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Abstract — "We describe some recent vrese,#rch at CQRMA in the areas of i‘g#l-time?\éignal

processing hardware, new techniques for modeling signgls,’ automatic music transcription, and
software environments for the composition of music. - 7 - I . L

Introduction_: s

o

* join forces for the purpose of advancing the possibilities in music. There is ongoing work in new -music,
psychoacoustics, musical acoustics, applied artificial intelligence, signal proc‘&ssing,\hardwz};e archibe'ctures,
and digital recording-studio technology. - I L SRR
This paper‘is intended as a quick introduction to computer music, CCRMA, and the research of the
authors. We first review the prinéip_al sound synthesis techniques in use today by computer music composers.
Next we descr’ibe briefly the facility at CCRMA. Finally we present a glimpse of some of the research in

The Center for Compu‘er Research in Music ané'Acoﬁstiéé (éCRMA) is aixlr:iusicv lab where art and_;cien-'ce

progress.

Synthesis Tejéhniques

Sound synti;‘gsis technique\s are é:_'lassic;aﬂyl .diyidea._into the fol}owmg categ:o.ﬁes:' '

1) Additive”.
2) Subtractive
3) Nonlinear

Additive synthesis is based on the famous theorem of Fourier which states that any reasonably smooth
bounded function can be expressed as a suin of sinusoids. For"_'t'_,his technique, a large number of sinusoidal
oscillators is needed, and their amplitudes and fi__-equenci& must be controliable over time to aliow time-
varying spectra. For example, with a sampling rate of 32KHzx and a lowest pitch frequency of 20Hz, we
need ncarly 16000/20 = 800 oscillators to synthesize a.q'arbitr_a_ry periodic waveform to the full available
bandwidth. Fortunately, most natural sounds have spectra which diminish rapidly at high frequencics so
that the first 20 harmonics (or less) give good results in most situations. Additive synthesis has the advantage
of gencrality but the disadvantage of complexity in both computation and storage. Also, additive synthesis
docs not easily produce noisc-like signals, and it is dilficult to add noisc in a way which fuses perceptually.

Sublractive synthesis denotes starling with a rich spectrum and removing unwanted spectral compenents,
much as in sculpture. For periodic signals, a pulse train is often used as the inpul to a-digital flter. A
periodic pulse $rain has harmonics of equal amplitude. Thus the digital filter provides all spectral shaping
by cmphasizing or suppressing some harmonics with respect to others. For '_h_oige-like__ signals, the starting
point is often “whxbe noise” such z§ simulated by a uniform pseudo-random 'nunix_ber generator, Regardless
of the noise distribution (uniform, Gaussian, Poisson, etc.) the power spectral density of the noise will be
flat as long as the samples are uncorrelated. A digital filter may then be used to obtain the desired spectral
distribution. Subtractive synthesis is also quite general and especially suited for physically modeling resonant
%sitgcégs I%J}IECE as in speech, reverberation, and orchestral inst:n'x_m_eptatibn._'A g{isadif_;ntggc of the subtractive
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approach is that digital filters are difficylt to m

CCRMA Facilities

to manage for most musicians. Also, most implementations use
recursive filters in fixed-point arithmetic, and such systems are pfoge to scaling problems and overflow,

especially when using high-order :filber's'.'

Nonlinear synthesis refers to methods which‘"cdmpgte sound samiples by means of some formula which is
generally not a linear opcration. (Note that Fourier transforms and typical digital filters are linear operators).
By far the most prevalent ndnlingar synt.hesis'ltechniqu’e, and perhaps the most’ pervasive technique of any

variety, is FM synthesis.® TM synthesis was originally developed by Prof. John Chowning, director of

- CCRMA. It works by adding a “modulating”. sinusoid to the frequency of a “carrier” sinusoid, exactly as

is done for FM radio broadcasts. It differs fri;m FM radio in that the carrier frequency is in the audio
band, and the modulating signal is typically a simple _%;inusbid rather than a complex audio signal. The FM
side-bands about the carrier frequency "are used directly as partials or harmonics of the sound. Another
nonlinear synthesis technique, also developed at CCRMA, is Marc LeBrun’s digital waveshaping synthesis.
It is analogous to an FM technique in which a'general waveshape replaces. the carrier sinusoid.

