
1 Electromechanical Effects
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A rather special family of audio effects consists of those which employ mechanical elements in
conjunction with analog electronics—though many classic effects rely on such components (such
as, for example, the Leslie speaker, or tape delays), for some problems in the world of virtual
analog, an involved treatment of the mechanical part of the effect is necessary, in order to be
able to capture the perceptually salient quality of the effect. This is particularly the case for
electromechanical artificial reverberation, which exhibits an extremely complex response. Two
interesting cases, namely plate and spring reverberation, will be briefly described here.

The attribute of these devices which distinguishes them from other electromechanical effects
is that the mechanical components cannot be modelled as ”lumped”; structurally, a spring or a
plate occupies space, and its vibration pattern varies from one point to the next. It is precisely
the distributed character of these components which gives these effects their complex sound—
and which, at the same time, requires a somewhat different approach to emulation. One must
now think of the behaviour of the component in terms of various different modes of vibration, or
in terms of waves which require finite propagation times, just like real acoustic spaces. Indeed,
spring and plate reverbs were originally intended as convenient substitutes for real room reverbs—
but developed a loyal audience of their own. Originally, such popularity was probably in spite
of this distinction, but as such units have become scarce, convenient digital substitutes for these
sometimes bulky and damage-prone units have become sought-after—and make for a fascinating
application of virtual analog modeling!

Distributed modelling is seen only rarely in the world of digital audio effects, but plays, of
course, a central role in sound synthesis based on physical models of musical instruments—a topic
which is too broad to fit into this volume! In this short section, some of the basics of distributed
modelling for electromehcanical elements are covered, from a high-level perspective, focussing
on the nature of the phenomena involved, and some simulation techniques (and in particular,
finite difference schemes). It’s probably worth mentioning that distributed modelling can be a
lot more expensive, in terms of number-crunching, than other analog effect emulation—which
is true of any digital reverberation algorithm. But, these days, standard computer hardware is
becoming powerful enough to tackle these modeling problems in real time, or something close to
it.

1.1 Room Reverberation and the 3D Wave Equation

When looking at artificial reverberation techniques, it’s useful to first take a look at the behaviour
of real rooms—to understand the ways in which electromechanical effects attempt to emulate
this real-world effect, and, more importantly, how they differ!

In air, to a very good approximation, waves travel at a constant speed, here referred to as c.
c has a mild dependence on temperature, and is approximately 343 m/s at atmospheric pressure,
and near room temperature [12]. From a given acoustic point source, waves travel uniformly in
all directions (isotropically) at this speed, and there is a reduction in amplitude as the waves
spread out. Formally, to a very good approximation, the time evolution of a pressure field in
three dimensions may be described by the wave equation:

∂2p

∂t2
= c2∇2p (1)

where here, p(x, y, z, t) is the pressure at spatial coorsinates x, y and z, and at time t. ∇2 is the
3D Laplacian operator. For more on this equation, see [19].
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A key concept in all distributed modeling for linear systems is a dispersion relation, relating
angular frequency ω (in radians/sec) to a vector wavenumber β (measured in units of m−1) for
a wave component of the solution. Such a component will be of the form

p(x, t) = ejωt+β·x (2)

in 3D, and the dispersion relation for the wave equation above takes the following form:

ω = c|β| (3)

It turns out to be convenient to use ω and β here, but one could equally well write this relationship
in terms of frequency f = ω/2π and wavelength λ = 2π/|β|—the above dispersion relation then
becomes the familiar expression c = λf . In the case of the wave equation, this expression is of
a very simple form; for other systems it will not be, and often, even for a single system, there
may be many such relations, which may not be expressible in simple closed form. The dispersion
relation, in general, yields a huge amount of information about the behaviour of a system which
is very important acoustically. When a system’s geometry is specified, one can say a great deal
not only about acoustic attributes such as echo density and mode density, but also about how
much computational power will be required to perform a digital emulation!

