next up previous
Next: Type III: Mixed Network Up: Waveguide Network for the Previous: Type I: Voltage-centered Network

Type II: Current-centered Network

This is the dual to the previous arrangement. Now we set

$\displaystyle \tilde{Z}_{x^{-},i}=\tilde{Z}_{x^{+},i} = \frac{1}{2\mu (EI)_{i}}...
...0.5in}\tilde{Z}_{t,i} = \frac{1}{\mu (EI)_{i}}\hspace{0.5in}\tilde{Z}_{c,i} = 0$    

and we thus choose

$\displaystyle Y_{c,i} = \left(\frac{(\rho A)_{i+1}}{2\mu}+\frac{(\rho A)_{i-1}}...
... A)_{i}}{\mu}\right)-\left(2\mu (EI)_{i+1}+2\mu (EI)_{i-1}+4\mu (EI)_{i}\right)$    

and we have the same stability condition as the previous case,

$\displaystyle \mu\leq \frac{1}{2}\min_{i}\sqrt{\frac{(\rho A)_{i}}{(EI)_{i}}}$    

Stefan Bilbao 2002-01-22