On balance, FM synthesis is still the most -'widely used synthesis technique. This is due to the extreme
simplicity in the hardware resources ﬁééesszif'y to produce a harmonically rich spectrum. Furthermore,
it is simple to adjust gross bandwidth of the spectrum by means of the “FM index”. With the use of

~ multiple carriers, it is possible to simulate “formants” (localized regions of emphasis in the spectrum) as in

subtractive synthesis. Adding another modulating sinusoid or two allows greater Aexibility in shaping the

- spectral side-bands. The main prfqblemIWith FM is that specific desired spectra are difficult to obtain, and

even when it is theoretically possible to match a given spectrum, no automatic method seems to exist for
finding the necessary parameters.- Nevertheless, in the hands of a musician with a good ear and considerable

. patience, FM and its various extensions have consistently provided surprisingly good renditions of many
_natural sounds.3!2 S T ' '

]

The facility at CCRMA includes a Foonly F2 compﬁter (emulating a DEC PDP-10), 16 channel Grinnel

.display system, 12 high resolutio@_-#idm terminals, a digital music synthesizer /processor called the “Samson

Box”, a special auxiliary processor called the “Po]y”, four 16-bit /A converters (the “DAC™), two 14-bit

A/D converters (the “ADC”), and .sever;_'xl_ listexiing stations (amplifiers, speakers, and conventional recording
- studio gear). In addition there are the usual compleménts for a large time-sharing system such as three disk

drives (1200 Mbytes total), magtape dri'_fré, line-printer, Versatee, and so on. _ :
The Samson Box was designed by Peter Samson and built by Systems Concepts in Berkeley.!! It is an

. all-digital synthesizer with provisions for processing digitized data from the outside world as well as synthesis.

We mention only its most sa]icnt;featux‘g's: Up_to 256 basic signals can be generated each with individually
“ramped” amplitude and frequenicy envelopes; the waveforms can be configured for FM modulation or

. summed into any of 64 “sum-mené.ory” '!bcation's. There are 128 “modiﬁer'é’_’ used for mixing, filtering, noise
* generation, and other more specialized functions. As digital filters, they can provide up to 256 poles and/or

zeros. There are 32 delay units f@r reverberation, and we have 48K words of delay memory which can be

‘arbitrarily partitioned among the’:,.dela.y_ units. Thus the three major synthesis categories plus facilities for

sound modification are well suppo’x"ted in the Samson box.

. Recent Progress at CCRMA

We now present a few of the carrent research topics under way. Although most of what we describe has
not yet been published, the f uturg issues of the Computer Music Journal will.soon provide references.

The Polycephalous Signal Procea.‘a‘_?f i o ,
The Poly was designed by Ja.ni& A.;Mooré#, with éﬁit.enéions by John ;_Gordon. The original need was

primarily for a Foonly F2 interfai_';:e for the DA'_C."and ADC. The requirements of the interface ipclu__de:
.,O‘Memory buffer control = i . : o S
‘s Packing and unpacking samples‘_‘i_nt,o (or from) 36-bit words

- & Controlling the sequencing opcréﬁon of the two perij:ihera!s
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However, since it was necessary for us to design and build the device in-house, we decided our needs
would be better suited if we expanded its capabilities to those of a microprogrammable multiprocessor,
including the ability for real-time control. ' N . .

