, g〉(t).

Identities and Inequalities

The Cauchy-Schwartz and triangle inequalities follow from the above definition as

|〈f, g〉D| ≤ ‖f‖D‖g‖D Cauchy − Schwartz inequality (5.6a)

‖f + g‖D ≤ ‖f‖D + ‖g‖D triangle inequality (5.6b)

For any three functions f , g and r, it is also true that

〈f, gr〉D = 〈fg, r〉D
If the left and right endpoints of a given domain D are d− and d+, then the familiar integration

by parts rule may be written, in inner product notation, as

〈f, gx〉D = −〈fx, g〉D + fg|d+

d−
(5.7)

The identity (5.7) may be extended to second derivatives as

〈f, gxx〉D = 〈fxx, g〉D + (fgx − fxg) |d+

d−
(5.8)

Generally, if d− = −∞ or d+ = ∞, then the functions f and g are assumed to vanish when evaluated

at such points. Thus, when D = R, for example, one has simply

〈f, gx〉R = −〈fx, g〉R 〈f, gxx〉R = 〈fxx, g〉R (5.9)

The total time derivative of an inner product is assumed to distrbute to the constituent functions,

i.e.,
d

dt
〈f, g〉D = 〈ft, g〉D + 〈f, gt〉D
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Notice the use of the symbol d/dt here to represent the total time derivative of a quantity without

spatial dependence.

Vector Form

In some cases, it may be necessary to make use of a vector form of the inner product, namely, for

column vectors f = [f (1), . . . , f (M)]T and g = [g(1), . . . , g(M)]T ,

〈f ,g〉D =

∫

D
fT gdx

A particular application is to the analysis of nonplanar string vibration—see §8.3.1. The above

identities and inequalities generalize directly to the vector case in an obvious way.

5.2 Grid Functions and Difference Operators in One Dimen-
sion

A grid function un
l , taking on values for integer n (usually n ≥ 0), and for integer l ∈ D, is introduced

in order to approximate a continuous function u(x, t), at location x = lh, and at time t = nk. Again,

as in the case of time series, the same variable name (in this case u) will be used to represent both

a grid function, and the variable it is intended to approximate. See Figure 5.1.

ll − 1l − 2l − 3 l + 1 l + 2 l + 3

n

n + 1

n − 1

n − 2

h

k

Grid Index

Time
Step

Figure 5.1: Graphical representation of a grid suitable for a 1D problem, with a spacing between
adjacent grid points of h (in the horizontal direction) and of k (in the vertical direction).

As in the continuous case, there are essentially three domains D of interest for problems in one

spatial dimension: D = Z = [−∞, . . . ,∞], D = Z
+ = [0, . . . ,∞], and D = UN = [0, . . . , N ]. The

finite domain UN is the only domain of practical interest, and generally corresponds to the unit

interval, provided one has chosen a grid spacing of h = 1/N , which one is always free to do through

non-dimensionalization techniques. For the moment, for simplicity, it will be assumed that grid

functions are infinite in spatial extent, though the bounding of spatial domains will be introduced

in §5.2.9.
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For reference, graphical representations of the behaviour of the various operators described in

this section appear in Figure 5.2.

5.2.1 Time Difference and Averaging Operators

The definitions of time difference operators in the distributed setting are nearly unchanged from those

introduced in §2.2 and applied to time series. For a grid function un
l , the forward and backward

shifts, and the identity operation “1” are defined as

et+un
l = un+1

l et−un
l = un−1

l 1un
l = un

l

and are to be regarded as applying to the time series un
l at all values of the index n and l. Approx-

imations to a partial time derivative are defined as

δt+ ,
1

k
(et+ − 1) ≅

∂

∂t
δt− ,

1

k
(1 − et−) ≅

∂

∂t
δt· ,

1

2k
(et+ − et−) ≅

∂

∂t
and averaging approximations to the identity operation as

µt+ ,
1

2
(et+ + 1) ≅ 1 µt− ,

1

2
(1 + et−) ≅ 1 µt· ,

1

2
(et+ + et−) ≅ 1

A simple approximation to a second time derivative is, as before,

δtt = δt+δt− ≅
∂2

∂t2

δx+ δx− δx· δxx δxxxx

δt−, µt− δt+, µt+ δtt δt·, µt· δxxδt· δxxδt−

Figure 5.2: Footprints of various simple 1D difference operators, as indicated. Time shifts, of dura-
tion k, are shown as vertical displacements, and spatial shifts, of distance h by horizontal displace-
ments. In each case, the grid points required for the approximation are indicated by black circles,
and the central point at which the operator is applied is accompanied by a cross symbol.

5.2.2 Spatial Difference Operators

Approximations to spatial derivatives are based on the unit forward and backward spatial shift

operations, defined as

ex+un
l = un

l+1 ex−un
l = un

l−1

One has, immediately, the following forward, backward and centered spatial difference approxima-

tions,

δx+ ,
1

h
(ex+ − 1) ≅

∂

∂x
δx− ,

1

h
(1 − ex−) ≅

∂

∂x
δx· ,

1

2h
(ex+ − ex−) ≅

∂

∂x
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and spatial averaging operators similar to their temporal counterparts, can be defined accordingly:

µx+ =
1

2
(ex+ + 1) µx− =

1

2
(1 + ex−) µx· =

1

2
(ex+ + ex−) µxx = µx+µx−

Simple approximations to second and fourth spatial derivatives are given by

δxx = δx+δx− ≅
∂2

∂x2
δxxxx = δxxδxx ≅

∂4

∂x4

For ease of programming, it is useful to expand out the behaviour of these compact operator repre-

sentations in order to see directly the coefficients which should be applied to values of a given grid

function un
l :

δxxun
l =

1

h2

(
un

l+1 − 2un
l + un

l−1

)
(5.10a)

δxxxxun
l =

1

h4

(
un

l+2 − 4un
l+1 + 6un

l − 4un
l−1 + un

l−2

)
(5.10b)

There are various identities which are of use in difference scheme analysis—here are two of particular

interest.

δx+ (fg) = (µx+f) (δx+g) + (δx+f) (µx+g) (5.11)

µx· = 1 +
h2

2
δxx (5.12)

Just as in the case of temporal operators, spatial difference operators may be combined to yield

more complex operators, generally of wider stencil. One particularly useful form, dependent on a

free parameter α, is the averaging operator

α + (1 − α)µc·

which is an approximation to the identity for any value of α. A parameterized form such as the

above can lead to a means of reducing the dispersive properties of finite difference schemes—see

§6.3.

5.2.3 Mixed Spatial-Temporal Difference Operators

In some cases of interest in musical acoustics, and in particular in models of frequency-dependent

loss in strings (see §7.3), mixed derivative terms appear. It is straightforward to generate finite

difference approximations to such operators using operator notation, and principles of combining

difference operators, as outlined in §2.2.2. Considering, for example, the operator ∂3

∂t∂x2 , two possible

approximations are

δt−δxx δt·δxx

The first approximation employs a backward time difference, and the second a centered time dif-

ference. Again, it is of use to examine the effect of such an operator applied to a grid function

un
l :

δt−δxxun
l =

1

kh2

(
un

l+1 − 2un
l + un

l−1 − un−1
l+1 + 2un−1

l − un−1
l−1

)

δt·δxxun
l =

1

2kh2

(
un+1

l+1 − 2un+1
l + un+1

l−1 − un−1
l+1 + 2un−1

l − un−1
l−1

)

In practical terms, there is rather a large distinction between the two approximations. That involving

the backward time difference computes an approximation to ∂3

∂t∂x2 at grid location (l, n) using only

values of the grid function at time steps n and n − 1. That involving the centered time difference,

however, requires access to values of the grid function at time step n + 1. In a general two-step
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finite difference scheme (most of the systems to be discussed in this book may be dealt with in

this way), the values of the grid function at time step n + 1 constitute the unknowns. The use of

such an operator then leads to a linear coupling among the unknown values of the grid function,

and thus to the need for linear system solution techniques in order to arrive at a solution, and such

schemes are known as “implicit” [244]. Such implicit schemes will be employed at times in this book.

Though they may require more effort at the programming stage, the actual computational work of

performing (potentially large) linear system inversions is alleviated somewhat by the sparsity of the

difference operators when viewed in matrix form—see §5.2.7.

5.2.4 Interpolation and Spreading Operators

Input and output are key attributes of physical modeling synthesis routines. The problem in particu-

lar of taking output, though potentially very simple to deal with, is not often covered in mainstream

simulation texts.

Output and Interpolation

In some cases in musical sound synthesis, one may be interested in accessing (listening to) a point

in a distributed medium which lies between spatial grid points—some form of interpolation is thus

necessary. Though if the listening, or observation point is static, it is simple enough to truncate this

position to a nearby grid location, if it is moving1, such truncation will inevitably lead to audible

distortion (clicks) in the resulting sound output. See §6.2.9.

Consider some one-dimensional grid function ul, consisting of values at locations lh for integer

l, which represents the state of a simulated object at some given instant. Supposing that the obser-

vation point is xo ∈ D, leftward truncation leads to an integer observation index lo = floor(xo/h),

and one may define an interpolation operator I(xo), acting on the grid function ul, as

I0(xo)ul = ulo

One could, as in sound synthesis methods employing wavetable interpolation [170], make use of a

slightly improved interpolation operator which employs rounding rather than truncation. Better

yet, if one also makes use of the fractional remainder of the truncation, defined by αo = xo/h − lo,

one may define a linear interpolation operator I1(xo) by

I1(xo)ul = (1 − αo)ulo + αoulo+1

One may of course go further along these lines, to develop interpolants of even better accuracy. For

sound synthesis, linear interpolation is often sufficient, but Lagrange cubic interpolation is another

possible choice. For a given observation index lo and fractional part αo, the cubic interpolant I3(xo)

is defined as

I3(xo)ul =
αo (αo − 1) (αo − 2)

−6
ulo−1 +

(αo − 1) (αo + 1) (αo − 2)

2
ulo

+
αo (αo + 1) (αo − 2)

−2
ulo+1 +

αo (αo + 1) (αo − 1)

6
ulo+2

This approximation makes use of four values of the grid function ul neighboring the interpolation

point, and requires a good deal more computational work that linear interpolation. It is, on the

1Moving output locations, though distinctly unphysical, can be employed as a useful and very simple “hack” to
render physical modeling sound synthesis output slightly more attractive, due to delicate phasing effects. Such effects
do indeed occur in the real world (when, for example, a musical instrument moves slightly with respect to the listener),
but are difficult to model directly.
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other hand, much more accurate than linear interpolation—see §5.2.5. The action of these interpo-

lation operators is illustrated in Figure 5.3. One programming concern is the behaviour of such an

interpolator when the observation point is within one grid spacing of the endpoint of the domain.

Though not of major importance, there are several options: 1) restrict the observation point such

that this cannot occur, 2) develop an asymmetric interpolant at such points, 3) revert to a simpler

interpolant, such as I1 for such locations, or 4) make use of imaginary grid points whose values are

set by boundary conditions. Of these options, 1) is certainly the simplest, and 4) the most general

and least likely to introduce artifacts. See Programming Exercise 5.1.

Another approach which has been employed, particularly when the sound synthesis algorithm is

based around the use of signal processing constructs such as delay lines, has been all-pass interpo-

lation. See the article by Laakso et al. for an overview [153].

(lo−1)h (lo−1)h (lo−1)hloh loh loh(lo+1)h (lo+1)h (lo+1)h(lo+2)h (lo+2)h (lo+2)h

xo xo xo

I0(xo)ul

I1(xo)ul I3(xo)ul

(a) (b) (c)

Figure 5.3: Schematic representation of various interpolation functions over a grid: (a) Rounding,
(b) linear interpolation, and (c) cubic interpolation. Multiplications by scaling factors, dependent on
the interpolation point, are indicated by black dots.

Input and Spreading Operators

The flip side of output is, of course, input; exciting a given distributed object at a given location

is a key feature of string instruments in particular, where the excitation may be a strike, pluck, or

bow force. In general, the excitation itself is often described as a lumped object, whose effect on a

1D system may be expressed in terms of a distribution of a given form.

The most useful such distribution corresponds to an excitation at a single location xi ∈ [0, 1]. In

the continuous case, this is exactly a Dirac delta function δ(x−xi). As in the case of interpolation (see

previous section), there are various ways of approximating such a distribution on a grid of spacing h.

If li = floor(xi/h) is the nearest grid point to the left of xi, then a zeroth order distribution Jl,0(xi)

is a grid function of the form

Jl,0(xi) =
1

h
for l = li, otherwise 0

Notice in particular that the spreading function is scaled by 1/h. Such a distribution is sufficient

for many applications, especially if the grid is dense (i.e., h is small), and if the excitation remains

stationary. But this is not always the case, and higher-order distributions may be necessary in

some cases. In analogy with the interpolation operators I1 and I3, the linear and cubic spreading

distributions, respectively Jl,1 and Jl,3, may be defined, in terms of the fractional address αi =
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xi/h − li as

Jl,1(xi) =
1

h







0 l < li
(1 − αi) l = li

αi l = li + 1

0 l > li + 1

Jl,3(xi) =
1

h







0 l < li − 1
αi(αi−1)(αi−2)

−6 l = li − 1
(αi−1)(αi+1)(αi−2)

2 l = li
αi(αi+1)(αi−2)

−2 l = li + 1
αi(αi+1)(αi−1)

6 l = li + 2

0 l > li + 2

As in the case of interpolation, higher order distribution functions are a possibility, though the higher

the order, the wider the distribution function, and, again one may need to make use of a specialized

distribution or programming if xi is within a very few grid points of an endpoint of the domain.

Some more comments on the relationship between interpolation and spreading operators, and on

the gain of spreading operators appear in §5.2.12.

5.2.5 Accuracy of Difference Operators

The concept of the accuracy of time/space difference operators is similar to that described in the case

of pure time difference operators in §2.2.3, except that one must now take into account accuracy with

respect to both dimensions. Generally, the difference operators described in the previous sections

correspond to their continuous counterparts to within an additive factor which is dependent on

powers of the time step k and the grid spacing h. Employing the same techniques as in §2.2.3, i.e.,

applying a difference operator to a continuous function and then making use of a two-dimensional

Taylor expansion about the grid point of operation, one may show that, for time difference operators,

δt+ =
∂

∂t
+ O(k) δt− =

∂

∂t
+ O(k) δt· =

∂

∂t
+ O(k2)

µt+ = 1 + O(k) µt− = 1 + O(k) µt· = 1 + O(k2)

δtt =
∂2

∂t2
+ O(k2)

and for spatial difference operators, that

δx+ =
∂

∂x
+ O(h) δx− =

∂

∂x
+ O(h) δx· =

∂

∂x
+ O(h2)

δxx =
∂2

∂x2
+ O(h2) δxxxx =

∂4

∂x4
+ O(h2)

For mixed time-space difference operators, such as approximations to ∂3/∂t∂x2, one has

δt−δxx =
∂3

∂t∂x2
+ O(k) + O(h2) δt·δxx =

∂3

∂t∂x2
+ O(k2) + O(h2)

Notice that in all cases, symmetric difference operators lead, in general, to second order accuracy.

In general, the accuracy of a finite difference scheme may be linked to that of the constituent

difference operators employed; one must be somewhat careful in coming to a direct conclusion,

because in most cases, the time step and grid spacing must also related in a particular way so as to

come to conclusions about numerical stability and convergence. This is a rather subtle point, and

the reader is referred to the literature for more information [244].

The accuracy of the interpolation operators discussed in §5.2.4 may also be deduced through

the use of Taylor expansions—all are approximations to a Dirac delta function centered at the

observation point xo. When such operators are applied to a continuous function u(x), one has

I0(xo)u(x) = u(xo) + O(h) I1(xo)u(x) = u(xo) + O(h2) I3(xo)u(x) = u(xo) + O(h4)
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5.2.6 Frequency Domain Interpretation

As for continuous problems, one may define transforms of discrete grid functions. Assuming for the

moment that the grid function un
l is defined over n = [−∞, . . . ,∞], and l ∈ D = Z, the discrete

time z-transform and discrete spatial Fourier transform are defined by

û =

∞∑

n=−∞
un

l z−n ũ =

∞∑

l=−∞
un

l e−jlβh

In the case of the z transform, the variable z may be viewed as a complex number of the form esk,

with s a complex frequency s = σ + jω. The factor z, though completely analogogus to that used

in transform analysis of digital filters is referred to as an amplification factor when employed in the

context of finite difference scheme analysis (and is often denoted g instead of z [244]). In the spatial

discrete Fourier transform, β is a real wavenumber.

As in the continuous case, it is sufficient to perform frequency domain analysis of difference

operators and schemes with respect to the ansatz

un
l = znejlβh

For temporal operators, one has, as in the case of difference operators defined for lumped prob-

lems,

et±u
Z

=⇒ z±1û

and for the various first differences and averaging operators, one has:

δt+u
Z

=⇒ 1

k
(z − 1) û δt−u

Z
=⇒ 1

k

(
1 − z−1

)
û δt·u

Z
=⇒ 1

2k

(
z − z−1

)
û

µt+u
Z

=⇒ 1

2
(z + 1) û µt−u

Z
=⇒ 1

2

(
1 + z−1

)
û µt·u

Z
=⇒ 1

2

(
z + z−1

)
û

The second difference δtt transforms according to

δttu
Z

=⇒ 1

k2

(
z − 2 + z−1

)
û

Spatial difference operators behave in a similar way. One has

ex±u
F

=⇒ e±jβhũ

and for approximations to a first derivative

δx+u
F

=⇒ 1

h

(
ejβh − 1

)
ũ δx−u

F
=⇒ 1

h

(
1 − e−jβh

)
ũ δx·u

F
=⇒ 1

2h

(
ejβh − e−jβh

)
ũ =

j

h
sin(βh)ũ

Notice in particular that the approximation to the operator δx· acts as a pure imaginary multiplica-

tive factor, a consequence of the centered anti-symmetric footprint of δx·.

The operators δxx and δxxxx transform according to

δxxu
F

=⇒ 1

h2

(
ejβh − 2 + e−jβh

)
ũ = − 4

h2
sin2 (βh/2) ũ (5.13a)

δxxxxu
F

=⇒ 1

h4

(
ejβh − 2 + e−jβh

)2
ũ =

16

h4
sin4 (βh/2) ũ (5.13b)

Notice that both operators behave as pure real multiplicative factors, a consequence of the centered

symmetric footprint of both—furthermore, δxx is non-positive and δxxxx is non-negative for any

choice of wavenumber β.

Mixed temporal/spatial difference operators behave as multiplicative factors involving both z
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and β. For the approximations to the third derivative ∂3/∂t∂x2, one has

δt−δxxu
Z,F
=⇒ −4

kh2

(
1 − z−1

)
sin2(βh/2)ˆ̃u

δt·δxxu
Z,F
=⇒ −2

kh2

(
z − z−1

)
sin2(βh/2)ˆ̃u

Recursions and Amplification Polynomials

The relationship between difference schemes and polynomials in the variable z was discussed earlier

in §2.3.3, in the case of ODEs. For finite difference schemes for LSI PDEs, the situation is similar.

Confining attention for the moment to 1D LSI problems defined over D = Z, finite difference

schemes are recursions of the following form:

∑

l′∈M

N∑

n′=0

a
(n′)
l′ un−n′

l−l′ = 0

where as before, the scheme operates over N +1 adjacent time levels, and over a spatial width given

by the set M. The constants a
(n′)
l′ are referred to as the scheme coefficients. One major distinction

between the recursion above, operating over an entire grid function, and the recursion (2.10) in a

time series is that it is not possible to isolate the unknowns unless all but one of the coefficients

a
(0)
l′ are zero. If this is true, the scheme is referred to as explicit, and if not implicit (requiring more

involved linear system solution techniques). Much more will be said about explicit and implicit

schemes with regard to the 1D wave equation in the following chapter.

Employing the ansatz un
l = znejlβh in the above recursion leads to a polynomial of the form

P (z) =

N∑

n′=0

a(n′)(β)zN−n′

= 0 where a(n′)(β) =
∑

l′∈M

a
(n′)
l′ ejl′βh (5.14)

which is often referred to as an amplification polynomial [244] for the associated scheme. Again,

the order N + 1 of the polynomial corresponds to the number of time levels at which the scheme

operates. Now, however, the effect of spatial difference operators is exhibited in the coefficients a(n′),

which are generally dependent on the wavenumber β. Thus a crude criterion for stability is that

the roots of such a polynomial remain bounded in magnitude by unity for all wavenumbers β. In

particular, when N = 2, as will be the case for most of the schemes to be discussed here, the simple

conditions (2.14) must hold for all β.

Numerical Phase and Group Velocity

The definitions of phase and group velocities, for a scheme with a characteristic polynomial as defined

by, say, (5.14), are directly analogous to those of the continuous case, as discussed briefly at the end

of §5.1.2. For a lossless problem, behaving in a stable manner, one will have |z| = 1, or z = ejωk.

The M roots of the characteristic polynomial may then be written as zp = zp(β), or, using z = ejωpβ ,

as ωp = ωp(β). The phase and group velocities are again given, for any such root, as

vφ =
ω

β
vg =

dω

dβ

In general, the extent to which these quantities are different from those of the continuous model

system is referred to as numerical dispersion. It is perhaps best to leave this (quite important) topic

until concrete examples have been presented in subsequent chapters.
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5.2.7 Matrix Interpretation of Difference Operators

It is sometimes useful, conceptually, and possibly for stability analysis or in an implementation,

to have a picture of the behaviour of various difference operators in matrix form. Leaving aside

the consideration of boundary conditions, suppose a difference operator is to act on values of a

grid function ul, where the domain D = Z, so l = −∞, . . . ,∞, and where the time index n has

been omitted. When these are arranged in an infinite column vector u = [. . . , u−1, u0, u1, . . .]
T , the

operators δx−, δx+ and δxx can be expressed as the matrices Dx−, Dx+ and Dxx, as follows:

Dx− =
1

h








. . . 0. . . 1
-1 1

-1 1
0 -1 1. . .

. . .








Dx+ =
1

h









. . .
. . . 0

-1 1
-1 1

-1 1
0 -1

. . .









Dxx =
1

h2









. . .
. . . 0. . . -2 1
1 -2 1

1 -2 1
0 1 -2

. . .
. . .









(5.15)

Similarly, the averaging operators µx−, µx+ and µx· take the forms Mx−, Mx+ and Mx·, as follows:

Mx− =
1

2








. . . 0. . . 1
1 1

1 1
0 1 1. . .

. . .








Mx+ =
1

2









. . .
. . . 0
1 1

1 1
1 1

0 1
. . .









Mx· =
1

2









. . .
. . . 0. . . 0 1
1 0 1

1 0 1
0 1 0

. . .
. . .









Matrix representations of the other operators defined in §5.2.2, such as δxxxx, may be constructed

in the same manner. See Problem 5.3. Notice in particular that they are very sparse, implying

that explicit storage of such matrices is not advisable (i.e., it entails a huge waste of memory).

Indeed, when such difference operators are applied in an explicit scheme, the matrix representation

is entirely unnecessary. Even in an implicit setting, where linear systems involving such matrices

are to be solved, various techniques are available— iterative methods are a natural choice [244].

Indeed, when the grid functions are large, the direct inversion of a matrix operator is prohibitively

expensive, both in terms of memory requirements and operation count (as the inverse of a sparse

matrix is generally not sparse), and shoukld be avoided at all costs. The Matlab language has a

number of built-in iterative methods, which are very easy to use—see Programming Exercise 5.4 for

a basic example. In fact, there are even more refined solution techniques which are specialized to the

use of such sparse banded matrices, such as, e.g., the Thomas algorithm. A full description of such

methods would be rather lengthy, however, and the reader is referred to the literature [244, 251].

The matrices representations shown above are, for simplicity, infinite. For real-world problems,

these operators are restricted to a finite interval, such as UN , and boundary conditions come into

play, usually affecting values of the matrices in the extreme rows and columns. For the most part in

this book, such boundary conditions will be dealt with using operator notation, except in the case of

implicit schemes, for which a finite matrix representation of a difference operator is an indispensible

part of working code—see, e.g., §6.3.2.

5.2.8 Boundary Conditions and Imaginary Grid Points

Though no physics has been mentioned as yet in this chapter, this is a good point to introduce the

concept of numerical boundary conditions, which lead to implementation concerns which range from

trivial to gargantuan. The topic will be taken up in earnest in the next chapter, in the case of the

1D wave equation.
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As an example, consider the operator δxx, applied to a grid function ul, defined now not over

D = R, but the N +1-point unit interval D = UN = [0, 1, . . . , N ]. At an interior point in the domain,

all is well, and δxxul may be calculated as

δxxul =
1

h2
(ul+1 − 2ul + ul−1) for l = 1, . . . , N − 1

But at l = 0, and l = N , the operator δxx appears to require values at locations which lie outside

the domain of definition of the grid function, namely u−1 and uN+1. Such locations are sometimes

referred to as “imaginary” grid points in a finite difference scheme—generally, though, boundary

conditions come to the rescue, and allow the values at such points to be set in terms of the values

in the interior.

For instance, one boundary condition which occurs frequently in musical acoustics, across a

wide variety of applications, is the simple fixed condition, smetimes referred to as a Dirchlet type

boundary condition for which the values of the grid function at the endpoints are constrained to be

zero. In the present case of the operator δxx, the result is very simple: the values u0 and uN are set

to zero permanently, and in fact need not be stored at all in an implementation. Slightly trickier is

the case of zero spatial derivative conditions, often referred to as Neumann type conditions. Here is

one approximation:

δxxul for l ∈ UN with δx·u0 = δx·uN = 0

The two conditions at l = 0 and l = N are clearly second-order approximations to a zero derivative

condition. Written in terms of values at the image locations, they read as u−1 = u1 and uN+1 =

uN−1, and thus the action of the operator δxx at the endpoints can now be given, purely in terms

of values on the domain interior, as

δxxu0 =
2

h2
(u1 − u0) δxxuN =

2

h2
(−uN + uN−1)

It is worth noting that this is but one type of approximation to a zero-derivative condition—the

proper setting of numerical boundary conditions is an issue which will be taken up in greater detail

in later chapters. See Problem 5.4 for another numerical variation on the zero-derivative condition,

and Problem 5.2 for the more involved case of numerical boundary conditions applied to a fourth

order spatial difference operator.

It is also revealing to examine the effect of boundary conditions in the matrix form of the operator.

In the zero and zero-derivative cases mentioned above, the matrix operations Dxx look like

Dxx






u1u2
...

uN−2
uN−1




 =

1

h2







-2 1
1 -2 1

. . .
. . .

. . .
1-2 1

1-2







︸ ︷︷ ︸

u0=uN=0






u1u2
...

uN−2
uN−1




 Dxx





u0u1
...

uN−1
uN



 =
1

h2







-2 2
1 -2 1

. . .
. . .

. . .
1-2 1

2-2







︸ ︷︷ ︸

δx·u0=δx·uN=0





u0u1
...

uN−1
uN



 (5.16)

As is natural, the boundary conditions affect only those matrix entries in the extreme rows (and, in

more involved settings, columns). See Problem 5.5, and Programming Exercise 5.2. For difference

operators defined over uniform grids, the bulk of the matrix representation is of sparse Toeplitz

form, where the number of non-zero bands reflects the order of the difference operator, and also,

often, its accuracy.
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5.2.9 Inner Products and Identities

As one might gather, an essential step towards energy-based analysis of finite difference schemes for

distributed problems is the introduction of a spatial inner product between two grid functions, which

is analogous to the continuous definition given in (5.5). In the discrete setting, there are many ways

of doing this, but the simplest is the following: an l2 spatial inner product of two one-dimensional

grid functions, fn
l and gn

l , over the interval l ∈ D, may be defined as

〈fn, gn〉D =
∑

l∈D
hfn

l gn
l (5.17)

In fact, this is none other than a rudimentary Riemann sum approximation to the continuous L2

inner product. The inner product is a scalar time series, dependent on n—note that for grid functions

which appear inside an inner product, the spatial index l is suppressed. An l2 norm follows as

‖fn‖D =
√

〈fn, fn〉D ≥ 0 (5.18)

The Cauchy-Schwartz and triangle inequalities extend directly to such discrete inner products

as

|〈fn, gn〉D| ≤ ‖fn‖D‖gn‖D (5.19a)

‖fn + gn‖D ≤ ‖fn‖D + ‖gn‖D (5.19b)

It is sometimes useful [113] to define other types of inner products, which vary slightly from the

above definition in (5.17); these usually are distinct at the endpoints of the spatial interval over

which the inner product is defined. Assuming that the endpoints of the interval D are given by d−
and d+, one of particular interest is given by

〈fn, gn〉′D =
d+−1∑

l=d−+1

hfn
l gn

l +
h

2
fn

d−
gn

d−
+

h

2
fn

d+
gn

d+
(5.20)

A norm can again be defined in terms of this inner product, as per (5.18), and the Cauchy-Schwartz

and triangle inequalities, from (5.19) above also hold. This inner product may be interpreted as

an approximation to the continuous inner product using trapezoids, rather than a simple Riemann

sum, hence the factor of 1/2 which scales the values at the endpoints. As might be imagined, the

use of such an inner product leads to variations in the way numerical boundary conditions are posed

and implemented. Other, even more general inner products are available—see Problem 5.7. Some

more comments on this appear in the next section.

Before looking at some of the manipulations which may be employed in the case of spatial

difference operators, it is important to note that the identities involving only time difference or

averaging operators applied to products of time series in the lumped context in §2.4.2, extend directly

to the case of grid functions. For instance, identity (2.22a) for time series, may be generalized, for

a grid function u, as

〈δt·u, δttu〉D = δt+

(
1

2
‖δt−u‖2

D

)

(5.21)

(Notice that in this case, the time difference δt+ operates on a scalar time series, and not a grid

function!) Such manipulations are of great use in the analysis in the following chapters, and gener-

alizations of the identities (2.22) are readily proved—see Problem 5.6.
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5.2.10 Summation by Parts

Of extreme utility in energy analysis are various manipulations which correspond to integration by

parts. For example, consider the inner product 〈f, δx+g〉D, where, for brevity, the time index n has

been dropped from the grid functions. Assuming again that the endpoints of the interval D are given

by d− and d+, an inner product representation of summation by parts may be derived as follows:

〈f, δx+g〉D =

d+∑

l=d−

hfl
1

h
(gl+1 − gl) = −

d+∑

l=d−

h
1

h
(fl − fl−1) gl + fd+gd++1 − fd−−1gd−(5.22)

= −〈δx−f, g〉D + fd+gd++1 − fd−−1gd−

Notice in particular that the boundary terms which appear involve evaluations of the grid functions

at points d+ +1 and d−−1, which are outside the domain of definition of the problem itself, at least

when d+ and d− are finite. These are again instances of “imaginary grid points,” as discussed in

§5.2.8. As was noted earlier, the values of grid functions at such imaginary locations will always be

set, through boundary conditions, in terms of values of the grid function over the domain interior.

As such, in an implementation, it is unnecessary to store such values, though in some cases, the

explicit representation of such values can lead to algorithmic simplifications. Notice also that in the

boundary terms, the grid functions f and g are evaluated at different (adjacent) locations. As in

the continuous case, if d− = −∞ or d+ = ∞, then the values of grid functions at these locations are

assumed to vanish. For example, if D = Z, one has, simply, 〈f, δx+g〉Z = −〈δx−f, g〉Z.

It is sometimes of use to rewrite identities such as summation by parts in terms of slightly different

domains; this is a point of contrast with such identities in the continuous case. For example, for a

given domain D = [d−, . . . , d+], one may define related domains lacking one of the boundary points,

such as D = [d−, . . . , d+ − 1], and D = [d− + 1, . . . , d+]. One variant of summation by parts then

looks like:

〈f, δx+g〉D = −〈δx−f, g〉D + fd+gd+ − fd−gd− (5.23)

In this case, the boundary terms involve evaluations of the grid functions f and g at the same point.

It is of course possible to extend summation by parts to cover double spatial differences. Using

the operator δxx = δx+δx−, and summation by parts (5.22) twice, one has the following identities:

〈f, δxxg〉D = 〈δxxf, g〉D − fd−δx−gd− + gd−δx−fd− + fd+δx+gd+ − gd+δx+fd+ (5.24)

〈f, δxxg〉D = 〈δxxf, g〉D − fd−δx−gd− + gd−δx+fd− + fd+δx+gd+ − gd+δx−fd+ (5.25)

Again, if D = Z, the above identities simplify to

〈f, δxxg〉Z = 〈δxxf, g〉Z (5.26)

For the identities (5.24) and (5.25), notice that the boundary terms are not centered about the

endpoints; this may be remedied with recourse to the primed inner product defined in (5.23) above,

and can be useful in developing numerical boundary conditions which possess a higher degree of

accuracy. See Problem 5.8.

5.2.11 Some Bounds

It is also helpful to be able to relate norms of grid functions under spatial difference operations to

norms of the grid functions themselves. For instance, consider the grid function δx+u, defined over
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domain D. One may write

‖δx+u‖2
D =

d+−1
∑

l=d−

h(δx+ul)
2 =

d+−1
∑

l=d−

1

h
(ul+1 − ul)

2 =

d+−1
∑

l=d−

1

h
(u2

l+1 + u2
l − 2ul+1ul)

≤
d+−1
∑

l=d−

2

h
(u2

l+1 + u2
l )

or

‖δx+u‖D ≤ 2

h
‖u‖′D ≤ 2

h
‖u‖D (5.27)

Thus the norm of a grid function under a spatial difference is bounded from above by the norm of

the grid function itself, times a factor of 2/h. Notice that the bound is slightly tighter when the

primed norm is used. Similarly, one has, for the grid function δx−u,

‖δx−u‖D ≤ 2

h
‖u‖′D ≤ 2

h
‖u‖D

Bounds on higher differences of a grid function may be obtained through repeated use of the

above bounds. For instance, for a grid function δxxu, one has

‖δxxu‖D = ‖δx+δx−u‖D ≤ 2

h
‖δx−u‖D ≤ 4

h2
‖u‖D (5.28)

It is possible to relate the bounds presented here to the Fourier representation—see Problems

5.1 and 5.9.

5.2.12 Interpolation and Spreading Revisited

For a given system requiring both interpolation and spreading at the same location, it is useful to

note the following: Supposing a given qth order spreading function Jl,q(xo) operating at location

xo, and an interpolation function Iq(xo), it is true that for any grid function f ,

〈f, Jq(xo)〉D = Iq(xo)f (5.29)

Note that this is only true when the interpolation and spreading functions are of the same order. This

fact is important in proving stability for certain point-excited systems such as, e.g., the bow-string

interaction—see §7.4.

Spreading of an input time series onto a grid is also associated with a slight change in gain. This

gain for a spreading operator J(xi), for a given fractional remainder α may be written as

Gain(J) =
√

h‖J‖D
and will depend on the fractional part α of the truncation to an integer grid point. For polynomial

interpolants Jp of the type discussed in §5.2.4, one may show the following bound, which holds for

all α:

Gain(Jp) ≤ 1 (5.30)

See Problem 5.10.

5.3 Coordinate Changes

In some problems, particularly those involving spatial variation of the vibrating material (such as

strings of variable density, or bars of variable cross-section—see §7.9), it can be useful to introduce

changes of spatial coordinate which match, in some sense, the variation in the medium itself. In 1D,

this is quite straightforward. For a given spatial coordinate x, define a new coordinate α = α(x). In
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general, the map x → α(x) should be smooth, one-to-one, and more generally preserve the ordering

of the points in the medium, i.e., if x1 ≤ x2, then α(x1) ≤ α(x2).

Partial derivatives may thus be transformed under such a mapping, i.e.,

∂

∂x
→ α′ ∂

∂α

∂2

∂x2
→ α′ ∂

∂α

(

α′ ∂

∂α

)

(5.31)

where now, the function α′ = ∂α
∂x intervenes. A PDE in a spatial variable x may thus be transformed

to an equivalent PDE in the new coordinate α.

The interest in performing such changes of variables at the level of the PDE is to avoid the hassle

of variable grid spacing in the original coordinates—once the transformation has been carried out,

the grid spacing may again be chosen uniform, and all the difference scheme analysis then applies as

usual. The most commonly occurring differential operator, at least in musical acoustics problems, is

the second derivative, ∂2/∂x2. In transformed coordinates, a useful centered approximation to the

second derivative is

δxx → α′δα+ ((µα−α′)δα−) (5.32)

which is second order accurate. Note in particular that the continuous form of α′ is assumed known.

See Problem 5.11, and Programming Exercise 5.5.

α xα(x)

Figure 5.4: Coordinate change from coordinates x to coordinates α. A uniform grid in α coordinates
maps to a variable grid in x coordinates.

Integration by parts and summation by parts still hold, as long as a weighting function 1/α′ is

inserted into the formulae. For example, in the continuous case,

〈 1

α′ f, α′ (α′g)α〉R = −〈fα, α′gα〉R = 〈α′ (α′fα)α ,
1

α′ g〉R
and in the discrete case,

〈 1

α′ f, α′δα+ ((µα−α′)(δα−g))〉Z = −〈δα−f, (µα−α′)(δα−g)〉Z = 〈α′δα+ ((µα−α′)(δα−f)) ,
1

α′ g〉Z

5.4 Problems

Problem 5.1 From (5.13a), it is known that the application of the operator δxx to a grid function
ul corresponds, in the spatial frequency domain, to multiplication of the Fourier transform ũ(β) by
a factor −4 sin2 (βh/2) /h2. For what value of β is the magnitude of this factor a maximum, and
what is the value of the factor? Sketch the grid function ul = ejlβh for this value of β.

Problem 5.2 Consider the operator δxxxx, as defined in (5.10b), applied to a grid function ul, now
defined over the semi-infinite domain, D = Z

+ = [0, 1, . . .]. At which grid points will the evaluation
of this operator require access to grid points at imaginary locations (i.e., outside of UN )? Consider
also the following three sets of boundary conditions,

u = δx·u = 0 (5.33a)

u = δxxu = 0 (5.33b)

δxxu = δx·δxxu = 0 (5.33c)
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In each case, use the conditions at l = 0 to arrive at expressions for δxxxxul over the entire domain
Z

+, purely in terms of values of u over the domain interior. (In the setting of bar vibration, useful
in modelling percussion instruments such as xylophones, these three types of conditions correspond
to clamped, simply supported, and free conditions, respectively. See §7.1.2. )

Problem 5.3 Write the operator δxxxx, as defined in §5.2.2 in matrix form over the infinite domain
D = Z, similarly to those presented in §5.2.7.

Problem 5.4 Consider the difference operator δxx applied to the grid function ul over UN , under
the zero-derivative boundary aproximations δx−u0 = δx+uN = 0, and express δxxu0 and δxxuN purely
in terms of values over the domain UN (i.e., without using values at imaginary points). Express the
difference operator in matrix form, similar to that given at the end of §5.2.8.

Problem 5.5 Continuing from Problem 5.2, with the operator δxxxx applied to the grid function ul

over Z
+, construct the semi-infinite matrix form of the operator under the three sets of boundary

conditions described. Under the conditions described in (5.33a) and (5.33b), you may omit the
evaluation at the endpoint l = 0. It is helpful to use the infinite form of the matrix operator you
constructed in Problem 5.3 as a starting point.

Problem 5.6 For each of the identities involving products of time series under the action of time
difference operators, from (2.22), show that there is a corresponding identity for the case of a grid
function u = un

l , defined over the domain D. (As a starting point, you may wish to compare identity
(2.22a) with its corresponding distributed form (5.21).)

Problem 5.7 Consider the discrete inner product defined, for simplicity, over D = Z
+ as

〈f, g〉
′,ǫ
Z+ =

∞∑

l=1

hflgl +
ǫ

2
hf0g0

with respect to a free parameter ǫ > 0. Show that the following summation by parts identity holds:

〈f, δx+g〉
′,ǫ
Z+ = 〈δx−f, g〉

Z+ − f0 ((2 − ǫ)µx+ + (ǫ − 1)) g0

Show also that the bound

‖δx+u‖Z+ ≤ 2

h
‖u‖

′,ǫ
Z+

holds in general only for values of ǫ such that ǫ ≥ 1/2.
For an interesting application of this definition of an inner product to the analysis of numerical

boundary conditions, see Problem 6.5 in the next chapter.

Problem 5.8 Demonstrate, using the primed l2 inner product defined in (5.23), over a domain D,
the summation by parts identity

〈f, δxxg〉′D = 〈δxxf, g〉′D − fd−δx·gd− + gd−δx·fd− + fd+δx·gd+ − gd+δx·fd+

Thus the boundary terms which appear involve difference approximations which are centered about
the endpoints of the domain. This is in contrast with the corresponding identity (5.24) in the case
of the standard unprimed inner product.

Problem 5.9 Find a grid function ul defined over D = UN such that the bound (5.28) is satisfied
with equality. Your answer from Problem 5.1 may be of help here.

Problem 5.10 Prove bound (5.30) for the spreading functions J0, J1 and J3, and also find the
minimum value of the gain of each of the above operators, for any possible value of α. (In the case
of J3, a numerical proof will suffice.)

Problem 5.11 Consider the second derivative under a coordinate transformation α(x), as given in
(5.31). If α(x) = x2, rewrite the expression for the second derivative purely in terms of α (i.e.,
without any occurrence of x, which appears, e.g., in α′ = dα/dx).
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5.5 Programming Exercises

Exercise 5.1 For a input vector of length N + 1 values, (corresponding, ultimately, to values of a
function u(x) at locations x = 0, 1/N, . . . , 1), create a matlab script which interpolates a value u(xo),
for some 0 ≤ xo ≤ 1. The order of interpolation should be adjustable, through an input parameter,
such that it performs zeroth, first and third order interpolation, as discussed in §5.2.4. In the case
of third order interpolation, you may revert to first order interpolation when the observation point
xo lies within a single grid point of either end of the domain.

Exercise 5.2 Create a Matlab script which generates the matrix operator Dxx, corresponding to
the difference operator δxx, operating over the unit interval UN = [0, 1, . . . , N ]. Your code should
operate under a combination of choices of numerical boundary conditions at either end of the domain,
namely fixed (Dirichlet) or free (Neumann). You may use the fixed condition u = 0, and the
centered numerical Neumann boundary condition δx·u = 0. Make sure that your script generates
sparse matrices (learn about the matlab function sparse for this purpose), and that it generates
matrices of the appropriate size—for example, under Neumann conditions at both ends, Dxx will be
an (N + 1) × (N + 1) matrix, but for Dirichlet conditions, it will be (N − 1) × (N − 1).

Exercise 5.3 Create a Matlab script which generates the matrix operator Dxxxx, corresponding to
the difference operator δxxxx, operating over the unit interval UN = [0, 1, . . . , N ]. Your code should
be capable of setting any of the conditions (5.33) separately at each end of the boundary (i.e., at
l = 0 or l = N), giving a total of nine possible outputs. Make sure that your script generates
sparse matrices (learn about the matlab function sparse for this purpose), and that it generates
matrices of the appropriate size—for example, under conditions (5.33a) or (5.33b) at each end of
the domain, Dxxxx will be an (N + 1) × (N + 1) matrix, but for conditions (5.33c) at both ends, it
will be (N − 1) × (N − 1).

Exercise 5.4 Using the Matlab script you created above which generates the matrix Dxx, solve the
equation Dxxx = b, where b is a known vector, and where x is the unknown, in two different ways:

1) Explicitly compute the inverse D−1
xx , and solve for x as x = D−1

xx b.
2) Use Matlab’s standard iterative method to solve the equation. You may perform this calculation

easily, as

x=Dxx\b

.
Using the tic and toc commands, compare the performance of these two methods for a variety

of sizes of the vectors x and b. You may use the form of Dxx under fixed boundary conditions, and
you may also wish to choose b of the form of a sinusoid or polynomial function, so that you can be
sure that your calculated results are correct (b should be approximately the second derivative of x!).

Exercise 5.5 For a given function u(x) defined over D = U, calculate the second derivative numer-
ically in two different ways:

1) Directly, using the operator δxx, and N +1 samples of the function u(x) at locations x = l/N ,
for some integer N (the grid size).

2) Under the coordinate transformation α(x) = x2. In this case, you will make use of samples
of u which are equally spaced in the coordinate α—take N + 1 of them as well. Use the transformed
difference operator in α given in (5.32). Be sure that you have written α′ explicitly in terms of α,
as per Problem 5.11.

In both cases, you need only calculate approximations to the second derivative at interior points
in the domain. Plot both results together on the same set of axes. You may wish to choose your
function u of the form of a sinusoid or polynomial function, so that you can be sure that your
calculated results are correct.
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Chapter 6

The 1D Wave Equation

The one-dimensional wave equation is, arguably, the single most important partial differential equa-

tion in musical acoustics, if not in physics as a whole. Though, strictly speaking, it is useful only as

a test problem, variants of it serve to describe the behaviour of strings, both linear and nonlinear,

as well as the motion of air in an enclosed acoustic tube, among many other systems. It is well

worth spending a good deal of time examining this equation as well as various means of arriving

at a numerical solution, because the distinctions between well-known synthesis techniques such as

lumped models, modal synthesis, digital waveguides and classical time-domain methods such as

finite differences appear in sharp contrast.

It is important to point out, however, that in some respects, the 1D wave equation is a little too

special to serve as a useful model problem. Though, as mentioned above, it is frequently used as a

test problem for numerical methods, it is the rare example of a PDE which admits an exact numerical

solution—furthermore, the solution may be computed in a very efficient manner. Though digital

waveguide methods are built directly around such efficient numerical solutions, one must beware of

the temptation to generalize such techniques to other problems. As a result, digital waveguides will

be discussed here, but the emphasis will be on those aspects of numerical techniques which do not

rely on special behaviour of a particular equation.

In §6.1, the one-dimensional wave equation is defined, in the first instance, for simplicity, over

the entire real line. Frequency domain analysis is introduced, followed by a discussion of phase

and group velocity. The Hamiltonian formulation for the wave equation appears next, and is used

in order to motivate a discussion of bounds on solution growth, as well as appropriate boundary

conditions. Boundary conditions, coupled with frequency domain methods lead to a representation of

the solution in terms of modes. The section is concluded by a brief look at traveling wave solutions. A

simple finite difference scheme is presented in §6.2, followed by frequency domain (or von Neumann)

analysis, yielding a simple (Courant-Friedrichs-Lewy) stability condition, and information regarding

numerical dispersion, as well as its perceptual significance in sound synthesis. A look at the matrix

form of the finite difference scheme follows, as well as the very important special case of the discrete

traveling wave solution. Other varieties of finite difference schemes appear in §6.3, and a treatment

of loss appears in §6.5. Finally, in §6.6, various synthesis methods, specifically modal synthesis,

lumped networks, and digital waveguides are compared in this special case of the wave equation.

References for this chapter include: [244, 265, 242, 258, 153]
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6.1 Definition and Properties

The one-dimensional wave equation is defined as

utt = c2uxx (6.1)

It is a second-order partial differential equation in the dependent variable u = u(x, t), where x is

a variable representing distance, and t, as before, is time. The equation is defined over t ≥ 0, and

for x ∈ D, where D is some simply connected subset of R. c is a constant often referred to as the

wave speed. See §5.1 for a description of the notation used here in representing partial differential

operators.

As mentioned above, the 1D wave equation appears in a range of applications across all of

physics, and occupies a privileged position in musical acoustics (see Figure 6.1). It is a simple first

approximation, under low amplitude conditions, to the transverse motion of strings, in which case

c =
√

T0/ρA, where T0 is the applied string tension, ρ is the material density, and A the string

cross-sectional area. It is also an approximation to the longitudinal motion of a uniform bar [174],

with c =
√

E/ρ and where E and ρ are Young’s modulus, and again material density for the bar

under consideration; longitudinal motion of a bar is of somewhat less interest in sound synthesis

applications compared with transverse motion, which will be taken up in detail in §7.1. In the context

of wind instrument modeling, it also describes the longitudinal vibration of an air column in a tube

of uniform cross-section, with c =
√

K/ρ, and where K and ρ are the bulk modulus and material

density of the air in the tube. Finally, it is also worth pointing out that the wave equation also

applies to the case of the lossless electrical transmission line [55], where c =
√

1/LC, with L and C

the inductance and capacitance per unit length of the line. The electrical transmission line, though

not of intrinsic musical interest, has served as a conceptual basis for the construction of scattering

based numerical methods (digital waveguides and wave digital filters among them [24, 241]). Under

musical conditions, the wave equation is rather a better approximation in the case of the acoustic

tube than that of the string; string nonlinearities which lead to perceptually important effects will

be dealt with in detail in Chapter 8.

(a)

u

x

x

(b)

u

x

(c) (d)

u u

x

Figure 6.1: Different physical systems whose dynamics are described by the wave equation (6.1).
u(x, t) may represent: (a) transverse displacement of a lossless string vibrating at low amplitude,
(b) deviation in pressure about a mean in an acoustic tube, under lossless conditions, (c) deviation
of a point from its position at rest for a bar vibrating longitudinally, or (d) voltage across a lossless
transmission line.