Expressions for wave speed as a function of frequency may be derived from a dispersion
relation as:

vphase =
ω

|β| vgroup =
dω

d|β| (4)

vphase is the phase velocity, or propagation speed of a wave at wavenumber β, and vgroup is the
group, or packet velocity. In the case of rooms, from the dispersion relation given above, these
speeds are both c. Such wave propagation is often referred to as non-dispersive; all disturbances
propagate at the same speed, regardless of wavelength or frequency. In the present case of wave
propagation in air, it also implies that waveforms which propagate from one point to another
preserve shape, or remain coherent during propagation.

When a given delimited acoustic space is defined, the obvious acoustic effect is that of echoes.
For a room with reflective walls, a typical response consists of series of distinct echoes (early
reflections) which are perceptually distinct, and which serve as localization cues, followed by
increasingly dense late reflections, and, finally when reflections become so dense so as to be not
perceptually distinct, a reverberant tail. It is room geometry which gives acoustic responses their
characteristic complexity—and this is definitely not the case for plate and spring reverberation,
which emulate this response using relatively simple structures.

Digital emulation of 3D acoustic spaces, through the direct solution of the wave equation
is a daunting task, from the point of view of computational complexity (though it is an active
research topic [8, 20], which will surely eventually bear fruit). In fact, by further examination of
the dispersion relation one may arrive at bounds on computational cost: For any simulation of the
3D wave equation over a space of volume V , and which is intended to produce an approximation
to the response over a band of frequencies from 0 Hz, to fs/2 Hz, for some frequency fs (i.e., an
audio sample rate), the amount of memory required will be approximately:

N(fs) ∝ V f3
s /c3 (5)

where the constant of proportionality depends on the particular method employed. For c = 340,
and at at typical audio rate fs = 48 kHz, and for even a moderately sized room (V = 1000 m3),
this can be very large indeed—here, for (say) a finite difference scheme N = 2.8 × 109! Because
arithmetic operations will presumably be performed on all the data, locally, at the audio rate,
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the operation count will be on the order of N ×fs flops, which is approaching the petaflop range.
For more on the topic of computational complexity estimates in physical audio applications, see
[5].

Most reverberation techniques are thus based around perceptual simplifications, as described
in detail in Chapter ??. In industrial acoustical applications, methods based on the image
source method [2] are popular, and rely on simplified models of reflection from surfaces; in audio,
feedback delay networks [22, 23, 15], which are very efficient but not based on direct solution of
the 3D wave equation are commonly employed.

1.2 Plates and Plate Reverberation

Plate reverberation was originally intended as a convenient means of applying a reverberant
effect to a recorded sound [16], long before the advent of digital reverberation. Such effects were
extensively researched and eventually commericialized, with the EMT-140 the most successful
resulting product. The basic operation of such a unit is relatively simple: a metal plate, normally
rectangular, made of steel and supported by a frame is driven by an input signal through an
actuator, and outputs are read at a pair of pickups. See Figure 1(a). Such a device is often
complemented by adjustible absorbing plates which allow for some control over the decay time.
The response of a plate is generally quite different from that of room acoustic reverberation—
distinct relections are notably absent, and the response as a whole has a smooth noise-like
character.

|β| |β|

ω vgroup

Output

Input

(a) (b) (c)

Figure 1: (a) A metal plate, driven by an input signal, and from which output(s) are read at
distinct locations. (b) Dispersion relation, and (c) group velocity for a thin plate.

A given plate is characterized by its density ρ, in kg/m3, Young’s modulus E, in kg/s2m,
Poisson’s ratio ν (dimensionless), and geometrical properties such as its thickness H in m, and
its surface area A in m2, as well as the particular boundary conditions. A typical reverberation
unit is constructed from steel, with a thickness of approximately 0.5 mm, and with a surface
area of approximately 2 m2 (other materials and dimensions are also in use—the much smaller
EMT 240 unit employs thin gold foil instead of steel). Usually the edges are very nearly free to
vibrate, except for at the plate supports. For a sufficiently thin lossless plate, the equation of
motion may be written succinctly as