‘The Poly :a.llows up to eight independent programs, executed sequentially, to provide a pseudo-parallel
processing environment. A program can be as long or short as desired, but should be thought of as a loop.
The loop cycles once each time the program is called, and then control is given to the next program. A
single run through all eight programs is called a pass. The intent behind the design was to bave onc pass
correspond to the processing of one sample of a digital signal {or one sample for cach of several channels),
although this isn't required. At the end of each pass, the Poly checks to see if any instructions are waiting
to be executed from the F2. If so, it executes them then. This interpolation of instructions into the ongoing
stream is one of the ways real-time control can be achieved. ’

The hardware is all on one board using TTL technology, although the board is a large one — roughly
350 IC’s. The architecture can be viewed as a circulating data bus, 36 bits wide, with modules receiving
inputs from the bus dand/or sending outputs to the bus. The modules consist of & rotator, an ALU; a 16-by-16
bit signed multiplier, and a 256-word scratchpad memory. There is a 64-word FIFO for buffering samples
to the DAC, and another to buffer input from the ADC. There is_logic for requesting DMA cycles from
the F2’s memory, and several ways to interrupt the F2. There are also 2 registers which can be used for
general communication purposes with the F2. A single instruction, which is 36 bits, specifics a driver of the
bus, one or more receivers (latches), a scratchpad mcemory address, and various operations including several
conditional jumps. Instruction cycle time is 100 ns, and instruction memory size is 2K.

The main application for the Poly is as a real-timec performing or studio too! in connection with
our converters. Real-time mixing of several digital signals while they are being sent to the DAC is very
straightforward—as is simple processing of recorded signals coming from the ADC. However, because of the
generalized nature of its architecture, the Poly can be used to implement many signal processing algorithms,
such as digital filters and spectrum analysis techniques, in real time. : '

New Methods tn Subtractive Syn_tﬁeéis

For his doctoral thesis in electrical engineering, supported by the Hertz Foundation, Julius Smith has
been working on signal modeling by means of rational digital filters driven by simply described excitations
plus noise. This work may be placed under the heading of “system identification”. In the noiseless case, the
goal is simply to find the digital filter which optimally transforms a given input signal into a given output
signal. This formulation is ideal for music synthesis applications where digital filters are available and the
set of basic synthesis wavelorms is limited. ‘

System identification is discussed principally in the literature on automatic control, and to some extent
in the signal processing literature. In speech processing, much use is made of linear prediction techniques, and
these are perhaps more widely known. One may view the system identification paradigm as a generalization
of the standard linear prediction framework in three ways: :

o Filters designed include zeros as well as poles.

s A known component of the driving input signal can be specified rather than assuming white noise or a
pulse train. : ' :

¢ The unknown component of the driving input signal can be assumed to obey certain statistics. Alterna-
tively, these statistics can be estimated. : : ' '

‘Within this general setting, progress has also been made in tuning the error eriterion of the identification

-algorithms to the special needs of audio signal processing. The current tableau of error criteria in system

identification is actually quite limited and often even inappropriate for audio work. For example, all the
prevalent identification methods minimize some type of squared prediction error. However, a look into audio
equipment specifications suggests that users prefer a minimization of the worst case error in the frequency
domain. Furthermore, this error is usually specified in dB. When the spectral match applics to a short time
window, the phase of the spectral match is unimportant. Thus for audio spectral matching, it is preferable
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to minimize the Chebyshev norm of the log magnitude spectral error. Unforlunately, the estimation problem
becomes highly nonlinear in this circumstance. However, by approximating the logarithm appropriately, it is
possible to obtain a method which is theorctically guaranteed to converge to  best approximation (a feature
which is typically crucial in practice). Such a method has been developed based on the Remez multiple
exchange algorithm. . Further refinements include approximation of an appropriately smoothed spectrum
over an exponentially spaced frequency grid (corresponding to the resolution of the car), and lincar weighting
according to “equal loudness contours” in the frequency domain.

David Jafle has been working on the modeling of plicked string tones based on a subtractive synthesis
algorithm devised by Kevin Karplus and Alex Strong.5 The algorithm consists of repcatedly filtering (using
a simple two-point average) a wave table which has been preloaded with white noise. It is equivalent to the
ringing of a high-order all-polc digital filter which has been excited with a noise burst. The tone produced
is remarkably suggestive of a plucked string. It has been said to sound like a (very large) harpsichord or an
auto-harp in certain situations. v - v