The wave equation has been derived from first principles in countless works; perhaps the best

treatment in the present context of acoustics appears in the classic texts of Morse [173] and Morse

and Ingard [174]. Though such a derivation could well be skipped here, one particular form, based

on the limiting behaviour of an array of masses and springs, is of particular relevance in digital

sound synthesis.
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6.1.1 Linear Array of Masses and Springs

Consider an equally-spaced array of masses M , of spacing h, connected by linear springs of spring

constant K, and of equilibrium length h. Suppose that the masses are constrained to move only

horizontally, and that the deviation of the lth mass from its rest position is written as ul(t). See

Figure 6.2. The equation of motion of the lth mass will then be

M
d2ul

dt2
= fl+ 1

2
− fl− 1

2
(6.2)

where here, fl+ 1
2
(t) represents the force exerted by the spring connecting the lth mass to the (l+1)th,

where a positive force is assumed to act to the right. Under linear spring behaviour, an expression

for the force will be, in terms of the displacements ul themselves,

fi+ 1
2

= K (ul+1 − ul) (6.3)

h

ul−2 ul−1 ul ul+1 ul+2 ul+3

x = (l − 2)h x = (l − 1)h x = lh x = (l + 1)h x = (l + 2)h x = (l + 3)h

Figure 6.2: Linear array of masses and springs, constrained to move longitudinally. The displace-
ment of the lth mass, located at equilibrium at spatial position x = lh, is written as ul.

The defining equations (6.2) and (6.3) may be combined into a single equation as

M
d2ul

dt2
= K (ul+1 − 2ul + ul−1) (6.4)

Now, defining M = ρAh, where ρ is a linear mass density and A is a constant with dimensions of

area, and K = EA/h, where E is a stiffness parameter (actually, Young’s modulus), the above may

be written as
d2ul

dt2
=

E

ρ

(
ul+1 − 2ul + ul−1

h2

)

(6.5)

In the limit as h becomes small, it is not difficult to see that, if the displacements ul(t) are viewed

as displacements of a continuous medium u(x, t) at locations x = lh, then the right side of the

above equation is no more than a simple centered finite difference approximation to a second spatial

derivative (see §5.2.2). The above equation then approaches the 1D wave equation (6.1), with

c =
√

E/ρ, modelling, in this case, longitudinal vibrations of a stiff system, such as a bar.

Though the above is a method of deriving the wave equation from a linear array of masses and

springs, it may be viewed, before the limit of small h is taken, in two separate ways, corresponding

to separate philosophies of sound synthesis. The lumped network approach to sound synthesis,

mentioned briefly in §1.2.1, would take a system of ODEs, defined by an equation such as (6.5)

(or, more properly, the combined system of (6.2) and (6.3)) as the starting point for developing a

numerical method. One can easily apply time integration methods such as those outlined in Chapter

3. For a distributed system, such as that described by the wave equation, another way of proceeding

is to simply deal with the distributed system directly, thus bypassing any notion of a network of

elements1. This is the point of view taken in this book. In the case presented here, as it turns out,

1Indeed, for a distributed system, the entire apparatus of network theory is elegantly wrapped up in the PDE
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the two approaches lead to very similar results. Indeed, if the second time derivative in (6.5) is

approximated by a second time difference, a standard finite difference scheme for the wave equation

results—see §6.2. For more complex systems, however, the correspondence is less direct. See §16.2.3

for some general comments on this subject.

6.1.2 Non-dimensionalized Form

Non-dimensionalization is an extremely useful means of simplifying physical systems, especially in

preparation for the application of numerical simulation techniques. As a first step, one may introduce

the dimensionless coordinate x′ = x/L, for some constant L with dimensions of length. In the general

case of the wave equation defined over an arbitrary spatial domain D, this constant is arbitrary, but

over a finite spatial domain, such as x ∈ [0, x0], it may be taken to be the length L = x0, thus

yielding a system defined over the domain x′ ∈ [0, 1]. The wave equation (6.1) then becomes, in

primed coordinates,

utt = γ2ux′x′ (6.6)

where γ = c/L is a constant with dimensions of frequency. Such a description is useful in relating

the wave equation to the simple harmonic oscillator, as described in Chapter 3. The term “wave

speed” will still be used when referring to the constant γ.

This is a good example of a reduction in the number of parameters necessary to specify a system,

which is of particular importance in physical modeling sound synthesis—it is redundant to specify

both the wave speed c and the length L, and the single parameter γ suffices. The fewer in number

the parameters, the easier it will be for the musician working with a synthesis algorithm to navigate

the space of possible timbres2. In general, forms in this book will be presented, whenever possible,

in such a spatially-nondimensionalized form, and the primed notation will be suppressed.

In the standard numerical analysis literature, it is commonplace to see a further temporal nondi-

mensionalization, through the introduction of a temporal variable t′ = t/T , for a characteristic time

constant T . A judicious choice of T = L/c leads to the form

ut′t′ = ux′x′ (6.7)

Though this form is apparently simpler than (6.6) above, in practice, especially when programming

synthesis routines, there is no real advantage to such a further step (i.e., an extra parameter, namely

the time step, will be re-introduced during the discretization procedure). In addition, the crucial

frequency domain behaviour of such a fully nondimensionalized system is slightly obscured through

the introduction of such temporal scaling. For this perceptual reason, namely that we are only

interested in hearing the outputs of the resulting simulations, which themselves are time-domain

waveforms, only “half-way” spatial nondimensionalization will be employed in this book.

6.1.3 Initial Conditions

The 1D wave equation is a second order (in time) partial differential equation, and just as for the

SHO, requires the specification of two initial conditions. Normally these are the values of the variable

u and its time derivative, at time t = 0, i.e.,

u(x, 0) = u0(x) ut(x, 0) = v0(x) (6.8)

itself, and need never be explicitly employed!
2This replacement of physical parameters by a smaller set of perceptual parameters in some ways goes against

the spirit of physical modeling synthesis, where one might want access to a full set of physical parameters. Notice,
however, that in this case, the physics itself remains unchanged under such data reduction.
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which are now functions of x. Other equivalent choices (such as wave variables which are of use in

a digital waveguide implementation) are possible.

In some physical modeling synthesis applications, such as the modeling of struck or plucked

strings, it is convenient in the first instance to initialize the model itself using the above conditions.

For a strike, for instance, one could choose a function v0, perhaps peaked at a desired location

corresponding to the strike center, and set u0 to zero. For a pluck, one could make a similar choice

for u0, and set v0 to zero. One commonly-employed choice of initial displacement distribution, in

the case of the string, is the triangular function, defined over the unit interval D = U by

ctri(x) =

{
c0

x0
x, 0 ≤ x ≤ x0

c0

x0−1 (x − 1), x0 ≤ x ≤ 1
(6.9)

where c0 and x0 are the peak displacement and its location. For a strike, often localized to a

very small region in the domain, one often uses a simple delta function distribution, i.e., one sets

ut(x, 0) = c0δ(x − x0), where c0 and x0 represent the amplitude and position of the strike.

One particular artificial (but physically reasonable) choice of initial condition profile, character-

ized by a small number of parameters, is the raised cosine distribution, defined by

crc(x) =

{
c0

2 (1 + cos(π(x − x0)/xhw)) , |x − x0| ≤ xhw

0, |x − x0| > xhw
(6.10)

Here, c0 is the peak amplitude, x0 the spatial center, and xhw the half-width length of the distribu-

tion. See Figure 6.3. Such a function may be used in order to set either u0 or v0, and, depending on

the choices of parameters, it may (very roughly) approximate the triangular and delta distributions

mentioned above. It may also be extended in a natural way to two dimensions—see §11.1.

In a more complete physical modeling framework, however, generally such interactions are mod-

eled not through initialization, but through applied forces, perhaps from a hammer or hand model;

many examples of such interactions will be discussed in this book.
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crc(x) ctri(x)

Figure 6.3: Different examples of a initialization functions. Left, crc(x) as defined in (6.9), with
c0 = 1, x0 = 0.5, and xhw = 0.1. Right, ctri(x) as defined in (6.10) with c0 = 0.5, and x0 = 0.4.

6.1.4 Strikes and Plucks: Time Evolution of Solution

Leaving aside the issue of boundary conditions, the wave equation (6.6), when supplemented by

initial conditions, is complete. This is a good chance to look at some of behaviour exhibited under

different types of initial excitation, in particular pluck-like excitations, in which case the initial

position is set to a non-zero distribution, and the initial velocity to zero, and struck excitations,

which are just the opposite. In Figure 6.4, the time evolution of the solution is shown at successive

instants under both types of conditions, using the initializing function crc(x) given in (6.10); the
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triangular initialization function will be employed slightly later, once boundary conditions have been

discussed.
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Figure 6.4: Time evolution of the solution to the wave equation (6.6), with γ = 100: (a), under a
plucked initial condition, with u0 = crc(x), and x0 = 0.5, c0 = 1 and xhw = 0.2. (b), under a struck
initial condition of v0 = crc(x), with x0 = 0.5, c0 = 500, and xhw = 0.2. Successive snapshots of the
solution profile are shown at the times indicated, over the interval x ∈ [0, 1].

6.1.5 Dispersion Relation

Frequency domain analysis is extremely revealing in the case of the wave equation in particular.

Considering the case of a string defined over the spatial domain D = R, a Fourier transform (in

space) and a two-sided Laplace transform (in time) may be used. See Chapter 5 for more details.

As a short-cut, one may analyze the behaviour of the test solution

u(x, t) = est+jβx (6.11)

where s is interpreted as a complex frequency variable, s = σ + jω, and β is a real wavenumber.

The resulting characteristic equation (see §5.1.2) is

s2 + γ2β2 = 0 (6.12)

which has roots

s±(β) = ±jγβ =⇒ σ = 0, ω(β) = ±γβ (6.13)

This is the dispersion relation for the system (6.6); the frequency and wavenumber of a plane-wave

solution are not independent. The fact that there are two solutions results from the fact that the

wave equation is second order in time—the solutions correspond to left-going and right-going wave

solutions.

6.1.6 Phase and Group Velocity

In the case of the wave equation above, the phase velocity and group velocity are both constant, i.e.,

vφ = vg = γ (1D wave equation) (6.14)

See §5.1.2. In particular, the phase and group velocities are independent of frequency ω. Thus any

wave-like solution to the 1D wave equation travels at a constant speed. One might surmise, using

arguments from Fourier theory, that if all components of a solution travel at the same speed, then
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any possible solution must travel with this speed—this is, in fact, true, and is another means of

arriving at the so-called traveling wave solution to the wave equation, to be discussed next.

6.1.7 Travelling Wave Solutions

As is well-known, the 1D wave equation possesses travelling-wave solutions [174] of the form

u(x, t) = u(+)(x − γt) + u(−)(x + γt) (6.15)

for arbitrary3 functions u(+) and u(−), which represent rightward and leftward travelling waves of

spatially non-dimensionalized speed γ, respectively. This decomposition, due to d’Alembert, may

be arrived at directly in the time-space domain, through a change of variables, or through frequency

domain analysis. Such a simple decomposition is peculiar to the 1D wave equation alone, and does

not extend in general to more complex variants of the 1D wave equation (with some exceptions)

or to the case of general wave equation in multiple dimensions. It is, however, the starting point

for digital waveguide modelling, which is perhaps the best known of all physical modelling sound

synthesis techniques, and will be discussed in more detail in Section 6.2.11. See Figure 6.5 for a

graphical representation of the traveling wave decomposition.
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Figure 6.5: Time evolution of the solution to the wave equation (6.6), with γ = 100, under a plucked
initial condition, with u0 = crc(x), and x0 = 0.5, c0 = 1 and xhw = 0.2. The solution is shown in
black, and traveling wave components in grey. Successive snapshots of the solution profile are shown
at the times indicated, over the interval x ∈ [0, 1].

Initialization is slightly more complex in the case of traveling wave components. The functions

u(+)(x) and u(−)(x) may be related to the u0(x) and v0(x) by

u(+)(x) =
1

2
u0(x) − 1

2γ

∫ x

v0(x
′)dx′ u(−)(x) =

1

2
u0(x) +

1

2γ

∫ x

v0(x
′)dx′ (6.16)

The lower limit in the integration above has been left unspecified, but corresponds to the left end

point of the domain D over which the wave equation is defined. In digital waveguide methods, it is

these variables which must be initialized, rather than physically observable quantities such as, e.g.,

displacement and velocity.

6.1.8 Energy Analysis

The frequency domain analysis above has been applied to the case of the wave equation defined

over an infinite domain D = R, and thus boundary conditions have not been taken into account.

Another way of examining the behaviour of the wave equation is similar to that which was discussed

in Section 3.1.2, with regard to the oscillator, through the use of energetic techniques. Besides the

3Arbitrary, barring technical considerations having to do with continuity of the functions themselves, and their
derivatives.
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fact that it may be applied to systems which are not linear and shift invariant, energy analysis

also provides extremely useful insights regarding correct boundary termination, as well as important

bounds on solution growth.

In the first instance, consider again the wave equation defined over the entire real line, i.e., for

D = R. Taking the inner product of (6.6) with ut over R (see §5.1.3 for the definition of the inner

product and notational details) gives

〈ut, utt〉R = γ2〈ut, uxx〉R (6.17)

and, employing integration by parts, as per (5.9), one may arrive at

〈ut, utt〉R + γ2〈utx, ux〉R = 0 (6.18)

Both of the terms in the above equation may be written as total derivatives with respect to time,

i.e.,
d

dt

(
1

2
‖u2

t‖2
R

+
γ2

2
‖u2

x‖2
R

)

= 0 (6.19)

or, more simply,

dH

dt
= 0 with H = T + V with T =

1

2
‖ut‖2

R
V =

γ2

2
‖ux‖2

R
(6.20)

Here, T and V are, resepectively, the kinetic and potential energy for the wave equation, and H is

the total energy, or Hamiltonian. (As in the case of the SHO, these quantities must be scaled by a

constant with dimensions of mass.) Equation (6.20), and the non-negativity of the terms T and V

above imply that

H(t) = H(0) ≥ 0 (6.21)

Clearly, the non-negativity of T and V also imply that

‖ut‖R ≤
√

2H(0) ‖ux‖R ≤
√

2H(0)

γ
(6.22)

Once boundary conditions are taken into account, it may be possible to improve upon these bounds—

see §6.1.10.

6.1.9 Boundary Conditions

The 1D wave equation involves second-order differentiation in space, and, as such, requires the

specification of a single boundary condition at any endpoint of the spatial domain. A typical such

condition often employed at an endpoint, such as x = 0, of the domain is the following:

u(0, t) = 0 (6.23)

Such a condition is often referred to as being of Dirichlet type. If the 1D wave equation is intended

to describe the displacement of a string, then this is clearly a fixed termination. If u(x, t) represents

the pressure variation in an acoustic tube, such a condition corresponds (roughly) to an open end

of the tube.

Another commonly-encountered condition is the Neumann condition:

ux(0, t) = 0 (6.24)

Such a condition is easily interpreted in the context of the acoustic tube as corresponding to a closed

tube end, and less easily in the case of string, where it may be viewed as describing a string endpoint

which is free to move in a transverse direction, but not longitudinally (it is best to visualize the end

of such a string as constrained to move along a vertical “guide rail”). The Dirichlet and Neumann

conditions are often generalized to include a non-zero constant on the right-hand side [113].
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Both conditions are lossless—in order to get a better idea of what this means (and to gain some

insights into how such conditions may be arrived at), energy techniques are invaluable. Consider now

the wave equation defined not over the infinite domain D = R, but over the semi-infinite domain4

D = R
+ = [0,∞]. Taking an inner product of the wave equation with ut, now over the semi-infinite

domain gives (6.17) as before, but integration by parts yields, instead of (6.18),

〈ut, utt〉R+ + γ2〈utx, ux〉R+ = −γ2ut(0, t)ux(0, t) , B (6.25)

An extra boundary term B has thus appeared, and one can thus not proceed in general to a statement

of conservation of energy such as (6.20), but rather

dH

dt
= B (6.26)

where the definition of H and its constituent terms are taken over R
+ rather than R. Now, the

lossless interpretation of the Dirichlet and Neumann conditions above should be clear; the boundary

term vanishes in either case, and one again has exact energy conservation5, as per (6.21). (Note,

however, that in the case of the Dirichlet condition, the true losslessness condition, from the above,

is rather that ut vanish at the boundary, which is in fact implied by the more realistic condition

that u itself vanish.)

Also, it follows directly that when the spatial domain of the problem at hand is finite, e.g., if

D = U = [0, 1], as is the case in all musical systems of interest, the energy balance becomes

dH

dt
= B , γ2 (ut(1, t)ux(1, t) − ut(0, t)ux(0, t)) (6.27)

The boundary conditions at both ends of the domain come into play.

Lossy Boundary Conditions

The Dirichlet and Neumann conditions are by no means the only possible boundary conditions for

the wave equation; there is in fact an infinite number of possible terminations, some of which possess

a physical interpretation. For example, a simple lossy condition is given by

ut(0, t) = αux(0, t) (6.28)

for some constant α > 0. In this case, one clearly has

B = −αγ2(ux(0, t))2 ≤ 0 (6.29)

implying that the energy is in fact non-increasing. It becomes very simple, using energetic techniques,

to categorize sources of loss according to whether they occur at the boundary, or over the problem

interior. When translated to a numerical setting, it becomes similarly possible to isolate potential

sources of numerical instability—some are of global type, occurring over the problem interior, but

often instability originates at an improperly set numerical boundary condition. The condition (6.28)

above, under a special choice of α, can lead to a perfectly absorbing (i.e., impedance matched)

boundary condition—see Problem 6.2.

One can go much further along these lines, and analyze nonlinear boundary conditions as well.

An example appears in Problem 6.3.

4One of the nice features of energy analysis is that it allows boundary conditions at different locations to be analyzed
independently; this is a manifestly physical approach, in that one would not reasonably expect boundary conditions
at separate locations to interact, energetically. The same simplicity of analysis follows for numerical methods, as will
be seen in the first instance later in this chapter.

5For those with an engineering background, including those familiar with digital waveguides, the boundary term
may be interpreted as the power supplied to the problem due to interaction at the boundary.
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Energy-storing Boundary Conditions

The Dirichlet, Neumann, and lossy boundary conditions lead to conservation of energy, as a whole,

or to instantaneous dissipation—they do not have “memory,” and are incapable of storing energy.

In some cases, one might expect a boundary termination to exhibit this property—some examples

include termination of a string by a mass-spring system, or also the open (radiative) termination of

an acoustic tube.

One condition, often used in speech applications in order to model such radiation from the open

end of a tube [197] at x = 0, is the following:

ux(0, t) = α1ut(0, t) + α2u(0, t) (6.30)

for constants α1 ≥ 0 and α2 ≥ 0. Now, the energy balance (??) becomes:

dH

dt
= −α1γ

2 (ut(0, t))
2 − α2γ

2ut(0, t)u(0, t) (6.31)

or
d (H + Hb)

dt
≤ 0 where Hb =

α2γ
2

2
(u(0, t))

2
(6.32)

The total energy of the system is thus that of the problem over the interior, H plus that stored at

the boundary, Hb, and is again non-negative and non-increasing. The term in α2 is often viewed,

in the acoustic transmission-line framework, as corresponding to the reactive (i.e., energy-storing)

part of the terminating impedance of the tube.

This condition will be returned to, in the context of tube modelling in §9.5.1.

Reflection of Traveling Waves at a Boundary

The result of the choice of boundary conditions on the behaviour of the solution to the wave equation

is perhaps most easily approached using the traveling wave decomposition. Considering the wave

decomposition (6.15), and a boundary condition at x = 0 of Dirichlet type, one immediately has

that

u(+)(−t) = −u(−)(t) (6.33)

Thus the traveling waves reflect, with sign inversion, at such a boundary. For the Neumann condition

(6.24), one has that

u(+)(−t) = u(−)(t) (6.34)

Under this condition, traveling waves reflect without sign inversion. It is useful to examine this

behaviour, as illustrated in Figure 6.6. The particularly simple manner in which boundary conditions

may be viewed using a traveling wave decomposition has been exploited with great success in digital

waveguide synthesis. It is worth noting, however, that more complex boundary conditions generally

will introduce a degree of dispersion into the solution, and traveling waves become distorted upon

reflection.

6.1.10 Bounds on Solution Size

Under conservative boundary conditions, the bounds (6.22) hold, regardless of whether D, the spatial

domain, is defined as the entire x axis, a semi-infinite domain, or a finite interval. It is important to

note that both such bounds apply to derivatives of the dependent variable, and not the dependent

variable itself. This is in direct contrast to the case of the harmonic oscillator, and might seem

counterintuitive, but follows directly from the definition of the 1D wave equation itself: note that
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Figure 6.6: Reflection of a leftward-traveling pulse at a boundary at x = 0, (a) with inversion under
Dirichlet, or fixed conditions, and (b) without inversion under Neumann, or free conditions. In this
case, the wave equation is defined with γ = 20, and the solution is plotted over the left half of the
domain, at the times as indicated.

only second derivatives appear, so that any solution of the form

u(x, t) = a00 + a01t + a10x + a11xt (6.35)

automatically satisfies the wave equation for any constants a00, a10, a01 and a11, and such a solution

can clearly not be bounded for all t and all x. The wave equation, unless properly terminated, allows

a solution which is capable of drifting.

Nevertheless, conditions may indeed be employed to derive bounds of a less strict type on the

size of the solution itself. Take, for instance, instance, the first of conditions (6.22). One may write,

for any domain D,

‖u‖D
d

dt
‖u‖D =

1

2

d

dt
‖u‖2

D = 〈u, ut〉D ≤ ‖u‖D‖ut‖D ≤ ‖u‖D
√

2H(0) (6.36)

where the first inequality above follows from the Cauchy-Schwartz inequality, and the second results

from the first of bounds (6.22). One thus has

d

dt
‖u‖D ≤

√

2H(0) → ‖u‖D(t) ≤ ‖u‖D(0) +
√

2H(0)t (6.37)

and the norm of the solution at time t is bounded by an affine function of time t which depends only

on initial conditions; growth is no faster than linear.

As one might expect, better bounds are possible if fixed boundary conditions are employed.

Considering again the wave equation defined over the semi-infinite domain D = R
+, with the

Dirichlet condition (6.23) applied at x = 0, one has, at any point x = x0,

|u(x0, t)| =
∣
∣
∣

∫ x=x0

x=0

ux(x, t)dx′
∣
∣
∣ = |〈ux, 1〉[0,x0]| ≤ ‖ux‖[0,x0]‖1‖[0,x0] (6.38)

≤ ‖ux‖R+‖1‖[0,x0] (6.39)

≤ 1

γ

√

2H(0)x0 (6.40)
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where in this case, “1” represents a function of value 1. Here, again, the Cauchy-Schwartz inequaltiy

has been used in the first inequality, and for the third, the second of bounds (6.22) has been employed.

The magnitude of the solution at any point x0 in the semi-infinite domain may thus be bounded in

terms of its distance from the end point. Notice that this is in fact a much stronger condition than

a bound on the norm of the solution (in fact, it is such a bound, but in a Chebyshev, or L∞ type

norm). If the spatial domain D above is changed to the finite interval U = [0, 1], the above analysis

is unchanged, and, as long as the boundary condition at x = 1 is conservative, one may go further

and write

|u(x0, t)| ≤
1

γ

√

2H(0) =⇒ ‖u‖U ≤ 1

γ

√

2H(0) (6.41)

which is indeed a bound on the L2 norm of the solution. If the boundary condition at x = 1 is also

of Dirichlet type, an improved bound is possible. See Problem 6.1.

6.1.11 Modes

As mentioned in Chapter 1, modal techniques appeared early on as a physical modeling sound

synthesis method. The 1D wave equation is the usual point of departure in acoustics texts [174]

for any discussion of the concept of modes of vibration. The procedure for determining the modal

behaviour of an LTI system such as the wave equation (6.1) is slightly more general than that of

dispersion analysis, in that boundary conditions are taken into account.

As a starting point, consider the behaviour of a test solution of the form

u(x, t) = U(x)ejωt (6.42)

When inserted into the wave equation, the following ordinary differential equation results:

−ω2U = γ2 d2U

dx2
(6.43)

which has solutions

U(x) = A cos(ωx/γ) + B sin(ωx/γ) (6.44)

So far, boundary conditions have not been enforced—for a string of infinite length, any frequency ω

yields a possible solution of the above form. Consider now the wave equation over the finite domain

D = U, with fixed boundary conditions at x = 0 and x = 1. Clearly, in order for U(x) to vanish at

x = 0, one must have A = 0; the condition at x = 1 leads, immediately, to

ωp = pπγ Up(x) = Bp sin(pπx) for integerp 6= 0 (6.45)

where the subscript p on ωp, Up(x) and Bp indicates the restriction of frequencies and solutions to

a countably infinite set. Thus the test functions (6.42) solve the wave equation with fixed boundary

conditions when they are of the form

up(x, t) = Bp sin(pπx)ejpπγt (6.46)

for some constants Bp. A general solution is then of the form

u(x, t) =
∞∑

p=1

Bp sin(pπx)ejpπγt (6.47)

Insisting on a real-valued solution leads a semi-infinite expansion,

u(x, t) =

∞∑

p=1

(αp cos(pπγt) + βp sin(pπγt)) sin(pπx) (6.48)

for some real constants αp and βp. These constants may be related to initial conditions by noting
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that

u(x, 0) =

∞∑

p=1

αp sin(pπx) ut(x, 0) =

∞∑

p=1

pπγβp sin(pπx) (6.49)

From Fourier series arguments, and given two initial conditions u(x, 0) = u0(x) and ut(x, 0) = v0(x),

one may then deduce that

αp = 2

∫

U

u0(x) sin(pπx)dx βp =
2

ωp

∫

U

v0(x) sin(pπx)dx, p = 1, . . .∞ (6.50)

The above modal frequencies ωp = pπγ and functions Up(x) hold for the wave equation under

fixed, or Dirichlet conditions, and must be recomputed as the boundary conditions are varied. Under

free conditions at both ends, it is straightforward to show that the modal frequencies and functions

are of the form

ωp = pπγ Up(x) = Ap cos(pπx) p = 0, . . .∞ (6.51)

The allowed frequencies are the same as in the case of fixed-fixed termination, with the minor

exception that a zero-frequency solution is possible (with p = 0)—this follows immediately from

rigid body motion, which is possible under free conditions. Under mixed conditions (i.e., fixed at

x = 0 and free at x = 1), the frequencies and functions are given by

ωp = (p − 1/2)πγ Up(x) = Ap sin((p − 1/2)πx) p = 1, . . .∞ (6.52)

In this case, the lowest modal frequency is half of that in the case of fixed/fixed or free/free termina-

tions. When such conditions are used to model the behaviour of a musical instrument, the pitch will

be an octave lower than in the other cases, and with only odd harmonics present. Such conditions

are by no means unrealistic in a musical setting, and serve to describe, to a crude approximation,

wind instruments which make use of a uniform cylindrical section of tubing, closed at one end and

open at the other.

Representations of the modal functions for all three sets of boundary conditions are given in

Figure 6.7.

Though for the simple boundary conditions discussed here, the modal frequencies may be ex-

pressed in closed form, and the modal functions themselves may be written as trigonometric func-

tions, it is worth keeping in mind that for even slightly more complex systems (such as, e.g., the

1D wave equation under some other more involved boundary termination, or virtually any other

system), modal frequencies and functions must be determined numerically. See Problem 6.4, and

the musically relevant case of the vibrating bar, in §7.1.3.

Modal Density and Degrees of Freedom

As a prelude to discrete time simulation of the 1D wave equation, it is useful to say a word about the

number of degrees of freedom of the system, which will ultimately determine computational complex-

ity for any algorithm. See the general comments on this topic in §1.3.3. The modal decomposition

allows such information to be extracted in a particularly easy way.

The modal description of the 1D wave equation is complete, in the sense that an expansion

such as (6.130) is a general solution to the PDE formulation (6.1). The initial conditions may

be expanded onto the various modes, yielding, at each frequency ωp, two coefficients, αp and βp,

corresponding to an initial displacement and velocity for a given mode. These two coefficients are

sufficient to determine the time evolution of the mode, and thus each mode possesses two degrees

of freedom. In any practical digital application (such as sound synthesis), the number of modes

must be restricted to a finite set—a natural choice is those whose frequencies which lie below half
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of the audio sampling rate, fs. In other words, one needs only those (positive) frequencies for which

ωp ≤ πfs. Considering, for example, the case of the 1D wave equation with Dirichlet conditions

imposed at either end, the modal frequencies fall in a series given in (6.45) above. For the digital

system operating at sample rate fs, the total number of degrees of freedom Nm will be twice the

number of frequencies which appear in the range ωp ∈ [0, πfs], or,

Nm ≅ 2fs/γ (6.53)

The number Nm is a measure of the complexity of the 1D wave equation in a discrete-time simulation

at sample rate fs—it is, roughly, the number of units of computer memory that will be required in

order to compute such a solution, and the number of arithmetic operations also scales with Nm. It

is important to note that this number remains roughly the same, regardless of the type of boundary

conditions which are applied. (If for instance, one makes use of Dirichlet conditions at one end of the

domain, and Neumann conditions at the other, the set of modal frequencies given in (6.52) results,

leading to the same estimate of complexity as in (6.53) above.) Even more important, and as will

be seen at various instances throughout this chapter, is that the complexity remains roughly the

same for any numerical method which simulates the wave equation at a given sample rate fs, with

the interesting exception of digital waveguides—see §6.2.11.
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Figure 6.7: Modal functions for the 1D wave equation (6.1), as a function of x ∈ U = [0, 1], under
various different boundary terminations: (a) fixed at both ends, (b) free at both ends, and (c) fixed
at the left end, and free at the right end. Modal functions are indexed by integer p—in cases (a) and
(c) above, the first four modes are shown, and in case of free-free termination, an extra constant
mode with p = 0 (which can be thought of as a DC offset) is also shown. All modal functions are
normalized to to the range [−1, 1].
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6.2 A Simple Finite Difference Scheme

The most rudimentary finite difference scheme for the 1D wave equation (and in almost all respects,

the best) is given, in operator form, as

δttu = γ2δxxu (6.54)

Here, as mentioned previously, u is shorthand notation for the grid function un
l , representing an

approximation to the solution of the wave equation at x = lh, t = nk, where again, h is the spacing

between adjacent grid points, and k is the time step. (See Chapter 5 for an overview of the difference

operator notation used here and elsewhere in this chapter.) As the difference operators employed

are second-order accurate, the scheme itself is in general second order accurate in both time and

space. (In fact, under a special choice of h and k, its order of accuracy is infinite—in other words,

it can yield an exact solution. This special case is confined to the simple wave equation alone, but

forms the basis for digital waveguides, to be discussed in Section 6.2.11.)

When the action of the operators is expanded out, a recursion results:

un+1
l = 2

(
1 − λ2

)
un

l − un−1
l + λ2

(
un

l−1 + un
l+1

)
(6.55)

The important dimensionless parameter λ, often referred to as the Courant number has been defined

here by

λ = γk/h (6.56)

This scheme may be updated, explicitly, at each time step n, from previously computed values at

the previous two time steps. It is perhaps easiest to see the behaviour of this algorithm through a

dependence plot showing the “footprint” of the scheme (6.54), shown in Figure 6.8.

ll − 1l − 2l − 3 l + 1 l + 2 l + 3

n

n + 1

n + 2

n − 1

n − 2

Update Point

h

k

Grid Index

Time
Step

Figure 6.8: Computational footprint of scheme (6.54)—a value of the grid function un
l at the update

location (l, n + 1), as indicated, is updated using values at the previous two time steps. The set of
points related under the scheme at this update location is indicated in black.

For the moment, it is assumed that the spatial domain of the problem is infinite; the analysis of

boundary conditions may thus be postponed temporarily, simplifying analysis somewhat.
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6.2.1 Initialization

Scheme (6.54), like the wave equation itself, must be initialized with two sets of values. From

the explicit form of the recursion (6.55), it should be clear that one must specify values of the

grid function un
l at time steps n = 0 and n = 1, namely u0

l and u1
l . Supposing that the initial

displacement u0
l is given, and that one also has a grid function v0

l representing the initial velocity,

one may then write for u1
l :

u1
l = u0

l + kv0
l (6.57)

which is exactly the same procedure as in the case of the simple harmonic oscillator. See §3.2.2,

and Problem 3.4. This initialization strategy, however, can lead to unexpected results, however,

especially when the initializing distribution is very sharply peaked—see Programming Exercise 6.1.

6.2.2 von Neumann Analysis

Frequency domain analysis of the scheme (6.54) is similar to that applied to the continuous time/space

wave equation. As a shortcut to full z-transform, and spatial discrete Fourier transform analysis,

consider again the behaviour of a test solution of the form

un
i = znejlβh (6.58)

where z = ensk. (See §5.2.6.) This again may be thought of as a wave-like solution, and in fact, it is

identical to the wave-like solution employed in the continuous case, sampled at t = nk and x = lh.

When substituted into the difference scheme (6.55), the following characteristic equation results:

z + 2(2λ2 sin2(βh/2) − 1) + z−1 = 0 (6.59)

which is analogous to (6.12) for the 1D wave equation. The roots are given by

z± = 1 − 2λ2 sin2(βh/2) ±
√
(
1 − 2λ2 sin2(βh/2)

)2 − 1 (6.60)

Again, just as for the wave equation, there are two solutions (resulting from the use of a second

difference in time), representing the propagation of the test solution in opposite directions.

One would expect that, in order for a solution such as (6.58) to behave as a solution to the wave

equation, one should have |z| = 1 for any value of β, the wavenumber—otherwise such a solution

will experience exponential growth or damping. This is not necessarily true for scheme (6.54). From

simple inspection of the characteristic equation (6.59), and using the same techniques applied to

the harmonic oscillator in §3.2.4, one may deduce that the roots are complex conjugates of unit

magnitude when

|2λ2 sin2(βh/2) − 1| ≤ 1 (6.61)

which can be rewritten as

λ2 sin2(βh/2) ≤ 1 (6.62)

This inequality must be satisfied for any possible value of β. Because sin2(βh/2) is bounded by one,

the condition

λ ≤ 1 (6.63)

is sufficient for stability. This is the famous Courant-Friedrichs-Lewy condition [68], which has the

interesting physical interpretation as illustrated in Figure 6.9.

It is useful to note that for λ slightly greater than unity, condition (6.62) will be violated near

the maximum of the function sin2(βh/2), which occurs at the wavenumber β = π/h, corresponding

to a wavelength of 2h—from basic sampling theory, this is the shortest wavelength which may be

represented on a grid of spacing h. A typical result of numerical instability is then the explosive
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h h h

k kk

Update Update Update
Point Point Point

Figure 6.9: A geometrical interpretation of the Courant-Friedrichs-Lewy stability condition (6.63)
for scheme (6.54). At a given update point (as indicated in the figures), the value of the solution to
the continuous time wave equation depends on values traveling on solution characteristics (solid dark
lines), defined by x − γt = constant and x + γt = constant. The cone of dependence of the solution
may be illustrated as the interior of this region (in grey). The scheme (6.54) at the update point
possesses a numerical cone of dependence, illustrated by black points, and bounded by dashed black
lines. At left, h = γk, and the characteristics align exactly with values on the grid—in this case,
the numerical solution is exact. At center, a value h < γk is chosen, violating stability condition
(6.63)—the numerical cone of dependence lies strictly within the region of the dependence of wave
equation, and as such, the scheme cannot compute an accurate solution, and is unstable. At right,
with a choice of h > γk, the numerical cone of dependence of the scheme includes that of the wave
equation, and the scheme is stable.

growth of such a component at the spatial Nyquist wavelength. See Figure 6.10.
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Figure 6.10: Numerical Instability. Left to right: successive outputs u of scheme (6.54), with a
value of λ = 1.0125, violating condition (6.63). The sample rate is chosen as 8000 Hz, γ as 100,
and initial conditions are of a plucked raised cosine, amplitude 1, half-width 0.1, and centered at
x = 0.5. As time progresses, components of the solution near the spatial Nyquist frequency quickly
grow in amplitude; within a few time steps after the last plot in this series, the computed values of
the solution become out of range.
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The CFL Condition as a Bound on Computational Complexity

As seen above, the condition (6.63) above serves as a bound which must be respected in order that

scheme (6.54) remain stable. It does not, however, say anything about how close to this bound λ

should be chosen. In fact, it is usually a good idea to choose λ as close to the stability limit as

possible, as will be shown here.

First, consider the scheme (6.54), defined over the unit interval D = U. For a grid spacing h,

the number of grid points covering the unit interval will be approximately 1/h, and for a two step

scheme such as (6.54), the number of memory locations required, degrees of freedom Nfd will be

twice this number. The stability condition (6.63) can then be rewritten as a bound on Nfd:

Nfd ≤ 2fs

γ
(6.64)

Notice the similarity with the measure of the number of degrees of freedom Nm for a modal sim-

ulation, from (6.53). When (6.64) holds with equality, the two measures are the same. What is

interesting, however, is that Nfd may be chosen smaller than this: the CFL bound (6.63) specifies

a lower bound on h in terms of k, which seems to imply that one could reduce the number of grid

points at which a numerical solution is to be calculated, resulting in a cheaper numerical method.

One could, in fact, do just this, but in fact, one is merely cheating the dynamics of the wave equation

itself, and wasting valuable audio bandwidth. It is easiest to see this after having a look at effects

of numerical dispersion, to be discussed next.

6.2.3 Numerical Dispersion

Consider now scheme (6.54) under the stability condition (6.63). Using z = ejωk, the characteristic

equation (6.59) may be written as

−4 sin2(ωk/2) = −4λ2 sin2(βh/2) → sin(ωk/2) = ±λ sin(βh/2) (6.65)

or

ω = ±2

k
sin−1 (λ sin(βh/2)) (6.66)

This is a dispersion relation for the scheme (6.54), relating frequency ω and wavenumber β in

complete analogy with the relation (6.13) for the wave equation itself.

Just as in the case of a continuous system, one may define phase and group velocities for the

scheme, now in a numerical sense, exactly as per (6.14). (See the end of §5.2.6 for some general

discussion of numerical phase and group velocities.) In the case of the wave equation, recall that

these velocities are constant, and equal to γ for all wavenumbers. Now, however, both the phase and

the group velocity are, in general, functions of wavenumber—in other words, different wavelengths

travel at different speeds, and the scheme (6.54) is thus dispersive. Dispersion leads to a progressive

distortion of a pulse as it travels, as illustrated in Figure 6.11. See Problem 6.12. This type of

anomalous behaviour is purely a result of discretization, and is known as numerical dispersion—

it should be carefully distinguished from physical dispersion of a model problem itself, which will

appear when systems are subject to stiffness—such systems will be examined shortly in Chapter

7. It is also clear that the numerical velocities will also depend on the choice of the parameter λ,

which may be freely chosen for scheme (6.54), subject to the constraint (6.63). It is useful to plot

the velocity curves, as functions of frequency for different values of λ, as shown in Figure 6.12.

Now, consider the very special case of λ = 1. Under this condition, the dispersion relation (6.66)
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reduces to

ω =
2

k
sin−1 (sin(βh/2)) =

βh

k
= γβ (6.67)

Now, the numerical dispersion relation is exactly that of the continuous wave equation, and the

phase and group velocities are both equal to γ, independently of β. There is thus no numerical

dispersion for this choice of λ—this is a reflection of the fact that the scheme (6.54) is exact when

λ = 1, as will be discussed in the next section.
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Figure 6.11: Numerical dispersion. Outputs for scheme (6.54) for the wave equation, at times as
indicated, for λ = 1 (in grey) and λ = 0.5 (in black). γ is chosen as 100, the sample rate is 16000
Hz, and the initial conditions are set according to a narrow cosine distribution, of width 1/40. Notice
that for λ away from 1, the higher-frequency components in general lag the wavefront, illustrating
the phase velocity characteristic of the scheme. Notice also that the gross speed of the wave packet
is slower as well, illustrating the group velocity characteristic.
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Figure 6.12: Numerical phase velocity (left) and group velocity as a function of frequency f , nor-
malized by the model velocity γ, for scheme (6.54), for a variety of values of λ, as indicated. The
sample rate is chosen as 44100 Hz.
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Operation Away from the CFL Bound

This is a good opportunity to return to the question of raised at the end of §6.2.2, namely that of

the possibility of reduced computational complexity when λ < 1. One way of approaching this is to

ask: what frequencies is scheme (6.54) capable of producing? The answer is most easily seen from

(6.65) above. Considering only the positive solution, and using ω = 2πf and fs = 1/k, that the

maximum such frequency fmax will be given by

sin(πfmax/fs) = λ → fmax =
fs

π
sin−1(λ) <

fs

2
(6.68)

Thus, when λ < 1, scheme (6.54) is, in essence, not capable of filling the available audio bandwidth;

the smaller λ is chosen, the lower the bandwidth of the scheme. See Figure 6.13. As a result, one can

conclude that in order to reduce computational complexity, it is a far better idea to simply reduce

the audio sample rate of the simulation, rather than to choose an unnaturally large value for the

grid spacing (i.e., one which does not allow sufficient resolution of wavelengths at the desired sample

rate). As mentioned above, such a choice also leads to undesirable numerical dispersion effects. This

may be summarized in the following way:

Rule of Thumb # 1

For an explicit numerical method, the best numerical behaviour (i.e., the least

numerical dispersion) when the stability condition is satisfied with equality.
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Figure 6.13: Typical magnitude spectra |ûo| of outputs from scheme (6.54) in dB as a function of
frequency f , under different choices of the parameter λ, as indicated in the figure. In this case, the
initial conditions are a raised cosine distribution crc(x), with x0 = 0.3, xhw = 0.05, and c0 = 1, and
the readout location is x = 0.6. The sample rate is 44100 Hz, and γ = 1102.5. Notice in particular
the reduction in the effective bandwidth of the computed solution, as λ becomes farther from the
Courant Friedrichs Lewy bound at λ = 1. Also visible is the inharmonicity resulting from numerical
dispersion, also increasing as λ is moved away from the CFL bound.

6.2.4 Accuracy

The difference operators δxx and δtt employed in scheme (6.54) are second-order accurate (see §5.2.5),

and one might suspect that the solution generated will also exhibit this level of accuracy. Recall,

however, from the discussion of a special scheme for the harmonic oscillator in §3.3.4, that accuracy

of a scheme can, in some cases, be better than that of the constituent operators. Consider, now, the
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scheme (6.54) written in the following form:

Pdu = 0 with Pd = δtt − γ2δxx (6.69)

where u is the grid function un
l . Supposing, now, that Pd operates on the continuous function u(x, t),

one may again expand the behaviour of Pd in Taylor series, to get

Pd =
∂2

∂t2
− γ2 ∂2

∂x2
+

∞∑

p=2

2

(2p)!

(

k2(p−1) ∂2p

∂t2p
− γ2h2(p−1) ∂2p

∂x2p

)

(6.70)

=
∂2

∂t2
− γ2 ∂2

∂x2
+ O(k2) + O(h2) (6.71)

Thus the difference operator Pd approximates the differential operator corresponding to the 1D wave

equation to second order in both k and h. Note, however, that when λ = 1, or when kγ = h, the

operator may be written as

Pd =
∂2

∂t2
− γ2 ∂2

∂x2
+

∞∑

p=2

2k2p−1

(2p)!

(
∂2p

∂t2p
− γ2p ∂2p

∂x2p

)

(6.72)

(6.73)

Just as in the case of scheme (3.38), each term in the summation above possesses a factor of the

form ∂2

∂t2 − γ2 ∂2

∂x2 , showing that, in fact, the difference scheme (6.54) does indeed generate a exact

solution. Such delicate cancellation of numerical error has been exploited in the construction of

highly accurate techniques often referred to as “modified equation” methods [231, 69].

6.2.5 Energy Analysis

The energetic analysis of scheme (6.54) is very similar to that of the wave equation itself. It is

easiest to begin with scheme (6.54) in its condensed operator form, and consider the unbounded

spatial domain D = Z. Taking the inner product of scheme (6.54) with the grid function defined by

δt·u (6.74)

which is an approximation to the velocity, gives

〈δt·u, δttu〉Z = γ2〈δt·u, δxxu〉Z (6.75)

After employing summation by parts (see §5.2.10), one has

〈δt·u, δttu〉Z + γ2〈δx+δt·u, δx+u〉Z = 0 (6.76)

This may be written as the total difference

δt+

(
1

2
‖δt−u‖2

Z
+

γ2

2
〈δx+u, et−δx+u〉Z

)

(6.77)

or, after identifying the terms inside the brackets above with kinetic and potential energy, as

δt+h = 0 (6.78)

with

t =
1

2
‖δt−u‖2

Z
v =

γ2

2
〈δx+u, et−δx+u〉Z h = t + v (6.79)

The total difference (6.78) above is a statement of conservation of numerical energy for the scheme

(6.54), and it thus follows that

hn = h0 (6.80)

Scheme (6.54) is exactly conservative, in a numerical sense, for this special case of a spatial

domain of infinite extent. This is true regardless of the values chosen for the time step k and
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the grid spacing h. Just as in the case of the scheme for the SHO, discussed in Chapter 3, in an

implementation, there will be variations in the energy on the order of “machine epsilon.” See Figure

6.14 for an illustration of this.
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Figure 6.14: Numerical energy conservation for scheme (6.54), with γ = 100, fs = 8000, λ = 1,
and where the initial condition is a plucked cosine pistribution, centered at x = 0.5, of amplitude 1,
and of half-width 0.1. At left, the total energy h (solid black line), v (solid grey line) and t (dotted
grey line) are plotted against time; notice that it is possible, at certain instants, for the numerical
potential energy v to take on negative values. At right, the variation of the energy (hn − h0)/h0 is
also plotted against time; multiples of the bit quantization error are plotted as solid grey lines.

6.2.6 Numerical Boundary Conditions

In order to examine boundary conditions in a simple way, it is useful to examine scheme (6.54)

defined over the semi-infinite domain D = Z
+. Now, an inner product of scheme (6.54) with δt· over

Z
+ gives

〈δt·u, δttu〉Z+ = γ2〈δt·u, δxxu〉Z+ (6.81)

After employing summation by parts, according to (5.22), boundary terms appear, i.e.,

〈δt·u, δttu〉Z+ + γ2〈δx+δt·u, δx+u〉Z+ = b , −γ2 (δt·u0) (δx−u0) (6.82)

or

δt+h = b (6.83)

with

t =
1

2
‖δt−u‖2

Z+ v =
γ2

2
〈δx+u, et−δx+u〉Z+ h = t + v (6.84)

One again has exact conservation under the conditions

u0 = 0 or δx−u0 = 0 =⇒ u0 = u−1 (6.85)

The first condition above is exactly equivalent to the Dirichlet (or fixed) boundary condition at a

left endpoint; the second is a first difference approximation to the Neumann condition; although it

refers to an imaginary grid point at index l = −1, in fact, the condition is telling us how to eliminate

this variable by setting it in terms of the values in the domain interior (in this case, the value of the

grid function at u0). Thus, at l = 0, scheme (6.55) may be modified to

un+1
0 =

(
2 − λ2

)
un

0 − un−1
0 + λ2un

1 (6.86)
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Alternative Inner Products and Boundary Conditions

As mentioned in §6.1.9, there are many possibilities for boundary termination of the continuous

time-space wave equation beyond the simple Dirichlet and Neumann conditions. In the case of a

numerical method, such as (6.54), the number of possible terminations becomes even greater, as

there is a multiplicity of ways of approximating a given continuous boundary condition in a discrete

setting. Indeed, with the right choice of inner product, one may prove numerical stability for other

numerical boundary conditions, some of which may have benefits in terms of accuracy.

The Dirichlet condition u = 0 at a boundary of the domain is relatively simple to deal with,

numerically: a condition of u0 = 0 falls immediately out of energy analysis, and is exact. The ap-

proximation to the Neumann condition arrived at in this way involves a non-centered first difference.

One might wonder about the energetic behaviour of a centered condition, such as δx·u0. To this end,

perform the energy analysis of scheme (6.54) as previously, but make use of the alternative inner

product 〈·, ·〉′
Z+ instead. In this case, one has

δt+h = b , −γ2δt·u0δx·u0 (6.87)

with

t =
1

2
(‖δt−u‖′

Z+)
2

v =
γ2

2
〈δx+u, et−δx+u〉Z+ h = t + v (6.88)

One again has exact conservation under the conditions

u0 = 0 or δx·u0 = 0 =⇒ u1 = u−1 (6.89)

The primed inner product also makes for a convenient analysis of the lossy boundary condition

(6.28). Consider the numerical approximation

δt·u0 = αδx·u0 (6.90)

In this case, b = −αγ2 (δt·u0)
2 ≤ 0, so that numerical energy is non-increasing. (Under a particular

choice of α, this boundary condition has the interesting property of being numerically perfectly

absorbing—see Problem 6.6 and Programming Exercise 6.3.)

6.2.7 Bounds on Solution Size and Numerical Stability

One might thus wonder how the concept of numerical stability, which follows from frequency domain

analysis, intervenes in the energetic framework for scheme (6.54). Take, as a starting point, the

expressions for numerical energy which appear in (6.88), in the case of scheme (6.54) defined over

D = Z
+, under conservative numerical boundary conditions (6.89). The key point, just as for the

case of the simple harmonic oscillator, is that in contrast with the energy H defined for the continuous

system, h is not necessarily positive definite, due to the indefinite nature of the numerical potential

energy term v.

To determine conditions under which the numerical energy h is positive definite, one may proceed

as in the case of the simple harmonic oscillator, and write, for the potential energy,

v =
γ2

2
〈δx+u, et−δx+u〉Z+ =

γ2

2

(

‖δx+µt−u‖2
Z+ − k2

4
‖δx+δt−u‖2

Z+

)

(6.91)

≥ γ2

2

(

‖δx+µt−u‖2
Z+ − k2

h2
‖δt−u‖2

Z+

)

(6.92)

Here, in the equality above, the identity (2.22f) for time difference operators has been used, and in
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the inequality, the bound (5.27) on spatial differences. Thus, one has for the total energy,

h = t + v ≥ 1

2

(
1 − λ2

)
‖δt−u‖2

Z+ +
γ2

2
‖δx+µt−u‖2

Z+ (6.93)

This discrete conserved energy is thus non-negative under the condition λ ≤ 1, which is the same as

the condition (6.63) arrived at using von Neumann analysis.