∂2u

∂t2
= −κ2∇2∇2u (6)
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where ∇2 is the 2D Laplacian operator defined, in Cartesian coordinates (x, y), as

∇2 =
∂2

∂x2
+

∂2

∂y2
(7)

For more on the physics of plates, see, e.g., [12, 13, 19].
The dispersion relation for a plate is very different from that corresponding to wave propa-

gation in air:
ω = κβ2 (8)

where κ =
√

EH2/(12(1 − ν2)ρ. Now, the phase and group velocities are no longer constant:

vphase = κβ =
√

κω vgroup = 2κβ = 2
√

κω (9)

See Figure 1 (b) and (c). As a result, wave propagation is dispersive, and highly so. See
Figure 2, showing the time evolution of plate displacement in response to a pulse. Notice in
particular that the high frequency components of the pulse travel more quickly than the low
frequency components—and thus the pulse rapidly loses coherence as it travels. Another related
distinction between plate and room responses is the mode density, which is roughly constant in
the case of the plate, but which increases as the square of frequency for a room. See Figure 3.

t = 0.001 s t = 0.002 s t = 0.003 s t = 0.004 s

Figure 2: Time evolution of plate displacement, with κ = 0.5, and of aspect ratio 2, in response
to a pulse, at times as indicated.
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Figure 3: Spectrum of impulse response of a plate, with κ = 2, and of aspect ratio 2, over
different frequency ranges, as indicated.

One may show, as in the case of the wave equation, that for a plate of stiffness parameter κ,
and of surface area A, that the amount of memory required will be approximately

N(fs) ∝ Afs/κ (10)

which, for typical plate materials and geometries (κ = 0.737, A = 2), and at an audio sample rate
such as 48 kHz, is not particularly large (here, for a finite difference scheme, N = 8.29×104). The
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dependence of memory requirements may be directly related to both the dispersive character of
the plate, as well as the constancy of mode density [5]. The operation count will again scale with
N · fs—which, in comparison with full 3D modeling, is in the Gflop range, which is expensive
still by today’s standards but not unreasonably so. As such, it is worth looking at how one might
design such a simulation through the direct time/space solution of the plate equation.

Case Study: Finite Difference Plate Reverberation

The emulation of distributed models, such as plates or springs requires a different treatment
from lumped analog components—probably the best-known distributed modeling techniques in
sound synthesis are digital waveguides [24], which are extremely efficient for problems in 1D,
but for which such an efficiency advantage does not extend to problems in higher dimensions.
Mainstream time-domain numerical simulation techniques (of which finite difference schemes [26]
are the easiest to understand, and simplest to program) are an attractive alternative. Here, a very
simple time domain finite difference scheme [26] will be presented, based on the direct solution
to the equation of motion (6) for a thin plate. Finite difference schemes for plates are discussed
by various authors (see, e.g., [27]), and have been used in musical acoustics applications [17], as
well as in the present case of plate reverberation [3, 6, 4].

Equation (6) describes free vibration of a lossless thin plate. A simple extension to the more
realistic case of frequency-independent loss, and where the plate is driven externally (as in a
reverberation unit) is

∂2u

∂t2
= −κ2∇2∇2u − 2σ

∂u

∂t
+ δ(x − xi, y − yi)f(t)/ρH (11)

Here σ ≥ 0 is a loss parameter—it is related to a global T60 reverberation time by T60 =
6 ln(10)/σ. More realistic (frequency dependent) models of loss are available [9], but the above
is sufficient for a simple demonstration of finite difference techniques. f(t) is a force signal in
N, assumed known, and applied at the location x = xi, y = yi, where here, δ is a Dirac delta
function.