Although the algorithm is strikingly good in its canonical form, certain enhancements are desirable for
maximum musical expressivity. Partial control of “dynamic level” has been oblained with a time-varying
onc-pole lowpass filter which controls gross bandwidth. A natural “mute” or string-damping parameter
has been obtained which uniformly accelerates the decay of all partials. These modifications can produce
diverse yet natural changes in the overall timbre of the sound. Precise tuning of the fundamental frequency
(quantized by the wave-table length) has been made possible by the addition of a filter whose phase-delay adds
2 fraction of a sample-period to the effective period of the synthesized waveform. Jont Allen has suggested
that by using more elaborate phase-delay functions, it is possible to simulate stiff strings. Simulations of body
resonance and sympathetic string vibration have improved considerably the realism and musical usefulness
of the instrument. As an example, the effect of sympathetically vibrating strings was created using multiple
copies of the string instrument tuned to different pitches. Then instead of a noise burst, a small amount of
the output of the “played” string is fed into each of the “open” strings. The effect is a kind of reverberation
such as occurs in real stringed instruments. Since the reverberator frequency does not change from note to
note, each note in the range of the instrument has 2 unique timbre instead of the annoying uniformity too
often characteristic of computer instruments.

High Level Software for Manipulating Musical Sound

Recent work by Chris Chafe, Loren Rush, and Andrew Schloss at CCRMA, in conjunction with Scott
Foster and Bernard Mont-Reynaud at Systems Control Inc., supported by a joint University-Industry grant
from the National Science Foundation, is directed toward the development of an intelligent music recognition
system.24 The system is intended to take real signals as input, and produce a score, as well as performing
various kinds of analysis as requested by the user. A major application will be the realization of an tntelligent
editor of musical sound having the capability of automatic music transcription.

For the recording studio,.there is a need for a “sound editor” which allows specification of sound events
in more musical terms. Searching for, say, a trumpet entrance, change of key, or accelerando is a currently
a tedious process. One might wish to specify, for example, “take me to the fifth note of the third bar after
the violin enters,” in order to perform some surgery on the sound samples there. Such an operation. relies
on the ability to recognize notes and instruments in the sound, and to establish the musical structure of the
picce. Acoustical and musical expertise are both necessary to achieve these purposes.

The rescarch has been divided into two levels. The lower level signal processing produces a note list from
the digitized signal. The higher level operales on these note lists Lo produce data siructures which reflect
the musical content in a useful fashion.

First, the signal is partitioned by the Jow level into a series of individual notes using segmentation on the
basis of amplitude and/or pitch. The note list is created by signal processing algorithms which track spectral
harmonics. The current implementation works reliably for one voice. It is hoped that system identification
techniques can help extend the system to polyphonic contexts. '

The high-level analysis begins by detecting rhythmic or melodic accents in the note list, and noticing
quasi-periodicities. This information is gradually refined and cross-checked until an hypothesized relationship
between real time and musical time is established throughout the piece (the “tempo line”). Note valucs are
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assigned as a part of this process, relying on a combination of heuristics for hypothesis formation, evaluation,
and mutual reinforcement. The key and time-signature are also chcfnxincd, and a musical score is produced.
The system currently expects music of the 18th century, but expansion is straightforward in terms of a more
complete knowledge base. _Knowicdge sources applicable to diverse instruments and/or musical styles can
be incorporated as they are developed.

Currently, the upper and lower levels of the system are large‘ly independent. As the system becomes more
sophisticated and is called upon to deal with polyphonic input, the inleraction and interdependence between
high and low levels will increase. This is because more difficult multi-voiced sources are not easily analyzed
by fixed signal processing m("thodsf It is becoming necessary to impleinent “goal driven signal processing,”

as the higher level analyses raise questions regarding the contenﬁ_of the sound.

LISP as a Composition Environment

- As composers gain expericnce with the computer at CCRMA, they tend more and more to program actual
composition or “performance” processes rather than specifying each individual note. One language which
seems well suited to a brogramming-intensive environment for composing is LISP. The dialect in use at
CCRMA is MACLISP, coded for the PDP-10. To date, the primary users of LISP for note list generation
have been Marc LeBrun and Paul Wieneke.