In order to obtain a general bound on the solution size, independent of boundary conditions, one

may note that under the condition (6.63), one then has

‖δt−u‖Z+ ≤
√

2h0

1 − λ2
(6.94)

which implies, further, that for the grid function un at any time step n, one must have

‖u‖Z+ ≤ nk

√

2h0

1 − λ2
(6.95)

Thus, just as for the bound (6.37) in the case of the continuous wave equation, growth of the l2
norm of the discrete solution is no faster than linear. If boundary conditions are of Dirichlet or fixed

type, then, just as in the continuous case, better bounds are available. See Problem 6.8.

Instability at Boundaries

The proper discretization of boundary conditions is a very delicate business, as far as stability is

concerned—though, for a simple system such as the wave equation, the “obvious” numerical choices

turn out to work properly (as will be shown in the next section), for more complex systems, there

are many more choices, and, thus, many more ways to go astray.

As a rudimentary (though somewhat artificial) example of a “bad” choice of boundary condition

in the present case of scheme (6.54) for the wave equation, consider the following Neumann-type

condition at grid point l = 0:

αδx−u0 + (1 − α)δx·u = 0 (6.96)

where α is a free parameter. This can be viewed as a weighted linear combination of the two

conditions δx−u0 = 0 and δx·u0 = 0, both of which lead to stable simulation results. One might

argue then that such a condition must also lead to stable results, but, in fact, depending on the

choice of α, it can become unstable, as illustrated in Figure 6.15, with a choice of α = −0.05. Notice

that the nature of this instability is of a different nature from that resulting from the violation of

the CFL condition, illustrated in Figure 6.10. Here, the unstable behaviour originates from the

boundary location itself, rather than over the entire domain. From a programming and debugging

standpoint, it is obviously helpful to be able to classify such types of instability. It is interesting to

note that the boundary condition above is, in fact, conservative, provided one makes the right choice

of inner product to build an energy function. Thus, again, energy conservation is not sufficient for

numerical stability, but rather non-negativity of conserved energy. See Problem 6.5.

The analysis of numerical stability, including the effect of boundary conditions has been car-

ried out by many authors. One classic, and very powerful technique, introduced by Gustaffson,

Kreiss, Sundstrom and Osher [114, 147, 185], is based on frequency domain analysis of the com-

bined scheme/boundary condition system, and reduces essentially to conditions on root locations in

the complex plane. Another technique involves performing eigenvalue analysis of a scheme, when

written in state space form—see the next section. This is often referred to as the “matrix method.”

As might be apparent, such a technique is generally applicable to systems which are LTI (and not

merely LSI), though the extension to nonlinear systems becomes problematic. The greater difficulty,
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Figure 6.15: Numerical instability at an improperly chosen boundary condition. In this case, as an
approximation to the Neumann condition at x = 0, the condition αδx−u0 +(1−α)δx·u0 = 0 is used,
with a value of α = −0.05. The parameters and initial conditions are otherwise as for the example
shown in Figure ??. Within a few time steps of the last figure shown, the computed values are out
of range.

pointed out by Strikwerda [244] is that such analysis does not give much guidance as to how to how

to proceed if, indeed, the eigenvalue analysis reveals a stray unstable mode.

Energy analysis can give sufficient conditions for stability under a particular choice of boundary

condition, in particularly insightful way. As an example, consider the wave equation defined over

R
+, with the radiative boundary condition (6.30) applied to the left end (this condition is crucial

for brass and woodwind instrument modeling). Here is one possible numerical boundary condition:

δx·u0 = α1δt·u0 + α2u0 (6.97)

From the numerical energy balance (6.87) in the primed inner product, one has, for the boundary

term b,

b = −γ2α1 (δt·u0)
2 − γ2α2 (δt·u0)u0 = −γ2α1 (δt·u0)

2 − γ2α2

2
δt+ (u0et−u0) (6.98)

where, in the second step above, identity (2.22b) has been employed. Now, however, one may write,

for energy balance (6.87),

δt+ (h + hb) = −γ2α1 (δt·u0)
2 where hb =

γ2α2

2
u0et−u0 (6.99)

This balance, involving a stored energy over the problem interior (h) and at the boundary (hb) is

completely analogous to (6.32) for the continuous system. The numerical energy of the system as a

whole must decrease. But, as before, it is the positivity condition on the new combined numerical

energy which leads to a stability condition. One may write, for h and hb, using steps similar to those

employed previously,

h ≥ 1

2

(
1 − λ2

) (

‖δt−u‖′

Z+

)2

hb ≥ −γ2α2k
2

8
(δt−u0)

2 (6.100)

or

h + hb ≥
∞∑

l=1

h

2

(
1 − λ2

)
(δt−ul)

2
+

(
h

4

(
1 − λ2

)
− λ2α2h

2

8

)

(δt−u0)
2

(6.101)

The first term above is non-negative under the CFL condition (6.63). For the second term, however,

the condition is more strict:

λ ≤ 1

1 + α2h/2
(6.102)
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The above condition is sufficient for stability under the boundary condition (6.97). It is not, however,

necesary, and there do exist other numerical boundary conditions which do not lead to an extra

interfering condition—see Problem 6.7 and Programming Exercise 6.4. Similar issues arise when

dealing with connections with lumped objects—see, e.g., §7.7.1 for an example, and discussion of a

general principle behind ensuring numerical stability for connections of objects.

6.2.8 State Space Form and Modes

For those with a background in electrical engineering (and, in particular, control theory), it is useful

to rewrite the difference scheme (6.54) in state space, or vector-matrix form. Though in this book,

the difference operators are sparse, and thus not do not require full storage in matrix form, for

implicit schemes, it will be necessary to solve linear systems involving such matrices.

Suppose that the values of the grid function un
l to be computed at time step n are arranged

in a finite-length column vector u. (If it is necessary compute values of the grid function at the

endpoints, the vector will be of the form un = [un
0 , . . . , un

N ]T , if not, then it will be of the form

un = [un
1 , . . . , un

N−1]
T .) The operator δxx in matrix form must be specialized from the infinite form

given in (5.15), taking boundary conditions into account. Some examples of such forms include those

given in (5.16).

Regardless of the exact form of Dxx, difference scheme (6.54) may be written, in vector-matrix

form, as

un+1 =
(
2I + γ2k2Dxx

)
un − un−1 or

[
un+1

un

]

︸ ︷︷ ︸

wn+1

=

[
2I + γ2k2Dxx −I

I 0

]

︸ ︷︷ ︸

A

[
un

un−1

]

︸ ︷︷ ︸

wn

(6.103)

where here, I and 0 indicate identity and zero matrices of the appropriate size. The first form above

is a two-step recursion in the vector un, and the second a one-step recursion in the expanded vector

wn = [(un)T , (un−1)T ]T , which can be thought of as the state of the finite difference scheme (6.54).

The one-step form is known as a state-space representation.

Examining the first form above, and assuming solutions of the form u = φzn, the characteristic

equation
1

k2
(z − 2 + z−1)φ = γ2Dxxφ (6.104)

results. The solutions, φp, which are the eigenvectors of Dxx, whatever form it takes, can be

interpreted as the modal functions of difference scheme (6.54); in general, due to discretization error,

they will be distinct from the modes of the wave equation itself. The associated modal frequencies

ωp will then be given as solutions to the quadratic equations

zp + (−2 − γ2k2eigp(Dxx)) + z−1
p = 0 (6.105)

where eigp(Dxx)) signifies “pth eigenvalue of,” and where zp = ejωpk. If the eigenvalues of Dxx

satisfy the condition −4/k2 ≤ eig(Dxx) ≤ 0 (this is similar to the CFL condition (6.63) for the

scheme), then the roots of this characteristic equation will be on the unit circle, with the numerical

frequencies given by

ωp =
2

k
sin−1

(

kγ
√

eigp(−Dxx)
)

(6.106)
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Table 6.1: Modal frequencies, in Hertz, for scheme (6.54) for the wave equation, with γ = 882, and
under fixed boundary conditions, operating at a sample rate of fs = 44100 Hz.

Mode number λ = 1 λ = 0.98 λ = 0.94 λ = 0.9 λ = 0.8

1 441.0 441.0 441.0 441.0 441.0
2 882.0 882.0 881.9 881.8 881.7
3 1323.0 1322.9 1322.7 1322.5 1321.9
4 1764.0 1763.8 1763.4 1762.9 1761.4
5 2205.0 2204.6 2203.8 2202.9 2199.9
6 2646.0 2645.3 2643.9 2642.3 2637.0

Numerical Inharmonicity

In a musical setting, the perceptual counterpart to numerical dispersion, or the artifact of variation

in wave speed with frequency, is a detuning of modal frequencies from those of the model equation

itself; generally, for finite difference schemes, this will be an effect of increasing importance with

higher frequencies.

As an example, consider the 1D wave equation, with parameter γ = 882, under fixed boundary

conditions. The modal frequencies are integer multiples of γ/2 = 441. It is interesting to look at

the behaviour of the modal frequencies of scheme (6.54), operating at sample rate fs = 44100 Hz,

under different choices of the Courant number λ—these may be calculated from (6.106) above. See

Table 6.1.

There are several things worth noting here. As expected, the frequencies are exact when λ = 1.

For other values of λ, the frequencies become successively detuned from these exact values, both

as the modal frequencies become higher, and as λ is moved away from the stability condition at

λ = 1. On the other hand, even under dispersive conditions, the detuning of modal frequencies

is rather small, and, in the worst case in the table presented above, a little under 6 cents. This

is a rather complex issue, psychoacoustically speaking. One might argue that, given that human

frequency sensitivity is very limited beyond about 3000 Hz [291], numerical dispersion is thus not

really of perceptual importance. This is partly true—in fact, the sound output generated using such

an algorithm will indeed have a pitch of almost exactly 441 Hz, under various choices of λ, as the

reader may wish to verify by running the code example provided in §A.4. What the reader will also

notice, however, for values of λ away from 1, is that the inharmonic upper partials tend to become

very closely spaced in the upper range of the spectrum (see, e.g., Figure 6.13), generating a somewhat

unpleasant noise-like component to the output! Though in more realistic models, of, e.g., strings,

such an effect will always be subsumed by losses which are strong at high frequencies, the conclusion

here is that the question of the perceptual importance of numerical dispersion depends strongly on

the problem at hand, and is an important design consideration, if one is employing direct simulation

techniques—indeed, modal methods, as well as digital waveguides in the 1D case exhibit no such

effect. Another source of detuning is the precise nature of the numerical boundary condition—

although the numerical Dirichlet condition applied to the scheme (6.54) is indeed exact, this is not

necessarily true of other conditions. The Neumann condition is one example—see Programming

Exercise 6.5.
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6.2.9 Output and Interpolation

The generation of sound output is, obviously, the end goal of physical modeling synthesis. Clearly,

a complete consideration of the signal path from a vibrating object to the human eardrum is enor-

mously complex, and depends not merely on the vibrating object itself, but also the geometry and

other properties of the room in which it is vibrating, the position of the listener with respect to

the instrument, etc. In principle, one could attempt a full time domain simulation of the accom-

panying ambient system—but such a calculation is gargantuan, and dwarfs that of the vibrating

object. Some comments on the feasibility of full 3D room acoustics simulations appear in §16.1.2. If

one is interested in ambient effects, one is far better off making use of simplified systems based on

psychoacoustic considerations []. Indeed, as wave propagation in acoustic spaces is linear, the entire

perceptual effect of the room on a generated musical sound can be well described using transfer

function models, using as an input the vibration amplitude of the musical object at its surface. For

these reasons, in this book, any discussion of output will be limited to direct reading of vibration

amplitude—if one wants to go further and add in room effects, one may do so in a subsequent step!

For a time-domain method, certainly the easiest way to generate output is to merely read a value

from the grid function as it is being updated, at a given observation point. In the case of scheme

(6.54), and supposing that the output location is xo, this may be done using interpolation—see

§5.2.4. If Ip(xo) is the corresponding pth order interpolation operator, an output time series un
o may

be generated from the grid function un
l for scheme (6.54) as

un
o = Ip(xo)u

n
l (6.107)

This is a “feed-forward” step, and clearly there is no risk of instability, once un has been calculated.

It is also extremely cheap—no more than a handful of operations are required for this computation,

and certainly far fewer than the number required by the recursion (6.54) itself. Indeed, if the output

location is fixed, it is probably a good idea to use zeroth-order interpolation (i.e., rounding of the

output location to that of the grid point to its left), and avoid arithmetic altogether. One may wish

to process the time series un
o with, e.g., a simple high-pass filter crudely modeling radiation effects

[].

As expected, there will be a spectral effect associated with the choice of output location—see

Figure 6.16, where output waveforms and frequency spectra are plotted for distinct output locations.

For instance, if output is read from the string center, all even-numbered harmonics will necessarily

be absent from the output spectrum. More generally, the choice of output location leads to spectra

windowing effects

Moving Output Locations

For a time domain method, there is no reason why the output location cannot itself be moving—see

the footnote on page 103 for some justification for this. Indeed, the idea of reading from a physical

model at variable locations has been proposed as a synthesis technique known as “scanned synthesis”

[?], though in that case, the readout point may be moving at audio rates, effectively modulating the

output of the physical model. Here, however, it will be assumed that the motion is slow relative to

the speed of wave propagation, leading to a phasing effect, as various harmonics are cancelled. See

Figure 6.17. In contrast to the case of a static output location, good interpolation will be necessary,

otherwise audible distortions (“clicks,” as well as potentially time-varying low-passing) will occur in

the output.
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Figure 6.16: Output of scheme (6.54), with fs = 44100 Hz, and γ = 1102.5, with an initial “plucked”
condition of the form of a sharp pulse centered at x = 0.6, at different locations: (a) at x = 0.5, (b)
at x = 0.3, and (c) at x = 0.1. In each case, the output waveform is shown at top, and the frequency
spectrum at bottom.

Multiple Output Locations

It is also straightforward, once one has computed a grid function un
l , to read output simultaneously

at various points—these will exhibit some slight spectral variations. When mapped to different

loudspeakers (possibly many), the spectral variations serve as an excellent means of spatializing (in

a very crude sense) physical modeling output. It is important to note that, for time domain methods,

computational cost is approximately independent of the number of outputs, because the entire state

of the virtual object is directly observable. In this sense, multiple outputs come “for free.” The

same is true for digital waveguide models, but not for methods based on modal synthesis—see the

comments on this topic in §6.6. See also Programming Exercise 6.6, with deals with multiple moving

output locations in the case of the wave equation.

6.2.10 Implementation Details and Computational Requirements

Now that the finite difference scheme (6.54) has been examined from many different perspectives, it

is worth discussing some of the practical considerations that arise when one settles down to program

such a method for synthesis. Basic example code provided in §A.4 for reference on the points raised

here.

One minor consideration is that of the choice of time step k and grid spacing h. For synthesis

(in stark opposition to other mainstream applications), it is the time step which is chosen first, as

k = 1/fs, where fs is a typical audio sample rate such as fs = 32000, 44100, 48000 Hz, etc. The grid

spacing h must then be chosen according to the CFL condition (6.63). Clearly, at least in the case

of the 1D wave equation, a choice of λ = 1 is ideal, as it leads to an exact solution. But in real-world
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Figure 6.17: Spectrograms of output of scheme (6.54), with fs = 44100 Hz, and γ = 1000, under
a “plucked” initial condition of the form of a sharp spike. In (a), the output location is fixed at
x = 1/3, and in (b), the output location varies sinusoidally about x = 1/3, at a sub-audio rate.

applications, the spatial domain will always be the unit interval D = U, and the grid spacing h must

divide this domain into an integer number of parts, i.e., h = 1/N , for some integer N . As discussed

in §6.2.3, however, it is always advantageous to choose the grid spacing such that the CFL condition

is satisfied as near to equality as possible. Thus, in an initial step, one may set λ = 1, and then

choose N as:

N := floor(λ/γk) then : h := 1/N and reset λ := γk/h (6.108)

Generally, for sufficiently high sample rates and low values of γ (or fundamental frequency), the

dispersion introduced will be minimal. Another strategy is to simply choose λ = 1 and h accordingly,

and allow the domain to be of a length slightly different from 1—this is less desirable, however, as

it can lead to an audible mistuning of the fundamental, a phenomenon which does not occur if the

previous method is employed. Digital waveguide methods on the other hand (see next section), rely

on the choice of λ = 1, and thus only this second method is viable.

In general, the computational requirements will depend on the choice of the sample rate, the

grid spacing (mediated by the CFL condition), as well as the complexity of the scheme footprint.

In this case, as may be read from the explicit form of the recursion (6.55), updating at a given grid

point requires, for a general choice of λ, two multiplications and three additions, or five arithmetic

operations. When the domain is limited to the unit interval, evaluations at approximately 1/h such

points will be required—one says approximately because, depending on boundary conditions, one

will have some minor variations in the number of grid points. Thus 5/h arithmetic operations are

required per step in the recursion, and thus, in one second, 5/hk operations will be required. If h

and k are chosen according to (6.63) close to equality, then the full count will be 5f2
s /γ operations

per second. Thus computational complexity scales as the square of the sample rate. The number

Nfd of required units of memory is as given in (6.64), corresponding to two grid functions worth

of data. Note that in the implementation in §A.4, for programming simplicity, three separate grid

functions are used—this can be reduced to two, in the same way as has been discussed with respect

to the simple harmonic oscillator—see §3.2.7 and Programming Exercise 3.1.
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6.2.11 Digital Waveguide Interpretation

Consider the scheme (6.54), for the special case of λ = 1. As was noted in §6.2.3, the numerical

phase and group velocities of the scheme are identical to those of the wave equation itself, and thus

independent of frequency. The expanded recursion (6.55) reads, now, as

un+1
l = un

l+1 + un
l−1 − un−1

l (6.109)

Notice, in particular, that (1) there are no longer any multiplications necessary to update the scheme,

and (2), the center grid point in the scheme footprint (see Figure 6.8) is no longer used.

It is straightforward to identify this simplified scheme as an exact traveling wave solution to the

wave equation. First consider the traveling wave solutions themselves, defined by

w(+)(x, t) = u(+)(x − γt) w(−)(x, t) = u(−)(x + γt) (6.110)

At a location x = lh, t = nk, one has, immediately, that

w(+)(lh, nk) = u(+)(lh − γnk) = u(+)(h(l − n)) = u(+)(h(l − 1) − h(n − 1)) = w(+)((l − 1)h, (n − 1)h)

w(−)(lh, nk) = u(−)(lh + γnk) = u(−)(h(l + n)) = u(−)(h(l + 1) + h(n − 1)) = w(−)((l + 1)h, (n − 1)h)

The above relations follow only under the condition that λ = 1, or, equivalently, that h = γk.

Notice that no approximations have been employed. Replacing the functions w(+) and w(−) by grid

functions, one has

w
(+),n
l = w

(+),n−1
l−1 w

(−),n
l = w

(−),n−1
l+1 un

l = w
(+),n
l + w

(−),n
l (6.111)

The first two identities above indicate propagation of discrete wave-like variables to the right and

left respectively, and the third that the observable physical variable u may be written as a sum of

two such waves.

Given the three definitions above, one may then write:

un+1
l = w

(+),n+1
l + w

(−),n+1
l = w

(+),n
l−1 + w

(−),n
l+1 = un

l+1 + un
l−1 − w

(−),n
l−1 − w

(+),n
l+1

= un
l+1 + un

l−1 − w
(−),n−1
l − w

(+),n−1
l

= un
l+1 + un

l−1 − un−1
l

which is identical to the simplified scheme (6.109).

The key to an efficient implementation is the recognition of the fact that the solution may be

advanced purely though shifting operations applied to the wave variables w(+) and w(−). u itself

need only be computed in a “feed-forward” step at points at which an output is desired. See Figure

6.18. Typically, in audio, scalar outputs only are desired, and one does not need to observe the

entire state of the object under consideration. There is thus a major distinction between sound

synthesis and other applications, which perhaps explains why although such exact discrete traveling

wave solutions to the wave equation have been known for decades [3], this potential for increased

efficiency was only seized upon by Smith [242]. More will be said about this is §6.6.

In terms of the wave variables w(+) and w(−), as mentioned above, only shifting operations are

required to advance the solution, leading to the well-known bidirectional delay line form, as shown

in Figure 6.18. For the sake of reference, an implementation of the digital waveguide is provided in

§A.6.

Initialization may be carried through some discrete approximation to (6.16). That is, if the

continuous initializing functions u0(x) and q0(x) =
∫

v0(x
′)dx′ are known, they may be sampled



148 CHAPTER 6. THE 1D WAVE EQUATION

k

k

k

k

k

k

k

k

k

k

x = (l − 2)h x = (l − 1)h x = lh x = (l + 1)h

w
(+)
l−2 w

(+)
l−1 w

(+)
l

w
(+)
l+1

w
(+)
l−2 w

(+)
l−1 w

(+)
l

w
(+)
l+1

ul

Figure 6.18: Schematic showing the delay line, or digital waveguide interpretation of (6.111). Here,
delays of duration k seconds are indicated by boxes. The spacing between grid locations h must be
related to the delay k by h = γk.

directly to yield the wave variables as

w
(+),0
l =

1

2
u0(lh) − 1

2γ
q0(lh) w

(−),0
l =

1

2
u0(lh) +

1

2γ
q0(lh) (6.112)

This is clearly simpler when the excitation is of “plucked” type (i.e., v0(x) = 0). If q0(x) is not

expressible in closed form, then v0(x) may be integrated numerically—for instance, one could recur-

sively generate the grid function q0,l = q0,l−1 + hv0(lh), and use it in place of the samples q0(lh) in

the above formula.

Boundary Conditions

Boundary termination of digital waveguides can be straightforward, for simple choices of boundary

conditions. The most common types are as shown in Figure 6.19, in the case of a termination at the

left end of the domain.

Termination with sign inversion, with the leftward-propagating delay line feeding back into the

rightward propagating line is particularly easy to analyze. If the termination point is situated

directly on the boundary, at x = 0, then one has w
(+),n
0 = −w

(−),n
0 . This immediately implies, from

summing of waves as per (6.111), that un
0 = w

(+),n
0 +w

(−),n
0 = 0, corresponding to the Dirichlet type

numerical boundary condition, as discussed in §6.1.9.

Another type of termination involves feeding back the signal from the leftward propagating delay

line into the rightward propagating delay line, without sign inversion, and with an extra element of

delay. It can be shown that this corresponds to a Neumann-type numerical boundary condition in

scheme (6.54):

un+1
0 = w

(+),n+1
0 + w

(−),n+1
0 = w

(−),n
0 + w

(−),n
1 = un

0 − w
(+),n
0 + un

1 − w
(+),n
1

= un
0 + un

1 − w
(−),n−1
0 − w

(+),n−1
0

= un
0 + un

1 − un−1
0

This is exactly the scheme (6.54), with λ = 1, at the grid point l = 0, under the condition that

δx−u0 = 0.

Both these conditions were shown, earlier, to conserve numerical energy, leading to stability

conditions. In the waveguide picture, however, stability is obvious: the delay line is itself obviously

lossless, and terminations such as sign inversions, or simple delays cannot serve to cause solution
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growth. More elaborate settings for boundary conditions terminating digital waveguides are a central

feature of waveguide modeling. See the text by Smith for much more on this topic.

k

k

k

k

k−1

x = 0 x = h x = 0 x = h

(a) (b)

Figure 6.19: Terminations of a digital waveguide at a left end corresponding to (a) a fixed, or
Dirichlet boundary condition, and (b) a free or Neumann condition.

There is obviously a lot more to say about waveguides, and though there will be some further

reference to scattering structures (see §6.6 in this chapter for some general comments on waveguides,

and comparison with other synthesis methods, and §11.1.6 for the 2D extension of the digital waveg-

uide), the present treatment must unfortunately end here. The interested reader is referred to the

ample literature on this subject—see the references in §1.2.3.

6.3 Other Schemes

Given that scheme (6.54) is exact for λ = 1, there is not practical interest in exploring more elaborate

schemes for the 1D wave equation. On the other hand, few systems permit such an exact solution,

and the 1D wave equation is thus quite singular in this regard, and not at all representative of any

other system of interest in musical acoustics. For this reason, some more complex finite difference

constructions are briefly described in this section. For much more on elaborate finite difference

constructions for the 1D wave equation, see, e.g., [261, 181, 182, 69, 23].

6.3.1 A Stencil-width Five Scheme

A simple explicit generalization of scheme (6.54) involves a wider-stencil centered approximation to

the spatial derivative term:

δttu = γ2 (α + (1 − α)µx·) δxxu (6.113)

This scheme involves a free parameter α, and reduces to scheme (6.54) when α = 1; it is nominally

second-order accurate in both space and time, which is immediately evident since all operators are

centered. Notice, in particular, the use of the operator α + (1 − α)µx·, which is an approximation

to the identity operation, as discussed at the end of §5.2.2. The form above may be expanded into

the following recursion:

un+1
l = (2 + λ2(1 − 3α))un

l + λ2(2α − 1)
(
un

l−1 + u2
l+1

)
+

λ2

2
(1 − α)

(
un

l+2 + un
l−2

)
− un−1

l (6.114)

This scheme clearly makes use of points two grid spacings removed from the update point, and

thus has a stencil width of five. See Figure 6.20(a) for a representation of the stencil or “footprint”
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corresponding to this scheme.

The characteristic equation for scheme (6.113) is easily obtained, again through the insertion of

a test solution of the form un
l = znejlβh:

z +
(
−2 + 4λ2

(
1 − 2(1 − α) sin2(βh/2)

)
sin2(βh/2)

)
+ z−1 = 0 (6.115)

The condition that the roots of the characteristic equation be of unit magnitude is thus, from (2.15),

that

0 ≤ λ2
(
1 − 2(1 − α) sin2(βh/2)

)
sin2(βh/2) ≤ 1 (6.116)

for all values of β. In order to approach the analysis of this apparently unwieldy expression, note

that what is really needed is to find the maximum and minimum values of a polynomial over an

interval. Writing p = sin2(βh/2), and noting that 0 ≤ p ≤ 1, the conditions above may be written

as

min
p∈[0,1]

F (p) ≥ 0 and λ2 ≤ 1

maxp∈[0,1] F (p)
where F (p) = p(1 − 2(1 − α)p) (6.117)

The left-hand inequality is satisfied for

α ≥ 1/2 (6.118)

Given the above restriction on α, the right hand inequality yields a rather complex bound on λ,

which is dependent on the chosen value of α:

λ ≤
{√

8(1 − α), 1
2 ≤ α ≤ 3

4√
1

2α−1 , α > 3
4

(6.119)

See Problem 6.14.

One problem with the use of such a scheme is that because the stencil or footprint is now wider,

it will be necessary to set an additional boundary condition when the scheme is restricted to a

finite domain, such as UN . It is clear that updating un+1
l at grid points of index l = 0 and l = 1

requires access to values outside the domain interior, but the wave equation itself allows only a single

boundary condition at the endpoint of the domain. This extra numerical boundary condition must

thus be set very carefully—this is a general problem with numerical methods of high accuracy which

do not operate locally. Energetic analysis for this scheme is also possible, and in fact leads to the

same stability conditions above, as well as to proper settings for the numerical boundary conditions;

because this scheme is of academic interest only, such analysis will be not be presented here. Energy

analysis of wider stencil schemes will, however, be dealt with at a later stage, in the case of the ideal

bar, in §7.1.4.

In general, the choice of the parameter α has a rather large influence on the numerical phase and

group velocities (and thus on the tuning of mode frequencies). See Figure 6.21(a).

6.3.2 A Compact Implicit Scheme

A generalization of scheme (6.54) of an entirely different character is the following:

(θ + (1 − θ)µx·) δttu = γ2δxxu (6.120)

This scheme also involves a free parameter θ, and reduces to scheme (6.54) when θ = 1, and is again

nominally second-order accurate in both space and time. Variants of this scheme have indeed been

used for sound synthesis [51] from models of vibrating strings, and xylophone bars [116], though

the version presented here is slightly different from that used in the references above (see Problem

6.16). The sybol θ has been chosen to indicate the relationship with so-called “θ-schemes,” used for

simulating first order equations, particularly in fluid dynamics applications [].
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Figure 6.20: Computational stencil of (a) scheme (6.113), and (b) scheme (6.120)
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Figure 6.21: Numerical phase and group velocity for (a) scheme (6.113) and (b) scheme (6.120),
under various choices of the free parameters α and θ, respectively, as indicated.

The following recursion results:

θun+1
l +

1 − θ

2

(
un+1

l+1 + un+1
l−1

)
=
(
λ2 + 1 − θ

) (
un

l+1 + un
l−1

)
+2(θ−λ2)un

l −θun−1
l +

θ − 1

2

(
un−1

l+1 + un−1
l−1

)

(6.121)

In this case, the values of the grid function at the update time step n + 1, written on the left side of

the above recursion, are coupled; this is the first instance in this book of a so-called implicit finite

difference scheme. It is not possible to solve the above recursion without the use of linear system

solution techniques, which are generally more costly than simple explicit updating. In order to better

understand the implementation of such a scheme, matrix representations of difference operators as

discussed in §5.2.7 are essential. Assuming the column vector un to contain the values of the grid

function un
l , then the scheme may be written as

un+1 = A−1Bun − un−1 with A = θI + (1 − θ)Mx· B = γ2k2Dxx + 2A (6.122)

where it is assumed that if the grid function is limited to a finite set of values, boundary conditions

(to be discussed shortly) will be incorporated into the above matrices. Dxx and Mx· are matrix

representations of the difference operators δxx and µx·, which appear, in infinite form, in §5.2.7. The
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real work involved here is in the solution of the linear system involving the matrix A at each time

step. A full matrix inversion of A (or even full storage of the matrix A itself) is to be avoided in

any implementation, as A is tridiagonal and thus very sparse, and various fast solution techniques,

most notably the Thomas algorithm [251, 244] are often employed. See Programming Exercise 5.4

in the previous chapter, which illsutrates the use of all-purpose iterative methods in the Matlab

programming environment.

In exchange for this added complexity, such schemes are potentially much more accurate than

explicit schemes, and often operate under much looser stability conditions (though it should be kept

in mind that in this very special case, scheme (6.120) is exact when θ = 1. To this end, it is worth

again writing the characteristic polynomial corresponding to scheme (6.120), again employing the

variable p = sin2(βh/2):

(1 − 2(1 − θ)p) z + (4λ2p − 2 (1 − 2(1 − θ)p)) + (1 − 2(1 − θ)p) z−1 = 0 (6.123)

The stability analysis here is similar to that of the five-point scheme discussed in the previous section,

except that now, one must determine the maximum and minimum values of a rational function over

the unit interval; the stability conditions are then

min
p∈[0,1]

F (p) ≥ 0 and λ2 ≤ 1

maxp∈[0,1] F (p)
where F (p) =

p

1 − 2(1 − θ)p
(6.124)

which are satisfied when

θ ≥ 1

2
and λ ≤

√
2θ − 1 (6.125)

See Problem 6.15. Notice here that as θ becomes large, λ can also be large as well, meaning that,

for a given grid spacing h, the time step k can become large as well, leading to fewer recursion

steps relative to the standard scheme (6.54), for which λ is bounded strictly by 1. This is the

justification often given for using implicit methods []—though each step in the recursion becomes

more complex, computationally, than that of an explicit scheme, one may get away with fewer such

steps. For sound synthesis, this is probably the wrong way of looking at the relative merits of

explicit and implicit methods. The time step k is fixed, from the outset, from the audio sample

rate. A better intepretation is that implicit methods, operating at a given sample rate can allow

for much lower numerical dispersion than an explicit scheme operating at the same sample rate.

Some examples of this will be provided at later stages in this book, particularly in the case of bar

vibration in §7.1.5, but a good question is: in the context of musical sound synthesis, is the reduction

of numerical dispersion of enough perceptual importance to justify the use of more complex schemes?

The answer, however, can only be dependent on the specifics of the problem at hand. The reduction

of numerical dispersion, however, is but one advantage of implicit methods; another is easier control

over stability, one which will be seen to be of great utility in dealing with sound synthesis methods

for nonlinear problems. See, for example, Chapter 8 for some examples of the use of implicit methods

in the case of nonlinear string vibration.

One potential complication of the use of implicit methods is in setting boundary conditions—it

can be far less clear how to do this properly when the update values at the boundaries themselves

are coupled to other unkmowns. Again, energy analysis is invaluable in this respect. For scheme

(6.120), it is useful to employ identity (5.12), and rewrite the scheme as
(

1 +
(1 − θ)h2

2
δxx

)

δttu = γ2δxxu (6.126)

Considering the scheme defined over the semi-infinite domain D = Z
+, taking an inner product with
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δt·u gives, as usual,

δt+h = b (6.127)

where in this case, one has

h = t+v with t =
1

2
‖δt−u‖2

Z+−
(1 − θ)h2

4
‖δt−δx+‖2

Z+ v =
γ2

2
〈δx+u, et−δx+u〉Z+ (6.128)

and

b = −γ2 (δt·u0) (δx−u0) +
(1 − θ)h2

2
(δt·u0) (δx−δttu0) (6.129)

The scheme will be conservative when b vanishes, and it is easy to see from the above expression

that this will be true when, for example, u0 = 0, or δx−u0 = 0, which are the same discrete Dirichlet

and Neumann conditions as for the simple scheme (6.54).

6.4 Modal Synthesis

The modal solution presented here indicates a straightforward means of performing synthesis. Once

the modal frequencies and functions have been determined (and in the present case of the 1D wave

equation under the simple types of boundary terminations presented here, these are expressible in

closed form), and, for a given pair of initial conditions u(x, 0) and ut(x, 0), the weighting coefficients

αp and βp have been determined, through a Fourier series decomposition such as (6.50), the solution

at an output position such as x = xo may be written directly as

u(xo, t) =
∑

p

(αp cos(pπγt) + βp sin(pπγt)) sin(pπxo) (6.130)

Leaving aside the issue of the infinite sum above, which must be truncated in any implementation, the

main computational work will be in the generation of the time-dependent sinusoids above. Though

this could, of course, be done using simple table look-up operations, as discussed in the context of

abstract sound synthesis in §1.1.3, another way of proceeding, provided one has already calulated

the modal frequencies and shapes, is express the wave equation as a set of ODEs, as per

U(xo, t) =
∑

p

Up(xo, t) with
d2Up(xo, t)

dt2
= −ω2

pUp(xo, t) (6.131)

The solution may be expressed as a parallel combination of uncoupled simple harmonic oscillators.

In discrete time, for each SHO in the sum above, one could use a simple scheme such as (??),

but there is no reason not to use the exact scheme (??)

6.5 Loss

As in the case of the simple harmonic oscillator, it is straightforward to extend the 1D wave equation

through the addition of a term which models loss, or dissipation:

utt = γ2uxx − 2σ0ut (6.132)

where σ is a non-negative constant. The loss term may be viewed as resulting from a variety of

physical phenomena, including radiation and internal losses [].

The dispersion analysis applied to (6.132) yields the characteristic polynomial

s2 + 2σ0s + γ2β2 = 0 (6.133)

with roots

s± = −σ0 ±
√

σ2
0 − γ2β2 (6.134)
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For β ≥ σ0/γ, and writing s± = σ ± ω, one has

σ = −σ0 ω =
√

γ2β2 − σ2
0 (6.135)

Thus the rate of loss is frequency independent and equal to σ0, but the frequency is of a more

complex form than in the lossless case. In fact, it should be clear that the phase and group velocity

are now wavenumber dependent, and thus wave propagation is dispersive. An exact traveling wave

solution to the lossy wave equation is thus ruled out (though it should be noted that lossy traveling

wave solutions do exist for a slight variant of (6.132)—see Problem (6.10)). In general, however, the

degree of dispersion is quite small for realistic values of σ0. See Problem 6.9. It should also be noted

that for small values of the wavenumber, i.e., when β < σ0/γ, the solutions s± will be purely real,

indicating the presence of non-propagating solutions, and a cutoff wavenumber.

The 60 dB decay time T60 for the lossy wave equation, which as noted above is frequency

independent under low loss conditions, may be written as

T60 =
6 ln(10)

σ0
(6.136)

and is a useful global parameter in a sound synthesis simulation.

From an energetic standpoint, the situation is again very similar to that of the simple harmonic

oscillator with loss—see §3.5. Considering the lossy 1D wave equation defined over the infinite

domain D = R, one has, taking the inner product with ut,

〈ut, utt〉R = γ2〈ut, uxx〉R − 2σ0‖ut‖2
R

(6.137)

or
dH

dt
= −2σ0‖ut‖2

R ≤ 0 =⇒ 0 ≤ H(t2) ≤ H(t1) for t1 ≤ t2 (6.138)

where H is defined as in the lossless case. Thus the energy is non-negative and decreases monoton-

ically. It is not difficult to show that the boundary conditions discussed in §6.1.9 do not interfere

with this strict dissipation—the energetic behaviour of the wave equation is seen to be separated

between contributions over the domain inerior, and at the boundary. See Problem 6.17.

6.5.1 Finite Difference Scheme

A simple extension of scheme (6.54) to the case of linear loss is given by

δttu = γ2δxxu − 2σ0δt·u (6.139)

or, in the form of a recursion, as

un+1
l =

2

1 + σ0k

((
1 − λ2

)
un

l − λ2
(
un

l−1 + un
l+1

))
− 1 − σ0k

1 + σ0k
un−1

l (6.140)

See Programming Exercise 6.7.

The characteristic polynomial for this scheme is

(1 + σ0k)z +
(
4λ2 sin2(βh/2) − 2

)
+ (1 − σ0k)z−1 = 0 (6.141)

It is simple to show (see Problem 6.13) that the roots are bounded by unity for all wavenumbers

β, under the condition (6.63), as for the scheme (6.54) for the lossless wave equation. Thus the

addition of a centered difference approximation to the loss term does not affect the stability results

obtained in the lossless case.

Just as in the continuous case, energy analysis of the scheme (6.139) leads directly to

δt+h = −2σ0‖δt·u‖2
Z
≤ 0 (6.142)

where the discrete energy is defined just as in the lossless case. Thus the energy of the scheme
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(6.139) is monotonically decreasing.

6.6 A Comparative Study: Physical Modeling Sound Syn-
thesis Methods

Though the attention in this chapter has focussed mainly on difference schemes for the wave equation,

various other well-known synthesis strategies have been briefly described as well—lumped methods,

in §??, digital waveguides in §??, and modal synthesis in §??. This is a good moment to step back

to evaluate the relative merits of these techniques.

6.6.1 Accuracy

The accuracy with which a numerical solution is computed can have direct perceptual ramifications

on sound output—numerical dispersion can lead to an undesirable mistuning of modes. This effect is

illustrated in the present case of the 1D wave equation in §??. In general, all synthesis methods based

on direct time/space simulation will be prey to such effects, including finite difference methods and

lumped networks. It is possible, however, to design methods for which this effect is reduced, often

greatly—see §?? for some examples—but such methods are always more computationally intensive,

in that sense that they either must be implicit (requiring more computational work), or involve a

wider stencil (requiring more care to be taken when setting boundary conditions). Another remedy,

and not one which is advised here due to computational expense, is to make use of a simple scheme

at a higher sample rate.

Modal methods, on the other hand, possess the great advantage of allowing an exact solution to be

calculated, at least for linear and time invariant problems. Once the problem has been decomposed

into modes, each of which bevaes as a simple harmonic oscillator, exact numerical methods exist,

as have been detailed in §?? and §??. There is thus no mistuning of modes in a properly executed

modal simulation. In this very special case of the 1D wave equation, digital waveguides also generate

an exact solution, but, unlike the case of modal methods, this property does not extend to virtually

any other system.

6.6.2 Memory Use

As should be clear from the discussion at various points in this chapter, memory requirements

scale directly with the number of degrees of freedom of the system—this is true for finite difference

methods (including lumped methods), modal methods, as well as digital waveguides. For the simple

finite difference scheme (6.54), this number is bounded above by 2fs/γ, which corresponds to two

grid functions worth of “state.” The number remains the same in the case of a lumped network

representation, which yields the same difference scheme, as discussed in §6.1.1. It is indeed possible

to develop scheme which requires less memory, but at the expense of reduced solution bandwidth,

and increased numerical dispersion. The memory requirement for a digital waveguide, which is none

other than a special case of scheme (6.54), is exactly 2fs/γ. For modal methods, the number of

degrees of freedom required to fill the available audio bandwidth will again be 2fs/γ, corresponding

to fs/γ modes, each necessarily represented in discrete time by two units of memory. Again, one

may attempt to reduce the number of modes in synthesis output, but only at the expense of reduced

accuracy, and bandwidth. At the level of memory required to represent solution state, all methods

are thus equivalent. It is also important to note that this requirement does not depend significantly
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on the choice of boundary conditions—this is perhaps most easily understood in the case of finite

difference schemes, for which boundary conditions are generally set locally, but even in the case

of a modal representation, it is true that the modal density of an LTI problem remains the same,

regardless of boundary conditions, at least in the high frequency limit. The addition of loss, generally

a very small effect in musical sound synthesis, leads only to a negligeable change in these memory

requirements.

Modal methods, however, can incur rather heavy costs is the modal frequencies and functions are

not expressible in closed form (due, perhaps, to more complex boundary conditions). The storage

of the frequency values will amount to another fs/γ worth of memory. If one were to attempt full

storage of all fs/γ, at fs/γ separate spatial locations (i.e., with enough values to allow resolution of

all frequencies up to the Nyquist), the storage requirement balloons to f2
s /γ2. This will be necessary

if one is interested in, say, in changing output locations dynamically.

6.6.3 Precomputation

Computation before run-time for simple finite difference schemes, including lumped methods and

waveguides is minimal. For modal methods, if the modal frequencies and shapes are not known,

these must be determined through the solution of an eigenvalue problem. This can be quite costly,

and potentially a very serious bottleneck if the number of modes is large. Even in the simple

6.6.4 Operation Count

The run-time operation counts per time step, for scheme (6.54) (including the lumped network

representation) scales directly with fs/γ. For more complex schemes, such as those given in §??,

the operation count will be higher, but will still scale with this same number. For modal methods,

Waveguides are the great exception—the operation count is O(1) per time step

6.6.5 Stability

6.6.6 Generality and Flexibility

6.7 Problems

Problem 6.1 Consider the 1D wave equation, defined over the finite interval D = [0, 1], with fixed
boundary conditions u = 0 at both boundary points. Show that under these conditions, bounds (6.41)
may be improved to

|u(x0, t)| ≤
1

2γ

√

2H(0) =⇒ ‖u‖D ≤ 1

2γ

√

2H(0) (6.143)

Problem 6.2 Consider the 1D wave equation, defined over the semi-infinite interval D = R
+. Show

that when the lossy boundary condition (6.28) is employed at x = 0, with α = γ, left-going traveling
waves are completely absorbed. (You may substitute the traveling wave solution (6.15) directly into
the boundary condition.)

Problem 6.3 Consider the 1D wave equation, defined over the semi-infinite interval D = R
+. Show

that the nonlinear boundary condition

ux(0, t) = α (ut(0, t))2 sgn(ut(0, t)) for α > 0 (6.144)

is dissipative, i.e.,
dH

dt
≤ 0 (6.145)
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If this condition is generalized this to

ux(0, t) = f(ut(0, t)) (6.146)

for some function f , what property must f satisfy in order that the system remain dissipative?

Problem 6.4 Consider again the 1D wave equation, defined now over the finite interval U = [0, 1].
Under the boundary conditions

u(0, t) = 0 and ux(1, t) = αu(1, t) (6.147)

for some constant α, show that the modal frequencies ω must satisfy the equation

ω

γα
= tan

(
ω

γ

)

(6.148)

and as such, must be determined numerically. As ω becomes large, show that the density of modal
frequencies approaches that of the wave equation under fixed-fixed, free-free or fixed-free conditions.

Problem 6.5 Caution: This is a difficult, but instructive problem, in that some rather more ad-
vanced energy-based techniques for the analysis of numerical boundary conditions are introduced.

Consider scheme (6.54), defined over D = Z
+, under the generalized Neumann boundary condi-

tion at l = 0:
αδx−u0 + (1 − α)δx·u0 = 0 (6.149)

Using the results and definition in Problem 5.7 in the previous chapter, show that, by taking an ǫ
inner product of the scheme with δt·u, the following energy balance may be obtained:

δt+h = −γ2 (δt·u0) ((2ǫ − 1)δx−u0 + 2(1 − ǫ)δx·u0) (6.150)

where

h =
1

2

(

‖δt−u‖
′,ǫ
Z+

)2

+
γ2

2
〈δx+u, et−δx+u〉Z+ (6.151)

Thus the boundary condition above may be considered conservative under an epsilon inner product
with α = 2ǫ − 1.

Go further, and show that

h ≥ 1

2

(

‖δt−u‖
′,ǫ
Z+

)2

− λ2

2
(‖δt−u‖′

Z+)
2

(6.152)

Show that, for non-negativity, beyond CFL condition, the condition λ ≤
√

2ǫ must also be satisfied,
and, given the relationship between α and ǫ, determine the range of α for which this additional
condition interferes with the CFL bound.

Problem 6.6 For the lossy numerical boundary condition (6.90) for scheme (6.54) for the 1D wave
equation, applied at grid point l = 0, show that when λ = 1 and α = γ, the condition reduces to
un+1

0 = un
1 . See also Programming Exercise 6.3.

Problem 6.7 Consider, instead of the numerical radiation condition (6.97), the condition

δx·u0 = α1δt·u0 + αsµt·u0 (6.153)

in conjunction with scheme (6.54) over the domain D = Z
+. Show that the conserved numerical

energy will be of the form h + hb, but with a different definition of hb from that which appears in
(6.99). Show that in this case, that the energy remains non-negative (and the scheme stable) under
the CFL condition (6.63), without any interfering condition for the boundary.

Problem 6.8 As was seen in §6.1.10, from the bound on the energy for scheme (6.54) defined over
the semi-inifnite domain D = Z

+, one may deduce that, under any conservative boundary condition
at l = 0, and under stability condition (6.63), one has the conditions

‖δt−u‖Z+ ≤
√

2h ‖δx+µt−u‖Z+ ≤
√

2h

γ
(6.154)

The first condition on its own serves to bound the rate of growth of the solution. If the condition at
l = 0 is of Dirichlet type, i.e., u0 = 0, then it is possible to determine a bound on un

l itself. This is
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a little trickier than in the continuous case, and requires a good number of the bounds and identities
supplied in the previous chapter.

(a) First, show that if u0 = 0, one may write ul = 〈1, δx+f〉[0,l−1], and, thus, using the Cauchy-
Schwartz inequality, that

|ul| ≤
√

lh‖δx+u‖[0,l−1] ≤
√

lh‖δx+u‖Z+ (6.155)

(b) Using identity (2.7d), and the triangle inequality (5.19b), show furthermore that

|ul| ≤
√

lh

(

‖δx+µt−u‖Z+ +
k

2
‖δx+δt−u‖Z+

)

≤
√

lh

(

‖δx+µt−u‖Z+ +
k

h
‖δt−u‖Z+

)

(6.156)

(c) Use the separate bounds on ‖δt−u‖Z+ and ‖µt−δx+u‖Z+ given at the beginning of this problem
to arrive at a final bound on |ul| in terms of γ, λ, l and the energy h.

Problem 6.9 Consider the lossy wave equation (6.132), defined over the unit interval D = U, with
fixed boundary terminations.

(a) Assume allowed wavenumbers βi are of the form βi = iπ, and determine, from the dispersion
relation (??), and expression for the frequency, in Hertz, of the ith mode.

(b) Assuming that γ = 100, and T60 = 3, calculate the frequency of the first mode (these param-
eters are typical of a musical string). By how many cents does it deviate from the frequency of the
first mode in the lossless case?

Problem 6.10 The wave equation with a loss term exibits a (very slight) degree of dispersion, so
clearly a strict traveling wave solution does not exist, ruling out an efficient solution by digital
waveguides. But dispersionless wave propagation can extend to the case of loss, if a slightly different
model is employed. Consider the so-called distortionless transmission line equation:

utt = γ2uxx − 2σ0ut − σ2
0u (6.157)

defined over the real line D = R.
(a) Perform a dispersion analysis of this equation, by inserting a test solution of the form

u(x, t) = est+jβx, and derive the characteristic equation relating s and β.
(b) Solve for the roots s±(β) of the characteristic equation, and express the real and imaginary

parts of the roots separately, i.e., write s±(β) = σ(β) + jω(β). Show that, given this expression for
ω(β), the phase and group velocity are again constant.

(c) Show, by direct substitution, that damped traveling wave solutions of the form e−σ0tu+(x −
γt) and e−σ0tu−(x + γt) satisfy the distortionless transmission line equation (6.157), for arbitrary
distributions u+ and u−.

(d) By taking an inner product of (6.157) over D = R, find an expression for the energy H, and
show that it is monotonically decreasing. Furthermore, find a bound on ‖u‖R in terms of the initial
energy H(0).

Problem 6.11 Consider the following approximation to the distortionless wave equation (6.157)
presented in the previous problem:

δttu = γ2δxxu − 2σ0δt·u − σ2
0µt+µt−u (6.158)

defined over the infinite domain D = Z.
(a) Write the characteristic polynomial corresponding to scheme (6.158). Show that the stability

condition on λ, the Courant number, is unchanged from the Courant Friedrichs Lewy condition
(6.63).