The first step in the design of any audio effect is the choice of a sample rate fs. In simulation
applications, it is more natural to make use of a time step T = 1/fs. Another choice which
must be made of that of a spatial grid, at the points of which an approximate solution to a
partial differential equation will be computed. In the case of a plate defined over a rectangular
domain x ∈ [0, Lx], and y ∈ [0, Ly], the obvious choice is a rectangular grid, of spacing X between
adjacent points. The grid function un

l,m then represents an approximation to the solution u(x, y, t)
of (6), at times t = nT , and at locations x = lX , and y = mX , for integer n, l and m. See Figure
4(a). It makes sense to choose X such that the grid spacing divides the side lengths as evenly
as possible, i.e., Lx/X ≅ Nx, Ly/X ≅ Ny for some integers Nx and Ny. It is not possible to do
this exactly for arbitrary side lengths—to remedy this, one could choose distinct grid spacings X
and Y in the x and y directions, but this subtle point will not be explored further here. There
are, of course, many other ways of choosing grids, which may or may not be regular—finite
element methods [10], for example, are usually designed to operate over unstructured grids, and
are suitable for problems in irregular geometries. Consider first the first and second partial time
derivatives which appear in (6). The simplest finite difference approximations, δt and δtt may be
written as

δtu
n
l,m =

1

2T

(

un+1
l,m − un−1

l,m

)

≅
∂u

∂t
(x = lX, y = mX, t = nT ) (12)

δttu
n
l,m =

1

T 2

(

un+1
l,m − 2un

l,m + un−1
l,m

)

≅
∂2u

∂t2
(x = lX, y = mX, t = nT ) (13)
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Figure 4: (a) Computational grid, defined over Cartesian coordinates x and y, and for time t.
(b) Computational footprint of the five-point Laplacian operator, and (c) when applied twice.

(d) Computational footprint for the scheme (15).

The other operation which must be approximated is the Laplacian ∇2, as defined in (7). Here
is the simplest (five-point) choice:

δ∇2un
l,m =

1

X2

(

un
l+1,m + un

l−1,m + un
l,m+1 + un

l,m−1 − 4un
l,m

)

≅ ∇2u(x = lX, y = mX, t = nT )

(14)
See Figure 4(b). System (11) requires a double application of this operator—see Figure 4(c).
Near the edges of the domain, this operation appears to require values which lie beyond the
edges of the grid—these may be set by applying the appropriate boundary conditions. For a
plate reverberation unit, these will be of free type, but in the Matlab example which follows, for
simplicity, they have been set to be of simply supported type (i.e., the plate is constrained at its
edges, but able to pivot). A complete treatment of numerical boundary conditions is beyond the
scope of the present chapter—see [5] for more information.

A complete scheme for (6) then follows as

δttu
n
l,m = −κ2δ∇2δ∇2un

l,m − 2σδtu
n
l,m +

1

ρHX2
δli,mi

fn (15)

This scheme relies on a discrete delta function δli,mi
, picking out a grid location corresponding

to x = xi, and y = yi (perhaps through truncation) and a sampled input signal fn. The
scheme operates over three time levels, or steps, as shown in (d), and is also explicit—values
at the unknown time step n + 1 may be written in terms of previously computed values (after
expanding out the operator notation above) as

(1 + σT )un+1
l,m = 2un

l,m − (1 − σT )un−1
l,m − µ2

(

un
l+2,m + un

l−2,m + un
l,m+2 + un

l,m−2

)

(16)

−2µ2
(

un
l+1,m+1 + un

l+1,m−1 + un
l−1,m+1 + un

l−1,m−1

)

+8µ2
(

un
l+1,m + un

l+1,m + un
l,m+1 + un

l,m−1

)

− 20µ2un
l,m +

T 2

ρHX2
δli,mi

fn

where µ = κT/X2 is a numerical parameter for the scheme. It may be shown that for stability,
one must choose

µ ≤ 1/4 (17)

and in fact, in order to reduce artifiacts due to numerical dispersion (i.e., additional unwanted
dispersive behaviour induced by the scheme itself, on top of that inherent to the plate itself), this
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bound should be satisfied as near to equality as possible. In audio applications, this allows the
grid spacing X to be chosen in terms of the sample rate. See [5] for much more on the properties
of this scheme.