“Notes” are usually described in the form of parameter lists which control routines that are analogous to
musical instruments. Phrases involving a succession of notes, movements, parls, and entire pieces can also
be represented by single-level or multi-level lists, the fundamental data structure in LISP; thus the language
has a large number of primitives to deal with the important units of a computer score. It has the additional
advantages of being an interpreter, and being highly modular. The latter is especially uselul because one
can easily isolate code which is of general use from that which is specific to a particular piece or user. This
can then be compiled into machine code and then loaded at will into someone’s personal LISP environment.

Few pieces of music can be expessed purely as algorithms. Most situations require a “hands on” control of
a variety of compositional processes. One approach has been to supply these processes with a sort of “meta
score” with which one can “tune” the functions that produce the final note list. Such a meta score can be
expressed entirely in LISP symbolic expressions which serve as function arguments. This greatly simplifies
most i/o, scanning, and parsing problems, of course, but it also gets to the heart of LISP’s attributes for
symbolic manipulation. Data and functions are expressed in the same general form. One can treat functions
as data until they are explicitly evaluated. LISP Functions don't specify the type of their arguments. Since
arguments can be numbers, lists, or other functions, one can provide information in an input score not only
by the values for items, but also by their structure.

Many of the essentials in LISP note-writing programs, such as basic control structures and scheduling,
are based on techniques used by Bill Schottstaedt in his Pla interpreter. Pla was the first score gencrating
language at CCRMA to make extensive use of list processing and it will accept LISP forms in many situations.

Distilling one’s musical experience into computer code is of immense value simply as a learning experience,
just as is writing idiomatic music for performers. The flexibility and power of LISP has been brought to
bear success{ully on the computer simulation of real world events throughout its history. Music is just one
of the newer applications.

Pla — A New Composition Environment

During the last three years, Bill Schottstaedt has been developing a powerful compositional system named
Pla. The goal is to build a fully integrated, programmable system which allows the composer to represent
his musical thoughts in almost any arbitrary form, with casy access to the synthesizer and graphical output.
The basic parts include an interpreter called Pla which has its own note list editor, a music compiler named
Sambox, and a library of “instrument” building routines.

The language that Pla interprets looks much like Sail, a high level Algol language. Numerous musie
related features have been made a part of the basic language, including obvious things like frequency
names and cnvelopes. Parallel processes called “voices” are the basic music producing entities. Voices can
create other voices and can affect voice scheduling explicitly. A message passing systemn provides a flexible
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communication path between voices. Groups of voices can be packaged as a “Section”, which can then be
recalled, ornamented, and cdited in whatever way the composer desires. .. :

The output of Pla is usually a list of notes, each note being an instantiation of a music compiler

“instrument”. The instruments are synthesizer patches written in Sail and loaded into the compiler. Because
instruments often have dozens of parameters, it can quickly become a bother to try to remnember what each
paramcter is doing. Pla provides a way to name parameteérs, and the music compiler provides ways to handle
default parameter values, but the note list alwavs scems Lo become a morass of numbers. A knowledgeable
editor is obviously needed. '

A recent addition to the Pla interpreter is a programmable note list editor patterned after the E editor by
Arthur Samuels of the Computer Science Dept. at Stanford. In addition to the text window that E provides,
the composer can call up as many as three other windows, each holding a different representation of the
score. The contents of cach window can be customized to suit the composer, but the default is that one
window has a graph of the frequency of each note versus the time in seconds, another window has a common
musical score, a third has the text of the note list, and the fourth shows the progress of any sub-jobs that
are running. The latter includes primarily calls on the music compiler and the synthesizer from the editor.
The composer now has all the flexibility of the Pla environment coupled with a text and graphics editor.

Conclusion

‘This has been a bricl introduction to some of the issues in computer-assisted tnusic. Even at CCRMA
there are many more current research enquiries than we could present here, such as simulation of concert
halls, synthesis of bowed strings, the singing voice, and ambient space illusions, to name a few.

For the future, we are cagerly awaiting faster processors and larger more reliable disks. Music is one of
the more demandmg applications of digital technology, and there is much to be done with improved capacity
when it becomes available.
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