(b) Write the explicit recursion in the grid function un
l corresponding to the compact operator

form given above. How does the computational footprint of the scheme simplify when a choice of
λ2 = 1 − σ2

0k2/4 is chosen?
(c) Show that, under the assumption that λ2 = 1 − σ2

0k2/4, a lossy discrete traveling wave

solution exists. That is, given a traveling wave decomposition un
l = u

(+),n
l + u

(−),n
l , and where the

wave variables u
(+),n
l and u

(−),n
l are updated according to u

(+),n
l = ru

(+),n−1
l−1 , u

(−),n
l = ru

(+),n−1
l+1 ,

for some constant r, show that the scheme (6.158) is implied, and find the value of r in terms of σ0

and k.
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(d) The rate of loss in the scheme (6.158) is not quite equivalent to that of the partial differential
equation (6.157). Show that, in fact, scheme (6.158) solves equation (6.157) exactly, with σ0 replaced
by a slightly different value σ∗

0 , and find the values of σ∗
0 in terms of σ0 and k.

Problem 6.12 Given the dispersion relation (6.66) for scheme (6.54) for the wave equation, show
by direct calculation that the phase and group velocities, as functions of frequency ω, are equal to

vφ(ω) =
hω

2 sin−1 (sin(ωk/2)/λ)
vg(ω) =

γ
√

1 − sin2(ωk/2)/λ2

cos(ωk/2
(6.159)

Show that in the limit as ω or k approaches zero, the limiting value of both these expressions is γ,
the wave speed for the continuous time/space wave equation.

Problem 6.13 Show that the roots of the charateristic equation (??) for the scheme (??) for the
lossy wave equation is satisfied under the condition λ ≤ 1, by using the result (??).

Problem 6.14 Considering the five-point stencil scheme (6.113) for the wave equation, show the
stability conditions (6.118) and (6.119), through the determination of the maximum and minimum
values of the function F (p) over the unit interval p ∈ [0, 1], as in (6.117).

Problem 6.15 Considering the implicit scheme (6.120) for the wave equation, show the stability
conditions (6.125), through the determination of the maximum and minimum values of the function
F (p) over the unit interval p ∈ [0, 1], as in (6.124).

Problem 6.16 Show that the two implicit schemes below for the 1D wave equation,

(θ + (1 − θ)µx·) δttu = γ2δxxu δttu = γ2 (φ + (1 − φ)µt·) δxxu (6.160)

in the free parameters θ and phi, respectively, are equivalent when θ = 1 + λ2(1 − φ). The identity
(5.11) may be of use here.

Problem 6.17 Extend the energy analysis of the wave equation with loss (6.132) to the domain
D = R

+, and show that under Dirichlet, Neumann or the lossy boundary condition (6.28) at x = 0,
the stored energy H will be non-increasing.

6.8 Programming Exercises

Exercise 6.1 Consider the 1D wave equation, under a sharp “plucked” excitation. In the most
extreme case, one may write u(x, 0) = δ(x−xi), ut(x, 0) = 0, where δ(x−xi) is a Dirac delta function
at location x = xi. The resulting solution should thus be, from the traveling wave decomposition,
u(x, t) = 0.5 (δ(x − xi − γt) + δ(x − xi + γt))—in other words, it should be composed of two spikes
traveling in opposite directions away from the excitation point.

In the scheme (6.54), and assuming xi to lie directly on a grid point at li, where xi = lih, the
first-order initializing strategy of (6.57) prescribes u0

li
= u1

li
= 1/h. Modify the code example given

in §A.4 such that the scheme is initialized in the above way, and examine the results after a few time
steps. For simplicity, choose values of the wave speed and the sample rate such that the Courant
condition may be satisfied with equality (i.e., λ = 1). Does the result correspond to the traveling
wave solution given above?

Instead of the above setting for the initial conditions, choose u0
li

= 1/h, u1
li−1 = u1

li+1 = 1/2h.
Are the results more in line with the traveling wave solution? Can you explain what is going wrong
with initialization strategy (6.57)?

Exercise 6.2 Modify the Matlab code provided in §A.4 so that, in the main loop, the numerical
energy hn is calculated. Now, with Dirichlet conditions at both ends of the domain (which is UN ,
the energy function is

h =
1

2
‖δt−‖2

UN
+

γ2

2
〈δx+u, et−δx+u〉UN

(6.161)



160 CHAPTER 6. THE 1D WAVE EQUATION

Verify that it is constant to machine accuracy (in double precision floating point, about 15 decimal
places), and plot the variation in the energy from the initial energy h0, normalized by the initial
energy as a function of time step.

Exercise 6.3 Consider the 1D wave equation, under the lossy condition (6.28) at the left end, and
under a fixed Dirichlet condition at the right end. Modify the code example given in §A.4 such that
the numerical boundary condition (6.90) is employed at the left end. After appropriate initialization,
show that when α = γ, and λ = 1, the lossy boundary condition is perfectly absorbing (i.e., after a
finite number of time steps, the state u of your recursion should consist entirely of zeros).

Exercise 6.4 Consider the 1D wave equation, under the radiation condition (6.28) at the left end,
and a Dirichlet condition at the right end. Modify the boundary condition in the code example in
§A.4 two separate ways: according to the numerical condition (6.97), and that given in (6.153).
For simplicity, consider the case for which α1 = 1 (i.e., the lossless case). For a given choice of
γ and the sample rate fs, experiment with both terminations for a variety of values of α2 and λ.
Demonstrate that for the boundary condition (6.97), the condition (6.102) is sufficient for stability,
but not necessary—i.e., show that for some values of λ which violate this condition, no instability is
observed. How close to necessary is this condition, for a given value of α2? Demonstrate, to yourself,
that the numerical boundary condition (6.153) is always stable as long as the CFL condition (6.63)
is observed.

Exercise 6.5 Consider the scheme (6.54), under two different types of numerical Neumann condi-
tion, applied at both ends of the domain:

δx−u0 = δx+uN = 0 δx·u0 = δx·uN = 0 (6.162)

Create a Matlab script which calculates the numerical modal frequencies for this scheme, under both
termination types. (To do this, you will need to find the matrix operator Dxx corresponding to the
difference operator δxx, under the above boundary conditions. It will be of size (N + 1) × (N + 1).
You may then calculate the modal frequencies as per (6.106).) Experiment with different values of
λ, and compare the resulting frequencies to the exact modal frequencies, from (6.51). Which type of
condition leads to more accurate numerical frequencies?

Exercise 6.6 Modify the code example in §A.4, such that there are two output locations x
(1)
o and

x
(2)
o , which move sinusoidally according to

x(1)
o (t) = 1/3 + Asw sin(2πfswt) x(2)

o (t) = 2/3 − Asw sin(2πfswt) (6.163)

where Asw, the sweep-depth satisfies 0 ≤ Asw < 1/3, and where fsw is the sweep frequency, generally
under about 5 Hz—both should appear as additional global parameters. In addition, implement
truncation, linear, and cubic interpolation, where the choice is determined by an input flag. (The
interpolation operations are described in §5.2.4.) Your code should write output to a two-column
array, which can be played directly in stereo in Matlab. Experiment with your code for different
fundamental frequencies f0 = γ/2—is linear interpolation sufficient to eliminate audible clicks and
time-varying low-passing effects?

Exercise 6.7 Extend the code example in §A.4 to cover scheme (6.139) for the wave equation with
a linear loss term. The decay time T60 should appear as an extra global parameter.



Chapter 7

Bars and Linear Strings

In this chapter, the finite difference methods discussed in the last chapter with regard to the 1D

wave equation are extended to the more musically interesting case of bars and stiff strings. Linear,

or low-amplitude vibration is characteristic of a variety of instruments, including xylophones and

marimbas, and, to a lesser extent, string instruments such as acoustic guitars and pianos, which

can, under certain conditions, exhibit nonlinear effects (this topic will be discussed in detail in

Chapter 8). Linear time-invariant systems such as these, and the associated numerical methods

are still amenable to frequency domain analysis, which can be very revealing with regard to effects

such as dispersion (leading to perceived inharmonicity). In the numerical setting, frequency domain

analysis is useful in obtaining simple necessary stability conditions, and in dispersion which results

from discretization error; energy analysis allows the determination of suitable numerical boundary

conditions, and in the extension to problems involving spatial variation.

In §7.1, the idealized thin bar model is introduced—while too simple to use for sound synthesis

purposes, many important ideas relating to discretization may be dealt with here in a compact

manner. The more realistic stiff string model, incorporating stiffness, tension, and loss terms, is

dealt with in §7.2. Various musical features are discussed in the following sections, namely the

coupling to a hammer model, in §7.5, multiple strings in §7.6, and the preparation of strings in

§7.7. Finally, in §7.9.2, the more complex case of strings of varying density, and bars of variable

cross-section is introduced; this is the first instance, in this book, of a system with spatial variation,

and as such, von Neumann type stability analysis for finite difference schemes no longer applies

directly, though energetic methods remain viable.

References for this chapter include: [152, 19, 51, 119, 120, 10, 20, 271, 116, 154, 77, 284, 137]

7.1 The Ideal Uniform Bar

Transverse vibrations of a thin bar1 of uniform material properties and cross-section are covered by

many authors. In the lossless case, the defining PDE is

ρAutt = −EIuxxxx (7.1)

where ρ is the material density of the medium, A is the cross-sectional area, E is Young’s modulus,

and I is a parameter often referred to as the bar moment of inertia, which depends on the geometry

1The use of the terms ”bar,” ”beam” and ”rod” is somewhat confused in the literature; they will be used inter-
changeably here, though in some cases, when one discusses a beam, it is assumed that one is referring to its transverse
vibration alone, which is indeed the case in most parts of this book.

161



162 CHAPTER 7. BARS AND LINEAR STRINGS

of the bar cross-section. In this section, it is assumed that these quantities are constants. More will

be said about these quantities in §7.9.2, which deals with bars of varying cross-section.

In spatially non-dimensionalized form, where as for the case of the wave equation, x has been

replaced by x/L, for some constant L with dimensions of length, (7.1) looks like

utt = −κ2uxxxx (7.2)

where κ, the stiffness parameter, is defined by

κ =
EI

ρL4
(7.3)

Again, one may note that several parameters, E, ρ, I, A, and a characteristic length L, have been

replaced by a single parameter κ, allowing for a substantial reduction in the parameter space faced

by the programmer and eventual user (composer). This is, like the 1D wave equation, a second-

order (in time) PDE in a single variable, and as such, one again requires two initial conditions,

generally u(x, 0) and ut(x, 0). See §6.1.3 for a discussion of these conditions—in short, one may

imagine plucking or striking a stiff bar in exactly the same way as for a string described by the wave

equation.

This is the simplest possible model of transverse vibration of a uniform stiff medium; many

other more complex models are available—see, e.g., [111, 178]. If the medium is not thin, then the

linear Timoshenko theory of beam vibration may be applicable—see Problem ?? for a presentation

of this system, as well as a discussion of its frequency domain behaviour and range of applicability

in musical acoustics.

7.1.1 Dispersion

Information about propagation speeds may be obtained through the insertion of a test solution of

the form u(x, t) = est+jβx into (7.2). One arrives at the characteristic polynomial equation

s2 + κ2β4 = 0 (7.4)

which has solutions

s± = ±jκβ2 =⇒ ω± = ±κβ2 (7.5)

Thus, the frequency ω of a wave component scales as the square of the wavenumber β—this is in

sharp contrast to the case of the wave equation, for which ω scales directly with β. Such behaviour,

which is referred to as dispersive, may be more readily understood with regard to the phase and

group velocity (see §5.1.2), which, in this case, are given by

vφ(β) =
ω

β
= κβ vg(β) =

dω

dβ
= 2κβ (7.6)

In other words, components of large wavenumber (or short wavelength) travel faster than those of

small wavenumber (long wavelength). These velocities may also be written in terms of frequency ω,

using (7.5), as

vφ(ω) ==
√

κω vg(ω) = 2
√

κω (7.7)

See Figure 7.1 for an illustration of dispersive behaviour in a thin bar. As one might expect, this

will have a very pronounced effect (namely inharmonicity) on the natural frequencies of the bar,

when the domain is limited to be finite. See §7.1.3. One might note also that the phase and group

velocity are unbounded—in the limit as β becomes large (or the wavelength small), these speeds

become infinite. This is a consequence of the assumptions underlying this simple (Euler-Bernoulli)

bar vibration model, and was later corrected by Timoshenko—see Problem ??. It is important to

note that in the case of the bar of infinite extent, only real wavenumbers β may be considered (if
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Figure 7.1: Time evolution of the solution to the ideal bar equation (7.1), with κ = 1, under a
plucked initial condition, with u0 = crc(x), and x0 = 0.5, c0 = 1 and xhw = 0.05. Successive
snapshots of the solution profile are shown at the times indicated, over the interval x ∈ [0, 1].

β has an imaginary part, the test solution will necessarily be unbounded). But when the domain

is limited to be finite, such solutions are indeed possible, and have a complicating effect on modal

analysis (not to mention synthesis!). See §7.1.3.

7.1.2 Energy Analysis and Boundary Conditions

Energy techniques have already been presented with respect to the 1D wave equation in detail in

§6.1.8. In the simple case, for which the bar equation is defined over the real line, i.e., D = R, one

may take the inner product of (7.2) with ut, to get

〈ut, utt〉R + κ2〈ut, uxxxx〉R = 0 (7.8)

and, using integration by parts twice, according to (5.9),

〈ut, utt〉R + κ2〈utxx, uxx〉R = 0 =⇒ dH

dt
= 0 (7.9)

where

H = T + V and T =
1

2
‖ut‖2

R
V =

κ2

2
‖uxx‖2

R
(7.10)

Thus the bar equation (7.2), like the wave equation, possesses a conserved energy, and is thus lossless.

As before, the energy is also non-negative, and bounds on solution growth may again be determined.

Lossless Boundary Conditions

In order to derive the usual boundary conditions [174, 111] for the ideal bar at a single end point,

one may perform the above energy analysis for the case D = R
+. Again taking an inner product,

one arrives immediately at

〈ut, utt〉R+ + κ2〈ut, uxxxx〉R+ = 0 (7.11)

Integration by parts now gives

dH

dt
= κ2 (ut(0, t)uxxx(0, t) − utx(0, t)uxx(0, t)) (7.12)
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with H defined as in (7.10), but where inner products run over R
+ instead of R. The boundary

terms vanish under the following pairs of conditions at x = 0:

u = ux = 0 Clamped (7.13a)

u = uxx = 0 Simply supported (7.13b)

uxx = uxxx = 0 Free (7.13c)

For any of the above choices, one again has energy conservation, i.e.,

dH

dt
= 0 (7.14)

As in the case of the wave equation, it should be clear that other lossless, or lossy boundary

terminations are possible—these are the three which are of most practical use, and which, as a

result, appear most frequently in the literature. See Problem 7.2 for more discussion of other types

of termination. It should also be clear that such analysis may be extended directly to cover the

case of the bar defined over a finite domain, such as D = U = [0, 1], and the choice of any pair of

conditions given in (7.13) at either end will lead to energy conservation.

7.1.3 Modes

The ideal bar, as defined in (7.2), is LTI, and thus an analysis in terms of modes is straightforward.

One might expect that because the system is more generally LSI, that such analysis would be as

simple as in the case of the 1D wave equation, yet even for this rudimentary system, complications

begin to appear.

Again assume oscillatory solutions of the form u(x, t) = U(x)ejωt, which must now satisfy

−ω2U = −κ2 d4U

dx4
(7.15)

and thus solutions are of the form

U(x) = A cos

(√
ω

κ
x

)

+ B sin

(√
ω

κ
x

)

+ C cosh

(√
ω

κ
x

)

+ D sinh

(√
ω

κ
x

)

(7.16)

When the ideal bar is defined over D = U, the possible values of the frequency ω, as well as three of

the four constants A, B, C and D, may be determined after two appropriate boundary conditions

are set at either end of the bar (the fourth remains arbitrary, but may be set through normalization

of the resulting modal function). For one very special choice, namely simply supported conditions at

both ends (this is not particularly realistic in a musical acoustics setting), it is possible to show [174]

that one will have A = C = D = 0, and a simple closed-form expression for the modal frequencies

and shapes results:

ω±p = ±κπ2p2 and Up(x) = sin(pπx) for p = 1, . . . (7.17)

Thus the frequencies increase as the square of the mode number. Note that in this case, one can

obtain the expression for the pth modal frequency through substitution of the wavenumber β = pπ

into the dispersion relation, given in (7.5).

For nearly all other choices of boundary condition (including most of the useful forms given in

(7.13) above), there is not a closed-form expression for the modal frequencies ωp, and, furthermore,

the values of A, B, C and D will depend on the as-yet unknown values of ωp. For example, under

simply-supported conditions at x = 0 and clamped conditions at x = 1, for example, there results
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A = C = 0, and the modal frequencies and shapes and are given by

tan

(√
ωp

κ

)

= tanh

(√
ωp

κ

)

and Up(x) = sin

(√
ωp

κ
x

)

−
sin
(√

ωp

κ

)

sinh
(√

ωp

κ x
)

sinh
(√

ωp

κ

)

(7.18)

While there is no conceptual or practical difficulty in determining the frequencies ωp, it does become

somewhat unwieldy from a synthesis point of view. The modal frequencies must first be determined,

necessarily off-line, presumably through the solution of an eigenvalue problem or perhaps an iterative

method applied directly to the implicit definition of frequency ωp above. More difficult, here, is the

question of storage. In addition to the memory required to store the frequencies themselves, it

will be necessary to store the modal shapes. In this simple case, it is probably advisable to store

the functions sin, cos, sinh and cosh, with sufficient resolution, as well as the proper settings for

the coefficients A, B, C and D. For more general problems which are not LSI, however, these

possibilities for simplification disappear—there will not be a convenient implicit definition of the

modal frequencies, nor will there be a decomposition of the modal shapes into simpler components.

All must necessarily be determined through the solution of an eigenvalue/eigenmode problem (again

offline), and stored. For reference, plots of modal functions under all combinations of the boundary

conditions given in (7.13) are shown in Figure 7.2.

Mode Density and Pitch

As was discussed with reference to the 1D wave equation at the end of §6.1.11, the determination

of the distribution of modal frequencies is useful in that it gives a measure of the number of degrees

of freedom necessary to describe the system. Considering again the frequencies which result under

simply-supported conditions at either end of the bar in (7.17), the frequencies, in Hertz, will be

given by f±p = ±κπp2/2, and thus the number Nm which fall in the audio band fp ∈ [−fs/2, fs/2]

will be approximately

Nm = 2

√

fs

κπ
(7.19)

This can be viewed as the number of degrees of freedom of the ideal bar. Again, it is important to

note that this number will not depend in a significant way on the boundary conditions employed—

any choice of boundary conditions will lead, in the high frequency limit, to the same density of

modes. For example, in the case of the simply supported/clamped conditions discussed above, the

implicit definition of the modal frequencies given in (7.18) leads to the following distribution of

modal frequencies, in the limit as ωp becomes large:

ω±p ≈ ±κπ2(p +
1

4
)2 (7.20)

so that again, the number of degrees of freedom is given, approximately, by (7.19). The same is true

of other choices of boundary condition—see Problem 7.1.

For the wave equation, which generally posseses a uniformly spaced series of harmonics, or modal

frequencies, it is easy to associate a musical pitch with the system parameters: under fixed conditions,

for example, one has a fundamental frequency of f0 = γ/2. In the case of a bar, this is generally

not so, due to inharmonicity. The lowest frequency will be in the range of κπ/2, with variations

due to the type of boundary conditions. If this frequency is in the upper musical range (i.e., in say,

the right half of the piano keyboard), then a listener will associate a pitch with this frequency. If

it is low, however, the series of frequencies will be comparatively dense, and pitch assignment can
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Figure 7.2: Plots of modal functions for the ideal bar, under various combinations of the boundary
conditions of clamped (C), simply supported (S) and free (F) types given in (7.13), as indicated
at bottom. The first four modal shapes are presented, in order of increasing frequency, down each
column. In the case of free-free termination, an additional modal shape, of frequency zero, is also
shown. The modal functions are all normalized so that they take on values between -1 and 1.

be difficult. Other factors, such as frequency-dependent loss, also intervene in this respect. For this

reason, in implementations, it is perhaps simpler to leave the parameter κ as is, and ask the user to

learn its perceptual significance.

7.1.4 A Simple Finite Difference Scheme

The most straightforward finite difference scheme for the ideal bar equation (7.2) may be written,

in operator form, as

δttu = −κ2δxxxxu (7.21)

where the definition of δxxxx is given in (5.10b). When the operator notation is expanded out, the

following two-step recursion results:

un+1
l = (2 − 6µ2)un

l + 4µ2
(
un

l+1 + un
l−1

)
− µ2

(
un

l−2 + un
l+2

)
− un−1

l (7.22)
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In order to be updated, the scheme requires access to values of the grid function two grid spacings

away from the update point, and is parameterized by the single number µ,

µ , κk/h2 (7.23)

µ plays a role similar to λ, the Courant number, which appears in schemes for the wave equation.

Like the two step scheme for the wave equation (6.54), scheme (7.21) must be initialized with values

of the grid function u at time steps n = 0 and n = 1. Scheme (7.21) is, formally, second order

accurate in both time and space—unlike the case of scheme (6.54) for the wave equation, there is

no special choice of the parameter µ which leads to improved accuracy.

von Neumann Analysis

Just as for schemes for the wave equation, one may employ the test function un
l = znejβlh, which,

when inserted in scheme (7.21), gives the following characteristic polynomial in z:

z + (16µ2 sin4(βh/2) − 2) + z−1 = 0 (7.24)

This equation possesses roots of magnitude unity under the condition

µ ≤ 1

2
=⇒ k ≤ h2

2κ
(7.25)

which is somewhat different from the condition (6.63) which arises in the simple scheme (6.54) for

the 1D wave equation. Now, the time step is bounded by the square of the grid spacing, rather

the grid spacing itself. This condition has interesting ramifications with regard to computational

complexity, as will be discussed next.

Degrees of Freedom and Computational Complexity

Supposing that the bar equation is defined over the unit interval D = U, the number of degrees of

freedom of the scheme will be, as in the case of schemes for the wave equation, twice the number

of grid points over this interval (scheme (7.21) is again a two-step scheme). Given that this number

of grid points is approximately 1/h, and that the sample rate is defined as fs = 1/k, the number of

degrees of freedom will be bounded as

Nfd ≤
√

2fs

κ
(7.26)

which is very similar to the number of modes required to represent the bar to frequencies up to

fs, from (7.19), but not the same—it is greater, however, by a factor of
√

π/2 which is quite close

to one, meaning that a modal representation and the finite difference scheme possess roughly the

same number of degrees of freedom. This small discrepancy may be related to effects of numerical

dispersion, as discussed in the next section.

It is crucial to note that, in a comparison between the wave equation and the bar equation, for

which both possess the same first non-zero modal frequency (or “fundamental,” if one may indeed

apply that term to an inharmonic system such as a bar), the bar will possess far fewer degrees of

freedom—as a result, computations for dispersive systems such as bars are lighter than those for

non-stiff systems such as strings. This may be counterintuitive, given that the bar equation itself

looks more complex than the wave equation. Looks can be deceiving. Such an efficiency gain for stiff

systems may be exploited to great benefit in, e.g., models of plate reverberation, which are far less

computationally intensive than even 2D simulations of the wave equation. See §12.3.
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Numerical Dispersion

When the stability condition (7.25) is satisfied, the roots of the characteristic equation are of the

form z = ejωk, and thus the characteristic polynomial (7.24) may be written as

sin(ωk/2) = ±2µ sin2(βh/2) (7.27)

which is analogous to the dispersion relation (7.5) for the continuous ideal bar equation. In contrast

with scheme (6.54) for the wave equation, this scheme exhibits numerical dispersion, beyond the

natural dispersion inherent in the bar equation itself, for any allowable choice of µ. See Figure 7.3

for plots of numerical phase and group velocity for different choices of µ—it iremains true, however,

that numerical dispersion is minimized as µ approaches the bound given in (7.25).

It is also true in this case that when the scheme is operating away from the stability condition

(7.25) (i.e., when µ < 1/2), there will be some loss in available bandwidth for the computed solution.

The dispersion relation above possesses solutions for real ω only when

ω ≤ 2

k
sin−1(2µ) (7.28)
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Figure 7.3: Numerical phase velocity vφ (left) and group velocity vg as functions of frequency ω for
scheme (7.21) for the ideal bar equation, under different choices of the parameter µ, are plotted as
grey lines. The curves for the continuous model system are plotted as black lines. In this case, the
time step was chosen as k = 1/44100. Notice the numerical cutoff behaviour visible in the curves
for values of µ < 1/2.

Energy Conservation and Non-negativity

Just as for schemes for the wave equation, energy analysis is possible (and indeed quite straight-

forward) for scheme (7.21). Considering the problem defined over the infinite domain D = Z, and

taking an inner product with the grid function δt·u, and using the double summation by parts

identity (5.26) gives

〈δt·u, δttu〉Z = −κ2〈δt·u, δxxxxu〉Z = −κ2〈δxxu, δt·δxxu〉Z (7.29)

or

δt+h = 0 with h = t + v and t =
1

2
‖δt−u‖2

Z
v =

κ2

2
〈δxxu, et−δxxu〉Z (7.30)

The total difference (7.30) above is a statement of conservation of numerical energy for the scheme

(7.21), and it thus follows that

hn = h0 (7.31)
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Just as in the case of schemes for the wave equation, in order to find conditions under which this

energy is non-negative, one may write, using identity (2.22f) and inequality (5.28),

h =
1

2
‖δt−u‖2

Z +
κ2

2
‖µt−δxxu‖2

Z − k2κ2

8
‖δt−δxxu‖2

Z (7.32)

≥
(

1

2
− 2k2κ2

h4

)

‖δt−u‖2
Z +

κ2

2
‖µt−δxxu‖2

Z (7.33)

The energy is non-negative under condition (7.25), and under this condition, a bound on solution

size for all n follows immediately. Again, energy analysis leads to the same stability condition as

von Neumann analysis.

Numerical Boundary Conditions

Numerical boundary conditions may be derived, again as in the case of schemes for the wave equation.

Here, however, the analysis is slightly more delicate—slightly different choices of inner product, as

well as uses of summation by parts can give rise to different conserved energies, accompanied by

distinct numerical boundary conditions. Consider now the scheme (7.21) defined over the semi-

infinite domain Z
+. Taking the inner product with δt·u, and using the summation by parts identity

from (5.25), gives

δt+h = b with h = t + v and t =
1

2
‖δt−u‖2

Z+ v =
κ2

2
〈δxxu, et−δxxu〉

Z+ (7.34)

and

b = −κ2 (δt·δx+u0) (δxxu0) + κ2 (δt·u0) (δx−δxxu0) (7.35)

Thus numerical energy conservation follows under the following choices of numerical boundary con-

dition at the left end point of a domain:

u = δx+u = 0 Clamped (7.36a)

u = δxxu = 0 Simply supported (7.36b)

δxxu = δx−δxxu = 0 Free (7.36c)

These conditions are, clearly, completely analogous to the conditions (7.13) for the ideal bar equation.

The particular form of summation by parts used above, namely that given in (5.25), leads to a

simple, tractable expression for the numerical consrved energy, if b = 0—tractactable in the sense

that non-negativity is simple to show, as the expression for the potential energy v is limited strictly

to the interior of the problem domain. Just as in the case of the infinite domain discussed in §7.1.2,

one has

h =
1

2
‖δt−u‖2

Z+ +
κ2

2
‖µt−δxxu‖2

Z
+ − k2κ2

8
‖δt−δxxu‖2

Z
+ (7.37)

≥
(

1

2
− 2k2κ2

h4

)

‖δt−u‖2
Z+ +

κ2

2
‖µt−δxxu‖2

Z
+ (7.38)

and the stability condition (7.25) again leads to non-negativity.

It is important to note that if one had the other form of the summation by parts identity, i.e.,

that given in (5.24), the derived boundary conditions would be distinct, as would the expression for

energy. In some cases, it is not so easy to show non-negativity as v may not be limited to the interior

of the problem domain. See Problems ??–?? for some variations on energy analysis and numerical

boundary conditions for the bar.
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Implementation of Numerical Boundary Conditions

It is useful to show how numerical boundary conditions such as (7.36), presented in compact operator

form, may be implemented directly in the scheme (7.21).

The clamped condition at l = 0 is the simplest to deal with: one may set, simply,

u0 = u1 = 0 (7.39)

at each pass through the recursion. Thus only values ul of the solution at locations l = 2, 3, . . . need

be computed; because the operator δxxxx is of width five, its value may be computed directly using

the settings above for u0 and u1.

The simply supported condition is slightly more complicated. They may be rewritten as

u0 = 0 u−1 = −u1 (7.40)

Now, values at the grid locations l = 1, . . . must be updated; under the action of the δxxxx operator,

the value at l = 1 will require access to a value at an imaginary grid point l = −1 (see §5.2.8).

It is sufficient to examine the behaviour of the operator δxxxx at locations near the boundary, and

employ both conditions above:

δxxxxu1 =
1

h4
(u3 − 4u2 + 6u1 − 4u0 + u−1) =

1

h4
(u3 − 4u2 + 5u1) (7.41)

Such conditions may be incorporated into a matrix form of the operator δxxxx, as discussed in §5.2.8.

The settings for the free boundary condition are left to Problem 7.4.

7.1.5 An Implicit Scheme

The problem of numerical dispersion does not arise in the case of the most straighforward scheme for

the 1D wave equation. In the case of the bar, however, the simple scheme presented in the previous

section does indeed suffer from such dispersion. It was also noted that the number of degrees of

freedom of the scheme, Nfd, is slightly larger than the number which follows from modal anaysis. As

will be shown in this section, these two undesirable phenomena are related, and may be addressed

using implicit methods.

A simple implicit scheme for the 1D wave equation, dependent on a single free parameter θ, is

presented in §6.3.2. Consider a similar implicit scheme for the ideal bar equation:

(θ + (1 − θ)µx·) δttu = −κ2δxxxxu (7.42)

In vector-matrix form, assuming as usual the column vector un to contain the values of the grid

function un
l , then the scheme may be written as

un+1 = A−1Bun − un−1 with A = θI + (1 − θ)Mx· B = −κ2k2Dxxxx + 2A (7.43)

where the various matrix operators incorporate boundary conditions. Again, a sparse (tridiagonal)

linear system solution is required at each time step.

The von Neumann and energy methods yield the following stability conditions:

θ ≥ 1

2
µ ≤

√
2θ − 1

2
(7.44)

See Problem 7.3.

It is instructive to plot the phase and group velocities for the scheme, for different values of

the free parameter θ—see Figure 7.4. As usual, the scheme parameter µ is chosen as close to the

stability bound as possible, so as to maximize the bandwidth of the scheme at a given sample rate

fs = 1/k, as discussed on page 168 with regard to the explicit scheme.



7.1. THE IDEAL UNIFORM BAR 171

0 50 100 150 200 250 300 350 400 450 500

0

50

100

0 0.5 1 1.5 2

x 10
4

0

100

200

300

400

0 0.5 1 1.5 2

x 10
4

0

200

400

600

800

1000

ω ω

vφ vφ
0.5

0.45
0.4

0.35

0.5

0.450.40.35

Figure 7.4: Numerical phase velocity vφ (left) and group velocity vg as functions of frequency f for
scheme (7.42) for the ideal bar equation, under different choices of the parameter θ, are plotted as
grey lines. The curves for the continuous model system are plotted as black lines. In this case, the
time step was chosen as k = 1/44100, and µ is chosen so as to satsify bound (7.44) with equality.

It is interesting to note that for the choice of θ ≅ 0.7, the numerical phase velocity is nearly a

perfect match to the phase velocity of the model system. This choice of θ can be viewed as resulting

from a consideration of the number of degrees of freedom, in the following way.

Supposing that the scheme is defined over the unit interval D = UN , and that µ is chosen such

as to satisfy the second of conditions (7.44) with equality, then the number of degrees of freedom

for the scheme (i.e., twice the number of points on the grid) will be

Nfd = 2/h = 2

√
µ

kκ
=

√

2

kκ
(2θ − 1)

1/4
=

√
π

2
(2θ − 1)

1/4
Nm (7.45)

where Nm = 2
√

1
kκπ is the number of degrees of freedom resulting from modal analysis, as given in

(7.19). In order to have Nfd = Nm, one must then choose

θ =
1 + 4/π2

2
= 0.7026 . . . (7.46)

The lesson here is that, for a parameterized scheme, the best numerical behaviour (i.e., the least

numerical dispersion) is obtained when the number of degrees of freedom of the scheme matches that

of the physical system. Also, note that, even though implicit schemes are marginally more costly,

computationally, than explicit schemes, the number of degrees of freedom of the scheme, and thus

the number of grid points is reduced from that of the explicit scheme under this choice of θ.

From a musical point of view, it is useful to look at the effect of the use of an implicit scheme

on the calculated numerical modal frequencies. From the vector-matrix form (7.43), the set of such

frequencies fp, indexed by integer p, may be calculated as

fp =
2π

k
cos−1

(
1

2
eigp

(
A−1B

)
)

(7.47)

where eigp signifies “pth eigenvalue of.” Note that the modal frequencies for the explicit scheme may

be calculated as well, by choosing θ = 1. See Table 7.1.

From these results, one can immediately see that the accuracy of the implicit scheme is far

superior to that of the explicit method—indeed, deviations of numerical frequencies from the exact

values which are potentially audible for the explicit scheme are close to the threshhold of inaudibility

in the implicit case. What is more surprising, however, given the fidelity with which the numerical
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Table 7.1: Comparison among modal frequencies of the ideal bar, under simply supported conditions,
with a fundamental frequency of 100 Hz, and modal frequencies (as well as their cent deviations
from the exact frequencies) of the explicit scheme (7.21), and the implicit θ scheme (7.42), with
θ = 0.7026, with a sample rate fs = 44100 Hz, and where µ is chosen so as to satsify (7.44) as close
to equality as possible.

Mode Exact Explicit Implicit
number Freq. Freq. Cent Dev. freq. Cent Dev.

1 100.0 99.7 -4.4 100.0 -0.8
2 400.0 396.0 -17.4 399.3 -3.0
3 900.0 880.2 -38.5 896.7 -6.4
4 1600.0 1539.1 -67.1 1590.3 -10.5
5 2500.0 2356.4 -102.4 2478.5 -15.0
6 3600.0 3313.5 -143.6 3560.0 -19.4

phase velocity of the implicit scheme with θ = 0.7026 matches that of the model system, is that

the numerical frequencies do not match even better! There are a couple of (admittedly extremely

subtle) factors which account for this. The main one is that, due to the truncation of the number

of grid points to an integer, it becomes difficult to satisfy the stability condition (7.44) exactly, so

that µ undershoots its maximum value by a very small amount. The other is that the numerical

boundary condition, here chosen as being of simply supported type, is approximate as well, and not

accounted for by dispersion analysis of the scheme over the infinite domain. One could thus go much

further toward developing even more refined designs, but, for musical purposes, the above accuracy

would appear to be sufficient for most purposes. The curious may be interested in Programming

Exercise ??.

The lesson here is:

Rule of Thumb # 2

For a parameterized implicit numerical method, the best numerical behaviour (i.e.,

the least numerical dispersion) is obtained when the stability condition is satisfied

with equality, and when the free parameter(s) are chosen such that the number of

degrees of freedom of the scheme matches that of the model system, at a given

sample rate.

7.2 Stiff Strings

In some musical instruments (in particular the piano), strings may be subject to a restoring force

due not only to applied tension, but also to stiffness. Though the effect of stiffness is usually small

relative to that of tension, it does lead to an audible inharmonicity. The PDE model of such a string

has been presented by many authors, and, when spatially non-dimensionalized, has the form

utt = γ2uxx − κ2uxxxx (7.48)

and may be viewed as a combination of the wave equation (6.6) and that of the ideal bar (7.2).

It is, again, a second-order (in time) PDE, and as such requires two initial conditions, of the form

mentioned in, e.g., §6.1.3.
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The dispersion relation for the stiff string, as defined by (7.48), is

s2 + γ2β2 + κ2β4 = 0 (7.49)

implying that

ω± = ±β
√

γ2 + κ2β2 (7.50)

and thus the phase and group velocity will be

vφ =
√

γ2 + κ2β2 vg =
γ2 + 2κ2β2

√

γ2 + κ2β2
(7.51)

Writing these expressions in terms of ω is tedious, but the results are as expected: for low frequencies,

the velocities approach γ, and for high frequencies, the velocity of the ideal bar—see Figure ??.

“High” and “low” here now must be taken with regard to the size of κ relative to γ. See Figure 7.5.
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Figure 7.5: Phase velocity vφ (left) and group velocity vg (right) as functions of frequency f for the
stiff string equation (7.48), with γ = 1000, and κ = 1. The velcoties of the system without stiffness
are plotted as dotted lines.

7.2.1 Energy and Boundary Conditions

The energy analysis of the stiff string, defined in (7.48) is similar to that performed for the wave

equation, and for the ideal bar. Considering the stiff string defined over the semi-infinite domain

D = R
+, and taking the inner product with ut, one arrives at

dH

dt
= B with H = T + V (7.52)

and

T =
1

2
‖ut‖2

R+ V =
γ2

2
‖ux‖2

R+ +
κ2

2
‖uxx‖2

R+ (7.53)

B = −γ2ut(0, t)ux(0, t) + κ2ut(0, t)uxxx(0, t) − κ2utx(0, t)uxx(0, t) (7.54)

Here, the potential energy is merely the sum of the potential energies of the wave equation and the

bar. The boundary term B vanishes, implying losslessness, under the clamped and simply supported

conditions (7.13a) and (7.13b), but the free termination (which is not often employed in the musical

acoustics of strings) must be modified to

uxx(0, t) = κ2uxxx(0, t) − γ2ux(0, t) = 0 (7.55)
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7.2.2 Modes

Modal analysis is also similar. In the simplest case, namely simply supported conditions, the modal

frequencies and functions are of the form

Up(x) = sin(pπx) ωp = γpπ

√

1 +
κ2π2

γ2
p2 (7.56)

When the stiffness parameter κ is small, as in the case of most strings, the frequencies, are sometimes

written [95], in Hertz, in terms of the fundamental frequency f0 = γ/2 for the ideal lossless string,

an inharmonicity factor B:

fp = f0p
√

1 + Bp2 with B =
κ2π2

γ2
(7.57)

Thus the harmonic series becomes progressively detuned, to a degree dependent on B.

Again, for other choices of boundary conditions, the modal functions must be expressed in terms

of trigonometric and hyperbolic trigonometric functions, and there is not a closed-form expression

for the modal frequencies. Under clamped conditions, for low stiffness, the modal frequencies are

changed little from the above series. The number of degrees of freedom will thus be, approximately,

Nm =

√

2

B

(√

1 + Bf2
s /f2

0 − 1

)

(7.58)

7.2.3 Finite Difference Schemes

Finite difference schemes for (7.48) may be arrived at using the same construction techniques as in

the case of the 1D wave equation and the ideal bar equation. The simplest is certainly the following:

δttu = γ2δxxu − κ2δxxxxu (7.59)

The von Neumann stability condition for this scheme is

λ2 + 4µ2 ≤ 1 (7.60)

and is expressed in terms of the Courant number λ = γk/h, used in schemes for the 1D wave

equation, and the parameter µ = κk/h2, used in the case of schemes for the ideal bar. See Problem

??. It is perhaps easier to rewrite this in a form involving k and h directly:

h4 − γ2k2h2 − 4κ2k2 ≥ 0 → h ≥ hmin =

√

γ2k2 +
√

γ4k4 + 16κ2k2

2
(7.61)

Thus, again, for a given k (or sample rate fs, there is a minimum grid spacing h.

One implicit generalization of the now-familiar θ type will be, then,

(θ + (1 − θ)µx·) δttu = γ2δxxu − κ2δxxxxu (7.62)

and stability analysis leads to the condition

θ ≥ 1

2
and λ2 + 4µ2 ≤ 2θ − 1 → h ≥ hmin =

√

γ2k2 +
√

γ4k4 + 16κ2k2(2θ − 1)

2(2θ − 1)
(7.63)

The number of degrees of freedom Nfd will thus be, in the ideal case where the bound above is

satisfied with equality,

Nfd =
2

hmin
(7.64)
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In vector matrix form, the scheme may be written as

un+1 = A−1Bun − un−1 (7.65)

with

A = θI + (θ − 1)Mx· B = 2I + k2
(
γ2Dxx − κ2Dxxxx

)
(7.66)

As expected, the numerical phase and group velocities for the implicit scheme depend heavily

on the choice of θ; it is more difficult to get a good match, in this cae, across the entire frequency

spectrum, especially under low stiffness conditions. See Figure 7.6. Still, one can do fairly well, as

long as θ is chosen properly. As before, the best fit occurs when the number of degrees of freedom

of the scheme matches that of the model problem, and one can indeed determine in this way a value

for θ, dependent now on γ, κ and fs—see Problem 7.5 and Programming Exercise 7.1.
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Figure 7.6: Phase velocity vφ (left) and group velocity vg (right) as functions of frequency f for the
stiff string equation (7.48), with γ = 1000, and κ = 1, in black. Plotted in grey are the numerical
phase velocities of the parameterized scheme (7.62), under different choices of the free paremeter θ,
as indicated. The sample rate is fs = 44100 Hz, and the grid spacing h is chosen at the stability
limit (7.63).

7.3 Frequency Dependent Loss

Real strings exhibit a rather complex loss characteristic—the various components do not all decay

at the same rate. In particular, loss generally increases with frequency, leading to a sound with a

wide-band attack portion, and decaying to a few harmonics. One model of frequency-dependent loss

in linear strings is given by the following PDE:

utt = γ2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx (7.67)

The term with coefficient σ0 is the familiar loss term which was encountered earlier in the case

of the wave equation in §6.5. On its own, it gives rise to a bulk frequency-independent loss (i.e.,

a constant T60 at all frequencies). The extra term, with coefficient σ1 is one means of modelling

frequency-dependence of the loss characteristic. It is worth noting that this is not the original model

of frequency-dependent loss (which employed a third time derivative term) which was proposed by

Ruiz [220], and then later used in piano synthesis models by various authors [52].

As usual, the simplest way of analyzing the behaviour of the PDE is through frequency-domain

techniques. Again using a test solution of the form est+jβx, the characteristic equation for (7.67) is

s2 + 2
(
σ0 + σ1β

2
)
s + γ2β2 + κ2β4 = 0 (7.68)
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which has roots

s± = −σ0 − σ1β
2 ±

√

(σ0 + σ1β2)2 − (γ2β2 + κ2β4) (7.69)

For small σ0 and σ1, the term under the root above is negative for all wavenumbers over a very

small cutoff, and one may write, using s = σ + jω,

σ(β) = −σ0 − σ1β
2 ω(β) =

√

γ2β2 + κ2β4 − (σ0 + σ1β2)2 (7.70)

The loss σ(β) thus increases monotonically as a function of wavenumber, taking the value of σ0 in

the limit as β approaches zero.

T60

f
×10

f

t

Figure 7.7: (a) A typical plot of T60 versus frequency, for system (7.67), with T60 = 5 at 100 Hz, and
T60 = 3 at 2000 Hz. (b) Spectrogram of sound output, for a stiff string with γ = 800, and K = 8,
with the loss parameters as specified above.

Practical Settings for Decay Times

It can be somewhat difficult to get a grasp on the perceptual significance of the parameter σ1. To

this end, it is worth rewriting the expression for loss σ(β) as a function of frequency, i.e., σ(ω).

From the expression for ω(β) given above, it is reasonable to assume that when the loss parameters

σ0 and σ1 are small (as they should be in any reasonable model of a bar or string used for musical

purposes), that one may write

ω(β) ≅

√

γ2β2 + κ2β4 ⇒ β2 =
−γ2 +

√

γ4 + 4κ2ω2

2κ2
(7.71)

which further implies that one may write σ(ω) as

σ(ω) = −σ0 − σ1ξ(ω) with ξ(ω) =
−γ2 +

√

γ4 + 4κ2ω2

2κ2
(7.72)

With two parameters available to set the decay profile for the string, one could then specify T60

decay times at frequencies ω1 and ω2, and set σ0 and σ1, from the above formula, as

σ0 =
6 ln(10)

ξ(ω2) − ξ(ω1)

(
ξ(ω2)

T60(ω1)
− ξ(ω1)

T60(ω2)

)

σ1 =
6 ln(10)

ξ(ω2) − ξ(ω1)

(

− 1

T60(ω1)
+

1

T60(ω2)

)

(7.73)

See Figure 7.7, showing a typical loss profile for a two-parameter model, and a spectrogram of an

output signal. For this model, for which loss increases monotonically with frequency, one must

choose T60(ω2) ≤ T60(ω1) when ω2 > ω1. If one were interested in more a more complex decay

profile, one could introduce additional terms in the model PDE, perhaps involving higher spatial
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derivatives. See Problem 7.6. This, however, introduces a good deal more complexity into the

analysis of boundary conditions, stability, and will inevitably lead to a higher computational cost,

though it may be useful in some problems, such as bar-based percussion instruments [116, 77].

7.3.1 Energy and Boundary Conditions

The energy analysis of system (7.67) is similar to that of previous systems, except for the treatment

of the frequency-dependent loss term. Again examining the system over the domain D = R
+, and

taking an inner product with ut leads to the energy balance

dH

dt
= B − σ0‖ut‖2

R+ − σ1‖uxt‖2
R+ with H = T + V (7.74)

and where T and V are defined as for the lossless stiff string, and where the boundary term must

be modified to

B = −γ2ut(0, t)ux(0, t) + κ2 (ut(0, t)uxxx(0, t) − utx(0, t)uxx(0, t)) − 2σ1ut(0, t)utx(0, t) (7.75)

Clamped and simply supported terminations, of the form given in (??), may again be viewed as

lossless, as B vanishes. The free condition is more complex: one possibility is to write:

uxx = 0 κ2uxxx − γ2ux − 2σ1utx = 0 (7.76)

Under any of these conditions, one has, just as in the case of the wave equation with loss, a

monotonic decrease in energy, i.e.,

dH

dt
≤ 0 ⇒ H(t2) ≤ H(t1) for t2 ≥ t1 (7.77)

7.3.2 Finite Difference Schemes

There are various ways of approximating the mixed derivative term in order to arrive at a finite

difference scheme; two slightly different approximations were discussed briefly in §5.2.3. Two schemes

are given, in operator form, as

δttu = γ2δxxu − κ2δxxxxu − 2σ0δt·u + 2σ1δt−δxxu (7.78a)

δttu = γ2δxxu − κ2δxxxxu − 2σ0δt·u + 2σ1δt·δxxu (7.78b)

Though these differ only in the treatment of the final term, there is a huge difference, in terms of

implementation, between the two: scheme (7.78a) is explicit, and scheme (7.78b) is implicit. Note

also, the use of a non-centered difference operator δt− in the explicit scheme, rendering it formally

only first-order accurate, though as this term is quite small, it will not have an appreciable effect on

accuracy as a whole, nor, even on sound output.

Because the implicit scheme employs centered operators only, stability analysis is far simpler—in

fact, the loss terms have no effect on the stability condition, which reains the same as in the lossless

case.

The implicit scheme (7.78a) may be written in matrix form as

Aun+1 + Bun + Cun−1 (7.79)

with

A = (1 + σ0k)I − σ1k

h2
Dxx B = λ2Dxx − µ2Dxxxx C = (1 − σ0k)I +

σ1k

h2
Dxx (7.80)

The reader may wish to look at the implementation code provided in §A.8. The matrix formulation

makes for a remarkably compact recursion, at least in Matlab.
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7.4 Coupling with Bow Models

As a first example of a coupling with an excitation mechanism, consider the case of a bow model,

as has been introduced in §4.3.1. In this earlier section, the coupling of a bow model with a lumped

mass-spring system was considered. The distributed case is not much more difficult to deal with.

Suppose, first, that the bow acts on an ideal string, described by the wave equation defined over

the unit interval D = U, at a location xi, where xi can be time-varying, i.e., xi = xi(t). If the spatial

distribution of the bow is point-like, then the system is described, in non-dimensional form, by

utt = γ2uxx − δ(xi)FBφ (ut(xi) − vB) (7.81)

where FB = FB(t) ≥ 0 is the bow force/total string mass, vB = vB(t) is the bow velocity. φ is some

characteristic assumed to satisfy properties (4.20) and (4.25). δ(xi), it is to be recalled, is a spatial

Dirac delta function centered at xi.

An inner product with ut over U gives the energy balance

dH

dt
= B−ut(xi)FBφ(ut(xi)−vB) = B−(ut(xi)−vB)FBφ(ut(xi)−vB)−vBFBφ(ut(xi)−vB) (7.82)

where H is, as before, the Hamiltonian for the ideal string, as given in (6.20) and taken over the

interval D = U, B is a boundary term, and the other two terms represent dissipation in the bow

mechanism, and power supplied by the bow, respectively. Under conservative or lossy boundary

conditions, one has B ≤ 0, and thus

dH

dt
≤ −vBFBφ(ut(xi) − vB) ≤ |FBvB | ⇒ H(t) ≤ H(0) +

∫ t

0

|FBvB |dt′ (7.83)

Thus the dynamics of the bowed string are bounded in terms of the initial conditions of the string,

and energy provided by the bow.