In implementation, it can be useful to rewrite this scheme in a vector-matrix form. A grid
function un

l,m, representing the values of a grid function over a rectangular region, may be rewrit-
ten as a column vector un, consisting of consecutive “stacked” columns of values over the grid,
at time step n. Because the scheme as a whole is linear, and explicit, it must then be possible
to rewrite it as the two-step recursion:

un+1 = Bun − Cun−1 + rfn (18)

Here, the effects of loss and the spatial difference operators have been consolidated in the (ex-
tremely sparse) matrices B and C, and r is a column vector which chooses an input location.
Output may be drawn from the scheme at a location x = xo, y = yo by simply reading un

lo,mo
at

each time step. In vector form, the output yn may be written as

yn = qTun (19)

for some vector q, which, in the simplest case, will consist of a single value at the readout
location.

Below is a very simple Matlab implementation of the plate reverberation algorithm mentioned
above—it generates a reverbernt output, for given plate, sample rate and excitation and readout
points. It’s not particularly fast (at least in Matlab)—but not extremely slow either!

clear all;

% global parameters

[f, SR] = wavread(’bassoon.wav’); % read input soundfile and sample rate

rho = 7850; % mass density (kg/m^3)

E = 2e11; % Young’s modulus (Pa)

nu = 0.3; % Poisson’s ratio (nondimensional)

H = 0.0005; % thickness (m)

Lx = 1; % plate side length---x (m)

Ly = 2; % plate side length---y (m)

T60 = 8; % 60 dB decay time (s)

TF = 1; % extra duration of simulation (s)

ep = [0.5 0.4]; % center location ([0-1,0-1]) nondimensional

rp = [0.3 0.7]; % position of readout([0-1,0-1]) nondimensional

% derived parameters

K_over_A = sqrt(E*H^2/(12*rho*(1-nu^2)))/(Lx*Ly); % stiffness parameter/area

epsilon = Lx/Ly; % domain aspect ratio

T = 1/SR; % time step

NF = floor(SR*TF)+size(f,1); % total duration of simulation (samples)

sigma = 6*log(10)/T60; % loss parameter

% stability condition/scheme parameters

X = 2*sqrt(K_over_A*T); % find grid spacing, from stability condition

Nx = floor(sqrt(epsilon)/X); % number of x-subdivisions of spatial domain

Ny = floor(1/(sqrt(epsilon)*X)); % number of y-subdivisions of spatial domain
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X = sqrt(epsilon)/Nx; % reset grid spacing

ss = (Nx-1)*(Ny-1); % total grid size

% generate scheme matrices

Dxx = sparse(toeplitz([-2;1;zeros(Nx-3,1)]));

Dyy = sparse(toeplitz([-2;1;zeros(Ny-3,1)]));

D = kron(speye(Nx-1), Dyy)+kron(Dxx, speye(Ny-1)); DD = D*D/X^4;

B = sparse((2*speye(ss)-K_over_A^2*T^2*DD)/(1+sigma*T));

C = ((1-sigma*T)/(1+sigma*T))*speye(ss);

% generate I/O vectors

rp_index = (Ny-1)*floor(rp(1)*Nx)+floor(rp(2)*Ny);

ep_index = (Ny-1)*floor(ep(1)*Nx)+floor(ep(2)*Ny);

r = sparse(ss,1); r(ep_index) = T^2/(X^2*rho*H);

q = sparse(ss,1); q(rp_index) = 1;

% initialize state variables and input/output

u = zeros(ss,1); u2 = u; u1 = u;

f = [f;zeros(NF-size(f,1),1)];

out = zeros(NF,1);

% main loop

for n=1:NF

u = B*u1-C*u2+r*f(n); % difference scheme calculation

out(n) = q’*u; % output

u2 = u1; u1 = u; % shift data

end

% play input and output

soundsc(f,SR); pause(2); soundsc(out,SR);

This example is written to be compact and readable—and many more realistic features which
have been omitted could be added in. Among these are:

• Frequency-dependent damping—at the moment the T60 is set to be uniform at all frequen-
cies. This could be done directly in the PDE model above, or possibly through introducing
a model of a damping plate.