Finite Difference Scheme

The case of the bow-string system, for which the bowing point may be moving during playing,

requires a somewhat subtle treatment—as one might expect, interpolation and spreading functions

play a rather important role in the case of a difference scheme acting over a grid.

Consider the following difference scheme analogous to (7.81):

δttu = γ2δxxu − J(xn
i )FBφ (I(xn

i )δt·u − vB) (7.84)

where here, FB = Fn
B ≥ 0 and vB = vn

B are now time series (perhaps sampled from data captured

from a controller of some type). xn
i is a time series representing the bow position at time step n.

Notice now the use of the interpolator I(xn
i ), used in order to interpolate a value of string velocity

at the bowing point, and the spreading function J(xn
i ), which distributes the bow force over several

neighboring grid points on the string—see §5.2.4. The order of both is unspecified for the moment.

An inner product with δt·u over the domain UN yields the energy balance

δt+h = b − 〈δt·u, J(xn
i )〉UN

FBφ (I(xn
i )δt·u − vB) (7.85)

where h and b are the Hamiltonian and boundary term for this particular scheme for the 1D wave

equation, as discussed in §6.2.5 and §6.2.6.

For aribitrary interpolation and spreading operators, one cannot go further and find a stability

condition. If, however, one chooses I = Iq(x
n
i ) and J = Jl,q(x

n
i ) of the same order, q, then using
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(5.29), one may write

δt+h = b − FB(I(xn
i )δt·u)φ (I(xn

i )δt·u − vB) (7.86)

= b − FB(I(xn
i )δt·u − vB)φ (I(xn

i )δt·u − vB) − FBvBφ (I(xn
i )δt·u − vB) (7.87)

In direct analogy with the continuous system, under lossless or dissipative numerical boundary

conditions b ≤ 0, one arrives, finally, at

δt+h ≤ |FBvB| ⇒ hn ≤ h0 +

n−1∑

p=0

k|F p
Bvp

B | (7.88)

Again, one may bound the behaviour of the scheme in terms of the known time series FB and vB.

Notice in particular that the motion of the bowing position has no influence on stability.

Scheme (7.84) is implicit, and just as in the case of the bowed mass, there is the potential for

non-uniqueness of numerical solutions. Taking an inner product with Jl,q(x
n
i ), and again using (5.29)

gives

Iq(x
n
i )δttu = γ2Iq(x

n
i )δxxu − ‖J(xn

i )‖2
U
FBφ (I(xn

i )δt·u − vB) (7.89)

This equation may be solved uniquely for the relative velocity I(xn
i )δt·u − vB under the condition

k ≤ − 2

max(FB)max(‖Jq‖2
U
)min(φ′)

⇒ λ ≤ 2γ

−max(FB)min(φ′)
(7.90)

which holds by virtue of the bound (5.30) on the interpolant Jq, and when min(φ′) ≤ 0, which is

normally the case. The condition above must be satisfied in addition to the usual CFL condition

(6.63) for this simple scheme for the wave equation.

Helmholtz Motion

The earliest studies of bowed string dynamics, by Helmholtzand Raman in particular, focussed on

a phenomenological description of the motion, often referred to as Helmholtz motion—see [169] or

[96] and the references therein for more on the history of the development of such models. For the

sake of completeness, it is worth discussing this motion here, very brifely.

The principle is not extremely different from the case of the bowed mass, as presented briefly in

§4.3.1.

Moving Bowing Point

When the bowing point is moving, extremely complex aural effects may be obtained, as the bowing

point moves past the maximum of a particular mode—see Figure 7.9. In this case, good interpolation

is crucial—zeroth order simple truncation of the bowing position to a nearby grid point leads to very

unpleasant audible effects. See Figure 7.10. Second order (linear) interpolation vastly reduces the

audibility of such motion, and fourth order interpolation is an even safer choice, though it will

probably only be necessary for the benefit of the golden ear brigade, or under sublime listening

conditions.

Extensions

The model of bowed-string dynamics presented above is very crude, and may be extended in many

ways. Given the material in the earlier part of this chapter, a direct extension is to the case of a stiff

lossy string, which may be carried out fairly easily—see Problem ?? and Programming Exercise ??.

Recently, there have been investigations into more delicate features of the bow-string interaction.

Among the more interesting are the modeling of torsional wave propagation in bowed strings, as well
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Figure 7.8: (a) Typical phenomenological description of simple bowed string motion: A point on a
string, assumed bent into a triangular shape, races around an envelope of parabolic shape. (b) output
waveform at the bowing point, and (c) relative velocity between string and bow, for an ideal string
with a fundamental frequency of 125 Hz, under fixed end conditions, subject to bowing at constant
speed vB = 0.2, and with constant bow force FB = 50, with the bowing point at x = 0.25. The bow
characteristic shown in Figure 4.8(c) has been used, with σ = 100. The above outputs were produced
using scheme (7.84) has been used, at a sample rate of 44 100 Hz.

as the generalization of the bow to the case of finite width [190]. Both features may be modelled

using extensions of the finite difference methods presented here, but are left as an interesting exercise

to the reader.

7.5 Coupling with Hammer and Mallet Models

The hammer or mallet interaction forms the basis for many percussion instruments—in the 1D case,

xylophones, marimbas, and other instruments are excited in this way (not to mention, of course,

the piano itself). The interaction of a simple hammer model with a mass-spring system has been

presented in §4.2.3, and, indeed, most of the important issues have already been discussed. The

extension to the case of an interaction with a 1D distributed system such as a string or bar is not

much more difficult to deal with.

Consider, for simplicity, the case of a hammer, of mass MH , and with stiffness defined by a

one-sided nonlinearity of some type, acting on an ideal string whose dynamics are described by the

1D wave equation. Beginning from a dimensional form, defined over D = [0, L], and using a power

law as the nonlinear characteristic (a common choice [])

ρAutt = T0uxx + ǫ(x)f f = −MH
d2uH

dt2
= KH

(
[uH − 〈ǫ, u〉D]+

)α
(7.91)

Here, ρ, A and T0 are the mass density, cross-sectional area, and tension in the string, and the

distribution ǫ(x), assumed fixed, represents the striking width of the hammer, with position uH ,

mass MH , and with stiffness parameter KH , and nonlinear stiffness exponent α—often set in the

range between 1 and 3. When spatially nondimensionalized over the interval D = [0, 1], the system

has the form

utt = γ2uxx + ǫ(x)MF F = −d2uH

dt2
= ω2

H

(
[uH − 〈ǫ, u〉D]+

)α
(7.92)
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Figure 7.9: (Spectrograms of synthetic sound output for a bowed string, with fundamental frequency
400 Hz, and for a bow acting with constant FB = 150 and vB = 0.2, with a friction characteristic
of the form shown in Figure 4.8(c), with σ = 20. Simulation performed using scheme (7.84), at a
sample rate of 44.1 kHz, and readout is taken at a point 0.45 of the way along the string from the left
end. (a) String bowed at a location x = 0.25, and (b) with a bow location varying linearly between
x = 0.25 and x = 0.75, illustrating the modulation of the amplitudes of the partials in the resulting
sound.
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Figure 7.10: Relative velocity of the string to the bow, vrel = δt·u − vB, for a difference scheme for
an ideal string with fundamental frequency 400 Hz, and with constant bow force FB = 150, vB = 0.2,
and where the bowing point moves from x = 0.25 to x = 0.45 over a one second duration. Difference
scheme (7.84) is used at sample rate 44 100 Hz, with interpolation of (a) zeroth order, (b) second
order, and (c) fourth order. Notice the periodic jumps in the case shown in (a), corresponding to
hard truncations of the moving bowing point to a neighboring grid point.

where the relevant parameters are now M = MH/ρL, the mass ratio of the hammer to the string,

and a frequency-like parameter ωH =
√

KH/MH .

The hammer-mallet system, of course, preserves energy:

dH

dt
= 0 with H = HS + HH (7.93)

where HS is the energy of the string, and HH , the energy of the hammer, is given by

HH =
M
2

(
duH

dt

)2

+
Mω2

H

α
(7.94)

7.6 Multiple Strings

Clearly, regardless of the type of synthesis method employed, once one has one has implemented

one string or bar model, it is straightforward to make use of several at once, to synthesize different
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notes of a variety of bar or string based instruments. More interesting is the case of several strings

employed in order to generate a single note—such is the case, e.g., for the piano, where normally

three strings are struck at once, for each note, over most of the keyboard range. Generally, the

multiple strings differ little in their material properties, though depending on the tuning strategy

(in synthesis, the algorithm designer has ultimate control over tuning) slight variations in tension

give rise to very desirable beating effects which go a long way towards rendering synthesis output

more natural.

One may thus consider an (as yet) uncoupled system of M PDEs, of the form

u
(q)
tt =

(

γ(q)
)2

u(q)
xx + . . . for q = 1, . . . , M (7.95)

Here, M is the number of strings, and u(q) is the transverse displacement of the Mth string. The

ellipsis above refers to the rest of the terms in the string model, which are assumed to be of the form

of (7.48) in the variable u(q) for each string. The term involving γ(q), however, which incorporates

tensioning effects, clearly must vary from one string to the next. (One could, of course, develop a

system of PDEs strings for which the other terms, not indicated above, vary from one string to the

next.) Notice that in this spatially-nondimensionalized form, all the strings are of unit length.

As far as tuning goes, recall that under low stiffness and loss conditions, and under fixed boundary

conditions, the pitch of the qth string will be almost exactly γ(q)/2. Useful design parameters in

this case are f0, the center pitch for the set of strings, and D, a detuning parameter, in cents. One

can then set the values of γ(q) as

γ(q) = 21+
(2q−1−M)D
2400(M−1) f0 (7.96)

Thus the M strings are detuned by a total of D cents from the highest pitch to the lowest.

A simple finite difference scheme follows immediately as

δttu
(q) =

(

γ(q)
)2

δxxu(q) + . . . for q = 1, . . . , M (7.97)

A hitch arises here. The stability condition for the qth scheme will be, at least in the case of lossless

non-stiff strings

λ(q) = γ(q)k/h(q) ≤ 1 ⇒ h(q) ≥ γ(q)k (7.98)

where here, λ(q) and h(q) are the Courant number and grid spacing for the qth string. If γ(q) exhibits

some variation with q, then there will be distinct lower bounds on the grid spacings for the various

strings. There are two ways of dealing with this: 1) take a uniform h ≥ maxq(γ
(q)k) for all the

strings, or 2) maintain a distinct h(q) for each string. For a low degree of variation in γ(q), option

1) is probably preferable, as it leads to great programming simplicity: the grid functions for all the

strings will be of equal length. On the other hand, it is also clear that for under option 1), the grid

spacing h(q) is chosen away from the Courant limit for some of the strings—thus there will be some

reduction in audio bandwidth, and if this becomes noticeable, option 2) is perhaps preferable. The

situation does not change much when loss and stiffness terms are included in the analysis, as there

is always a lower bound on the grid spacing for any explicit scheme.

There are many ways of obtaining output. The most direct, considering that the strings in the

set are all of equal perceptual importance, is to sum outputs from a given location:

uout =

M∑

q=1

I(xout)u
(q) (7.99)
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7.7 Prepared Strings

The preparation of pianos, through the insertion of objects such as erasers, washers, etc. adjacent

to the strings, was popularized by Cage [46]. It serves as an excellent case study for physical

modeling synthesis for several reasons. First, the objects to be modelled (namely, the strings and

the preparing objects) are all of a fairly well-understood nature—indeed the whole problem (barring

the soundboard, which will be discussed in §??) can be described in terms of objects which are

1D or 0D (i.e., lumped). Second, it will serve as a first example in this book of modularity in

synthesis—one can begin to build more complex objects from simple ones. Finally, the motivations

of Cage and others who were interested in transforming the timbres of conventional instruments are

exactly in line with the aesthetic spirit of physical modeling synthesis. In this section, and that

which follows, such fanciful constructions will be examined from a numerical point of view. This is

the first appearance in this book of modular connections among physical modeling constructs, and

thus the first step towards a flexible enviroment for the design of new virtual instruments. Some

such work has been done using scattering based numerical methods (see §1.2.4 and the references

therein), and in a more limited fashion, using modal methods (see §1.2.2).

As a starting point, consider again an ideal lossy string, modelled by the 1D wave equation plus

a loss term, with a lumped force f acting at a given location xP . In non-dimensional form, replacing

f by F = f/MS, where MS is the total string mass, this may be written as

utt = γ2uxx − 2σ0ut + δ(xP )F (7.100)

So far, the form of the force term is unspecified—it could result from a constraint of some kind,

dependent purely on the string state itself, or it could represent a coupling to another object. Even

at this stage, it is worth noting that, if the force F depends linearly on properties of the string and/or

other objects, the modal frequencies of the combined system can not, in general, be related to those

of the system in the absence of the force term—thus a modal approach to synthesis will require a

complete recalculation of all the modal frequencies and shapes. If the connection is nonlinear, then

one can expect a significant departure from the usual behaviour of the ideal string.

An energy balance for this string may be written, under conservative boundary conditions, as

dHS

dt
= −2σ0‖ut‖2

U + Fut(xP ) (7.101)

where HS is the usual Hamiltonian for the wave equation, as per (6.20). It is not difficult to add

additional terms to the above model representing stiffness and frequency-dependent damping, but

the above model suffices for a simple discussion of the main numerical issues.

7.7.1 Springs and Dampers

Perhaps the simplest type of preparation involves massless springs, and damping elements—see

Figure ??. A simple combined model of such a model is

F = −ω2
0u(xP ) − ω4

1(u(xP ))3 − 2σP ut(xP ) (7.102)

Here, there are two terms representing a linear spring, and a cubic nonlinear spring, as well as a

damping term. Using the usual techniques, the energy balance becomes

dH

dt
= −2σ0‖ut‖2

U
−2σP (ut(xP ))2 with H = HS+HP and HP =

ω2
0

2
(u(xP ))2+

ω4
1

4
(u(xP ))4

(7.103)
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Here, there is now an additional component to the stored energy, HP , due to the string. Notice that

the energy for the combined system is non-negative, and, as before, monotonically decreasing.

There are, of course, many different choices now available for discretization—not all have the

same properties! Suppose first that the wave equation (7.100) is discretized using the basic difference

scheme,

δttu = γ2δxxu − 2σ0δt·u + Jp(xP )F (7.104)

where here, Jp(xP ) is a pth order spreading function (see §5.2.4). One way of discretizing the force

equation is as

F = −ω2
0µt·η − ω4

1η
2µt·η − 2σP δt·η where η = Ip(xP )u (7.105)

and Ip(xP ) is a pth order interpolation operator (see §5.2.4). The system, though not linear, has

been discretized in such a way as to indicate that the result will be strictly dissipative. Examining

each of the terms in F separately: the linear spring term has been treated exactly as in the semi-

implicit scheme for the oscillator, as discussed in §3.3.1, the cubic nonlinear oscillator term as per

the method given in (4.9b), and the extra damping term by a simple centered difference, as per

the lossy SHO—see §3.5.2. As one might expect, the system as a whole possesses a discrete energy

balance of the form

δt+h = −2σ0‖δt·u‖2
UN

−2σP (δt·η)
2

with h = hS +hP and hP =
ω2

0

2
µt−

(
η2
)
+

ω4
1

4
η2et−η2

(7.106)

where hS is the stored energy for scheme (??) for the wave equation, s given in (6.79). Notice

that the expression for the energy of the prepared string is non-negative—thus the total energy h

must also remain non-negative under the condition λ ≤ 1, and, thus, stable. Under this particular

discretization, the addition of a lumped element has no effect on stability of the combined system,

which is a very useful feature, from the point of view of modular physical modeling. It is not true

of all possible discretizations, however, as will be noted shortly.

Besides stability, the other crucial feature of a numerical method simulating an arbitrary con-

nection among objects is that of computability—note that in the coupled expressions (7.104) and

(7.105), there is a simultaneous dependence on un+1, the unknowns. Complicating matters is the use

of interpolation and spreading operators, distributing the coupling over various nearby grid points.

This may be resolved in the following way. Taking an inner product of (7.104) with Jp(xP ) (or,

equivalently, interpolating the equation with Ip(xP ) gives

δttη = γ2ζ − 2σ0δt·η + ‖Jp(xP )‖2
UN

F with η = Ip(xP )u ζ = Ip(xP )δxxu (7.107)

Given that, at update step n+1, ζ is known, then one may solve directly for ηn+1 in terms of known

values using (7.105):

a = 1 + σ0k + hk2‖Jp(xP )‖2
UN

(ω2
0/2 + ω4

1(η
n)2/2 + σP /k) (7.108)

b = −1 + σ0k − hk2‖Jp(xP )‖2
UN

(ω2
0/2 + ω4

1(η
n)2/2 − σP /k) (7.109)

ηn+1 =
1

a

(
γ2k2ζ + 2ηn

)
+

b

a
ηn−1 (7.110)

Once ηn+1 is determined, then Fn is known, from (7.105), and then, finally, the scheme (7.104) may

be updated explicitly.

The variety of timbres which can be generated using such a simple connection is surprisingly

large. Beginning first with the case of a lossless linear spring connection (i.e., ω1 = σP = 0), the

main effect will be, in the space time domain, to introduce reflection of traveling waves—see Figure

7.11(a); the amount of reflection and transmission depends on the choice of the stiffness parameter ω0.
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In the frequency domain, the result is a shifting of modal frequencies of the combined spring/string

system—for the present case of the wave equation, this means that the resulting spectrum of sound

output will be inharmonic, and increasingly so as the lumped stiffness increases in strength—see

Figure 7.11(b). (Note that there will be an additional dependence on the positioning of the spring

(i.e., on the choice of xP .) As such, the resulting sounds will be far more like those of percussion

instruments than typical stringed instruments.
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Figure 7.11: Ideal lossless string, with γ = 200, with a connected linear spring at xP = 0.5. (a)
Reflection and transmission of an incoming pulse from the spring, with stiffness parameter ω0 =
4000, at times as indicated. (b) Output spectrum for sound created using a plucked raised cosine
initial condition of amplitude 1, with output read at x = 0.8, under different choices of the spring
stiffness: ω0 = 1000 (in dark grey), ω0 = 2000 (in light grey), and without a spring connection (in
black). Scheme (7.104) coupled to (7.105) is used, and the sample rate is 44100 Hz.

Considering the case of a pure linear damper (i.e., ω0 = ω1 = 0), the most obvious effect will be

that of increased damping, beyond that inherent in the string model itself. What is more interesting,

however, is the frequency dependence of the damping introduced, which, again, will depend on the

damper position, as well as the loss coefficient σP . If σP is large, the string is effectively divided

into two, yielding completely different pitches from the unprepared string. See Figure 7.12(b), which

shows a spectrogram of a typical output for such a point-damped string.

The most interesting case is that of the nonlinear spring (i.e., σP = ω0 = 0), especially in

the case for which there is some damping in the string model itself. Initially, there will be a

rather lively variation in the frequency components, as illustrated in Figure 7.12(a), but as damping

intervenes, the behaviour settles down to that of the unprepared string. Note in particular that in

the limiting case of low amplitude vibration, the bahaviour of the combined system approaches that

of the unprepared system, which is distinct from that of the linear spring connection, which always

exhibits inharmonicity, regardless of the amplitude of excitation.

Numerical Instability of Connections

The scheme (7.105) which discretizes the connection with the spring/damper system has been

specially chosen so as to be numerically stable always—the energy function for the combined

string/spring/damper system is positive definite, and monotonically decreasing. But it is clear

that due to the implicit nature of the difference scheme, this is not the simplest scheme available.
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(a) (b)

t t

f f

Figure 7.12: Spectrograms of output for a model of an ideal lossless string with loss, with γ = 880,
and T60 = 2, connected to: (a) a cubic nonlinear spring at xP = 0.5, with ω1 = 10, and (b) a linear
damper, with T60 = 1. In this second case, the damper partially divides the string into two segments,
yielding an effective pitch of twice the fundamental of the string after several hundred milliseconds.
Scheme (7.104) coupled to (7.105) is used in both cases, and the sample rate is 44100 Hz, with output
taken at x = 0.8, and where the initial condition is of plucked type, using a raised cosine distribution
centered at x = 0.65, and of amplitude 1.

Indeed, considering the special case of the linear spring alone (i.e., with ω1 = σP = 0), one could

use, instead of (7.105),

F = −ω2
0Ip(xP )u (7.111)

which leads to a completely update of (7.104). Indeed, such a direct discretization of a stiffness

term is directly in line with the stable discretization of the stiffness term in the SHO, as per (3.12),

and one might expect that the combined string/spring system should remain stable as well. In fact,

this is not necessarily the case—as shown in Figure 7.13, the solution can indeed become unstable,

with the instability manifesting itself, as expected, by high-frequency oscillations emanating from

the connection point which grow and eventually obliterate the solution.
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Figure 7.13: Development of instability in a connection between an ideal lossless string, with γ = 200,
and a linear spring at xP = 0.5, of stiffness ω0 = 4000, using finite difference scheme (7.104) along
with (7.111). The sample rate is 44100 Hz.
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In order to examine this, suppose, for the sake of simplicity, that the interpolation function is of

zeroth order, so that the spring acts directly on the value of the grid function ul at the grid point

located at l = P . Under lossless conditions, and for conservative boundary conditions on the string,

the total conserved energy for this combined system will be

h =
1

2
‖δt−u‖2

UN
+

γ2

2
〈δx+u, et−δx+u〉UN

︸ ︷︷ ︸

hS

+
ω2

0

2
uP et−uP

︸ ︷︷ ︸

hP

(7.112)

where hS indicates the energy of the string, and hP the added potential energy of the spring con-

nection. Clearly, neither of the contributions is necessarily non-negative. One may bound them as

follows:

hS ≥ 1

2

(
1 − λ2

)
‖δt−u‖2

UN
= hP ≥ k2ω2

0

8
(δt−uP )

2
(7.113)

which implies, for the sum, that

h ≥
∑

l 6=P

h

2

(
1 − λ2

)
(δt−u)

2
+

(
h

2

(
1 − λ2

)
− k2ω2

0

8

)

(δt−uP )2 (7.114)

At grid points other than l = P , the non-negativity condition is, as before, the CFL condition λ < 1.

But at l = P , there is another, stronger condition that must be enforced:

h

2

(
1 − λ2

)
− k2ω2

0

8
> 0 (7.115)

In this case, the stability condition of the combination interferes with that of the systems in

isolation, which is very different from the case of the discretization from (7.105). The lesson here is

that the semi-implicit character of a scheme such as (7.105) allows for a modular connection without

the additional worry of inducing instability—at the expense, of course, of a slightly more involved

update. This is typical of many numerical methods for combined systems, and, in fact, is exactly

the principle behind scattering based numerical approaches—see §1.2.4, and the recent publication

by Rabenstein et al. [196]. Indeed, in the present case of a string/spring connection, if one were to

use a digital waveguide for the string (corresponding to exactly scheme (7.104)), and a wave digital

filter for the spring (which is also semi-implicit, like (7.105)), modular stability is also obtained.

But, as illustrated here, it is not necessary to make use of scattering principles in order to arrive at

such a result. When connecting a lumped object to a distributed object, a good rule of thumb is

the following:

Rule of Thumb # 3

Efficient modular numerical behaviour is obtained when a semi-implicit method

is used for lumped objects, and when an explicit method is used for distributed

objects.

7.7.2 Masses

The extension of preparation of strings to elements with mass is straightforward, but leads to a

slightly more involved formulation—one now must keep track of a separate position for the connected

object. In other words, more state is required to represent the combined system. Supposing the

position of the mass is uP (t), then, when connected through a linear spring of stiffness parameter
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ω0 to the ideal string, the force acting on the string is given by

F = −Md2uP

dt2
= Mω2

0(uP − I(xP )u) (7.116)

where M is the mass ratio of the lumped mass to the string. Now, the combined energy balance is

dH

dt
= −2σ0‖ut‖2

U with H = HS+HP and HP =
Mω2

0

2
(u(xP )−uP )2+

M
2

(
duP

dt
)2 (7.117)

7.7.3 Rattling Elements

7.8 Coupled Strings and Bars

Part of the fun of physical modeling (and indeed, maybe the very point of it all) is to go beyond

what can be done with an acoustic instrument. There are eminently physical ways of modifying a

synthesis routine which would be difficult, if not impossible to carry out in the real world—witness

the caution with which a orchestra director will allow a Steinway grand to be prepared. Coupling

of string and bar models is one such example, and in the virtual world, no blowtorch is necessary.

Coupling between distributed systems and lumped objects has been discussed extensively in the

last few sections. The same principles of analysis may be applied when distributed objects are

coupled. For the sake of variety, consider the case of two ideal bars, coupled through some as yet

unspecified mechanism, as illustrated in Figure 7.14.

(a) (b) (c) (d)

0 x
(2)
i

x
(1)
i0

F (1)

F (2)

F (1)

F (2)

F (1)

F (2)

F (1)

F (2)

Figure 7.14: (a) A pair of bars, pointwise coupled by an arbitrary mechanism relating the resulting
forces. (b) A rigid connection, (c) a damped connection, and (d) a spring-like connection.

Supposing that the bars are of differing material properties, the system may be written, in

dimensional form, as

ρ(1)A(1)u
(1)
tt = −E(1)A(1)ux(1)x(1)x(1)x(1) + δ(x

(1)
i )f (1) (7.118)

ρ(2)A(2)u
(2)
tt = −E(2)A(2)ux(2)x(2)x(2)x(2) + δ(x

(2)
i )f (2) (7.119)

Here, the superscripts (1) and (2) refer to the first and second bar, respectively—notice that different

spatial coordinates x(1) and x(2) are used for each. The bars are assumed to lie over the spatial

intervals x(1) ∈ [0, L(1)] and x(2) ∈ [0, L(2)], respectively, and the connection points are x
(1)
i and

x
(2)
i , respectively. Using the techniques discussed earlier in this chapter, one could easily extend

this model to the case of a stiff string, with frequency-dependent loss, or to the case of a distributed

connection, or using methods to be introduced in the next section, to the case of bars of variable

cross-sectional area or density. This model behaves somewhat like a tuning fork, depending on the

type of connection (i.e., on the definition of the mechanism giving rise to the forces f (1) and f (2)),

and could serve as a string point for physical models of certain electromechanical instruments such

as the Fender-Rhodes electric piano. See Figure 7.15 for a picture of typical behaviour for a simple



7.8. COUPLED STRINGS AND BARS 189

coupled bar system.

t = 0 t = 0.0005 t = 0.001

t = 0.0015 t = 0.002 t = 0.0025

Figure 7.15: Time evolution of displacement profiles for a coupled bar system, at times as indicated.
Here, the bars are of stiffnesses κ(1) = 2 (bottom bar) and κ(2) = 3 (top bar), and are coupled via a

rigid connection occurring at x
(1)
i = 0.3, and x

(2)
i = 0.8. Boundary conditions are of clamped type,

and the second bar is initialized with a plucked raised cosine distribution at the bar center.

Using the first bar as a reference, non-dimensionalization may be carried out, using coordinates

x(1)′ = x(1)/L(1) and x(2)′ = x(2)/L(2), and subsequently removing primes, as

u
(1)
tt = −

(

κ(1)
)2

u
(1)

x(1)x(1)x(1)x(1) + δ(x
(1)
i )F (1) (7.120)

Mu
(2)
tt = −M

(

κ(2)
)2

u
(2)

x(2)x(2)x(2)x(2) + δ(x
(2)
i )F (2) (7.121)

where

κ(1) =

√

E(1)

ρ(1)(L(1))4
κ(1) =

√

E(1)

ρ(1)(L(1))4
M =

ρ(2)A(2)

ρ(1)A(1)
F (1) =

f (1)

ρ(1)A(1)L(1)
F (2) =

f (2)

ρ(1)A(1)L(1)

(7.122)

Now, both bars are defined over the unit interval D = U.

The energy balance for this system, assuming conservative boundary termination (see §7.1.2 for

the case of the ideal bar) is

dH

dt
= F (1)u

(1)
t (x

(1)
i ) + F (2)u

(2)
t (x

(2)
i ) with H = H(1) + H(2) (7.123)

and

H(1) =
1

2
‖u(1)

t ‖2
U

+
(κ(1))2

2
‖ux(1)x(1)‖2

U
H(2) =

1

2
‖u(2)

t ‖2
U

+
(κ(2))2

2
‖ux(2)x(2)‖2

U
(7.124)

Clearly, the system as a whole will be dissipative when

F (1)u
(1)
t (x

(1)
i ) + F (2)u

(2)
t (x

(2)
i ) ≤ 0 (7.125)

or lossless when the above inequality is satisfied with equality. If the connection itself can store

energy (i.e., if there are masses or springs involved), then dissipative behaviour will occur if

F (1)u
(1)
t (x

(1)
i ) + F (2)u

(2)
t (x

(2)
i ) = −dHC

dt
− Q (7.126)

where Q ≥ 0, because in this case, one will then have

d

dt
(H + HC) = −Q (7.127)



190 CHAPTER 7. BARS AND LINEAR STRINGS

7.8.1 Connection Types

The simplest type of connection is that of rigid type:

F (1) = −F (2) and u
(1)
t (x

(2)
i ) = u

(2)
t (x

(2)
i ) (7.128)

satisfying (7.125) with equality. Forces are equal and opposite, and the bars are constrained to move

at the same velocity at the connection point. The resulting behaviour of such a system is, from a

spectral point of view, enormously complex—in general, the modal frequencies will depend on the

relative stiffnesses of the bars, the mass ratio, as well as the connection points. See Figure 7.16.

Even for such a simple connection, there is a huge variety of timbres available to the instrument

designer.
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Figure 7.16: Output spectra for a coupled bar system. Typical output spectra for bars in isolation,
under clamped conditions, for stiffness parameters (a) κ(1) = 50, and (b) κ(2) = 100. In (c) is
shown output spectra under variations in the connection point, for two bars of mass ratio M = 1.

The connection point on the first bar is at x
(1)
i = 0.3, and on the second bar at x

(2)
i = 0.8 (in dark

grey), 0.7 (in black) and 0.6 (in light grey). In (d), a similar comparison of spectra is shown, under

variations in the mass ratio, for fixed connection points x
(1)
i = 0.3 and x

(2)
i = 0.8, where M = 0.3

(dark grey), 1 (black) and 10 (light grey).

A device involving both damping and a mixed linear-cubic spring is described by

F (1) = −F (2) = −ω2
0η − ω4

1η
3 − 2σC

d

dt
η with η = u(1)(x

(1)
i ) − u(2)(x

(2)
i ) (7.129)

Such a spring obviously possesses a potential energy HC , given by

HC =
ω2

0

2
η2 +

ω4
1

4
η4 (7.130)

which renders the system dissipative as a whole, with an energy balance of the form (7.127), with

Q = −2σC (dη/dt)2. Connections with mass are also a possibility—see Problem ??. Even more

variability in timbre is now possible—see Figure 7.17. The linear spring action serves to further alter

modal frequencies, as does the damping term, which also generally introduces frequency dependent

decay. Interestingly, depending on the connection points, and the strength of the damper, it can

allow for energy to be traded back and forth between the bars, at potentially a very slow rate,

leading to interesting sub-audio rate variations in amplitude, as is visible in Figure 7.17(a) and (b).

Finally, the nonlinear spring term in conjunction with damping yields pitch changes and wide-band

sound output, dependent on the strength of the excitation.
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Figure 7.17: Spectrograms of audio output for two bars under a damped spring connection. The
two bars are of stiffness coefficients κ(1) = 50 and κ(2) = 100, and of mass ratio M = 0.2, and

the connection points are x
(1)
i = 0.3 and x

(2)
i = 0.8. In (a), a pure damper, of damping coefficient

σP = 1.4 is employed, in (b), the same damper with a linear spring with ω0 = 1000, and in (c), the
same damper again with a nonlinear spring with ω1 = 70. Output is taken from the second bar, at
location x(2) = 0.5.

7.8.2 Finite Difference Schemes

Finite difference schemes may be developed in the usual way for the coupled bar system—the one new

feature here is that, in general, because the bars may be of differing stiffnesses (i.e., κ(1) 6= κ(2)), it is

not necessarily a good idea to use the same grid spacing for each. The reason for this is simple—if a

global sample rate is chosen, then a distinct stability condition will arise for each bar in isolation. If

the spacing is chosen the same for both bars, one will necessarily induce heavy numerical dispersion.

Recall, from §??, that if one wants to use a simple explicit scheme, numerical dispersion effects are

very strong, especially in the case of the bar. Thus, choose grid spacings h(1) and h(2) for the first

and second bars, respectively.

The simplest scheme is of the following form:

δttu
(1) = −

(

κ(1)
)2

δx(1)x(1)x(1)x(1)u(1) + Jp(x
(1)
i )F (1) (7.131a)

Mδttu
(2) = −M

(

κ(2)
)2

δx(2)x(2)x(2)x(2)u(2) + Jp(x
(2)
i )F (2) (7.131b)

where as before, Jp represents a spreading operator of order p. Notice that the two instances of

Jp will be acting over distinct grids. The discrete energy balance, under numerical conservative

boundary conditions will be

δt+h = δt·(Ip(x
(1)
i ))F (1) + δt·(Ip(x

(2)
i ))F (2) with h = h(1) + h(2) (7.132)

and where the discrete energies for the two bars are given for bars (1) and (2) by

h(1),(2) =
1

2
‖δt−u‖2

UN
+

(κ(1),(2))2

2
〈δx(1),(2)x(1),(2)u(1),(2), et−δx(1),(2)x(1),(2)u(1),(2)〉

UN
(7.133)

These are the same expressions as in the case of uncoupled bars (see §??), and are non-negative

under the conditions

µ(1) =
kκ(1)

h(1)
≤ 1

2
µ(2) =

kκ(2)

h(2)
≤ 1

2
(7.134)

As mentioned above, the grid spacings h(1) and h(2) should be chosen to satisfy the above bounds

as close to equality as possible.
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The rigid connections is the simplest to deal with. One may use

F (1) = −F (2) Ip(x
(1)
i )u(1) = Ip(x

(2)
i )u(2) (7.135)

Here, the positions of the bars at the connection point are set equal—this is a particularly easy

way to enforce a condition of equal velocity (instead of adding an extra paremeter representing

the distance between the bars, which is of no consequence). Under these conditions, there is exact

numerical energy conservation from (7.132), and thus numerical stability follows if conditions (7.134)

are respected.

The damper and spring connection is more complex, but may be dealt with in a manner similar

to the lumped spring connection discussed in §7.7.1. A semi-implicit discretization leads to

F (1) = −F (2) = −2σCδt·
(

Ip(x
(1)
i )u(1) − Ip(x

(2)
i )u(2)

)

− ω2
0µt·η − ω4

1η
2µt·η (7.136)

with

η = I(x
(
i1))u(1) − I(x

(
i2))u(2) (7.137)

Explicit Updating

Due to the implicit nature of the approximation to F (1) and F (2), it is not immediately clear how

to go about performing an update. The forces depend on unknown values of the grid functions, and

conversely—a complicating factor is that due to the spreading functions, there is in fact a coupled

region of interdependence of forces and displacements. An explicit update is indeed possible—as

a first step, apply the interpolation operators Ip(x
(1)
i ) and Ip(x

(2)
i ) to Eqs. (7.131a) and (7.131b),

respectively, to get:

δttIp(x
(1)
i )u(1) = −ζ(1) + h(1)‖Jp(x

(1)
i )‖2

UN1
F (1) (7.138)

MδttIp(x
(2)
i )u(2) = −Mζ(2) + h(2)‖Jp(x

(2)
i )‖2

UN2
F (2) (7.139)

where ζ(1) and ζ(2) are known, and given by

ζ(1) =
(

κ(1)
)2

δx(1)x(1)x(1)x(1)u(1) ζ(2) =
(

κ(2)
)2

δx(2)x(2)x(2)x(2)u(2) (7.140)

Given F (1) = −F (2), one may solve for the unknown forces (say, F (1)), as

F (1) =
ζ(1) − ζ(2) + δttη

h(1)‖Jp(x
(1)
i )‖2

UN1
+ h(2)‖Jp(x

(2)
i )‖2

UN2
/M

(7.141)

In the case of a rigid connection (i.e., when F (1) = −F (2) and Ip(x
(1)
i ) = Ip(x

(2)
i ) implying η = 0,

as per (7.135)), F (1) may be calculated immediately from known values of the grid functions. Once

the forces are known, they may be inserted directly into the updates (7.131a) and (7.131b), which

are fully explicit.

For spring/damper connections, the situation is slightly more complicated: η is as yet unknown

in the expression for the force above. Note, however, that using (7.136), one may write

ζ(1) − ζ(2) + δttη

h(1)‖Jp(x
(1)
i )‖2

UN1
+ h(2)‖Jp(x

(2)
i )‖2

UN2
/M

= −ω2
0µt·η − ω4

1η
2µt·η − 2σP δt·η (7.142)

which is a linear equation in the unknown value of η at time step n + 1, and which may be solved

directly. Once η is determined, the forces may be determined, and, as before, inserted into the

updates (7.131a) and (7.131b).
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7.9 Spatial Variation and Stretched Coordinates

All the systems discussed up to this point have been linear and shift invariant, or LSI (see §5.1.1).

Some objects which occur in musical acoustics exhibit variations in material properties with position—

in 1D, the most important example is certainly the case of the acoustic tube of variable cross-section,

which features prominently in wind instruments and the voice. Simulation for the acoustic tube will

be discussed in Chapter 9. In the arena of string and bar vibration, the main example is the bar

of varying cross-section, which appears in percussion instruments such as xylophones [116], and the

string of variable density is a useful preliminary test problem.

In such cases, some of the analysis tools used up to this point lose their utility—there is no longer

a well-defined notion of a phase or group velocity, and von Neumann analysis becomes unwieldy2,

though the notions of a modal expansion and characteristic frequencies persist. A good treatment of

energy analysis of finite difference schemes for systems similar to those which appear in this section

is that of Cohen and Joly [58]

7.9.1 Strings of Varying Density

As a first example, consider the equation of motion of a string, length L, under tension T0, with a

linear mass density ρl = ρ0ǫ
2(x), in dimensional form:

ρ0ǫ
2(x)utt = T0uxx over x ∈ [0, L] (7.143)

Here, ρ0 is the average density over the length of the string, and ǫ(x) represents the variations. This

can be non-dimensionalized as

ǫ2(x)utt = γ2
0uxx over x ∈ U (7.144)

where γ0 =
√

T0/ρ0L2. One can think of this equation, in a very rough sense, as a wave equation

with a wave speed γ = γ0/ǫ(x) which varies with position. It should be clear that now, the modal

shapes will depend wholly on the density profile, and, in general, can only be computed numerically.

Energy analysis may be applied just as in previous examples. One arrives at

dH

dt
= B with H = T + V (7.145)

and where now, one has

T =
1

2
‖ǫut‖2

U
V =

γ2
0

2
‖ux‖2

U
B = γ2

0 (ut(1, t)ux(1, t) − ut(0, t)ux(0, t)) (7.146)

Thus one may come to the same conclusions regarding conservative boundary conditions as in the

case of the 1D wave equation. In particular, the Dirichlet and Neumann conditions discussed in

§6.1.9 continue to lead to energy conservation.

Consider now the obvious choice for a finite difference scheme for (7.144):

ǫ2δttu = γ2
0δxxu (7.147)

Here, ǫ = ǫl now represents the grid function obtained through direct sampling of the given function

ǫ(x) at the grid locations x = lh. Energy analysis, i.e., through an inner product with δt·u, leads to

the energy balance

δt+h = b with h = t + v (7.148)

2von Neumann stability analysis may be carried out using so-called frozen-coefficient analysis [244], but energy
analysis is an elegant and informative alternative.



194 CHAPTER 7. BARS AND LINEAR STRINGS

and

t =
1

2
‖ǫδt−u‖2

UN
v =

γ2
0

2
〈δx−u, et−δx−u〉

UN
b = γ2

0 (δt·uNδx+uN − δt·u0δx−u0) (7.149)

Under what conditions is this quantity non-negative? Assuming conservative boundary condi-

tions, so that b = 0, one has, using the same techniques as in the case of the 1D wave equation,

h ≥ 1

2
‖ǫδt−u‖2

UN
− γ2

0k2

8
‖δx−δt−u‖2

UN
≥ 1

2
‖ǫδt−u‖2

UN
− γ2

0k2

2h2
‖δt−u‖2

UN
(7.150)

=
1

2

N∑

l=0

h
(
ǫ2l − λ2

)
(δt−ul)

2 (7.151)

where λ = γ0k/h. This expression can only be non-negative under the condition

λ ≤ ǫmin = min
l∈UN

ǫl (7.152)

Under such conditions, one can, as before, go further and find bounds on solution growth, and thus

the above serves as a stability condition for scheme (7.147).

Frequency Domain Behaviour

The scheme (7.147), even when condition (7.152) is satisfied with equality, behaves rather poorly,

in that bandwidth is wasted, depending on the variation of the density—the larger the variation,

the less of the spectrum is used. See Figure 7.18, for some plots of typical output spectra, under

different choices of the function ǫ(x). Such behaviour is definitely audible, leading to a low-passing

effect on resulting sound output, and is to be avoided at all costs. One way of approaching this

problem is to design implicit schemes; a better idea, however, given that the problem itself exhibits

spatial variation, is to introduce coordinate changes.

Using Stretched Coordinates

In essence, the low-passing effect which occurs for the scheme (7.147) is another example of the

same behaviour which occurs in explicit schemes for LSI systems when the stability condition is not

satisfied with equality—see, e.g., the case of schemes for the wave equation operating away from the

CFL condition, as discussed in §6.2.3. It is possible to make sense of this geometrically in terms of

the “regions of dependence” arguments used in this case, and as illustrated in Figure 7.19(a). (The

reader may wish to refer to Figure 6.9 in the previous chapter, which deals with similar issues for

schemes for the wave equation.)

Considering the model problem (7.144), one may say, roughly, that at a given point x, the wave

speed is, locally, γ = γ0/ǫ(x), and thus the region of dependence varies from point to point. At

the point x at which ǫ takes its minimum value, the region of dependence is thus largest, and, as

the numerical region of dependence of the scheme must include that of the model problem (for

convergence, and stability), on a uniform grid, the minimum grid spacing is determined by ǫ at

this point—energy analysis leads to exactly this result, as given in (7.152). At other grid points,

however, the grid spacing is larger than this, and thus the scheme exhibits dispersive behaviour over

the majority of the domain.

The natural means of attacking this problem is to employ stretched coordinates which match the

variation in the wave speed—see §5.3 for a discussion of some of the relevant algebraic machinery.
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ǫmin = 0.95 ǫmin = 0.9 ǫmin = 0.8

Figure 7.18: Output spectra |ũo(f)|, in dB, for finite difference scheme (7.147) for the string of
variable density, under different density profiles, as indicated in plots of ǫ(x), related to the density
ρ(x) and its average value ρ0 through ρl = ρ0ǫ

2(x). The sample rate was chosen as fs = 44100
Hz, and γ0 = 1500, and the bound (7.152) is satisfied as close to equality as possible. The initial
condition is of plucked type, using a raised cosine of amplitude 1, centered at x = 0.3, of half-width
0.1, and the readout position is taken at x = 0.8.

Consider a dimensionless coordinate α(x), defined in terms of the dimensional coordinate x as

α(x) =

∫ x

0 ǫ(η)dη
∫ L

0 ǫ(η)dη
(7.153)

The spatially non-dimensionalized form of (7.144) then becomes

ǫutt = γ2
0 (ǫuα)α (7.154)

A simple finite difference scheme for the above equation is

[ǫ]δttu = γ2
0δα+ (µα−ǫδα−u) (7.155)

Here, the exact form of the discrete approximation to ǫ on the left is left unspecified for the moment,

and indicated as the grid function [ǫ] = [ǫ]l.

A discrete energy follows, as before, through an inner product with δt·, now in α coordinates,

i.e.,

δt+h = b with h = t + v (7.156)

and

t =
1

2
‖
√

[ǫ]δt−u‖2
UN

v =
γ2
0

2
〈µα−ǫδx−u, et−δx−u〉

UN
(7.157)

It then follows, after manipulations similar to those performed previously, that under conservative

conditions,

h ≥ 1

2
‖
√

[ǫ]δt−u‖2
UN

− λ2

2
‖√µααǫδt−u‖2

UN
=

1

2

N∑

l=0

h
(
[ǫ] − λ2µααǫ

)
(δt−ul)

2 (7.158)
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Figure 7.19: For a string of variable density (as indicated by the function ǫ(x), at top), the local
wave speed, and thus the region of dependence will be variable. For an explicit scheme over a
uniformly sampled grid, as shown in (a), at bottom, the numerical region of dependence of the scheme
only matches that of the model system (indicated in grey) at the location at which ǫ is a minimum
Coordinate transformation and a regions of dependence in a scheme for a string of spatially-varying
density (top). In (b), a coordinate transformation is applied such that the numerical and model
regions of dependence coincide.

here, then, the natural choice of [ǫ] = µααǫ leads to the stability condition

λ ≤ 1 (7.159)

which is independent of ǫ—the coordinate transformation has removed such a dependence.

This scheme now exhibits much better behaviour in the frequency domain—see Figure 7.20. The

audio bandwidth is filled, barring the slight loss incurred near the Nyquist, sue to quantization of

the number of grid points to an integer (i.e., the condition λ ≤ 1 is satsfied close to equality).

7.9.2 Bars of Varying Cross-sectional Area

Much more relevant, at least in musical acoustics, is the case of the bar of variable cross-sectional

area. For some percussion instruments, such as, e.g., the marimba, bars are tuned, generally by

cutting an arch-like shape into the bars. See. e.g., [96] for an overview. The effects of variations in

cross sectional area on the modal frequencies are complex, to say the least.

In the case of the uniform ideal bar, there was no need, from a simulation point of view, to

enter into the details of various physical parameters (in particular the moment of inertia)—all the

relevant parameters, including bar length, could be bundled into a single stiffness parameter κ.

When the cross section is varying, more care needs to be taken, and it is useful to begin again from

a dimensional form, which is:

ρA(x)utt = − (EI(x)uxx)xx (7.160)

In the spatially-varying case, both A and the moment of inertia I will be functions of some char-

acteristic thickness, which is dependent on x. It is assumed, here, that the material density ρ and

Young’s modulus E are not variable (though one could permit such variations as well).

It is perhaps most useful to concentrate on the case of a bar of rectangular cross section, with

width b and height H(x) = H0φ(x). H0 is a reference thickness, and φ(x) represents the variations
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Figure 7.20: Output spectra for finite difference scheme (7.147) for the string of variable density,
under different density profiles. The other conditions are otherwise the same as in the caption to
Figure 7.18.

about this value. For such a bar, the area and moment of inertia are given by

A = bH0φ(x) I =
1

12
bH3

0φ3 (7.161)

Under these conditions, when nondimensionalized, (7.160) becomes

φutt = −κ2
0

(
φ3uxx

)

xx
(7.162)

where

κ2
0 =

EH2
0

12ρL4
(7.163)

where, as previously, L is the length of the bar.

Arched Bars

As an example of the effect of the variation in cross-sectional area, consider the effect of variation in

the depth of an arch in a bar of rectangular cross-section, as shown in Figure 7.21. The gross effect

of removing material from the bar is to decrease the modal frequencies—thus pitch is decreased.

The ratios of the various modal frequencies do not stay the same however, and in particular, the

first two non-zero modal frequencies, which are primarily resposible for the perception of pitch, may

ve adjusted in this way such that their ratio becomes consonant (such as, say, 3:1).

Energy

The variable bar system possesses a conserved energy as well. Over the real line, D = R, one has

dH

dt
= 0 with H = T + V (7.164)

with

T =
1

2
‖
√

ǫut‖2
R

V =
kappa2

0

2
‖φ3/2uxx‖2

R
(7.165)
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Figure 7.21: Output spectra for the bar of variable rectangular cross-sectional area, under different
thickness profiles, as shown. Here, κ0 = 30, and boundary conditions are of free type.

The fixed and clamped boundary conditions (7.13a) and (7.13b) continue to lead to exact conser-

vation. The free condition, of great importance in mallet percussion instruments, must be modified

to

uxx =
(
φ3uxx

)

xx
= 0 (7.166)

at an endpoint—the condition reduces to (7.13c) when φ is constant at an endpoint (also generally

the case for percussion).

Loss in the spatially-varying case will not be discussed here, though its effect on the energy

balance above leads to strict dissipation—this effect carries over to the discrete case as well, and has

no effect on numerical stability. See Problem 7.11.

Finite Difference Schemes

One can proceed immediately from the nondimensionalized form (7.162) above to a finite difference

scheme:

[φ]δttu = −δxx

(
φ3δxxu

)
(7.167)

Again, some unspecified second-order approximation [φ] has been employed. This scheme also may

be shown to be stable, using energy techniques, under the condition

µ =
kκ0

h2
≤ 1

2
min

(√

[φ]

µxx (φ3)

)

≈ 1

2φmax
(7.168)

The approximate bound above may be made exact through the proper choice of the approxmation

[φ]—see Problem ??.

As might be gathered from the discussion of the string of variable density in the previous section,

this scheme performs terribly! For even very small variations in thickness, the spectrum of the output

can be bandlimited to below one-quarter the sample rate. As such, this scheme is not attractive

for synthesis—indeed, for larger variations in cross-sectional area, dispersion is so extreme that the

scheme is practically useless—see Figure 7.22. Again, one may introduce a stretched coordinate

α(x), in order to accommodate the variations in cross-section. Under the coordinate transformation



7.10. PROBLEMS 199

defined by

α(x) =
1

αav

∫ x

0

1
√

φ(η)
dη with αav =

∫ 1

0

1
√

φ(η)
dη (7.169)

the system (??) becomes, using the transformed derivatives as discussed in §5.3,

φ3/2utt = − κ2
0

α4
av

(

φ−1/2
(

φ5/2
(

φ−1/2uα

)

α

)

α

)

α

(7.170)

(Notice, in particular, that the effect of the variation is now balanced on both side of the equation,

in that an equal power of φ appears in both terms.) The related finite difference scheme is now

[φ3/2]δttu = − κ2
0

α4
av

δα+

(

µα−φ−1/2δα−
(

φ5/2δα+

(

µα−φ−1/2δα−u
)))

(7.171)

and the stability condition, again following from energy analysis, is

µ ≤ α2
av

2
min

(√

[φ3/2]

µα+

(
(µα+φ5/2)(µα−φ−1/2)2

)

)

≈ α2
av

2
(7.172)

Again, with a proper choice of [φ3/2], the approximate bound above may be made exact. See Problem

??.

The improvement, relative to scheme (7.167) is dramatic—see Figure 7.22. The bandwidth of

the computed solution is nearly full, regardless of the degree if variation in cross-sectional area. The

problem of numerical dispersion, i.e., modal mistuning, remains, however, just as in the case of the

uniform bar (see page 168). For finer modelling, one could well employ an implicit generalization of

either of schemes (7.167) or (7.171), as has been done by Chaigne and Doutaut [116].
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Figure 7.22: Output spectra for the bar of variable rectangular cross-sectional area, under the arched
thickness profile, at left. Here, κ0 = 30, boundary conditions are of free type, and the sample rate is
fs =44 100 Hz. In the center panel is shown the spectrum of sound output for scheme (7.167), and
in the right panel, that of output from scheme (7.171).

7.10 Problems

Problem 7.1 An explicit formula for the modal frequencies of an ideal bar under simply sup-
ported conditions at each end is given in (7.17), and an implicit formula for those the bar under
clamped/simply supported conditions in (7.18). Derive implicit formulae for the remaining combina-
tions of boundary conditions given in (7.13), namely: clamped/free, clamped/clamped, free/free, and
simply supported/free. Show that in all cases, the distribution of modal frequencies ωp approaches
ωp = κπ2p2 in the limit as p becomes large. Deduce that the number of degrees of freedom of the bar,
as given in (7.19), is approximately independent of the choice of boundary condition.
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Problem 7.2 Given the energy balance for the semi-infinite ideal bar from (7.12), show that the
following conditions also imply losslessness. In all cases, the total conserved energy will be of the
form H + HB, where H is as defined in (7.10) (limited to the domain D = R

+, and where HB is a
term representing stored energy at the boundary point x = 0. The parameter α is constrained to be
non-negative.

(a) uxx(0, t) = 0 and uxxx(0, t) + αu(0, t) = 0.
(b) u(0, t) = 0 and uxx(0, t) − αux(0, t) = 0.
(c) uxx(0, t) = 0 and uxxx(0, t) + αutt(0, t) = 0.
Furthermore, show that the following termination is strictly dissipative:
(d) uxx(0, t) = 0 and uxxx(0, t) + αut(0, t) = 0.
To what physical combinations of masses, springs and dashpots do these terminations correspond?

Attempt to illustrate each termination with a diagram.

Problem 7.3 Apply von Neumann stability analysis to the implicit scheme (7.42) for the ideal bar
equation. Show that, by introducing the ansatz un

l = znejβlh, a characteristic polynomial of the form

z +

(

−2 +
16µ2p2

1 − 2(1 − θ)p2

)

+ z−1 = 0 (7.173)

results. Here, as in the case of the simpler scheme (7.21), p = sin2(βh/2), and takes on values
between 0 and 1 only. Using the stability condition for second order polynomials given in (2.14),
show the stability conditions (7.44). Try to prove the same result using energy methods.

Problem 7.4 Consider the action of the operator δxxxx applied to the grid function ul, defined over
Z

+, under the free boundary condition (7.36c), and write δxxxxu0 and δxxxxu1 purely in terms of
values of ul over the domain interior.

Problem 7.5 Consider the implicit θ scheme (7.62) for the stiff string equation. By equating the
number of degrees of freedom of the model, from (7.58), and the number of degrees of freedom of the
scheme, from (7.64), find an optimal setting for θ in terms of γ, κ, and the sample rate fs. (You will
need such an expression for the optimal θ in order to complete Programming Exercise (7.1) below.)

Problem 7.6 Some physical models employ an even more refined model of frequency-dependent loss.
Consider the following model of the stiff string, with three-parameter frequency-dependent loss:

utt = γ2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx − 2σ2utxxxx (7.174)

(a) By inserting a test solution of the form u = est+jβx, find the characteristic equation, and
find the roots s±(β).

(b) Using s± = σ ± jω, find expressions for σ(β) and ω(β), under the assumption that the
parameters σ0, σ1 and σ2 are small.

(c) The conditions
σ0 ≥ 0 σ1 ≥ 0 σ2 ≥ 0 (7.175)

are sufficient for your expression for loss σ(β) to be non-positive everywhere (i.e., so that all
wavenumbers are damped). Derive necessary conditions. Hint: start by evaluating the expression
σ(β) for the limiting cases β = 0 and β = ∞. Sketch σ(β) for a representative case where the
sufficient condition above is violated, but the necessary condition is satisfied; you should be able to
produce loss curves which are not-monotonic as a function of wavenumber.

(d) Supposing that the equation above is defined over the infinite interval D = Z, find an expres-
sion for the energy balance of the string of the form

dH

dt
= −Q (7.176)

and show that, under the sufficient conditions above, Q is non-negative. Can you show that Q is
non-negative under the necessary conditions you derived in (c) above?
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Problem 7.7 Consider the following implicit scheme for the stiff string model with three-parameter
frequency-dependent loss described in the last problem:

δttu = γ2δxxu − κ2δxxxxu − 2σ0δt·u + 2σ1δt·δxxu − 2σ2δt·δxxxxu (7.177)

(a) Using von Neumann analysis (i.e., by inserting a test solution of the form un
l = znejlβh, find

the characteristic polynomial for the scheme, which will be a quadratic in z.
(b) Show that, if the conditions (7.175) are satisfied, the stability condition for the scheme is

unchanged from (7.60) for the stiff string without loss.
(c) Write the scheme in vector matrix form

Aun+1 + Bun + Cun−1 = 0 (7.178)

where un is a vector containing values of the grid function un
l . You may use the shorthand notations

Dxx and Dxxxx to represent the matrix form of the operators δxx and δxxxx, thus assuming that
boundary conditions are taken into account.

Problem 7.8 Consider the following variant of the stiff string model:

utt = γ2uxx − κ2uxxxx − 2σ0ut − buttt (7.179)

which differs from the model (7.67) in the treatment of the frequency-dependent loss term.
a) By inserting a test solution of the form u = est+jβx, show that the characteristic equation for this
model is

bs3 + s2 + 2σs + ω2
0β

2 + κ2β4 = 0 (7.180)

b) Show that, for large values of the wavenumber β, the roots of the characteristic equation must
approach the roots of

s3 +
κ2

b
β4 = 0 (7.181)

c) Prove that, given that b and β are real, at least one of the roots of the characteristic equation
must have a positive real part in the limit as β becomes large. How does your analysis depend on the
sign of b? What can you conclude about the validity of such a model?

Problem 7.9 Prove condition stability condition (7.60) for the difference scheme (7.59) for the stiff
string, using von Neumann analysis.

Problem 7.10 Reconsider the stiff string model given in (7.179) above, defined over D = R. By
taking an inner product with ut, find an energy balance for the equation, of the form

dH

dt
= −Q (7.182)

Are H and Q non-negative?

Problem 7.11 Consider the spatially-varying bar model, in the nondimensionalized form given by

φutt = −κ2
0

(
φ3 (uxx + σutxx)

)

xx
(7.183)

defined over the entire real line, D = R, where σ ≥ 0 is a loss parameter. (Such a model has been
used to describe the vibration of non-uniform xylophone bars [116].)

(a) Show that the energy balance (7.164) may be generalized to

dH

dt
= −Q (7.184)

and determine Q, showing that it is non-negative, and thus that the system is strictly dissipative.
(b) Design a scheme for the lossy model above, using a centered difference approximation δt·

for the extra time derivative in the loss term. Show that this scheme will be dissipative, and thus
numerically stable, in the same way as for the model problem.

7.11 Programming Exercises

Exercise 7.1 Create a matlab script which calculates and plots the phase velocity of the stiff string
system (7.48), as well as the numerical phase velocity of the implicit scheme (??), for any value of
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κ, γ and θ, over the band f ∈ [0, fs/2]. You should assume that the grid spacing hmin is chosen at
the stability limit, from (??). Assuming simply supported conditions, your code should also generate
a list of the modal frequencies of the model system over the same band, as well as the modes of
scheme (??). Verify, using the value for θ as a function of γ, κ and fs (see Problem 7.5 above)
that deviations in both the numerical phase velocity and scheme modal frequencies from those of the
model system are minimized under these conditions.



Chapter 8

Nonlinear String Vibration

In Chapter 7, a general model of linear string motion was presented. This model, which holds

under low-amplitude vibration conditions, is sufficient in many cases of musical interest, but not all.

If vibration amplitude becomes large (under, say, high amplitude striking or plucking conditions),

various nonlinear effects begin to appear, and can become perceptually dominant. The effect which

is perhaps the most familiar to the reader will be that of the pitch glide, which is common across

many instruments, and not merely strings (it occurs in struck percussion instruments as well—see

§13.1.4). Under a high amplitude strike or pluck, there is often a downward change in the pitch

of the string, due to increased tension in string, (or, equivalently, to the increased length of the

deformed string). Such an effect, often called tension modulation[255, 269, 81], cannot be captured

by a linear model, for which modal frequencies are, by linear system theory, fixed. Other more subtle

phenomena also play an important perceptual role. The generation of audible so-called phantom

partials [59, 15] in piano strings under high striking velocities is due to coupling between longitudinal

and transverse vibration, and beating can result from the instability of motion of a nonlinear string

in a single polarization, which is a purely three-dimensional effect.

The development here, proceeding from simpler models to the more general, is the reverse of the

usual treatment in acoustics. A useful starting point, and perhaps the simplest nonlinear partial dif-

ferential equation in musical acoustics, is the Kirchhoff-Carrier model of string vibration, introduced

in §8.1, which models the effect of tension modulation, and thus gives rise to pitch glide phenomena.

Finite difference schemes and modal methods are discussed. In order to deal with more realistic

cases of string vibration, more general models in both one and two polarizations are introduced in

§8.2 and §8.3, respectively. Finite difference schemes are developed, and various effects of musical

interest such as phantom partials and whirling are examined.

References for this chapter include: [159, 282, ?, 270, 269, 255, 151, 160, 5, 59, 186]

8.1 The Kirchhoff-Carrier String Model

Perhaps the simplest generalization of the dynamics of a string beyond the linear variants that were

detailed in the last chapter is that of Kirchhoff and Carrier [146, 49]:

ρAutt =

(

T0 +
EA

2L

∫ L

0

u2
xdx

)

uxx (8.1)

Here, as for the case of the linear string, ρ and T0 are the material density and tension, respectively,

and u represents string displacement in a single polarization. In contrast to the simple linear model,

203
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stiffness effects play a role, and thus Young’s modulus E and the cross-sectional area A intervene

as coefficients. The nonlinearity itself is of a very special form, involving an average of the square

string slope over the length of the string—as one might guess, this is a form arrived at through quite

a number of simplifying assumptions. The nonlinearity: the entire It also should be clear that the

string is, in this case, well-defined only over a finite interval, in this case, x ∈ [0, L]. The equation

(8.1) results from a simplification of a more complex system (to be discussed in §8.2), under various

assumptions, the most important of which is that EA >> T0, which is true for nearly any string

of musical interest. The full derivation is readily available in the literature—see, e.g., the classic

papers by Anand [4], Narasimha [177]. Due to the simplicity of the nonlinear term, is heavily used

for the analysis of nonlinear phenomena [73, 74, 128, 217]. Such an equation has also been used as

a starting point in many studies in musical acoustics—see, e.g., [110, 156], and, in sound synthesis

[82, 34].

It is useful to non-dimensionalize the system, again spatially, using a coordinate x′ = x/L, but,

because the system is nonlinear (i.e., its response is amplitude dependent), a non-dimensionalization

of the dependent variable itself, through a choice of u′ = u/L is also advisable. The resulting system,

now defined over the unit interval U is

utt = γ2

(

1 +
α2

2
‖ux‖2

U

)

uxx (8.2)

where the parameters γ and α are defined by

γ =
1

L

√

T0

ρ
α =

√

EA

T
(8.3)

The parameter γ should be familiar from the discussions in the previous two chapters, and α is a

measure of the strength of stiffness versus tension effects in the string. Notice that the norm notation

‖ · ‖ has been introduced—see §5.1.3.

Given that effects of stiffness have appear in this model (notice the presence of Young’s modulus

above), one might wonder what has happened to the linear fourth order stiffness term which occurs,

e.g., in the model of the ideal bar, as discussed in §7.1. Such a term can indeed be included, to yield

a basic model of nonlinear bar vibration—see §8.1.7.

8.1.1 Amplitude-dependent Pitch

For nonlinear systems in musical acoustics, it is rare to be able to come to any conclusions about

perceptual effects through simple inspection, but the Kirchhoff-Carrier model, due to its extreme

simplicity, does permit some observations to be made. As a first step, rewrite (8.2) as

utt = γ2Guxx with G = 1 +
α2

2
‖ux‖2

U
(8.4)

Here, the entire effect of the nonlinearity is represented by the scalar factor G ≥ 1. Assuming that

the time variation of G is slow (and it is always dangerous to make such assumptions), it can be

viewed as a scaling factor to the parameter γ, and, thus, to the pitch. For instance, under fixed

end conditions, the lowest frequency of vibration will be approximately f0 = γ
√

Gav/2, where Gav

represents an average value of G over several cycles—G itself varies rapidly! Note also that G is

always greater than one, and approaches this value in limit as ‖ux‖U becomes small, or, in other

words, when vibration amplitude is small (i.e., the linear case). Thus, the greater the energy of the

string, the greater the frequency of vibration—see Figure 8.1 for some examples of this behaviour.

One might expect, then, that loss will play an even more important role for such a nonlinear
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Figure 8.1: Plots of displacement of a string modelled by the Kirchhoff-Carrier equation (8.1), with
γ = 400 and α = 10, as a function of time t. In each case, the initial condition is a triangular
function ctri(x), with x0 = 0.5, and where the maximum displacements take on increasing values
c0 as indicated. The output displacement at the string center is plotted. Notice in particular that
the gross rate of oscillation increases with the initial dispacement, and also the deformation of the
waveform away from the pure triangular form, which is characteristic of lossless linear strings.

system than for linear strings, as discussed in the previous chapter. Not only will it determine the

rate of decay of vibration, but in this case, it will have the additional effect of altering the pitch over

time, as the total energy of the system (and thus G decreases). See §8.1.5.

8.1.2 Energy Analysis and Boundary Conditions

Even though the Kirchhoff-Carrier equation (8.2) is the result of several approximations, it still

possesses a conserved energy. It is possible to proceed as for the wave equation, and take an inner

product with ut, the velocity, over D = U, to get the energy balance

dH

dt
= γ2

(

1 +
α2

2
‖ux‖2

U

)

utux

∣
∣
∣

1

0
(8.5)

with

H = T + V and T =
1

2
‖ut‖2

U V =
γ2

2

(

1 +
α2

4
‖ux‖2

U

)

‖ux‖2
U (8.6)

Under Dirichlet or Neumann conditions at either end point, the system is again exactly conservative.

Note that the expression for the potential energy V is no longer a quadratic form, reflecting the

nonlinearity1 of system (8.2). It remains true, however, that the energy is non-negative—notice, in

particular, that it is higher than that of the associated linear system (the wave equation).

8.1.3 Finite Difference Schemes

A direct finite difference approximation to the form of the Kirchhoff-Carrier equation given in (8.4),

where the factor G has been introduced, is as follows:

δttu = γ2[g]δxxu (8.7)

1Though it is true that if the energy of a system is not expressed as a quadratic form of the state, then the
system must be nonlinear, the converse is not necessarily true. The von Karman system, for instance, which describes
high-amplitude vibration of a thin plate, is highly nonlinear, yet the expression for the energy remains a quadratic
form. See §??.
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Here, [g] = [g]n is a scalar time series, intended as an approximation to G; its form is left unspecified

for the moment (this is indicated, as before, with the use of square brackets). There are obviously

many ways of forming such an approximation. Perhaps the simplest is given by

[g] = 1 +
α2

2
‖δx+u‖

U
(8.8)

As it turns out, however, such a choice does not lead to an energy conservation property for the

finite difference scheme, and it is difficult to deduce anything about numerical stability. In order to

find an appropriate setting for g, take the inner product of (8.7) with δt·u over U, to get

〈δt·u, δttu〉U = γ2[g]〈δt·u, δxxu〉U (8.9)

= −γ2[g]〈δt·δx+u, δx+u〉U + b = −γ2[g]δt+
1

2
〈δx+u, et−δx+u〉U + b (8.10)

where here, the boundary term is given by

b = γ2[g] (δx+uNδt·uN − δx−u0δt·u0) (8.11)

Clearly, regardless of the choice of [g], the boundary term vanishes when Dirichlet or Neumann

conditions are applied at either end of the string.

An energy conservation property, as mentioned earlier, does not follow for a choice of [g] such as

the simple form given in (8.8). But consider the following choice:

[g] = g = 1 +
α2

2
µt+〈δx+u, et−δx+u〉U (8.12)

where the square braces are removed, now that a choice on an approximation has been decided.

This leads immediately to an energy conservation property, i.e.,

δt+h = 0 with h = t + v (8.13)

and

t =
1

2
‖δt−u‖2 v =

γ2

2

(

〈δx+u, et−δx+u〉U +
α2

4
〈δx+u, et−δx+u〉2U

)

(8.14)

which is directly analogous to the energy of the Kirchhoff-Carrier system, from (8.6). This energy

will again be conserved, to machine accuracy, in a simulation—see Figure 8.2.

An Explicit Form

The quantity g defined above in (8.12), when used in scheme (8.7), leads, apparently, to an explicit

scheme—g at time step n depends on values of u at time steps n − 1, n and n + 1. This may be

remedied in the following way: First rewrite g, using identity (2.7a), as

g = 1 +
α2

2
〈δx+u, µt·δx+u〉U = 1 +

α2

2
‖δx+u‖2

U
+

k2α2

4
〈δx+u, δttδx+u〉U (8.15)

= 1 +
α2

2
‖δx+u‖2

U
+

gk2α2

4
〈δx+u, δxxδx+u〉U (8.16)

= 1 +
α2

2
‖δx+u‖2

U
− gk2α2

4
〈δxxu, δxxu〉

U
+ b′ (8.17)

(8.18)

When the boundary term is zero (it will be under fixed conditions), g can then be written as

g =
1 + α2

2 ‖δx+u‖2
U

1 + gk2α2

4 〈δxxu, δxxu〉
U

(8.19)

This is something of a rarity among numerical methods—an explicit, conservative scheme for a
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Figure 8.2: (a) Variation of the discrete potential energy v (solid grey line), discrete kinetic energy t

(dotted grey line) and total discrete energy h (solid black line), plotted against time t, for the output
of scheme (8.7) using fixed boundary termination. In this case, the values γ = 400, k = 1/44100
and λ = 0.9 were used, and the scheme was initialized with the a triangular distribution ctri(x),
with x0 = 0.5 and c0 = 0.035. (b) Variation of the error in energy, defined, at time step n, as
he =

(
h − h0

)
/h0, plotted as black points.

nonlinear distributed system. It is one of the few such examples to be discussed in this book. It

is possible, in this case, due to the very simple form of the nonlinearity, which is scalar, putting

it in line with explicit numerical methods for some lumped systems, particularly those where the

nonlinearity is of third order—see §4.2.1.

Stability

Given these forms of the kinetic and potential energy for scheme (8.7) with the choice of g from

(8.12), one important observation that one can make is that the potential energy v consists of two

terms: one, due to linear effects, and a second due to nonlinear effects. The second term is always

non-negative; this has a simplifying effect on stability analysis, which becomes nearly trivial, once

one has examined the related scheme for the wave equation. .

The potential energy v in (8.14) above differs from that which appears in the analysis of the

related finite difference scheme for the wave equation by a single term (the final one)—this term,

which is not quadratic in the state variables, indicates the presence of a nonlinearity. It is, however,

non-negative. Recalling the discussion of such terms in §2.4.3, it is not hard to see that if the

energy for the linear scheme is non-negative under condition (6.63), then the addition of an extra

non-negative term to the energy cannot affect this result. Thus condition (6.63) serves as a sufficient

condition for non-negativity of energy, and, as one can show, a numerical stability condition
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Numerical Oscillations

8.1.4 A Quasi-modal Form

Though modal techniques are, as a rule, strictly applicable only to linear and time-invariant systems,

in this case, because of the scalar nature of the nonlinearity, one might suspect that an extension of

modal techniques might be possible.

Suppose that fixed (Dirichlet) boundary conditions have been applied at either end of the string.

It is valid, from Fourier theory arguments, to expand the solution u(x, t) in the following form:

u(x, t) =

∞∑

p=1

Up(t) sin(pπx) (8.20)

Upon inserting this form in (8.4), it then results that
∞∑

p=1

d2Up

dt2
sin(pπx) = −γ2G

∞∑

p=1

p2π2Up sin(pπx) (8.21)

and, after multiplying through individually by the functions sin(pπx) and integrating over the domain

D = U, one arrives at
d2Up

dt2
= −γ2Gp2π2Up for p = 1, 2, . . . (8.22)

As far as G goes, through Parseval’s relation, one may demonstrate that

G = 1 +
α2

2

∞∑

p=1

π2p2

2
U2

p (8.23)

To this point, the modal description (8.21), accompanied by the alternative formulation of G

above, is equivalent to the time domain description (8.4); no approximations have been made. The

PDE, defined over the unit interval U has been replaced by an infinite set of ODEs. In order to

arrive at a formulation suitable for simulation, one may truncate the infinite set of ODEs to a finite

number, say M , and apply a second time difference to approximate the second time derivative, i.e.,

δttUp = −γ2gp2π2Up for p = 1, 2, . . .M (8.24)

Here, Up = Un
p is to be seen as a time series, and g = gn is a time series which depends only on the

Un
p , p = 1, . . . , M . It is worth noting that here, only the time derivative has been approximated;

spatial derivatives have been approximated, through Fourier series to what is sometimes called

”spectral accuracy,” which is, for all practical purposes, exact. In fact, this is an example of a

spectral method—these methods, and their potential in sound synthesis, will be discussed briefly in

Chapter 15.

A suitable choice for the g, again the discrete counterpart to G may be arrived at, as before,

through energtic principles. Multiplying through each of the difference equations in (8.24) by δt·Up,

one arrives at

δt+
1

2
(δt−Up)

2
= −γ2

2
Gp2π2δt+ (Upet−Up) (8.25)

A choice of

g = 1 +
α2

2

M∑

p=1

π2p2

2
µt+ (Upet−Up) (8.26)
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8.1.5 Loss and Pitch Glides

If a loss term is added to (??), i.e., if the equation is altered to

utt = γ2Guxx − 2σ0ut (8.27)

with G defined as before, then, under conservative boundary conditions, the energy H will be mono-

tonically decreasing, and the amplitude of vibration will thus decay just as in the linear case. What

is more interesting, sonically, is the audible change in pitch, which is downwards, from the moment

of a strike or pluck.

If one accepts the factor
√

Gγ/2, time-averaged, as a crude estimate of instantaneous pitch, then

it is not hard to deduce the following bound on G, purely from energetic considerations:

G ≤
√

1 +
2α2H

γ2
(8.28)

Thus, G is bounded by a function of H, which itself decreases monotonically. Even though G itself

is rapidly varying, its average value will decreases smoothly, leading to the observed pitch glide. See

Problem 8.1.

8.1.6 A Digital Waveguide Form

Because tension is

8.1.7 A Nonlinear Bar Model

8.2 General Planar Nonlinear String Motion

The Kirchhoff-Carrier model (8.1) is certainly the simplest model of the nonlinear distributed

string—it adequately reproduces the important pitch glide effect, and can be simulated with ease.

It is worth noting, however, that in this model, string motion is still purely transverse. Coupling

between longitudinal and transverse motion does, in fact, lead to perceptually important effects such

as so-called phantom partials (see §8.2.1), and a more complex model is necessary.

A quite general model of string vibration (see, e.g., [174]), including both longitudinal and

transverse motion in a single plane (in dimensional form) is the following:

ρAutt = EAuxx − (EA − T0)

(
∂Φ

∂ux

)

x

ρAζtt = EAζxx − (EA − T0)

(
∂Φ

∂ζx

)

x

(8.29)

Here, u(x, t) is again the transverse displacement of the string, and ζ(x, t) is the longitudinal dis-

placement from its rest—see Figure 8.3(a) for a graphical representation of these quantities. The

constants ρ, A, E and T0 are as for the Kirchhoff-Carrier model, and the function Φ, which nonlin-

early couples the two equations, is

Φ =
√

(1 + ζx)2 + u2
x − 1 − ζx (8.30)

Notice that the final term −1− ζx has no influence on the dynamics of system (8.29)—it is included

here so as to adjust the zero-point energy of the system as a whole. This will be discussed further

in §8.2.2.

Using the same non-dimensionalization strategy as for the Kirchhoff-Carrier system (i.e., substi-

tuting x′ = x/L, u′ = u/L, and ζ′ = ζ/L in the above system, and removing primes), one arrives

at

utt = γ2α2uxx − γ2
(
α2 − 1

)
(

∂Φ

∂q

)

x

ζtt = γ2α2ζxx − γ2
(
α2 − 1

)
(

∂Φ

∂p

)

x

(8.31)
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Figure 8.3: (a) Representation of the transverse displacement u(x, t) and longitudinal displacement
ζ(x, t) in the case of planar string motion, and (b) a similar diagram in the non-planar case, where
the two transverse displacements are written as u(1)(x, t) and u(2)(x, t).

where, for simplicity, the auxiliary variables

p = ζx q = ux (8.32)

have been introduced, and, for Φ, one has

Φ(p, q) =
√

(1 + p)2 + q2 − 1 − p (8.33)

8.2.1 Coupling Between Transverse and Longitudinal Modes and Phan-
tom Partials

8.2.2 Energy

Finding an expression for the energy of system (8.31) is straighforward— considering the problem

defined over the infinite domain D = R, taking the inner product of the first of Eqs. (8.31) with ut,

and the second with ζt and adding the result leads to:

H = T + V = constant (8.34)

with

T =
1

2
‖ut‖2

R
+

1

2
‖ζt‖2

R
V =

γ2α2

2
‖q‖2

R
+

γ2α2

2
‖p‖2

R
− γ2

(
α2 − 1

)
〈Φ, 1〉R (8.35)

The energy H is non-negative (though this is slightly tricky to show—see Problem 8.2).

8.2.3 Series Approximations

Series approximated forms have played a significant role in the analysis of nonlinear systems such as

the string model presented above; approximations to third or fourth order are commonly employed

[174]. Recall also from the early discussion of the nonlinear oscillator in §??, that such approximated

forms can lead to efficient and provably stable numerical methods. Such is the case here as well, but

one must take great care in the type of approximation to be employed.

The function to be approximated in Φ(p, q). Consider three approximations, to second, third,

and fourth order in p and q:

Φ2 =
1

2
q2 Φ3 =

1

2
q2 − 1

2
pq2 Φ4 =

1

2
q2 − 1

2
pq2 +

1

2
q2p2 − 1

8
q4 (8.36)
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Approximation Φ2, to second order, leads immediately to an uncoupling of longitudinal and trans-

verse motion—u and ζ individually satisfy the 1D wave equation, with speeds of γ and γα, respec-

tively.

More interesting, in the present context, are the approximations Φ3 and Φ4. It should be obvious

that system (8.31), under the series approximations above, will also lead to a conservative system,

with a modified energy function H3 = T + V3 or H4 = T + V4, where the modified expressions for

the potential energy will be, in terms of p and q,

V3 =
γ2

2
‖q‖2

R
+

γ2α2

2
‖p‖2

R
+

γ2(α2 − 1)

2
〈p, q2〉R (8.37)

V4 =
γ2

2
‖q‖2

R
+

γ2

2
‖p‖2

R
+

γ2(α2 − 1)

8
‖q2 + 2p‖2

R
− γ2(α2 − 1)

2
‖qp‖2

R
(8.38)

The third order approximation in particular has been used in finite difference piano sound synthesis

applications [13], and the fourth order approximation (or variants—see below) is often used in studies

of mode interaction [174].

Though useful for analysis purposes, the third and fourth order approximations are quite unphys-

ical when it comes to the underlying Hamiltonian—in fact, due to series truncation, the potential

energy terms can become negative, and unboundedly so! See Problem 8.3. This is obviously bad

news if one is interested in developing a robust simulation routine, for if one can not bound the

behaviour of the model system, it certainly will not be possible to do so for any derived numerical

method.

A Special Series Approximation

The problem above is one of Hamiltonian truncation—as an alternative, consider the following

approximation to Φ(p, q), similar to Φ4, but lacking one of the fourth order terms:

Φ∗
4 =

1

2
q2 − 1

2
pq2 − 1

8
q4 (8.39)

Now, the associated potential energy is

V∗
4 =

γ2

2
‖q‖2

R +
γ2

2
‖p‖2

R +
γ2(α2 − 1)

8
‖q2 + 2p‖2

R (8.40)

which is clearly non-negative if α ≥ 1 (which, again, is the case of most interest in the musical

context). One might well ask in what sense the use of the approximation Φ∗
4 is justified. One answer

follows from the energetic properties to be discussed in the next section; another relates to the

relative orders of magnitude of qξ and qη in system (8.31). As noted by Anand [4] and Morse [174],

under some conditions, p can be considered to be of the same order of magnitude as q2, and it is

perhaps more natural, then, to use a homogeneous approximation, truncated to powers of, say, q.

Given that the term p2q2 in V4 is clearly of sixth order in q, it is then justified to neglect it with

respect to the term in q4. See [25] for more comments on this topic.

The system (8.31), under the choice Φ4 reduces to

utt = γ2uxx + γ2 α2 − 1

2

(
q3 + 2pq

)

x
ζtt = γ2α2ζxx + γ2 α2 − 1

2

(
q2
)

x
(8.41)

where p and q are as defined in (8.32). This will be used as the starting point for the finite difference

methods to be devloped in the next section.
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Wave Speeds and Computational Implications

A fundamental difficulty with system (8.41) arises from the differing speeds of the two coupled

equations—in the absence of the nonlinear terms, the system reduces to two 1D linear wave equations,

one of speed γ, and the other of speed γα—for applications in musical acoustics, α can be of the

order of 10 or larger. Such a system with differing wave speeds, and thus operating over distinct

ranges of frequencies, is often referred to (in a very vague way) as stiff []. From the interpretation

of the CFL condition in terms of a region of dependence (see Figure 6.9), an explicit scheme will

clearly be strongly impacted by this. Consider, for example, any scheme for system (8.41) of the

form

δttu = γ2δxxu + . . . δttζ = γ2α2δxxζ + . . . (8.42)

Regardless of the type of discretization applied to the nonlinear part, the scheme must still be

capable of integrating the underlying linear system in a stable manner (because, under low amplitude

conditions, the system (8.41) reduces to two linear wave equations). Thus two CFL-type conditions

on the time step k and grid spacing h must be enforced:

h ≥ γk h ≥ γαk (8.43)

The second condition is more strict than the first—it is clear that both conditions cannot be satisfied

near their respective stability limits, and thus numerical dispersion, and, potentially a very severe

numerical cutoff will result—see §6.2.3 for a discussion of the effects of operation of such schemes

away from the CFL limit. The ramifications of such issues, as well as potential solutions will be

discussed in the remainder of this section.

8.2.4 A Conservative Finite Difference Scheme

Disregarding the dire warning above about schemes of the form (8.42), such a scheme does form

a good starting point for the development and analysis of schemes which are stable in the fully

nonlinear case. The discretization of the nonlinear terms in (8.41) is extremely delicate, but, one

may note that the nonlinear terms are at most cubic. One may suspect a link with the schemes for

the particularly simple stable scheme for the cubic nonlinear oscillator, as discussed in §4.2. This is

in fact the case, and, indeed, the extension to distributed systems such as the present case of the

nonlinear string was one of the main motivations for the earlier preoccupation with such forms.

There are many possibilities for conservative schemes for system (8.41). Here is a particularly

simple one:

δttu = γ2δxxu + γ2 α2 − 1

2
δx+

(
q2µt·q + 2qµttp

)
(8.44a)

δttζ = γ2α2δxxζ + γ2 α2 − 1

2
δx+ (qµt·q) (8.44b)

where, in analogy with the continuous case, the quantities p and q are defined as

p = δx−ζ q = δx−u (8.45)

Notice in particular the use of time averaging operators on the right hand side of both updates—

such a scheme is implicit, but, notice that just as in the case of schemes such as (??) for the cubic

nonlinear oscillator, the unknowns appear only linearly, and thus there is no issue of existence or

uniqueness of solutions. The full matrix update form will be given shortly.
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Energy Analysis

To see the conservative property of this scheme, it is useful to perform the calculation explicitly.

Taking the inner products of the two schemes (8.44) with δt·u and δt·ζ respectively, over D = Z,

and using summation by parts leads to:

〈δt·u, δttu〉Z = γ2〈δt·u, δxxu〉Z + γ2 α2 − 1

2
〈δt·u, δx+

(
q2µt·q + 2qµttp

)
〉Z (8.46)

= −γ2〈δt·q, q〉Z − γ2 α2 − 1

2
〈δt·q, q

2µt·q + 2qµttp〉Z (8.47)

〈δt·ζ, δttζ〉Z = γ2α2〈δt·ζ, δxxζ〉Z + γ2 α2 − 1

2
〈δt·ζ, δx+ (qµt·q)〉Z (8.48)

= −γ2α2〈δt·p, p〉Z − γ2 α2 − 1

2
〈δt·p, qµt·q〉Z (8.49)

Adding the two equations, one arrives at

δt+ (t + vlin) + γ2 α2 − 1

2

(
〈δt·q, q

2µt·q + 2qµttp〉Z + 〈δt·p, qµt·q〉Z
)

︸ ︷︷ ︸

Θ

= 0 (8.50)

where the kinetic energy t, and the part of the potential energy corresponding to the underlying

system vlin (i.e., the second order terms above), have been extracted as

t =
1

2
‖δt−u‖2

Z
+ ‖δt−ζ‖2

Z
vlin =

γ2

2
〈q, et−q〉Z +

γ2α2

2
〈p, et−p〉Z (8.51)

Notice that the terms on the right hand side depend only on the grid functions q and p, under

the application of time difference and averaging operators—one may thus make liberal use of the

identities (??), in order to write the term Θ as indicated in (8.50) as the difference of a nonlinear

potential energy contribution, as

Θ = 〈qδt·q, qµt·q〉Z + 〈qδt·q, 2µttp〉Z + 〈δt·p, qµt·q〉Z (8.52)

(2.22b),(2.22d)
=

1

2
〈δt+ (qet−q) , µt+ (qet−q)〉Z + 〈δt+ (qet−q) , µt+µt−p〉Z + 〈µt+ (qet−q) , δt+µt−p〉Z(8.53)

(2.23),(2.22c)
= δt+

(
1

4
‖qet−q‖2

Z + 〈qet−q, µt−p〉Z
)

(8.54)

Thus, finally, one has numerical energy conservation, i.e.,

δ+h = 0 with h = t + vlin + vnonlin (8.55)

where t and vlin are as given in (8.51) above, and where vnonlin is defined as

vnonlin = γ2 α2 − 1

2

(
1

4
‖qet−q‖2

Z + 〈qet−q, µt−p〉Z
)

(8.56)

Scheme (8.44) is but one among many in a family of conservative methods for the system (8.41)—

see [25]. Stability properties vary greatly, and, one may lose the linear updating property. See

Problems (??).

Non-negativity of Energy and Stability

As in the case of the systems examined in the previous chapters, once one has a numerical con-

servation property, the route to a stability condition is to find conditions under which the energy

remains non-negative. To this end, note that by using identity (??), the total potential energy may
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be written as

v = vlin +vnonlin =
γ2

2
〈q, et−q〉Z

γ2α2k2

8
‖δt−p‖2

Z +
γ2

2
‖µt−p‖2

Z +γ2 α2 − 1

2
‖µt−p+

1

2
qet−q‖2

Z (8.57)

When α ≥ 1, one may go further and bound the potential energy from below, using inequality

(??), as

v ≥ γ2

2
〈q, et−q〉Z − γ2α2k2

8
‖δt−p‖2

Z (8.58)

≥ −γ2k2

8
‖δt−q‖2

Z − γ2α2k2

8
‖δt−p‖2

Z (8.59)

≥ −γ2k2

2h2
‖δt−u‖2

Z − γ2α2k2

2h2
‖δt−ζ‖2

Z (8.60)

Finally, from the expression for total energy h, one arrives at

h ≥ 1

2

(

1 − γ2k2

h2

)

‖δt−u‖2
Z +

1

2

(

1 − γ2α2k2

h2

)

‖δt−ζ‖2
Z (8.61)

which is non-negative under conditions (8.43).

Numerical Behaviour

The stability conditions (8.43) are, as mentioned, rather restrictive. Using a typical audio sample

rate fs such as 44 100 Hz leads to trouble—k = 1/fs must be chosen so as to satisfy the second

condition, leading normally to a very large grid spacing. As the grid spacing is used for both the

transverse displacement as well as the longitudinal displacement, the number of degrees of freedom

necessary for the transverse displacement (the modes of which in the audio range are far more

numerous than for the longitudinal displacement) is grossly insufficient, and a very severe numerical

cutoff is evident. See Figure ??. In fact, for most values of α which occur in practice, such a

scheme is unusable at a typical audio sample rate. One obvious approach, and one taken by Bank

[], is to use a very high audio sample rate (often on the order of 400 000 + Hz). But given that

computational complexity scales with the square of the sample rate, this is obviously a technique

of limited utility in synthesis. As a way around this difficulty, Bank has proposed using a modal

representation for the longitudinal displacement, in conjunction with a finite difference scheme for

the transverse displacement, which appears to work quite well.

On the other hand, various more elaborate schemes for the wave equation and the ideal bar have

been discussed in §6.3 and §7.1.5, respectively, and one may put such techniques to use here as well.

8.2.5 An Improved Finite Difference Scheme

The problem with scheme (8.44), as mentioned above, is that the stability conditions (8.43) conflict.

In addition, as it is the transverse displacement which is of primary importance in string vibration,

one would like to be able to use a scheme which is of high accuracy for at least this part of the

problem. To this end, consider the scheme

δttu = γ2δxxu + γ2 α2 − 1

2
δx+

(
q2µt·q + 2qµttp

)
(8.62a)

(θ + (1 − θ)µx·) δttζ = γ2α2δxxζ + γ2 α2 − 1

2
δx+ (qµt·q) (8.62b)

which differs from scheme (8.44) through an added implicit treatment of the equation for longitudinal

displacement, parameterized by θ. Under low-amplitude (or linear conditions), this scheme decouples
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into two independent schemes in u and ζ, the second of which is exactly the compact implicit method

for the 1D wave equation as discussed in §6.3.2.

From the earlier treatment of this scheme, one may deduce that the stability conditions for

scheme (8.62) are, in addition to the requirement θ ≥ 1/2, that

h ≥ γk h ≥ γαk√
2θ − 1

(8.63)

Though this condition was derived using von Neumann methods, it may be shown to hold in the

case of the nonlinear coupled scheme above. See Problem 8.4. The free parameter θ may now be set

so that the bounds are identical, as

θ =
1 + α2

2
(8.64)

If the common bound is satisfied with equality, the result is very low dispersion in the “transverse”

wave equation approximation (8.62a), and considerable dispersion in the longitudinal approximation

(8.62b); in particular, there is not a sever numerical cutoff, as in the case of (8.44)—see Figure ??.

8.3 Nonplanar String Motion

In the previous sections, nonlinear string vibration models have been examined, where the motion

is assumed to lie in a single plane. The extension to the case of non-planar motion is direct, at

least on paper, but entirely new phenomena appear, related to the inherent instability of planar

motion of a string—“instability” is here used not in the dynamic or numerical sense (referring to the

explosive behaviour), but rather to mean that a string motion which is initially planar will become

largely nonplanar under very small nonplanar perturbation. The resulting effect is often referred to

as “whirling,” and has been studied by various authors [128, 219, 184], including in musical contexts

[110].

8.3.1 Model Equations

The Kirchhoff-Carrier system (8.2) may be extended easily to the nonplanar case as

utt = γ2

(

1 +
α2

2
‖|ux|‖2

U

)

uxx (8.65)

which is again in spatially nondimensionalized form and defined over the unit interval D = U, where

γ is again the wave speed, as defined in (??), and α is as for the planar case, i.e., as given by (??).

The transverse displacement u = [u(1), u(2)] is now a vector quantity with components u(1) and u(2)

in two directions orthogonal to the string axis at rest.

The series-approximated nonlinear system which generalizes (8.41) is

utt = γ2uxx + γ2 α2 − 1

2

(
q
(
|q|2 + 2p

))

x
ζtt = γ2α2ζxx + γ2 α2 − 1

2

(
|q|2

)

x
(8.66)

where now, q = ux. See Figure 8.3(b) for a representation of the various displacements in the

nonplanar case.

Energy

Energy analysis of the nonplanar systems above is very similar to the planar case—
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8.3.2 Finite Difference Schemes

8.3.3 Instability of Planar Motion and Whirling Behaviour

8.4 Problems

Problem 8.1 Prove the bound (8.28) on the G, which describes the pitch glide for the Kirchhoff-
Carrier system with a linear loss term in the following way:

(a) Given that 0 ≤ V ≤ H, find a bound on ‖ux‖2
U

in terms of H.
(b) Given the bound on ‖ux‖2

U
, and the fact that G is a strictly increasing function of ‖ux‖2

U

Problem 8.2 To show non-negativity of the energy H for the nonlinear string system (8.31), it
suffices to show that the expression for the potential energy V, given in (8.35), is non-negative.
Show that V may be rewritten as

V = γ2〈Φ, 1〉R +
α2

2
‖Φ + p‖2

R (8.67)

and argue that both terms are individually non-negative.

Problem 8.3 Show that the potential energy terms corresponding to the truncation of the nonlin-
earity in the string system (8.31) to third and fourth order can take on negative unbounded values,
under some or all choices of α.

Problem 8.4 Consider the scheme (8.62) for the nonlinear string system (8.41); recall that this is
a variant of scheme (8.44), in which the linear part of the scheme for longitudinal displacement is
treated implicitly, with a free parameter θ. Show that the energetic analysis performed in pages 213
to 214 for scheme (8.44) extends to this case as well, with the difference that the linear part of the
potential energy vlin must now be written as

vlin =
γ2

2
〈q, et−q〉Z +

γ2α2

2
〈p, et−p〉Z − h2(1 − θ)

4
‖δt−p‖2

Z
(8.68)

Deduce conditions on non-negativity of conserved energy in this case, and show that they are in fact
those given in (8.63).

8.5 Programming Exercises



Chapter 9

Acoustic Tubes

Wave propagation in acoustic tubes forms the basis of musical sound production in wind and brass

instruments, as well as in the case of the human voice. There are various ways of defining what

is meant by the word “tube.” In general, it can be described as an enclosure for which the length

scale in one coordinate is significantly greater than in the others. Generally, in linear problems, the

dynamics of the material filling the tube (air in musical applications) will satisfy the wave equation,

in three dimensions. If it is true that the wavelengths of interest are longer than the length scale in

the two “short” coordinate directions, then it is possible to simplify the dynamics to one dimension.

The simplest case of numerical methods for lossless cylindrical tubes is described by the 1D

wave equation, which was covered in some depth in Chapter 6; it will thus be presented in an

abbreviated form in §9.1. The more interesting case of the conical tube, of great interest wind

instrument modelling, will be approached in §9.2. The coupling with models of toneholes and reeds

is approached in §9.3 and §9.4, respectively. Finally, a general numerical model of the dynamics of

acoustic tubes, described by Webster’s equation is presented in §9.5.

References for this chapter include: [226, 60, 277, 22, 164, 78, 140, 213, 62, 245, 141, 280, 279,

278, 175]

9.1 Cylindrical Tubes

9.2 Conical Tubes

9.3 Tonehole Models

9.4 Coupling with Reed Models

9.5 Webster’s Equation and the Vocal Tract

A good model of the dynamics of an acoustic tube of variable cross-sectional area S(x), often referred

to as Webster’s equation, is the following:

Sutt = γ2 (Sux)x (9.1)

This equation is again assumed spatially non-dimensionalized, where again u(x, t) represents a one-

dimensional pressure field. Webster’s equation reduces to the 1D wave equation when S is a constant.

The underlying assumptions are discussed in detail by Benade and Jansson [?]. Webster’s equation
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appears in slightly different (equivalent) forms in the literature, namely

utt = γ2

(

uxx +
Sx

S
ux

)

and (9.2)

Like the equation of motion of the bar of variable cross-section, this is an example of a linear

and time-invariant (LTI), but not generally shift-invariant system—see §5.1.1. As such, the usual

frequency domain techniques, including von Neumann analysis and the extraction of phase and

group velocity information are much more difficult, though a modal description persists—see §9.5.2

An energy balance follows for Webster’s equation. Over the real line, one has

dH

dt
= 0 with H = T + V T =

1

2
‖
√

Sut‖2
R V =

γ2

2
‖
√

Sux‖2
R (9.3)

which is identical to that of the wave equation, but in a norm weighted by S.

9.5.1 Boundary Conditions

9.5.2 Modes

9.5.3 Finite Difference Schemes

As in the case of the bar of variable cross-section, the number of choices of even simple varieties

of finite difference schemes increases enormously, due to the spatial variation of the area function

S(x). It is useful to distinguish between the grid function Sl, which consists of sampled values of the

continuous function S(x) at locations x = lh, and a grid function [S]l, which is some approximation

to the continuous function S(x), of an exact form yet to be determined—it is assumed that [S]l
is a second-order accurate approximation to S(x). A general finite difference scheme for Webster’s

equation can then be written as

[S]δttu = γ2δx+ ((µx−S) (δx−u)) (9.4)

which may be expanded to give

un+1
l =

λ2 (Sl+1 + Sl)

2[S]l
un

l+1 +
λ2 (Sl + Sl−1)

2[S]l
un

l−1 +

(

2 − λ2 (Sl+1 + 2Sl + Sl−1)

2[S]l

)

un
l − un−1

l (9.5)

where λ = γk/h is again the Courant number for the scheme. It is straightforward to show that

(9.4) is a second-order accurate approximation to Webster’s equation. See Problem 9.1.

Energy analysis is direct, and similar to that carried out for the spatially-varying systems in §??.

Over the real line, the numerical energy balance is

δt+h = 0 withh = t + v t =
1

2
‖
√

[S]δt−u‖2
Z v =

γ2

2
〈(µx+S)δx+u, et−δx+u〉Z (9.6)

The stability condition, which follows immediately, is

λ ≤ min

(√

[S]

µxxS

)

≈ 1 (9.7)

Two things are to be noted here: First, the stability condition is approximately independent of the

area function S(x); this is quite distinct from the cases of the string of variable density, or the bar

of variable cross-sectional area. The reason is that the gross wave speed itself remains γ everywhere

within the tube, though dispersion does intervene. Second, the approximate stability condition

above may be made exact under the choice of [S] = µxxS. In this case, it is worth looking at the

special form of the recursion when λ = 1:

un+1
l =

2 (Sl+1 + Sl)

Sl−1 + 2Sl + Sl+1
un

l+1 +
2 (Sl + Sl−1)

Sl−1 + 2Sl + Sl+1
un

l−1 − un−1
l (9.8)
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This special form, for which the value at the grid point l, n has disappeared from the recursion,

should hint at the special case of the digital waveguide, as discussed in §??. And indeed it should,

for this scheme may be viewed in terms of the Kelly-Lochbaum speech synthesis model, probably

the first example of a scattering-based numerical method.

9.5.4 The Kelly-Lochbaum Speech Synthesis Model

As was mentioned early on, the Kelly-Lochbaum
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0

50

100

Figure 9.1: .

9.5.5 Coupling with a Glottis Model

9.6 Problems

Problem 9.1 Consider scheme (9.4) for Webster’s equation, and recall that the approximation [S]
is second-order accurate. Using the identity (??), show that it may be rewritten as

[S]δttu = γ2 (δx·Sδx·u + µx+µx−Sδxxu) (9.9)

Show that every approximation to either S or u in the above scheme is second-order accurate in

space or time, and deduce that the scheme is second-order accurate as a whole.