• Boundary conditions are set to be simply supported—allowing the easy generation of dif-
ference matrices. These should ideally be set to be free, or going further, to incorporate
the effect of point supports.

• Only a single output is generated—multiple outputs (such as stereo, but perhaps more in
a virtual environment) should be allowed. Notice that multiple outputs may be generated
essentially “for free,” as the entire state (u) is available.

• Output displacement is taken; in real plate reverberation units, it is rather an acceleration—
acceleration can be derived from displacement easily through a double time difference
operation.
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• Post-processing (analog electronic) and the behaviour of the pickup are not modelled.

Information on all these extensions appears in various publications, including those mentioned
at the beginning of this section.

1.3 Springs and Spring Reverberation

The helical spring under low tension has long been used as an artificial reverberation device
[14, 29, 25]. In most units, the spring is driven through an electromagnetic coupling at one end,
and readout is taken via a pickup at the opposite end. Spring reverbs come in a variety of sizes
and configurations, sometimes involving multiple springs. A typical set-up is shown in Figure
5(a).

The physics of helical structures is far more involved than that of the flat plate—see [28, 11]
for typical models. The important point is that the various types of motion (transverse to the
spring, in both polarizations, and longitudinal) are strongly coupled in a way that they are not
for a straight wire. A complex combination of relatively coherent wave propagation (leading
to echoes) and highly dispersive propagation is present, leading to a characteristic sound which
resembles both real room responses, and plate reverbs.
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Figure 5: (a) A typical spring reverberation configuration, for a spring driven at one end, and
with readout taken from the other; longitudinal and transverse motion of the spring are
indicated by u and v. (b) Dispersion relations ω(β), and (c) group velocities vgroup(β).

One can garner much useful information from the dispersion relations for a spring, as shown in
Figure 5(b). For springs of dimensions and composition as found in reverberation devices, there
are two relations which lie within the audio range—both correspond to mixtures (wavenumber-
dependent!) of longitudinal and transverse motion. Both curves exhibit a “hump” in the low
wavenumber range corresponding to a cutoff—for most spring reverb units, this occurs in the
range between 2 kHz and 5 kHz. An examination of the group velocities, as shown in Figure 5(c)
allows for some insight with regard to the behaviour of spring responses, an example of which
is shown at top in Figure 6. In the range of low wavenumbers, the group velocities approach
a constant value, and thus dispersion is low at low frequencies, and strong echoes are present.
But as the wavenumber increases towards the cutoff, the group velocity decreases, and thus the
frequency components of the echoes are distorted increasingly (slowed) near the cutoff. Above
the cutoff, the group velocity is much faster, and leads to distorted echoes which recur at a higher
rate. Above the cutoff, the response is very similar to transverse motion for a straight bar.
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Figure 6: Top, spectrogram of a measured spring reverberation response, and bottom, that of a
synthetic response produced using a finite difference model.

1.3.1 Emulation Techniques

As in the case of plate reverberation, there is a variety of techniques available—and as of 2010,
physical modeling of springs is still an open research problem. The most rigorous approach, given
a partial differential equation model, is again a time-stepping method such as finite differences,
which has been used by this author [5, 7], as well as Parker [21] in order to generate synthetic
responses. See Figure 6(b) for a comparison between a measured response and synthetic output.
This approach turns out to be rather expensive, and given that the system is essentially 1D (i.e.,
for a thin spring, the equations of motion may be writen with respect to a single coordinate
running along the spring helix), structures based on delay lines and allpass networks are a
possibility, and an excellent compromise between physical and perceptual modeling. See, e.g.,
[1].

The difficulties here lie in associating such a model with an underlying model in a definitive
way. Another approach, as yet unexplored, could be based on the use of a modal decomposition.
In other words, given appropriate boundary conditions, one may solve for the modes of vibration
of the helix. This is the approach taken to the analysis of helical structures in mainstream
applications—see, e.g., [18].
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