9.7 Programming Exercises



220 CHAPTER 9. ACOUSTIC TUBES



Chapter 10

Grid Functions and Finite
Difference Operators in 2D

This chapter is concerned with the extension of the difference operators introduced in Chapter 5

to two spatial dimensions. The 2D case is one of great interest in musical acoustics, given that

many key components of musical instruments may be well described as such—for various percussion

instruments such as drums, cymbals and gongs, it is the main resonating element, whereas in key-

board instruments and some stringed instruments, it serves as an auxiliary radiating element which

imparts its own characteristic to the resulting sound. Perceptually speaking, the sound output from

a 2D simulation is far richer than that of a 1D simulation. Part of this is due to the number of

degrees of freedom, or modes which, in the linear case, is considerably larger, and of less regular

a distribution than in 1D—sounds generated by 2D objects are generally inharmonic by nature.

Beyond this, there are mechanisms at work, in particular in the nonlinear case, which lead to per-

ceptual phenomena which have no real analogue in 1D; cymbal crashes are an excellent example of

such behaviour. Most exciting of all, 2D physical modeling, long deemed to be an offline activity, is

now coming within range of real time performance on commercially available hardware, thus all the

more reason to spend some time on looking at the tools for simulation. That being said, much of

the material presented in Chapter 5 extends in a natural way to 2D, and thus the presentation here

will be as brief as possible, except when it comes to certain features which are particular to 2D.

10.1 Partial Differential Operators and PDEs in Two Space
Variables

The single largest headache in 2D, both at the algorithm design stage, and in programming a

working synthesis routine is, of course, problem geometry. Whereas 1D problems are defined over

a domain which may always be non-dimensionalized down to the unit interval, in 2D, no such

simplification is possible. As such, the choice of coordinates becomes important. Here, to keep

the emphasis on basic principles, only two such choices, namely Cartesian and radial coordinates

(certainly the most useful in musical acoustics) will be discussed. Despite this, it is worth keeping

in mind that numerical simulation methods are by no means limited to such coordinate choices,

though as the choice of coordinate system (generally governed by geometry) becomes more complex,

finite difference methods lose a good deal of their appeal, and finite element methods (see Chapter

14 become an attractive option.
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10.1.1 Cartesian and Radial Coordinates

Certainly the simplest coordinate system, and one which is ideal for working with problems defined

over square or rectangular regions, is the Cartesian coordinate system, where a position is defined

by the pair (x, y). For problems defined over circles, radial coordinates (r, θ), defined in terms of

Cartesian coordinates by

r =
√

x2 + y2 θ = arctan(y/x) (10.1)

may be more appropriate. See Figure 10.1(a) for an illustration of such coordinate systems.

In finite difference applications, Cartesian coordinates are undeniably much simpler to deal with,

due to the symmetry between the x and y coordinate directions. Radial coordinates are trickier in

some respects, especially due to the existence of a coordinate center, and also because differential

operators exhibit a dependence on radius r.
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Figure 10.1: (a) Coordinates (x, y), and (r, θ), (b) the region U
2
ǫ , and (c) the region U

2
◦.

10.1.2 Spatial Domains

As in 1D, a 2D problem is defined over a given domain D, a subset of the plane R
2—see Figure

?? for an illustation of some of the regions to be discussed here. For analysis purposes, it is often

convenient to work over the entire plane, or with D = R
2. In Cartesian coordinates, sometimes,

for the analysis of boundary conditions, it is useful to work with a semi-infinite domain of the form

R
2,x+ = {(x, y) ∈ R

2, x ≥ 0}, or R
2,y+ = {(x, y) ∈ R

2, y ≥ 0}, and in order to deal with corner

conditions, the quarter plane R
2,x+y+ = {(x, y) ∈ R

2, x ≥ 0, y ≥ 0}.
In practice, however, at least in Cartesian coordinates, it is the Lx × Ly rectangular region, of

the form {(x, y) ∈ R
2, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly} which are of most interest. Through nondimension-

alization of spatial variables, i.e., setting coordinates

x′ = x/Lx y′ = y/Lx (10.2)

this region may always be reduced to the unit area rectangle of dimensions ǫ×1/ǫ, where ǫ2 = Lx/Ly

is the aspect ratio for the rectangle. This region will henceforth be called U
2
ǫ , and nondimensionalized

coordinates will always be assumed (with the primed notation dropped).

In radial coordinates, the main region of interest is the circle of radius R, i.e., {(r, θ) ∈ R
2, 0 ≤

r ≤ R}. Again, through the introduction of a nondimensionalized coordinate r′ = r/R, this region

may be reduced to the unit circle, U
2
◦.
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10.1.3 Partial Differential Operators

In Cartesian coordinates, the differential operators which appear, beyond partial time derivatives,

which have already been discussed in Chapter 5, are of the form ∂
∂x , ∂

∂y , ∂2

∂x2 , ∂2

∂y2 , ∂2

∂x∂y , etc. When

applied to a function u(x, y, t), the following notation will be used:

∂u

∂x
= ux,

∂u

∂y
= uy,

∂2u

∂x2
= uxx,

∂2u

∂y2
= uyy,

∂2u

∂x∂y
= uxy, etc. (10.3)

Technical considerations having to do with interchanging the order of derivatives, while important,

will be neglected here, so it may be assued, e.g., that uxy = uyx.

In radial coordinates, similar operators and accompanying notation are used, i.e.,

∂u

∂r
= ur,

∂u

∂θ
= uθ,

∂2u

∂r2
= urr,

∂2u

∂θ2
= uθθ,

∂2u

∂r∂θ
= urθ, etc. (10.4)

For isotropic systems in musical acoustics, the most commonly occuring differential operator is

not any of the above operators in isolation, but rather the 2D Laplacian ∆, defined in terms of its

action on a function u as

∆u = uxx + uyy ∆u =
1

r
(rur)r +

1

r2
uθθ (10.5)

in Cartesian and radial coordinates, respectively. Also important, especially in problems in plate

dynamics, is the fourth order operator known as bi-Laplacian, or biharmonic operator ∆2, defined

simply as

∆2 = ∆∆ (10.6)

10.1.4 Differential Operators in the Spatial Frequency Domain

Just as in 1D, it is possible to view differential operators in terms of their behaviour in the spatial

frequency domain—in general, this is only simple on a Cartesian grid, where differential operators

remain shift-invariant. (Notice that operators such as the Laplacian show an explicit dependence

on the coordinate r.)

Consider the frequency domain ansatz, a test function of the form

u(x, y, t) = est+jβxx+jβyy (10.7)

When s = jω, this corresponds to a traveling wave, traveling in direction (βx, βy) in the Cartesian

plane, of wavelength 2π/|β|, where |β| =
√

β2
x + β2

y is the wavenumber magnitude. For such a test

function, the various differential operators above act as

∂

∂x
=⇒ jβx

∂

∂y
=⇒ jβy (10.8)

∂2

∂x2
=⇒ −β2

x

∂2

∂y2
=⇒ −β2

y

∂2

∂x∂y
=⇒ −βyβx (10.9)

∆ =⇒ −(β2
x + β2

y) = −|β|2 ∆∆ =⇒ |β|4 (10.10)

Notice in particular that the effect of the operators ∆ and ∆∆ is dependent only on the wavenumber

magnitude |β|, and not on the individual components βx and βy—this is a reflection of the isotropic

nature of such operations, which occur naturally in problems which do not exhibit any directional

dependence. The same is not true, however, of the discrete operators which approximate them; see

§10.2.1.
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10.1.5 Inner Products

The definition of the L2 inner product in 2D is a natural extension of that in 1D, For two functions

f and g, dependent on (at least) two spatial coordinates, one may write

〈f, g〉D =

∫∫

D
fgdxdy 〈f, g〉D =

∫∫

D
fgrdrdθ (10.11)

in Cartesian and radial coordiates, respectively; the same notation will be used for both coordinate

systems, though one should note the presence of the factor r implicit in the definition in the radial

case. The norm of a function f may be defined, as in the 1D case, as ‖f‖D = 〈f, f〉D.

Two important identities also hold for inner products involving the Laplacian:

〈f, ∆g〉 (10.12)

10.2 Grid Functions and Difference Operators: Cartesian
Coordinates

The extension of the definitions in §5.2.2 to two spatial coordinates is, in the Cartesian case, im-

mediate. A grid function un
l,m, for (l, m) ∈ D, and n ≥ 0, represents an approximation to a

continuous function u(x, y, t), at coordinates x = lhx, y = lhy, t = nk. Here, D is a subset of

the set of pairs of integers, Z
2. The semi infinite domains corresponding to R

2,x+ and R
2,y+ are

Z
2,x+ = {(l, m) ∈ Z

2, l ≥ 0} and Z
2,y+ = {(l, m) ∈ Z

2, m ≥ 0}. For the quarter plane, one can define

Z
2,x+,y+ = {(l, m) ∈ Z

2, l, m ≥ 0}. Most important, in real-world simulation, is the rectangular

region UNx,Ny
= {(l, m) ∈ Z

2, 0 ≤ l ≤ Nx, 0 ≤ m ≤ Ny}.
The temporal operators behave exactly as those defined in 1D, in §5.2.1, and it is not worth

repeating these definitions here. Spatial shift operators, in the x and y directions may be defined as

ex+un
l,m = un

l+1,m ex−un
l,m = un

l−1,m ey+un
l,m = un

l,m+1 ey−un
l,m = un

l,m−1

and forward, backward and centered difference operators as

δx+ ,
1

hx
(ex+ − 1) ≈ ∂

∂x
δx− ,

1

hx
(1 − ex−) ≈ ∂

∂x
δx· ,

1

2hx
(ex+ − ex−) ≈ ∂

∂x
(10.13)

δy+ ,
1

hy
(ey+ − 1) ≈ ∂

∂y
δy− ,

1

hy
(1 − ey−) ≈ ∂

∂y
δy· ,

1

2hy
(ey+ − ey−) ≈ ∂

∂y
(10.14)

Centered second derivative approximations follow immediately as

δxx = δx+δx− ≈ ∂2

∂x2
(10.15)

δyy = δy+δy− ≈ ∂2

∂y2
(10.16)

Equal Grid Spacings

Though, in general, one can choose unequal grid spacings hx and hy in the two Cartersian coordinates

x and y, for simplicity of analysis and programming, it is easier set them equal to a single constant,

i.e., hx = hy = h. This is natural for problems which are isotropic (i.e., for which wave propgation

is independent of direction). This simplification is made more much of the remainder of this book.

There are cases, though, for which such a choice can lead to errors which can become perceptually

important when a very coarse grid is used (i.e., typically in simulating musical systems of high pitch).

For an example relating to the 2D wave equation, see §??, and Problem ?? in the following chapter.
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The Discrete Laplacian and Biharmonic Operators

Quite important in musical sound synthesis applications is the approximation to the Laplacian

operator, as given in (??)—there are clearly many ways of doing this. The simplest, by far, is

to make use of what is known as the five-point Laplacian. There are two possible forms of this

operator, one making use of points adjacent to the center point, and another employing points

diagonally adjacent:

δ∆⊞ = δxx + δyy = ∆ + O(h2) δ∆⊠ = δxx + δyy +
h2

2
δxxδyy = ∆ + O(h2) (10.17)

These two operators may be combined in a standard way (see §??) to yield a so-called nine-point

Laplacian, depending on a free parameter α:

αδ∆⊞ + (1 − α)δ∆⊠ = ∆ + O(h2) (10.18)

Though it involves more grid points, it may be used in order to render the approximation more

isotropic—see §11.1.5 for an application of this in the case of the 2D wave equation.

Also important, in the case of the vibrating stiff plate, is the biharmonic operator, or bi-Laplacian,

which consists of the composition of the Laplacian with itself, or ∆∆. A simple approximation may

be given as

δ∆⊞δ∆⊞ = ∆∆ + O(h2) (10.19)

One could go further here and develop a family of appoximations using a parameterized combination

of the operators δ∆⊞ and δ∆⊠—see [31] for more on this topic.

The stencils or footprints of the above spatial difference operators are illustrated in Figure ??.
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Figure 10.2:
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10.2.1 Frequency Domain Analysis

Frequency domain analysis of difference operators in the Cartesian case is a straightforward gener-

alization from 1D. Skipping over the definition of Fourier and z transforms, the ansatz is now

un
l,m = znejh(lβx+mβy) (10.20)

The frequency domain behaviour of temporal operators is unchanged from the 1D case. Defining

the variables px and py by

px = sin2(βxh/2) py = sin2(βyh/2) (10.21)

one arrives immediately at

δxx =⇒ − 4

h2
px δyy =⇒ − 4

h2
py (10.22)

δ∆⊞ =⇒ − 4

h2
(px + py) δ∆⊠ =⇒ − 4

h2
(px + py − 2pxpy) δ∆δ∆ =⇒ 16

h4
(px + py)

2
(10.23)

Anisotropic Behaviour

One new facet of finite difference schemes in 2D is numerical anisotropy—waves travel at different

speeds in different directions. This is wholly due to the directional asymmetry imposed on a problem

by introducing a grid. This is a phenomenon which shows itself most prominently at high frequencies

(or short wavelengths)—in the long-wavelength limit, numerical behaviour becomes approximately

isotropic.

As a simple example of this, consider the operator δ∆⊞, as defined in (10.17). It is perhaps

easiest to examine the anisotropy in the frequency domain representation. Expanding from (10.23)

in powers of the wavenumber components βx and βy, gives

δ∆⊞ =⇒ − 4

h2
(px + py) = −

(
β2

x + β2
y

)
+

h2

12

(
β2

x + β2
y

)
+ O(h4) (10.24)

Thus, as expected, the operator δ∆⊞ approximates the Laplacian ∆ to second order accuracy in

the grid spacing h, but the higher order terms can not be grouped in terms of the wavenumber

magnitude alone. Such numerical anisotropy, and ways of reducing it, will discussed with regard to

the 2D wave equation in §11.1.5. See also Problem 10.2.

Amplification Polynomials

Just as in the lumped and 1D cases, for LSI problems in 2D, in the analysis of difference schemes,

one often arrives at amplification polynomials of the following form:

P (z) =

M∑

l=0

al(βx, βy)zl = 0 (10.25)

and as before, a stability condition is arrived at by finding conditions such that the roots are bounded

by 1 in magnitude, now for all values of βx and βy supported on the grid.

10.2.2 An Inner Product and Energetic Manipulations

10.3 Grid Functions and Difference Operators in Two Di-
mensions: Radial Coordinates

Problems defined over a circular geometry play a large role in musical acoustics, in particular when

it comes to the modeling of percussion instruments such as drums and gongs. Though finite element
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models are often used under such conditions, a finite difference approach is still a wise choice, and

can lead to very efficient, and easily programmed sound synthesis algorithm designs.

10.4 Problems

Problem 10.1 Given a general bilinear function f(p, q) in the variables p and q

f(p, q) = a + bp + cq + dpq (10.26)

defined over the square region 0 ≤ p, q ≤ 1, for constants a, b, c and d, show that f takes on its
maximum and minimum values at the corners of the domain.

Problem 10.2 Recalling the analysis of the anisotropy of the operator δ∆⊞ in §10.2.1, consider the
nine-point Laplacian operator as given in (10.18), which depends on the free parameter α, and show
that its expansion, in terms of wavenumber components βx and βy is

αδ∆⊞ + (1 − α)δ∆⊠ =⇒ −
(
β2

x + βy2

)
+

h2

12

(
β4

x + 6(1 − α)β2
xβ2

y + β4
y

)
+ O(h4) (10.27)

For an arbitrary choice of α, can the O(h2) term be written in terms of the wavenumber magnitude
|β| alone? If not, is there a value (or values) of α such that it can be? If you can find such a value of
alpha, then the anisotropic behaviour of the parameterized operator will exhibit itself only at fourth
order (though the operator remains a second order accurate approximation to the Laplacian).

10.5 Programming Exercises
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Chapter 11

The 2D Wave Equation

The systems examined so far in this book have been one-dimensional. Certain musical instruments,

in particular those of the percussion family, employ vibrating structures which can only be well-

described in two dimensions. As one might expect, simulation complexity increases accordingly.

At the time of writing, there has been, so far, relatively little work on two-dimensional problems

in sound synthesis, partly because, until recently, real time synthesis from such systems on small

computers was not possible. Another reason has been that percussion instruments have seen much

less fundamental investigation from the point of view of musical acoustics than other instruments

(though there is a growing body of work by Rossing [] and others []), often concerned with experi-

mental determination of modal frequencies, but not always []). On the other hand, such problems

have a long research history in mainstream simulation, and, as a result, there is a wide expanse of

literature and results which may be adapted to sound synthesis applications. For the linear prob-

lems discussed in this chapter, the systems may be directly generalized from their 1D counterparts,

described in Chapter 7, and for this reason, the development here is somewhat abbreviated.

A good starting point is the 2D wave equation, introduced in §11.1, which serves as a useful

test problem for the vibration of membranes, and also as another good point of comparison for the

various physical modeling synthesis techniques, including finite difference schemes, modal methods,

lumped networks, and digital waveguide meshes. The previous chapter serves as a reference for the

techniques to be discussed here and in the following two chapters.

References include: [24, 32, 23, 290, 259, 31, 273, 225, 272, 98, 99, 224, 227, 107, 106, 30, 108, 150]

11.1 The 2D Wave Equation

The wave equation in one spatial dimension (6.1) may be directly generalized to two dimensions as

utt = c2∆u (11.1)

Here, u is the dependent variable of interest, c is a wave speed, and ∆ is the Laplacian operator as

discussed in Chapter 10. When spatially non-dimensionalized using a characteristic length L, the

2D wave equation is of the form

utt = γ2∆u (11.2)

The 2D wave equation, as given above, is a simple approximation to the behaviour of a vibrating

membrane, and also can serve as a preliminary step towards the treatment of room acoustics problems

(where, in general, a 3D wave equation would be employed). As previously, it will be assumed, for the

moment, that the 2D wave equation is defined over R
2, so that a discussion of boundary conditions

229
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may be postponed.

The wave equation, like all second-roder in time PDEs, must be initialized with two functions

(see §6.1.3); in Cartesian coordinates, for example, one would set, normally, u(x, y, 0) = u0(x, y) and
∂u
∂t (x, y, 0) = v0(x, y). In the case of a membrane, the first condition corresponds to a pluck, and the

second to a strike. A useful all-purpose initializing distribution is a 2D raised cosine, of the form

crc(x, y) =

{
c0

2

(

1 + cos(π
√

(x − x0)2 + (y − y0)2/xhw)
)

,
√

(x − x0)2 + (y − y0)2 ≤ xhw

0, (x − x0)
2 + (y − y0)

2 > xhw

(11.3)

which has amplitude c0, and is centered at coordinates (x0, y0), of half-width xhw. Such a distribution

can be used in order to model both plucks and strikes.

A pair of simulation results, under plucked and struck conditions, are illustrated in Figure 11.1.

The main feature which distinguishes the behaviour of solutions to the 2D wave equation from the

1D case is the reduction in amplitude of the wave as it evolves, due to spreading effects—related

to this is the presence of a “wake” behind the wavefront, which is absent in the 1D case, as well as

the fact that, even when simple boundary conditions are employed, the solution is not periodic—

see §11.1.3. One might guess, from these observations alone, that the efficiency of the 1D digital

waveguide formulation for the 1D case, built around waves which travel without distortion, will

disappear in this case—this is in fact true, as will be discussed in §11.1.6.

Plucked

Struck

t = 0.0 t = 0.0005 t = 0.001 t = 0.0015

Figure 11.1: Time evolution of solutions to the 2D wave equation, defined over a square, with fixed
boundary conditions. In this case, γ = 400, snapshots of the displacement are shown at times as
indicated, under plucked conditions (top row) and struck conditions (bottom row). In the first case,
the initial displacement condition is a raised cosine of maximum amplitude 0.001, and of half-width
0.15, centered at the center of the domain, and the second, the initial velocity profile is a raised
cosine, of maximum amplitude 10, half-width 0.15, and also centered at the domain center.

11.1.1 Phase and Group Velocity

Assuming, in Cartesian coordinates, a plane wave solution of the form

u(x, y, t) = est+j(βxx+βyy) (11.4)
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leads to the characteristic equation and dispersion relation

s2 = −γ2|β|2 ⇒ ω = ±γ|β| (11.5)

and, thus, to expressions for the phase and group velocity,

vφ = γ vg = γ (11.6)

Thus, just as in 1D, all wave-like components travel at the same speed. Note that as the Laplacian

operator is isotropic, wave speed is independent not only of frequency or wavenumber, but also of

direction.

In 1D, for LSI systems, it is possible to rewrite the phase and group velocities as functions of

frequency alone. While this continues to be possible for isotropic systems in 2D, it is not possible

when the system exhibits anisotropy—most numerical methods exhibit such spurious anisotropy,

and thus the only way to evaluate dispersive behaviour is through expressions of wavenumber, such

as those given above.

11.1.2 Energy and Boundary Conditions

The 2D wave equation, like its 1D counterpart, is lossless. This can be seen, as usual, by writing

the energy for the system, which is conserved. Assuming (11.1) to be defined over the infinite plane

D = R
2, an inner product with ut in Cartesian coordinates and using integration by parts leads to

〈ut, utt〉R2 = γ2〈ut, ∆u〉R2 = γ2〈ut, uxx〉R2 + γ2〈ut, uyy〉R2 = −γ2〈uxt, ux〉R2 − γ2〈uyt, uy〉R2 (11.7)

or,
dH

dt
= 0 with H = T + V (11.8)

and

T =
1

2
‖ut‖2

R2 V =
1

2

(
‖ux‖2

R2 + ‖uy‖2
R2

)
=

1

2
‖|∇u|‖2

R2 (11.9)

where ∇ signifies the gradient operation. Such a result is obviously independent of the chosen

coordinate system—see Problem ??. The expression is, again, non-negative, and leads immediately

to bounds on the growth of the norm of the solution, by exactly the same methods as discussed in

§??.

Edges

In order to examine boundary conditions at, e.g., a straight edge, consider (11.1) defined over the

semi-infinite region D = R
2,x+, as discussed in §10.1.2. Through the same manipulations above, one

arrives at the energy balance

dH

dt
= B with H = T + V (11.10)

where T and V are as defined in (11.9) above, over the region D = R
2,x+. The boundary term B,

depending obly on values of the solution over the boundary at x = 0, is

Corners

11.1.3 Modes

The modal decomposition of solutions to the 2D wave equation under certain simple geometries and

boundary conditions is heavily covered in the musical acoustics literature—see, e.g., [96]. It is useful,

however, to at least briefly review such a decomposition in the case of the rectangular membrane.
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As in the case of the 1D wave equation (see §??) and the ideal bar equation (see §??), one may

assume an oscillatory solution to the 2D wave equation of the form u(x, y, t) = ejωtU(x, y), leading

to

−ω2U = γ2∆U (11.11)

The wave equation defined over a unit area rectangle, of aspect ratio α, and under fixed boundary

conditions is separable, and the solutions to the above equation are

Up,q(x, y) = sin(pπ
√

αx) sin(qπy/α) ωp,q = πγ
√

αp2 + q2/α (11.12)

The modal functions are illustrated in Figure 11.2, in the case of a square domain.

q = 1

q = 2

q = 3

p = 1 p = 2 p = 3 p = 4 p = 5

Figure 11.2: Modal shapes Up,q(x, y) for a square membrane, under fixed boundary conditions.

Given the above expression for the modal frequencies fp,q, it is not difficult to show that the

number of modes of frequency less than or equal to a given frequency fs/2 will be

Nm(fs/2) =
πf2

s

4γ2
(11.13)

See Problem 11.3. Twice this number is, as before, the number of degrees of freedom of the system

when it is simulated at a sample rate fs.

11.1.4 A Simple Finite Difference Scheme

Consider the wave equation in Cartesian coordinates. The simplest possible finite difference scheme

employs a second difference in time, and a five point Laplacian approximation:

δttu = γ2δ∆,+u (11.14)

where u = un
l,m is a 2D grid function representing an approximation to the continuous solution

u(x, y, t) atx = lh, y = mh, t = nk, for integer l, m and n. Recall that h is the grid spacing in both

the x and y directions, and as always, k is the time step.



11.1. THE 2D WAVE EQUATION 233

The case hx = hy is of most interest: expanding out the operator notation above leads to

un+1
l,m = λ2

(
un

l+1,m + un
l−1,m + un

l,m+1 + un
l,m−1

)
+ 2

(
1 − 2λ2

)
un

l,m − un−1
l,m (11.15)

where again, the Courant number λ is defined as

λ =
kγ

h
(11.16)

Notice that under the special choice of λ = 1/2 (this case is of particular relevance to the so-called

digital waveguide mesh, to be discussed in §11.1.6), the recursion above may be simplified to

un+1
l,m =

1

2

(
un

l+1,m + un
l−1,m + un

l,m+1 + un
l,m−1

)
− un−1

l,m (11.17)

which involves multiplications by the factor 1/2 only, and one fewer addition. It also has the

interesting property that the scheme may be decomposed into two independent schemes operating

over the black and white squares on a ”checkerboard” grid. See Problem 11.7.

Scheme (11.14) continues to hold if the grid spacings are not the same, though the stability

condition (discussed below) must be altered, and computational complexity increases. See Problem

11.5.

von Neumann analysis

Use of the ansatz un
l,m = znejh(lβx+mβy) leads to the characteristic equation

z − 2 + 4λ2 (px + py) + z−1 = 0 (11.18)

in the two variables px = sin2 (βxh/2) and py = sin2 (βyh/2), as defined in §??. This equation is

again of the form (??), and the solutions in z will be of unit modulus when

0 ≤ λ2 (px + py) ≤ 1 (11.19)

The left-hand inequality is clearly satisfied. Given that the variables px and py take on values

between 0 and 1, the right hand inequality is satisfied for

λ ≤ 1√
2

(11.20)

which is the stability condition for scheme (11.14). Notice that just as in the case of scheme (??)

for the 1D wave equation, at the stability limit (i.e., when λ = 1/
√

2), a simplified scheme results

(namely (11.17)).

11.1.5 Other Finite Difference Schemes

In the case of the 1D wave equation, certain parameterized finite difference schemes were examined in

§6.3, but given the good behaviour of the simplest explicit scheme, these variations were of virtually

no use—the power of such parameterized methods was seen to some extent in the case of bar and stiff

string simulation, in §?? and §??, and is even more useful in the present case of multidimensional

systems such as the 2D wave equation (among others). The chief interest is in reducing numerical

dispersion. The 2D wave equation, like its 1D counterpart, is a standard numerical test problem,

and, as such, has seen extensive investigation—see, e.g., [262, 32, 23].

A Parameterized Explicit Scheme

Instead of a five-point Laplacian approximation, as employed in scheme (11.14), one might try a

nine-point approximation, of the type discussed in §??. This leads to

δttu = γ2 (αδ∆,+u + (1 − α)δ∆,×)u (11.21)



234 CHAPTER 11. THE 2D WAVE EQUATION
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Figure 11.3: Computational grid (top) and relative numerical phase velocity (bottom) for (a) The
explicit scheme (??), with λ = 1/2, (b) the parameterized scheme (??) with the special choice of
α = 2/π, and λ chosen to satisfy bound (??) with equality, and (c) the implicit scheme (??),
with α = 2/pi, θ = 1.2, and λ chosen to satisfy bound (??) with equality. Relative phase velocity
devaitions of 1% are plotted as contours in the wavenumber plane 0 ≤ βx, βy ≤ π

h .

which reduces to scheme (11.14) when α = 1. The computational stencil is, obviously, more dense

in this case than for the simple scheme (??)—see Figure 11.3(b).

Using von Neumann analysis, it is straightforward to show that the stability conditions for this

scheme are

α ≥ 0 λ ≤ min(1,
1√
2α

) (11.22)

See Problem 11.2.

The dispersion characteristics of this scheme depend quite heavily on the choice of α, and, as

one might expect, for intermediate values of this parameter over the allowable range α ∈ [0, 1], the

dispersion is far closer to isotropic—a desirable characteristic, given that the wave equation itself

exhibits such behaviour. Through trial and error, or perhaps optimization strategies, one may find

particularly good behaviour when α ≈ 0.64, as illustrated in the plot of relative phase velocity

plotted in Figure 11.3(b).

Such a choice may be justified, again, by looking at computational complexity (see §?? for similar

analysis in the case of the ideal bar). For a surface of unit area, and when the stability bound above

is satisfied with equality, the number of grid points necessary will be

Nfd =
1

h2
=

f2
s

γ2 min(1, 1/2α)
(11.23)

and equating this with the number of modes, one arrives at a choice of α = 2/π ≈ 0.637.

A Compact Implicit Scheme

A two-parameter family of implicit schemes for the 2D wave equation is given by

δttu = γ2 (θ + (1 − θ)µt·) (αδ∆,+u + (1 − α)δ∆,×)u (11.24)
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Table 11.1: Comparison among modal frequencies of the 2D wave equation, defined over a square,
under fixed conditions, with γ = 1000, and modal frequencies (as well as their cent deviations from
the exact frequencies) of the simple explicit scheme (??), the paramterized explicit scheme (11.21)
with α = 2/π, and the implicit scheme (11.24), with α = 2/pi and θ = 1.2, with a sample rate
fs = 16000 Hz, and where λ is chosen so as to satsify the stability condition in each case as close to
equality as possible.

Mode Exact Explicit Nine-pt. Explicit Implicit
number Freq. Freq. Cent Dev. Freq. Cent Dev. Freq. Cent Dev.
(1,1) 707.1 707.0 -0.3 706.3 -2.0 707.1 -0.1
(1,2) 1118.0 1114.0 -6.2 1114.9 -4.8 1118.0 0.0
(2,2) 1414.2 1413.1 -1.3 1407.6 -8.1 1413.4 -1.0
(1,4) 2061.6 2009.2 -44.5 2042.7 -15.9 2058.8 -2.2
(3,3) 2121.3 2117.5 -3.1 2098.7 -18.5 2115.7 -4.6

which now must be updated using linear system solution techniques.

von Neumann analysis, though now somewhat more involved, again allows fairly simple stability

conditions on the free parameters and λ:

α ≥ 0 θ unconstrained







λ ≤
√

min(1,1/(2α))√
2(2θ−1)

, θ > 1
2

λ unconstrained θ ≤ 1
2

(11.25)

See Problem 11.4. Under judicious choices of α and θ, an excellent match to the ideal phase velocity

may be obtained over nearly the entire range of wavenumbers—see Figure 11.3(c). Such is the

interest in compact implicit schemes—very good overall behaviour, at the additional cost of sparse

linear system solutions, without unpleasant side-effects such as complex boundary termination.

Further Varieties

Beyond the two schemes presented here, there are of course many varieties of schemes for the 2D

wave equation—further properties of parameterized schemes for the 2D wave equation are detailed

elsewhere [23], and other schemes are discussed in standard texts [244].

11.1.6 Digital Waveguide Meshes

The extension of digital waveguides to multiple dimensions for sound synthesis applications was first

undertaken by van Duyne and Smith in the mid 1990s [272, 273, 274]. It has continued to see a fair

amount of activity in sound synthesis and artifical reverberation applications—see the comments and

references in §1.2.3. Most interesting was the realization by van Duyne and others of the association

with finite difference schemes.

A regular Cartesian mesh is shown in Figure 11.4(a). Here, each box labelled S represents a

four-port parallel scattering junction. A scattering junction at location x = lh, y = mh is connected

to its four neighbors on the grid by four bidirectional delay lines, or waveguides, each of a single

sample delay (of k seconds, where fs = 1/k is the sample rate). The signals impinging on a given

scattering junction at grid location l, m at time step n from a waveguide from the north, south, east

and west are written as u
n,(+),N
l,m , u

n,(+),S
l,m , u

n,(+),E
l,m , and u

n,(+),W
l,m , respectively, and those exiting
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as u
n,(−),N
l,m , u

n,(−),S
l,m , u

n,(−),E
l,m and u

n,(−),W
l,m . The scattering operation at a given junction may be

written as

un
l,m =

1

2

(

u
n,(+),N
l,m + u

n,(+),S
l,m + u

n,(+),E
l,m + u

n,(+),W
l,m

)

(11.26)

u
n,(−),•
l,m = −u

n,(+),•
l,m + un

l,m (11.27)

(11.28)

Here, the un
l,m is the junction variable (often referred to as a junction pressure). Shifting in digital

waveguides themselves can be written as

u
n,(+),N
l,m = u

n−1,(−),S
l,m+1 u

n,(+),S
l,m = u

n−1,(−),N
l,m−1 u

n,(+),E
l,m = u

n−1,(−),W
l+1,m u

n,(+),W
l,m = u

n−1,(−),E
l−1,m

(11.29)

The scattering and shifting operations are the basis of all wave-based numerical methods, including,

in addition to digital waveguides, wave digital filter methods, as well as the transmission line matrix

method (which are identical, in many respects, to waveguide networks). Numerical stability for an

algorithm such as the above is obvious: the shifting operations clearly cannot increase any solution

norm, and the scattering operation corresponds to an orthogonal (i.e., l2 norm preserving) matrix

multiplication.

On the other hand, by applying the scattering and shifting rules above, one may arrive at a

recursion in the junction variables un
l,m, which is none other than scheme (??), with λ = γk/h =

1/
√

2—see Problem 11.1. Notice, however, that the finite difference scheme requires two units of

memory per grid point, whereas in the wave implementation, five are necessary (i.e., the waves

impinging on a junction at a given time step, as well as the junction variable itself). Furthermore,

the mesh requires seven arithmetic operations (three in order to form the junction variable, and

four in order to perform scattering), whereas the finite difference scheme requires four. Thus the

efficiency advantage of the waveguide in 1D, based around the use of delay lines, does not carry

over to the multidimensional case. Still, the structural robustness of the waveguide mesh is a very

desirable property—indeed, termination of a mesh structure using passive filtering blocks
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K
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(a) (b)

Figure 11.4: (a) A digital waveguide network corresponding to scheme (??) for the wave equation,
under the special choice of λ = 1/

√
2, and (b), a lumped network corresponding to scheme (??), for

any value of λ.
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11.1.7 Lumped Networks

A regular lumped network of masses and springs also, not surprisingly, may be viewed in terms of

the same underlying finite difference scheme. Suppose that, as shown in Figure 11.4(b), the network

consists of a regularly spaced array of masses M , located at positions x = lh, y = mh, and constrained

to move vertically, with displacement indicated by ul,m(t). Each is connected to neighboring masses

by springs of stiffness K, and the force exerted on the mass l, m by its neighbors to the north, south,

east and west are indicated by fl,m+1/2, fl,m−1/2, fl+1/2,m and fl−1/2,m, respectively.

The equation of motion for a single mass will be

M
d2ul,m

dt
= fl,m+1/2 + fl,m−1/2 + fl+1/2,m + fl−1/2,m (11.30)

with

fl,m+1/2 ≈ K(ul,m+1 − ul,m) fl+1/2,m ≈ K(ul+1,m − ul,m) (11.31)

Just as before, this may be rewritten as

M
d2ul,m

dt
= K (ul,m+1 + ul,m−1 + ul+1,m + ul−1,m − 4ul,m) (11.32)

Discretizing the above system of ODEs with a second time difference δtt leads immediately to scheme

(??) for the 2D wave equation, with γ = h
√

K/M .

11.1.8 Modal Synthesis

11.2 Problems

Problem 11.1 Beginning from the definition of the grid variable un+1
l,m in terms of wave variables,

from (11.26), use the scattering operation (11.27) and the shifting operation (11.29) in order to show
that the waveguide mesh calulates solutions to the finite difference scheme (??), under the special

choice of λ = γk/h = 1/
√

2.

Problem 11.2 Show that the chracteristic polynomial corresponding to the “nine-point” explicit
scheme (11.21) is given by

z − 2 + 4λ2 (px + py − 2(1 − α)pxpy) + z−1 (11.33)

where px and py are as defined in (??), and take on values between 0 and 1. The stability condition
is thus

0 ≤ λ2 (px + py − 2(1 − α)pxpy) ≤ 1 (11.34)

Show that these conditions lead immediately to the stability conditions given in (??).
Hint: Begin with the left inequality, and derive a condition on α alone, then ue the right inequality

to find the condition on λ. Your results from problem (10.1) will be of great use here.

Problem 11.3 Considering the 2D wave equation defined over a square region of unit area, under
fixed boundary conditions, the mode frequency of mode (p, q) is given by (??), or, in Hertz,

fp,q =
γ

2

√

p2 + q2 (11.35)

for p, q > 0.
(a) Show that fp,q corresponds to the distance between the origin and the point of coordinates

(pγ/2, qγ/2) in a plane.
(b) Find the density (per unit area) of such points in the plane.
(c) The total number Nm(fs/2) of modes of frequency less than or equal to fs/2 may be repre-

sented as a quarter circle of radius fs/2 in the plane of modal points. Given your expression for the
density of modes above, find an approximate value for Nm(fs/2).

(d) Show that this expression remains unchanged if the 2D wave equation is defined instead over
a arbitrary rectangle of unit area.
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Problem 11.4 Show that the chracteristic polynomial corresponding to the “nine-point” explicit
scheme (11.21) is given by

z +
−2 + 4λ2 (px + py − 2(1 − α)pxpy)

1 + 2(1 − θ)λ2 (px + py − 2(1 − α)pxpy)
+ z−1 = 0 (11.36)

where px and py are again as defined in (??), and take on values between 0 and 1. The stability
condition is thus

0 ≤ λ2 (px + py − 2(1 − α)pxpy)

1 + 2(1 − θ)λ2 (px + py − 2(1 − α)pxpy)
≤ 1 (11.37)

Show that these conditions lead immediately to the stability conditions given in (??).
This is much trickier than the above problem, in that now the function to be bounded is ratio-

nal rather than polynomial. There are essentially three steps: 1) Find conditions under which the
numerator of the expression above is non-negative. 2) Given this condition, find conditions under
which the denominator is non-negative. 3) Given the conditions derived in 1) and 2) above, find
conditions under which the numerator is less than or equal to the denominator. Your bounds on λ
may overlap, depending on the choice of θ and α.

Problem 11.5 Consider scheme (11.14), but where the grid spacings hx and hy are distinct.
(a) Show, from von Neumann analysis, that the stability condition relating k, hx and hy becomes

γ2k2 ≤
h2

xh2
y

h2
x + h2

y

(11.38)

(b) Write the update explicitly in terms of the grid function un
l,m, in a manner similar to that

shown in (11.17). How many additions/multiplications are necessary in order to perform the update
at a given grid point? Is there a particular choice of k, hx, and hy such that computational complexity
may be reduced?

Problem 11.6 For the parameterized explicit scheme (??) for the 2D wave equation,
(a) Write the update explicitly in terms of the grid function un

l,m, in a manner similar to that

shown in (11.17).
(b) For a given value of α, the scheme free parameter, what is the condition on λ such that the

scheme update no longer depends on the value of the grid function un
l,m at the “center point.” Does

this condition conflict with the stability condition (??) for the scheme? (This case is important, as
it corresponds to the so-called “interpolated digital waveguide mesh” []).

(c) Discuss the significance of a choice of λ away from the stability condition

Problem 11.7 Show that scheme (11.14), operating over the infinite domain D = Z
2 may be decom-

posed into two separate schemes, one operating over values of the grid function un
l,m for even values

of n + l + m, and one for odd values. If the scheme is restricted to operatoe over a finite domain,
discuss the effects of various boundary conditions on the ability to obtain such a decomposition.

Problem 11.8 Construct a three parameter family of implicit finite difference schemes for the 2D
wave equation, generalizing scheme (??).

11.3 Programming Exercises



Chapter 12

Linear Plate Vibration

The 2D wave equation was treated in the previous chapter as a test case for sound synthesis methods.

But, aside from the case of the vibrating membrane, it is often materials with an inherent stiffness

which are of interest. When these are flat, they are referred to as plates, and when curved, as shells.

The physics of vibrating plates is far more complex than that of the membrane, described by the

2D wave equation, and this complexity shows itself in the resulting equations of motion, even in the

simplest case of thin linear plate vibration.

Because the 2D wave equation is so simply expressed, it is often assumed that the increased

model complexity for systems such as plates must translate to more computational work. But, as

seen in Chapter 7, stiffness tends to reduce computational costs. The same is true of plates—whereas

simulation of membrane vibration in real time is, even now, quite daunting, plate synthesis is not.

This is good news, as the world of sounds produced by plates is a very rich one indeed.

The lossless Kirchhoff thin plate model, as well as several variants which serve to describe more

realistic plate vibration in a musical context, are discussed in §12.1 and §12.2. As examples, the

audio effect known as plate reverberation is simulated in §12.3, and piano soundboards in §12.4.

References include: [24, 32, 23, 290, 259, 31, 273, 225, 272, 98, 99, 224, 227, 107, 106, 30, 108, 150]

12.1 The Kirchhoff Thin Plate Model

The Kirchhoff model of a uniform thin isotropic plate is defined as

ρHutt = −D∆∆u (12.1)

Here, u is the plate delection in a transverse direction, ρ is a material density, H is the plate thickness,

and the constant D, defined by

D =
EH3

12(1 − ν2)
(12.2)

is sometimes known as a stiffness parameter for the plate, depending on Young’s modulus E, and

Poisson’s ratio ν. When spatially non-dimensionalized with respect to a length parameter L, the

Kirchhoff model may be written as

utt = −κ2∆∆u (12.3)

where

κ2 =
D

ρHL4
(12.4)

The model above is but the simplest representation of plate dynamics. It does not take into

account effects that occur at high amplitudes, which will be covered in the next chapter, nor does

239
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it hold when the plate becomes thick (i.e., when H/L becomes large in some sense), in which case

a thick plate model (some examples of which are very well covered in n the text by Graff [111]) is

perhaps more appropriate. Most plates which occur in a musical setting, however, are quite thin,

and the above model is sufficient for at least a preliminary foray into physical modeling synthesis.

12.1.1 Phase and Group Velocity

The characteristic equation for the thin plate equation (12.3) is

s2 = −κ2|β|2 ⇒ ω = ±κ|β|2 (12.5)

The expressions for the phase and group velocity are

vφ = κ|β| vg = 2κ|β| (12.6)

Again, just as in the case of the ideal bar in 1D, wave propagation is dispersive, with short wavelength

components traveling faster than those of low frequency.

This system, like the wave equation, is isotropic—again, though it would be possible to write

the expressions for phase and group velocity in terms of frequency ω alone, the associated difference

schemes lose the isotropic property, and the easiest comparison is through the expressions above, in

terms of wwavenumber β.

12.1.2 Boundary Conditions

12.1.3 Finite Difference Schemes: Cartesian Coordinates

Probably the most straightforward finite difference method for the Kirchhoff plate employs the

five-point approximation to the Laplacian twice:

δttu = −κ2δ∆,+δ∆,+u (12.7)

When written out in full in terms of the grid function un
l,m, assuming that the grid spacing is equal

to h in both the x and y directions, the scheme is of the form

un+1
l,m =

(
2 − 20µ2

)
un

l,m + 8µ2
(
un

l,m+1 + un
l,m−1 + un

l+1,m + un
l−1,m

)
(12.8)

−2µ2
(
un

l+1,m+1 + un
l+1,m−1 + un

l−1,m+1 + un
l−1,m−1

)
− µ2

(
un

l,m+2 + un
l,m−2 + un

l+2,m + un
l−2,m

)
− un−1

l,m(12.9)

and depends on the scheme parameter µ, defined as

µ =
κk

h2
(12.10)

As one might gather, there are many possibilities for the generalization of scheme (12.7), through

parameterized approximations to ∆∆ [31], and perhaps implicit constructions.

von Neumann Analysis and Stability

The characteristic polynomial for scheme (12.7) is

z +
(
16µ2(px + py)2 − 2

)
+ z−1 = 0 (12.11)

in terms of the variables px = sin2(βxh/2), and py = sin2(βyh/2). The roots are of unit magnitude

under the conditions

0 ≤ 4µ2(px + py)2 ≤ 1 (12.12)

which is satisfied when

µ ≤ 1

4
(12.13)
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12.2 Realistic Plate Models

12.2.1 Finite Difference Schemes

12.3 Plate Reverberation

Though this book is mainly concerned with sound synthesis based on physical models of musical

instruments, one can indeed apply the same techniques to simulate certain audio effects as well. At

present there is a good deal of work going into simulations of analog electrical circuits used in classic

analog synthesis, both for filtering, and for direct synthesis—as one might expect, virtual analog (as

it is called) is again always based on numerical methods for solving systems of differential equations

[]. Slightly more relevant here is the wide variety of electromechanical effects devices which have been

notoriously difficult to emulate digitally. Physical modeling offers an approach to digital versions of

effects such as the Leslie speaker, spring reverberation [1, 129], and, the granddaddy of all analog

audio effects, plate reverberation [29, 30].

Plate reverb, as it is called, developed in the 1950s [150], and subsequently became the high-end

reverberation device of choice for decades, until the advent of digital reverberation. Operation is

relatively straightforward—a large metal plate, of varying dimensions, but sometimes as long as

two metres, is fed with a dry input signal, and a pickup reads an output signal at a given position

on the plate. The typical plate reverberation charcateristic is very different from that of a room,

mainly due to the absence of strong early reflections, and to the modal distribution, which is nearly

uniform—both are results of the inherently dispersive character of the plate itself, as discussed in

§??. In spite of this, the plate reverb sound has become one of the most sought after effects in digital

audio.

12.4 Soundboards

12.5 Problems

12.6 Programming Exercises
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Chapter 13

Nonlinear Plates

Perhaps the most dramatic example of nonlinear behaviour in all of musical acoustics is afforded by

the vibration of a metal plate at high amplitudes. Various percussion instruments, and especially

gongs and cymbals, exhibit this behaviour. The perceptual results are extremely strong, including

effects such as the rapid buildup of high-frequency energy as heard in cymbal crashes, subharmonic

generation, as well as pitch glides, which were discussed in some detail in the case of the string in

Chapter 7. For sound synthesis purposes, a linear model is wholly insufficient.

There are a variety of models of nonlinear plate vibration; when the plate is thin, and vibration

amplitudes are low, all of these reduce to the Kirchhoff model discussed in §12.1. (Plates which

appear in a musical setting are generally thin, and so there is little reason to delve into the much

more involved topic of thick plate vibration, which, even in the linear case, is orders of magnitude

more involved than dealing with simple thin plate models.) Perhaps the simplest nonlinear thin

plate model is that of Berger [21], which is discussed in §13.1; this system is a 2D analogue of the

Kirchhoff-Carrier, or “tension-modulated” string discussed in §8.1, and the predominant perceptual

result of employing such a model is the simulation of pitch glides. Though this model is sufficient

in the first instance, and leads to computationally attractive finite difference schemes, it is not

capable of rendering the more interesting effects mentioned above, which are defining characteristics

of some percussion instruments. To this end, the more complex model of von Karman [178, 247] is

introduced in §13.2, as are robust finite difference schemes based on energy conservation properties.

Applications to cymbal and gong vibration appear in §13.3.

References for this chapter include: [111, 200, 18, 158, 247, 178, 21, 145, 287, 54, 256, 252, 227,

80, 144, 145, 26, 27, 253, 215]
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13.1 The Berger Plate Model

13.1.1 Definition

13.1.2 Energy Analysis

13.1.3 A Finite Difference Scheme

13.1.4 Pitch Glides

13.2 The von Karman Plate Model

One form of the so-called dynamic analogue of the system of von Karman [247], [178] is given by

the system

ρHü = −D∆∆u + L[φ, u] (13.1a)

∆∆φ = −EH

2
L[u, u] (13.1b)

Here u(x, y, t) is the transverse plate deflection and φ(x, y, t) is the Airy stress function, both defined

over region (x, y) ∈ A ⊂ R
2, and for time t ≥ 0. ∆, as before, is the Laplacian, and ∆∆ the

biharmonic operator. E, H , and ρ are as defined for the Berger system in §13.1. The nonlinear

operator L[·, ·] is defined in Section 13.2.1. The system is initialized using the values u(x, y, 0) and

u̇(x, y, 0).

It is worth noting that there are several variants of the von Karman system; that given above

is simplified from the so-called “full” or “complete” system, in which in-plane displacements appear

explicitly [145], [178]; all such systems may themselves be derived from even more general forms

[287]. Equation (13.1a) reduces, in the absence of the term involving the bracket operator, to the

linear Kirchhoff model of plate vibration [111]; the Berger model also may be arrived at, under

somewhat more subtle assumptions. All the analysis presented in this article extends, with ease, to

the case in which a linear damping term is included—conserved quantities become dissipated, but

all the resulting stability analysis remains virtually unchanged. This has been discussed earlier by

this author, in the case of nonlinear strings [33], and is covered briefly in Section ??.

13.2.1 The Operator L[·, ·]
The operator L[·, ·] is defined, in Cartesian coordinates, as

L[α, β] =
∂2α

∂x2

∂2β

∂y2
+

∂2α

∂y2

∂2β

∂x2
− 2

∂2α

∂x∂y

∂2β

∂x∂y

Clearly,

L[α, β] = L[β, α] (13.2)

The operator L[·, ·] is bilinear, or linear in either one of its arguments if the other is held fixed.

Considering the first argument, for any constants c1 and c2,

L[c1α1 + c2α2, β] = c1L[α1, β] + c2L[α2, β] (13.3)

for any functions α1, α2 and β. (It will be linear in the second argument as well by (13.2).) The

bilinearity property also implies that

˙(L[α, α]) = 2L[α̇, α] (13.4)

Another important property (for lack of a better term, it will be called “triple self-adjointness”
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in this article) is that for any three functions α, β and γ defined over the quarter plane A,
∫∫

A
αL[β, γ]dσ =

∫∫

A
L[α, β]γdσ (13.5)

+

∫ ∞

0

αyβxxγ − α (βxxγ)y − αxβxyγ + α (βxyγ)x dx

+

∫ ∞

0

αxβyyγ − α (βyyγ)x − αyβxyγ + α (βxyγ)y dy

In designing a conservative numerical scheme for (13.1), it is crucial that discrete analogues of

the properties (13.4) and (13.5) be maintained. The bilinear property (13.3) is the key to efficient

computer realizations, as will be discussed in Section 13.2.2.

13.2.2 Energy Analysis

13.2.3 A Finite Difference Scheme

13.3 Cymbals and Gongs

13.4 Problems

13.5 Programming Exercises
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Chapter 14

Finite Element Methods

Finite difference methods are well suited to problems defined in either one spatial dimension, or

problems defined over a simple geometry in two dimensions (such as rectangular or circular). This

covers all string models, 1D tube models, bars, and rectangular or circular percussion instruments. In

general, finite differences methods rely on the use of regular grids, and, for finer modeling in irregular

geometries, (perhaps geared towards musical instrument design rather than sound synthesis), are not

always the best choice. There are certain strategies which may be employed: the use of form-fitting

coordinates is one, and domain decomposition [48] is another. On the other hand, for extremely

complex geometries, such approaches become unwieldy.

Finite element methods are designed to deal with such problems in irregular geometries; they

are based on a distinct point of view; instead of approximating an underlying differential equation,

pointwise, over a grid. The solution is approximated using a collection of so-called shape-functions,

which may or may not lie in a regular arrangement. In addition, the numerical solution is often

approached using integral and variational methods, rather than differential approximations. In the

end, however, finite element methods for problems in dynamics operate much as finite difference

methods do, through matrix recursions at a given (or perhaps variable) sample rate. Needless to

say, the literature on finite element methods is vast; only the briefest introduction can be supplied

here. The downside is that writing finite element code is considerably more involved than in the

case of finite differences—generally, one must rely on software packages, which can be good or bad,

depending on one’s point of view.

In §14.1, the alternate variational form of the model equation is introduced, followed in §14.2

by the definition of several simple shape functions of local support, in both one and two spatial

dimensions. Strategies for grid generation are discussed, briefly, in §14.3, and in §14.4 and §14.5,

the stiff string and linear plate models are reexamined from the point of finite element simulations.

Finally, in §14.6, some general trends in finite element modeling of musical instrument modeling are

presented.

References for this chapter include: [11, 86, 66, 199, 180]
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14.1 Variational Forms

14.2 Shape Functions

14.3 Grid Generation

14.4 The Stiff String Revisited

14.5 The Linear Plate Revisited

14.6 Musical Instrument Modeling

14.7 Problems

14.8 Programming Exercises



Chapter 15

Spectral Methods

One of the most important drawbacks to the use of time domain methods relates to the effect of

numerical dispersion, which leads, at least in the linear case, to mistuning of modal frequencies.

Numerical dispersion itself results from insufficient accuracy in a numerical method. While the

perceptual importance of numerical dispersion in musical sound synthesis applications, which is

generally limited to the upper end of the human hearing range, is a matter of debate, this is a good

point to introduce other numerical techniques which have much better accuracy properties.

Finite difference methods and finite element methods are based on essentially local discretizations

of a model system; generally, one models the various partial derivatives at a given grid point or

node through combinations of values at neighboring points. As was mentioned early on, better

accuracy may be achieved as more neighboring points are used in the calculation; this renders the

calculations less local. In the most well-known manifestations of spectral methods1 [48, 260, 100, 195]

approximations are global; a derivative calculated at a given grid point will make use of information

from the entire spatial domain of the problem. In fact, even the concept of a grid function is not

entirely useful in this setting, as the solution itself is considered to be decomposed into an entire

set of basis functions—modal synthesis[2], particularly in the form discovered independently by

Garber[104], is an example of a very simple spectral method based on a Fourier decomposition.

There are many different forms of spectral methods, dependent chiefly of the types of expansions

used to represent the solution (often Fourier or polynomial series, discussed in §15.1), and on the

constraints one places on the solution: if the error is to be minimized at a finite collection of points

in the spatial domain, one speaks of a collocation method (see §15.2), and if an error with respect

to the expansion basis used to represent the solution is minimized, then a Galerkin method results

(see §15.3). More general weighted residual methods have been developed, but in this short chapter,

only these two forms will be discussed, particularly with reference to their suitability for musical

sound synthesis. Spectrally accurate derivative approximations, as well as the use of non-uniform

Chebyshev grids, and fast evaluation through the use of the fast Fourier transform are discussed

in §15.4. As spectrally accurate approximations are generally applied to spatial derivatives, global

accuracy may be achieved through the use of standard high-order time differencing strategies—

these are briefly summarized in §15.5. Finally, musical applications to the stiff string and linear

plate problems are presented, in §15.6 and 15.7, respectively.

1It is worth being quite clear on the use of the word “spectral,” in this case, which is not used in the sense of
spectral modeling. The word spectral refers to extremely high accuracy of numerical methods—though they can be
based on the use of Fourier series, in most cases of interest they are rather generally based on more general polynomial
series approximations.

249



250 CHAPTER 15. SPECTRAL METHODS

References for this chapter include [260, 100, 48, ?, 195, 145, 144, 2, 104, 109]

15.1 Basis Functions

15.1.1 Fourier Series

15.1.2 Polynomials

15.2 Collocation Methods

15.3 Galerkin Methods

15.4 Spectral Derivatives

15.4.1 As Limiting Case of Finite Difference Approximations

15.4.2 Chebyshev Grids

15.4.3 Fast Fourier Transforms

15.5 High Order Time Stepping Methods

15.5.1 Forward and Backward Euler

15.5.2 Adams-Bashforth Methods

15.5.3 Adams-Moulton Methods

15.5.4 Runge-Kutta Methods

15.6 The Stiff String Again Revisited

15.7 The Linear Plate Again Revisited

15.8 Problems

15.9 Programming Exercises



Chapter 16

Concluding Remarks

16.1 Complexity of Musical Systems

After having now examined the simulation of a wide variety of systems in musical acoustics, it is

useful to return to the subject of computational complexity, which was introduced briefly in §1.3.3.

16.1.1 A Family of LSI Musical Systems

A rather large class of musical systems is described by an equation of the form

utt + c2
(
−∇2

d

)p
u = 0 (16.1)

Here, ∇d is the d-dimensional Laplacian operator, and p is a constant equal to 1 for non-stiff systems,

and equal to 2 for stiff systems. Eq. (16.1) is assumed spatially-nondimensionalized such that it is

defined over a region of unit d-dimensional volume. When p = 1, Eq. 16.1 is the wave equation,

and c can be thought of as a constant wave speed, and when p = 2, it is the equation of motion of

an ideal bar (in 1D) and a thin plate (in 2D). Under different choices of d and p, the systems which

are described to a very rough approximation are as given in Table ??.

p/d 1 2 3

1 strings, acoustic tubes membranes room acoustics

2 thin bars thin plates

Eq. (16.1) is studied here primarily because of simplicity of analysis, but strictly speaking, it

only describes systems which are linear, shift-invariant, lossless, and isotropic. Most of the analysis

which follows on computational complexity is affected relatively little by the addition of loss (which

is normally quite small in most musical systems), spatial variation, and anisotropy. There are also,

of course, other LSI systems which have been described in this book, such as strings with stiffness,

which are not described by (16.1), but again, the analysis may be extended to cover these cases.

When nonlinearities come in to the picture, however, it is not at all clear how to arrive at bounds

on complexity—some comments on this subject appear in .

A starting point for analysis of complexity in both the case of modal methods, and those based

on direct integration methods, is the dispersion relation for Eq. (16.1), which is

ω = c|βd|p (16.2)

where βd is a d-dimensional wavenumber.
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16.1.2 Sampling Theorems and Complexity Bounds

It is possible to arrive at estimates of complexity for direct numerical simulation methods for Eq.

16.1, through a dual application of Shannon’s sampling theorem in time and space. It is useful to

rewrite the dispersion relation above in terms of frequency f = ω/2π and wavelength |βd|= 2π/Λ

as

f =
c (2π)

p−1

Λp
(16.3)

Beginning from a choice fs for the audio sample rate, it should be clear that one would expect

that, at best, any numerical method should be capable of simulating frequencies up to the Nyquist,

or fs/2—one might argue that one could perhaps save on computation by computing reqults over a

smaller bandwidth, but, as has been shown at various points in this book, this is really a waste of

audio bandwidth, and one could save far more work by simply reducing the sample rate, and then

perhaps upsampling the resulting sound output in a post-processing step.

The question then turns to the range of wavelengths which must be resolved by the numerical

method. At sampling frequency fs, the shortest such wavelength will be given, by the dispersion

relation (16.3), as

Λmin = 2π1−1/p

(
c

fs

)1/p

(16.4)

For a numerical method operating over a grid, it should be clear that the spacing between adjacent

points must be on the order of less than half the smallest wavelength to be rendered, or Λmin/2—this

follows directly from sampling theorems in the frequency domain, and there will be slight variations

in the required density depending on the type of grid to be used, especially in the multidimensional

case.

For a unit volume, and given the requirement above on the spacing between grid points, the

number of grid points needed to fill the space will be 1/(Λmin/2)d, and, for a two-step difference

scheme, the total number of memory locations required will be twice this, or approximately

Nfd ≅ 2πd/p−d

(
fs

c

)d/p

(16.5)

For a sparse finite difference scheme, the number of operations Ofd per second required will be

approximately

Ofd = κfsNfd ≅ 2κfsπ
d/p−d

(
fs

c

)d/p

(16.6)

where κ is a parameter which depends on the type of scheme—generally, it will lie in the range

of between 1 and 20 for most of the systems encountered in musical acoustics, and for reasonably

simple schemes.

It is worth noting the dependence on the parameters d and p, which behave in opposite respects

with regard to complexity: memory and the operation count increase severely with the dimension,

but are reduced with increasing stiffness; this is the reason that, say, full room acoustics simulation

is a massive task, whereas a model of plate reverberation is manageable, and even possible in real

time.

16.1.3 Modal Representations and Complexity Bounds

Again beginning from a choice fs for the audio sampling rate, one may again make use of the

dispersion relation (16.3) in order to arrive at a bound on computational complexity, this time
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using principles of modal density—see, e.g., the chapter by Weinreich for more information [283].

Suppose, for simplicity, that (16.1) is defined over a unit hypercube in d dimensions, and that

the boundary conditions are of fixed/simply supported type (i.e., u = 0 on the boundary, and

additionally ∇2
du = 0 on the boundary if p = 2). The wavenumber βd must then be of the form

βd = πnd, where nd = [n1, n2, . . . , nd] for (non-negative) integers n1, n2, . . . , nd. The dispersion

relation may then be rewrriten as

|nd| = π1/p−1

(
2fn

c

)1/p

(16.7)

where the frequencies f = fn are now limited to a countably infinite set indexed by the vector n.

It now remains to determine the of frequencies fn which lie below the Nyquist frequency fs/2. As

|nd| is the Euclidean length of the vector nd in a d-dimensional space, the number of modes will

then be that number which lies within the positive d-dimensional quadrant of the sphere of radius

π1/p−1
(

fs

c

)1/p

. Given that each mode possesses two degrees of freedom, the total number of degrees

of freedom (or number of units of memory required) will be approximately

Nm ≅ 2πd/p−d

(
fs

c

)d/p

(16.8)

for small values of d. This is the same as the bound obtained using principles of sampling theory in

the previous section.

Though the above derivation appears to depend on several restrictive conditions, it is in fact more

general than it appears to be. Addressing each in turn: The issue of degeneracy of modes is minor,

in that a) the proportion of such modes which are degenerate under the conditions above vanishes

in the limit of large |n|, leading to the same expression for the number of modes, and furthermore

b), degeneracy only occurs under very precise geometrical conditions which occur rarely if at all in

practice. The issue of the special choice of geometry (i.e., a unit hypercube) in order to obtain a

set of modes which may be easily ordered (and thus counted) is also minor: any unit volume will

possess the same distribution of modes in the limit of high frequencies. Similarly, different choices

of boundary conditions will affect only the frequencies of the lowest modes, and not the distribution

in the limit of high frequencies.

16.2 Physical Modeling Sound Synthesis Methods: Strengths
and Weaknesses

16.2.1 Modal Synthesis

While intuitively appealing, and perceptually relevant, modal synthesis has a number of serious

shortcomings:

First, modal techniques are strictly applicable only to linear and time invariant (LTI) systems,

i.e., those for which an eigenvalue problem may be derived. Though this does cover a number of

useful cases in musical acoustics, there are many others, often among the most musically interesting,

which are not LTI. Under weakly nonlinear conditions, it is possible to draw some mainly qualitative

conclusions using perturbation analysis about modal solutions (though this has not, apparently, been

done in the context of musical sound synthesis). Perceptual effects such as pitch glides in strings

and struck plates may be analyzed in this way. But for stronger nonlinearities, such as those that

occur in struck gongs or cymbals, such analysis becomes unwieldy, and of questionable validity.

Second, although for certain simple spatially-uniform structures (such as, e.g., an ideal string or
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rectangular membrane under fixed or free termination, or an ideal plate under simply-supported con-

ditions), the eigenfunctions and eigenfrequencies (modal shapes and frequencies) may be expressed

in closed form, for almost all other geometries and boundary conditions, they can not be, and must

be computed numerically, generally before run time. For large problems, this calculation can be

enormous. For a static expansions onto (and projections of) the modal functions, it is sufficient to

compute the weighting coefficients alone. This is often sufficient in mainstream applications, but

definitely not in musical sound synthesis, in which case dynamic input and output parameters are

a crucial feature (e.g., if a membrane is to be struck or its output taken at varying locations); the

weighting coefficients must be recomputed with any such variation. (The alternative is to simply

store all the eigenfunctions, but this can become prohibitively costly in terms of memory use.)

Third, it is important to point out that there is no efficiency advantage, either in terms of the

operation count or memory use, in using modal expansions relative to time-domain methods; this

follows from

In the cases in which they may be applied, modal methods do, however, possess two significant

advantages relative to time-domain techniques. First, because the modal decomposition may be

thought of as essentially breaking a system down into a parallel combination of a set of second order

linear oscillators, stability is extremely easy to verify; such is not the case

All these difficulties stem from the complexity of the back-and-forth between the time and fre-

quency domains.

16.2.2 Digital Waveguides

16.2.3 Lumped Mass Spring Networks

On the other hand, working with lumped elements in order to describe a distributed system is

somewhat cumbersome, especially when an extremely elegant mathematical representation of the

distributed system is available (this is often the case in musical acoustics). The distinction between

the use of lumped and distributed modeling can be described as physical, in the former case, and

mathematical in the latter. The relative advantages of the two approaches was well-expressed many

years ago by Ames [3]:

...The specialist sometimes finds the physical approach useful in motivating further
analyses. In such a modus operandi the discrete (physical) model is given the lumped
physical characteristics of the continuous system. For example, a heat conducting
slab could be replaced by a network of heat conducting rods. The governing equations
are then developed by direct application of the physical laws to the discrete system.

On the other hand, in the mathematical approach the continuous formulation is

transformed to a discrete formulation by replacing derivatives by, say, finite differ-

ence approximations. When the continuous problem formulation is already available

this procedure is more flexible...

Ames was not speaking about musical systems, but replacing “heat conducting slab” and “heat

conducting rods” above by “membrane” and “masses and springs,” one can translate his point to

the musical sound synthesis setting. As one might expect, when a lumped network is intended

to behave as a distributed object, an equivalent finite difference scheme can be shown to exist—

see §?? and §11.1.7 for two examples. One could proceed farther along these lines, but it quickly
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becomes difficult to deal with important numerical issues such as accuracy, or global approximations

to derivatives, or complex boundary conditions; a fully distributed model is indispensable in such

cases. In many ways, however, it is not fair to compare the lumped network formalism with that of

direct simulation, because the goals are somewhat different.

16.2.4 Direct Simulation

16.3 The Future
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Appendix A

MATLAB Code Examples

In this appendix, various simple code fragments are provided. All can be viewed as prototypes for

physical modeling sound synthesis. The coding style reflects something of a compromise between

efficiency on the one hand, and brevity and intelligibility on the other. The choice of Matlab as

a programming environment definitely reflects the latter sensibility, though the use of Matlab as

an actual synthesis engine is not recommended. Some of these examples make use constructs and

features which need not appear in a code fragment intended for synthesis, including various calls to

plotting functions, as well as the demonstration of energy conservation in some cases. It should be

clear, in all cases, which elements of these examples may be neglected in an actual implementation.

For the sake of brevity, these examples are too crude for actual synthesis purposes, but many features,

discussed at various points in the texts and exercises, may be added.

A.1 The Simple Harmonic Oscillator

% matlab script sho.m
% finite difference scheme for simple harmonic oscillator
%%%%%% begin global parameters

SR = 44100; % sample rate (Hz)
f0 = 200; % fundamental frequency (Hz)
TF = 0.05; % duration of simulation (s)
u0 = 0.1; % initial displacement
v0 = 1; % initial velocity

%%%%%% end global parameters

% check that stability condition is satisfied

if(SR<=pi*f0)
error(’Stability condition violated’);

end

% derived parameters

k = 1/SR; % time step
u1 = u0+k*v0; % derive value of time series at n=1;
coef = 2-k^2*(2*pi*f0)^2; % scheme update coefficient
NF = floor(TF*SR); % duration of simulation (samples)

% initialize state of scheme

u=0; % current value of time series
u_last = u1; % last value of time series
u_last2 = u0; % one before last value of time series

% initialize readout

out = zeros(NF,1); out(1) = u0; out(2) = u1;
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%%%%% start main loop
for n=3:NF

u=coef*u_last-u_last2; % difference scheme calculation
out(n) = u; % read value to output vector
u_last2 = u_last; u_last = u; % update state of difference scheme

end

%%%%% end main loop

% plot output waveform
plot([0:NF-1]*k, out, ’k’);
xlabel(’t’); ylabel(’u’); title(’SHO: Difference Scheme Output’);
axis tight

% play sound

soundsc(out,SR);

A.2 Hammer Collision with Mass-Spring System

% matlab script idealbarfd.m
% hammer collision with a mass-spring system

%%%%%% global parameters

SR = 44100; % sample rate
xH0 = -0.01; vH0 = 10; % initial conditions of hammer
Tf = 0.05; % duration of simulation (s)
w0 = 1000; % angular frequency of mass-spring system
wH = 300; % stiffness parameter for hammer
MR = 10; % hammer/target mass ratio
alpha = 2; % hammer stiffness nonlinearity exponent

%%%%%% derived parameters

Nf = floor(Tf*SR);
k = 1/SR;

%%%%%% initialization
uHlast2 = xH0; uHlast = xH0+k*vH0;
ulast2 = 0; ulast = 0;
out = zeros(Nf,1); f = zeros(Nf,1);
out(1) = ulast2; out(2) = ulast;

%%%%%% main loop
for n=3:Nf

if(uHlast>ulast)
f(n-1) = wH^(1+alpha)*(uHlast-ulast)^alpha;

else f(n-1) = 0;
end
uH = 2*uHlast-uHlast2-k^2*f(n-1);
u = 2*ulast-ulast2-w0^2*k^2*ulast+MR*k^2*f(n-1);
out(n) = u;
ulast2 = ulast; ulast = u;
uHlast2 = uHlast; uHlast = uH;

end

%%%%%% plots of displacement of target mass and force

subplot(2,1,1)
plot([1:Nf]*k, out, ’k’); title(’Position of Target Mass’); xlabel(’time (s)’);
axis tight
subplot(2,1,2)
plot([1:Nf]*k, f, ’k’); title(’Hammer Force’); xlabel(’time’);
axis tight
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A.3 Bowed Mass-Spring System

% matlab script bowmass.m
% finite difference scheme for a bowed mass-spring system
% soft friction characteristic with iterative Newton-Raphson method

%%%%%% begin global parameters

SR = 44100; % sample rate (Hz)
f0 = 100; % oscillator frequency (Hz)
FB = 500; % bow force/mass (m/s^2)
Tf = 0.1; % simulation duration (s)
vB = 0.2; % bow velocity (m/s)
sig = 100; % friction law free parameter (1/m^2)
tol = 1e-6; % tolerance for Newton-Raphson method
%%%%%% begin derived parameters

NF = floor(Tf*SR);
k = 1/SR;
A = exp(1/2)*sqrt(2*sig);
qlast = 0;

%%%%%% initialize time series
u = zeros(NF,1); f = zeros(NF,1); vr = zeros(NF,1);

%%%%%% time step restrictions

if(k>min(1/(pi*f0),exp(1)/(FB*sqrt(2*sig))))
error(’Time step too large’);

end

%%%%%% main loop
for n=3:NF

% Newton-Raphson method to determine relative velocity
b = (2*pi*f0)^2*u(n-1)-(2/k^2)*(u(n-1)-u(n-2))+(2/k)*vB;
eps = 1;
while eps>tol

q=qlast-(FB*A*qlast*exp(-sig*qlast^2)+2*qlast/k+b)/(FB*A*(1-2*sig*qlast^2)*exp(-sig*ql
eps = abs(q-qlast);
qlast = q;

end
% update position of mass and relative bow velocity
u(n) = 2*k*(q+vB)+u(n-2); vr(n-1) = q;

end

%%%%%% plot mass displacement and relative bow velocity
tax = [1:NF]*k;
subplot(2,1,1); plot(tax, u, ’k’); title(’Displacement of Mass (m)’); xlabel(’time (s)’);
subplot(2,1,2); plot(tax, vr, ’k’); title(’Relative Bow Velocity (m/s)’); xlabel(’time (s)’);

A.4 The 1D Wave Equation: Finite Difference Scheme

% matlab script waveeq1dfd.m
% finite difference scheme for the 1D wave equation
% *fixed boundary conditions
% *raised cosine initial conditions

%%%%%% begin global parameters

SR = 44100; % sample rate (Hz)
f0 = 200; % fundamental frequency (Hz)
TF = 1; % duration of simulation (s)
ctr = 0.4; % center location of excitation (0-1)
wid = 0.1; % width of excitation
u0 = 0; % maximum initial displacement
v0 = 1; % maximum initial velocity
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lambda = 1; % Courant number
rp = 0.5; % position of readout (0-1)

%%%%%% end global parameters

%%%%%% begin derived parameters

gamma = 2*f0; % wave equation free parameter
k = 1/SR; % time step
NF = floor(SR*TF); % duration of simulation (samples)
h = gamma*k/lambda; % grid spacing
N = floor(1/h); % number of subdivisions of spatial domain
h = 1/N; % reset h
lambda = gamma*k/h; % reset Courant number
s0 = 2*(1-lambda^2); s1 = lambda^2; % scheme parameters
rp_int = 1+floor(N*rp); % rounded grid index for readout
rp_frac = 1+rp/h-rp_int; % fractional part of readout location

%%%%%% initialize grid functions and output

u = zeros(N+1,1); u1 = zeros(N+1,1); u2 = zeros(N+1,1);
out = zeros(NF,1);
%%%%%% create raised cosine

rc = zeros(N+1,1);
for qq=1:N+1

pos = (qq-1)*h; dist = ctr-pos;
if(abs(dist)<=wid/2)

rc(qq) = 0.5*(1+cos(2*pi*dist/wid));
end

end

%%%%%% set initial conditions

u2 = u0*rc; u1 = (u0+k*v0)*rc;

%%%%%% start main loop
for n=3:NF

u(2:N) = -u2(2:N)+s0*u1(2:N)+s1*(u1(1:N-1)+u1(3:N+1)); % scheme calculation
out(n) = (1-rp_frac)*u(rp_int)+rp_frac*u(rp_int+1); % readout
u2 = u1; u1 = u; % update of grid variables

end

%%%%% end main loop

% plot output waveform
plot([0:NF-1]*k, out, ’k’);
xlabel(’t’); ylabel(’u’); title(’1D Wave Equation: Difference Scheme Output’);
axis tight

% play sound

soundsc(out,SR);

A.5 The 1D Wave Equation: Modal Synthesis

% matlab script waveeq1dfd.m
% modal synthesis method for the 1D wave equation
% *fixed boundary conditions
% *raised cosine initial conditions

%%%%%% begin global parameters

SR = 44100; % sample rate (Hz)
f0 = 80; % fundamental frequency (Hz)
TF = 1; % duration of simulation (s)
ctr = 0.7; % center location of excitation (0-1)
wid = 0.05; % width of excitation
u0 = 1; % maximum initial displacement
v0 = 2; % maximum initial velocity
rp = 0.3; % position of readout (0-1)
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%%%%%% end global parameters
%%%%%% begin derived parameters

k = 1/SR; % time step
NF = floor(SR*TF); % duration of simulation (samples)
N = floor(0.5*SR/f0); % number of modes
temp = 2*pi*[1:N]’*f0/SR;
coeff = 2*cos(temp);
outexp = sin([1:N]*pi*rp);

%%%%%% initialize grid functions and output

U = zeros(N,1); U1 = zeros(N,1); U2 = zeros(N,1);
out2 = zeros(NF,1);
%%%%%% create raised cosine and find Fourier coefficients

rc = zeros(N,1);
for qq=1:N

pos = (qq-1)/N; dist = ctr-pos;
if(abs(dist)<=wid/2)

rc(qq) = 0.5*(1+cos(2*pi*dist/wid));
end

end
rcfs = -imag(fft([rc; zeros(N,1)])); rcfs = 2*rcfs(2:N+1)/N;

%%%%%% set initial conditions

U2(1:N) = u0*rcfs;
U1(1:N) = (u0*cos(temp)+v0*sin(temp)./(2*pi*[1:N]’*f0)).*rcfs;

%%%%%% start main loop
for n=3:NF

U = -U2+coeff.*U1; % scheme calculation
out(n) = outexp*U; % readout
U2 = U1; U1 = U; % update of modal weights

end

%%%%% end main loop

% plot output waveform

plot([0:NF-1]*k, out, ’k’);
xlabel(’t’); ylabel(’u’); title(’1D Wave Equation: Modal Synthesis Output’);
axis tight

% play sound
soundsc(out,SR);

A.6 The 1D Wave Equation: Digital Waveguide Synthesis

% matlab script waveeq1ddw.m
% digital waveguide method for the 1D wave equation
% *fixed boundary conditions
% *raised cosine initial conditions
% *linear interpolation

%%%%%% begin global parameters

SR = 44100; % sample rate (Hz)
f0 = 447; % fundamental frequency (Hz)
TF = 1; % duration of simulation (s)
ctr = 0.7; % center location of excitation (0-1)
wid = 0.1; % width of excitation
u0 = 1; % maximum initial displacement
v0 = 3; % maximum initial velocity
rp = 0.3; % position of readout (0-1)

%%%%%% end global parameters

%%%%%% begin derived parameters
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k = 1/SR; % time step
NF = floor(SR*TF); % duration of simulation (samples)
N = floor(0.5*SR/f0); % length of delay lines
rp_int = 1+floor(N*rp); % rounded grid index for readout
rp_frac = 1+rp*N-rp_int; % fractional part of readout location

%%%%%% initialize delay lines and output

wleft = zeros(N,1); wright = zeros(N,1);
out = zeros(NF,1);

%%%%%% create raised cosine and integral

rc = zeros(N,1); rcint = zeros(N,1);
for qq=1:N

pos = (qq-1/2)/N; dist = ctr-pos;
if(abs(dist)<=wid/2)

rc(qq) = 0.5*(1+cos(2*pi*dist/wid));
end
if(qq>1)

rcint(qq) = rcint(qq-1)+rc(qq)/N;
end

end

%%%%%% set initial conditions
wleft = 0.5*(u0*rc+v0*rcint/(2*f0));
wright = 0.5*(u0*rc-v0*rcint/(2*f0));

%%%%%% start main loop
for n=3:NF

temp1 = wright(N); temp2 = wleft(1);
wright(2:N) = wright(1:N-1);
wleft(1:N-1) = wleft(2:N);
wright(1) = -temp2; wleft(N) = -temp1;
% readout
out(n) = (1-rp_frac)*(wleft(rp_int)+wright(rp_int))+rp_frac*(wleft(rp_int+1)+wright(rp_int+1));

end
%%%%% end main loop

% plot output waveform

plot([0:NF-1]*k, out, ’k’);
xlabel(’t’); ylabel(’u’); title(’1D Wave Equation: Digital Waveguide Synthesis Output’);
axis tight

% play sound

soundsc(out,SR);

A.7 The Ideal Bar

% matlab script idealbarfd.m
% finite difference scheme for the ideal bar equation
% *clamped/pivoting boundary conditions
% *raised cosine initial conditions

%%%%%% begin global parameters

SR = 44100; % sample rate (Hz)
K = 10; % stiffness parameter
TF = 1; % duration of simulation (s)
ctr = 0.5; % center location of excitation (0-1)
wid = 0.1; % width of excitation
u0 = 1; % maximum initial displacement
v0 = 0; % maximum initial velocity
mu = 0.5; % scheme free parameter
rp = 0.5; % position of readout (0-1)
bc = [1 1]; % boundary condition type, [left right] with
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% 1: clamped, 2: pivoting
%%%%%% end global parameters

%%%%%% begin derived parameters

k = 1/SR; % time step
NF = floor(SR*TF); % duration of simulation (samples)
h = sqrt(K*k/mu); % grid spacing
N = floor(1/h); % number of subdivisions of spatial domain
h = 1/N; % reset h
mu = K*k/h^2; % reset Courant number
s0 = 2*(1-3*mu^2); s1 = 4*mu^2; s2 = -mu^2; % scheme parameters
rp_int = 1+floor(N*rp); % rounded grid index for readout
rp_frac = 1+rp/h-rp_int; % fractional part of readout location

%%%%%% initialize grid functions and output

u = zeros(N+1,1); u1 = zeros(N+1,1); u2 = zeros(N+1,1);
out = zeros(NF,1);

%%%%%% create raised cosine

rc = zeros(N+1,1);
for qq=1:N+1

pos = (qq-1)*h; dist = ctr-pos;
if(abs(dist)<=wid/2)

rc(qq) = 0.5*(1+cos(2*pi*dist/wid));
end

end

%%%%%% set initial conditions
u2 = u0*rc; u1 = (u0+k*v0)*rc;

%%%%%% start main loop
for n=3:NF

% scheme calculation (interior)
u(3:N-1) = -u2(3:N-1)+s0*u1(3:N-1)+s1*(u1(2:N-2)+u1(4:N))...

+s2*(u1(1:N-3)+u1(5:N+1));
% calculations at boundary points
if(bc(1)==1)

u(2) = -u2(2)+s0*u1(2)+s1*u1(3)+s2*u1(4);
else u(2) = -u2(2)+(s0+s2)*u1(2)+s1*u1(3)+s2*u1(4);
end
if(bc(2)==1)

u(N) = -u2(N)+s0*u1(N)+s1*u1(N-1)+s2*u1(N-2);
else u(N) = -u2(N)+(s0+s2)*u1(N)+s1*u1(N-1)+s2*u1(N-2);
end
out(n) = (1-rp_frac)*u(rp_int)+rp_frac*u(rp_int+1); % readout
u2 = u1; u1 = u; % update of grid variables

end
%%%%% end main loop

% plot output waveform

plot([0:NF-1]*k, out, ’k’);
xlabel(’t’); ylabel(’u’); title(’Ideal Bar Equation: Difference Scheme Output’);
axis tight

% play sound

soundsc(out,SR);

A.8 The Stiff String

% matlab script ssfd.m
% finite difference scheme for the stiff string
% *clamped boundary conditions
% *raised cosine initial conditions
% *stereo output
% *implicit scheme: matrix update form
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% *two-parameter frequency-dependent loss
%%%%%% begin global parameters

SR = 44100; % sample rate(Hz)
B = 0.001; % inharmonicity parameter (>0)
f0 = 50; % fundamental(Hz)
TF = 2; % duration of simulation(s)
ctr = 0.1; % center location of excitation(0-1)
wid = 0.05; % width of excitation
u0 = 0; % maximum initial displacement
v0 = 10; % maximum initial velocity
rp = [0.3 0.7]; % positions of readout(0-1)
loss = [100, 5; 1000, 2]; % loss [freq.(Hz), T60(s), freq.(Hz), T60(s)]
theta = 1; % implicit scheme free parameter (>0.5)

%%%%%% begin derived parameters
k = 1/SR; % time step
NF = floor(SR*TF); % duration of simulation (samples)
gamma = 2*f0; K = sqrt(B)*(gamma/pi); % set scheme parameters
% find grid spacing
h = sqrt((gamma^2*k^2+sqrt(gamma^4*k^4+16*K^2*k^2*(2*theta-1)))/(2*(2*theta-1)));
N = floor(1/h); % number of subdivisions of spatial domain
h = 1/N; % reset h
mu = K*k/h^2; lambda = gamma*k/h; % reset scheme parameters
rp_int = 1+floor(N*rp); % rounded grid indeces for readout
rp_frac = 1+rp/h-rp_int; % fractional part of readout locations
% set scheme loss parameters
zeta1 = (-gamma^2+sqrt(gamma^4+4*K^2*(2*pi*loss(1,1))^2))/(2*K^2);
zeta2 = (-gamma^2+sqrt(gamma^4+4*K^2*(2*pi*loss(2,1))^2))/(2*K^2);
sig0 = 6*log(10)*(-zeta2/loss(1,2)+zeta1/loss(2,2))/(zeta1-zeta2);
sig1 = 6*log(10)*(1/loss(1,2)-1/loss(2,2))/(zeta1-zeta2);

%%%%%% initialize grid functions and output (stereo)

u = zeros(N-1,1); u1 = zeros(N-1,1); u2 = zeros(N-1,1);
out = zeros(NF,2);

%%%%%% create update matrices

M = sparse(toeplitz([theta (1-theta)/2 zeros(1,N-3)]));
A = M+sparse(toeplitz([sig1*k/(h^2)+sig0*k/2 -sig1*k/(2*h^2) zeros(1,N-3)]));
C = M+sparse(toeplitz([-sig1*k/(h^2)-sig0*k/2 sig1*k/(2*h^2) zeros(1,N-3)]));
B = 2*M+sparse(toeplitz([-2*lambda^2-6*mu^2 lambda^2+4*mu^2 -mu^2 zeros(1,N-4)]));

%%%%%% create raised cosine

rc = zeros(N-1,1);
for qq=1:N-1

pos = qq*h; dist = ctr-pos;
if(abs(dist)<=wid/2)

rc(qq) = 0.5*(1+cos(2*pi*dist/wid));
end

end

%%%%%% set initial conditions
u2 = u0*rc; u1 = (u0+k*v0)*rc;

%%%%%% start main loop
for n=3:NF

u = A\(B*u1-C*u2);
out(n,:) = (1-rp_frac).*u(rp_int)’+rp_frac.*u(rp_int+1)’; % readout
u2 = u1; u1 = u; % update

end
%%%%% end main loop

% plot output waveform

subplot(2,1,1); plot([0:NF-1]*k, out(:,1), ’k’);
xlabel(’t’); ylabel(’u’);
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title(’Stiff String Equation: Difference Scheme Output (left)’);
subplot(2,1,2); plot([0:NF-1]*k, out(:,2), ’k’);
xlabel(’t’); ylabel(’u’);
title(’Stiff String Equation: Difference Scheme Output (right)’);
axis tight

% play sound

soundsc(out,SR);

A.9 The Kirchhoff-Carrier Equation

% matlab script kcfd.m
% finite difference scheme for the Kirchhoff-Carrier equation
% *fixed boundary conditions
% *triangular initial conditions
clear all
close all

%%%%%% begin global parameters
SR = 44100; % sample rate (Hz)
f0 = 200; % fundamental frequency (Hz)
alpha = 0.01; % nonlinear string parameter
TF = 1; % duration of simulation (s)
ctr = 0.5; % center location of excitation (0-1)
u0 = 0.05; % maximum initial displacement
v0 = 0; % maximum initial velocity
lambda = 0.5; % Courant number
rp = 0.5; % position of readout (0-1)

%%%%%% end global parameters

%%%%%% begin derived parameters
gamma = 2*f0; % wave equation free parameter
k = 1/SR; % time step
NF = floor(SR*TF); % duration of simulation (samples)
h = gamma*k/lambda; % grid spacing
N = floor(1/h); % number of subdivisions of spatial domain
h = 1/N; % reset h
lambda = gamma*k/h; % reset Courant number
rp_int = 1+floor(N*rp); % rounded grid index for readout
rp_frac = 1+rp/h-rp_int; % fractional part of readout location

%%%%%% initialize grid functions and output
u = zeros(N+1,1); u1 = zeros(N+1,1); u2 = zeros(N+1,1);
out = zeros(NF,1);

%%%%%% create triangular function

tri = zeros(N+1,1);
for qq=1:N+1

pos = (qq-1)*h;
if(pos<=ctr)

tri(qq) = pos/ctr;
else tri(qq) = (pos-1)/(ctr-1);
end

end

%%%%%% set initial conditions

u2 = u0*tri; u1 = (u0+k*v0)*tri;

%%%%%% start main loop
for n=3:NF

% calculate nonlinearity g
u1x = (u1(2:N+1)-u1(1:N))/h; u1xx = (u1x(2:N)-u1x(1:N-1))/h;
g = (1+h*sum(u1x.*u1x)/(2*alpha))/(1+k^2*gamma^2*h*sum(u1xx.*u1xx)/(4*alpha));
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u(2:N) = 2*u1(2:N)-u2(2:N)+g*gamma^2*k^2*u1xx(1:N-1); % scheme calculation
out(n) = (1-rp_frac)*u(rp_int)+rp_frac*u(rp_int+1); % readout
u2 = u1; u1 = u; % update of grid variables

end

%%%%% end main loop

% plot output waveform
plot([0:NF-1]*k, out, ’k’);
xlabel(’t’); ylabel(’u’); title(’Kirchhoff-Carrier Equation: Difference Scheme Output’);
axis tight

% play sound

soundsc(out,SR);

A.10 Vocal Tract Synthesis

A.11 The 2D Wave Equation

% matlab script waveeq2dloss.m
% finite difference scheme for the 2D wave equation with loss
% *fixed boundary conditions
% *raised cosine initial conditions
% *bilinear interpolation

%%%%%% begin global parameters

SR = 44100; % sample rate(Hz)
gamma = 1000; % fundamental(Hz)
TF = 2; % duration of simulation(s)
ctr = [0.3,0.5]; % center location of excitation(0-1)
wid = 0.1; % width of excitation
u0 = 0; % maximum initial displacement
v0 = 10; % maximum initial velocity
rp = [0.3 0.7]; % position of readout([0-1,0-1])
T60 = 4; % loss [freq.(Hz), T60(s), freq.(Hz), T60(s)]
epsilon = 0.6; % domain aspect ratio
lambda = 1/sqrt(2); % Courant number

%%%%%% begin derived parameters

k = 1/SR; % time step
NF = floor(SR*TF); % duration of simulation (samples)
h = sqrt(2)*gamma*k; % find grid spacing
Nx = floor(1/h); % number of x-subdivisions of spatial domain
Ny = floor(epsilon/h); % number of y-subdivisions of spatial domain
h = 1/Nx; % reset h
lambda = gamma*k/h; % reset Courant number
sig0 = 6*log(10)/T60; % scheme parameters
s0 = (2-4*lambda^2)/(1+sig0*k);
s1 = lambda^2/(1+sig0*k);
t0 = -(1-sig0*k)/(1+sig0*k);
rp_int = 1+floor([Nx Ny].*rp); % rounded grid indeces for readout
rp_frac = 1+rp/h-rp_int; % fractional part of readout locations

%%%%%% initialize grid functions and output

u = zeros(Nx+1,Ny+1); u1 = zeros(Nx+1,Ny+1); u2 = zeros(Nx+1,Ny+1);
out = zeros(NF,2);
%%%%%% create 2D raised cosine

rc = zeros(Nx+1,Ny+1);
for qq=0:Nx

for rr=0:Ny
pos = [qq*h rr*h]; dist = norm(ctr-pos);
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if(abs(dist)<=wid/2)
rc(qq+1,rr+1) = 0.5*(1+cos(2*pi*dist/wid));

end
end

end

%%%%%% set initial conditions

u2 = u0*rc; u1 = (u0+k*v0)*rc;

%%%%%% start main loop
for n=3:NF

u(2:Nx,2:Ny) = s1*(u1(3:Nx+1,2:Ny)+u1(1:Nx-1,2:Ny)+u1(2:Nx,3:Ny+1)+u1(2:Nx,1:Ny-1))...
+s0*u1(2:Nx,2:Ny)+t0*u2(2:Nx,2:Ny);

out(n,:) = (1-rp_frac(1))*(1-rp_frac(2))*u(rp_int(1),rp_int(2))+...
(1-rp_frac(1))*rp_frac(2)*u(rp_int(1),rp_int(2)+1)+...
rp_frac(1)*(1-rp_frac(2))*u(rp_int(1)+1,rp_int(2))+...
rp_frac(1)*rp_frac(2)*u(rp_int(1)+1,rp_int(2)+1);

u2 = u1; u1 = u; % update
end

%%%%% end main loop

% plot output waveform

plot([0:NF-1]*k, out, ’k’);
xlabel(’t’); ylabel(’u’);
title(’2D Wave Equation with Loss: Difference Scheme Output’);
axis tight

% play sound

soundsc(out,SR);

A.12 Plate Reverberation

A.13 Gong
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Appendix B

List of Symbols

Symbol definition

A string cross-sectional area
B boundary term (continuous)
b boundary term (discrete)
c wave speed (m/sec.)
crc raised cosine distribution
ctri triangular distribution
c wave speed (m/s)
C capacitance (Farads)
D plate parameter = EH3/12(1 − ν2)
D• spatial differentiation matrix (various)
d+, d− endpoints of spatial domain (1D)
D spatial domain
D discrete spatial domain without right end point

D discrete spatial domain without left end point
ed+ forward shift operator in coordinate direction d
ed− backward shift operator in coordinate direction d
E Young’s modulus
f frequency (Hz)
f force (N)
fs sample rate (Hz)
f0 fundamental frequency (Hz)
F force/mass (m/s2)
g averaged nonlinearity, difference scheme for Kirchhoff-Carrier equation
G averaged nonlinearity, Kirchhoff-Carrier equation
h grid spacing
H plate thickness
H total system energy (continuous)
h total system energy (discrete)
I interpolation operator
I bar moment of inertia
I identity matrix
k time step (s)
K stiffness
K stiffness matrix
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l spatial index to grid function
L string length (m)
L inductance (Henrys)
M mass (kg)
M mass matrix
n time index (integer)
O big oh, order of
P symbol, partial differential equation
Pd symbol, finite difference scheme
R set of real numbers [−∞,∞]
R

+ set of non-negative real numbers [0,∞]
s complex frequency variable (Hz)
t time variable (sec.)
T0 nominal string tension
T60 60 dB decay time (sec.)
T kinetic energy (continuous)
t kinetic energy (discrete)
u dependent variable, time series, or grid function
û Laplace transform of time series, dependent variable or grid function
ũ spatial Fourier transform of dependent variable or grid function

u(+), u(−) traveling wave components
ud discrete time series or grid function
U modal function
U spatial unit interval [0,1]
UN discrete N-point spatial unit interval [0, . . . , N ]
vg group velocity
vφ phase velocity
v potential energy (discrete)
V potential energy (continuous)
w discrete state update vector
x spatial independent variable (non-dimensionalized from Section 6.1.2 onwards)
z complex frequency variable
Z set of all integers [−∞, . . . ,∞]
Z

+ set of non-negative integers [0, . . . ,∞]
α dimensionless string parameter (= T0/EA)
β wavenumber
γ wave speed (Hz, spatially non dimensionalized)
δd+ forward difference operator, in coordinate direction d, = (ed+ − 1)/k
δd− backward difference operator, in coordinate direction d, = (1 − ed−)/k
δd· centered difference operator, in coordinate direction d, = (ed+ − ed−)/2k
δdd second difference operator, in coordinate direction d, = δd+δd−

δdddd fourth difference operator, in coordinate direction d, = δddδdd

δ∆ Laplacian difference operator
∆ Laplacian operator
η(1), η(2) transverse displacements
θ angle (rad.)
θ free parameter, implicit finite difference scheme
κ stiffness parameter, bars, plates
λ Courant number, for the wave equation (= kγ/h)
µ difference scheme free parameter
µd+ forward averaging operator, in coordinate direction d, = (ed+ + 1)/2
µd− backward averaging operator, in coordinate direction d, = (1 + ed−)/2
µd· centered averaging operator, in coordinate direction d, = (ed+ + ed−)/2
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ν Poisson’s ratio
ρl linear mass density (kg/m)
ρ material density (kg/m3)
σ loss (Hz)
σ0 frequency-independent loss parameter (Hz)
σ1 frequency-dependent loss parameter (Hz)
τ free parameter, implicit scheme
φ phase of sinusoid (rad.)
ω angular frequency (rad./sec.)
ω0 fundamental or oscillator angular frequency (rad./sec.)
1 one, or identity operation
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[188] H. Penttinen, C. Erkut, J. Plkki, V. Välimäki, and M. Karjalainen. Design and analysis of a

modified kantele with increased loudness. Acustica United with Acta Acustica, 91(2):261–268,

2005.

[189] S. Petrausch, J. Escolano, and R. Rabenstein. A general approach to block-based physical

modeling. with mixed modeling strategies for digital sound synthesis. In Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.

[190] R. Pitteroff and J. Woodhouse. Mechanics of the contact area between a violin bow and a

string. Part II: Simulating the bowed string. Acustica United with Acta Acustica, 84:744–757,

1998.

[191] M. Portnoff. Implementation of the digital phase vocoder using the fast Fourier transform.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(3):243–248, 1976.

[192] J. Proakis. Digital Signal Processing. Prentice-Hall, Englewood Cliffs, New Jersey, USA, third

edition, 1996.

[193] M. Puckette. Pure data. In Proceedings of the International Computer Music Conference,

pages 269–272, 1996.

[194] M. Puckette. Theory and techniques of electronic music, 2006. Available online at http://www-

crca.ucsd.edu/ msp/techniques.htm.

[195] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations.

Springer, Berlin, 1997.



BIBLIOGRAPHY 285

[196] R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and M. Karjalainen. Block-

based physical modeling for digital sound synthesis. IEEE Signal Processing Magazine,

24(2):42–54, 2007.

[197] L. Rabiner and R. Schafer. Digital Processing of Speech Signals. Prentice-Hall, Englewood

Cliffs, New Jersey, USA, 1978.

[198] M. Rath, F. Avanzini, and D. Rocchesso. Physically based real-time modeling of contact

sounds. In Proceedings of the International Computer Music Conference, Goteborg, Sweden,

2002.

[199] L. Rhaouti, A. Chaigne, and P. Joly. Time-domain modeling and numerical simulation of a

kettledrum. Journal of the Acoustical Society of America, 105(6):3545–3562, 1999.

[200] P. Ribeiro and M. Petyt. Geometrical non-linear, steady state forced periodic vibration of

plates, part I: Model and convergence studies. Journal of Sound and Vibration, 226(5):955–

983, 1999.

[201] R. Richtmyer and K. Morton. Difference Methods for Initial-Value Problems. Krieger Pub-

lishing Company, Malabar, Florida, USA, second edition, 1994.

[202] J.-C. Risset. Computer study of trumpet tones. Technical report, Bell Technical Laboratories,

Murray Hill, New Jersey, 1966.

[203] C. Roads. Granular synthesis of sound. In C. Roads and J. Strawn, editors, Foundations of

Computer Music, pages 145–159. 1985.

[204] C. Roads. A tutorial on nonlinear distortion or waveshaping synthesis. In C. Roads and

J. Strawn, editors, Foundations of Computer Music, pages 83–94. 1985.

[205] C. Roads. The Computer Music Turorial. MIT Press, Cambridge, Massachusetts, 1996.

[206] C. Roads, S. Pope, A. Piccialli, and G. DePoli, editors. Musical Signal Processing. Swets and

Zeitlinger, Lisse, The Netherlands, 1997.

[207] C. Roads and J. Strawn, editors. Foundations of Computer Music. MIT Press, 1985.

[208] D. Rocchesso. The ball within the box: A sound processing metaphor. Computer Music

Journal, 19(4):47–57, 1995.

[209] D. Rocchesso. Maximally diffusive yet efficient feedback delay networks for artificial reverber-

ation. IEEE Signal Processing Letters, 4(9):252–255, September 1997.

[210] D. Rocchesso and F. Fontana, editors. The Sounding Object. Mondo Estremo, 2003. Available

Online at http://www.mondo-estremo.com/info/publications/public.html.

[211] D. Rocchesso and J. O. Smith III. Circulant and elliptic feedback delay networks for artificial

reverberation. IEEE Transactions on Speech and Audio Processing, 5(1):51–63, January 1997.

[212] X. Rodet. Time-domain formant-wave-function synthesis. Computer Music Journal, 8(3):9–14,

1980.



286 BIBLIOGRAPHY

[213] X. Rodet and C. Vergez. Nonlinear dynamics in physical models: From basic models to true

musical-instrument models. Computer Music Journal, 23(3):35–49, 1999.

[214] X. Rodet and C. Vergez. Nonlinear dynamics in physical models: Simple feedback loop systems

and properties. Computer Music Journal, 23(3):18–34, 1999.

[215] T. Rossing and N. Fletcher. Nonlinear vibrations in plates and gongs. Journal of the Acoustical

Society of America, 73(1):345–351, 1983.

[216] T. Rossing, F. Moore, and P. Wheeler. The Science of Sound. Addison Wesley, third edition,

2002.

[217] D. Rowland. Parametric resonance and nonlinear string vibrations. American Journal of

Physics, 72(6):758–765, 2004.
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