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ABSTRACT

Research over the past decade in computer applications to sound synthesis,
signal processing, acoustics, and psychoacoustics coupled with recent
advances in real-time digital signal processing hardware, make feasible a
powerful interactive research environment. The construction of an
_ interaction console and signal processor are now near completion as is the
basic support software. Research support is sought for the continued
development of higher level interactive software and for the integration of
both existing and proposed research programs with this interactive
environment, The research programs include: 1) an interactive acoustic
manipuiation language, 2) interactive recording, editing, processing, and
mixing of digitized audio waveforms, 3) transformation of sensory input, 4)
interactive real-time psychoacoustic experiments, and 5) high dimensional
graphics by means of embedded spaces.
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OVERVIEW

The Stanford Center for Computer Research in Music and Acoustics (CCRMA) is engaged
in research into the analysis, synthesis, perception and manipulation of digitized sound.
This has been done for the purpose of the computer synthesis of musicai sound and for
studies in the perception of musical sound. '

The status of the facility as it now stands is multi-faceted. As a musical instrument, the
computer system is possibly the most flexible of musical instruments. To speak of it as a
conventional musical instrument, however, is somewhat misleading because the system is
capable of simuitaneously producing a large number of independent voices having arbitrary
rtimbral characteristics; it is much more general than a conventional musical instrument. It
can generate any sound that can be produced by loudspeakers, modify and transform real
sounds entered into the system by means of mictophone, temember and modify articulated
musicat input, and simulate the location and movement of sounds in a variety of illusory
reverberant spaces, Equally important, the facility Is capable of serving a number of
composers and researchers, providing for each a direct conirol over the medium which was

never before possible.

As a research tool, the computer has shown itself to be uniquely useful in generating
precisely ‘controlled stimuli for perceptual research. The analysis-synthesis techniques
developed here allow for direct experimentation with the sounds of natural instruments. By
modifying the sounds of these instruments in systematic ways, then testing the perceptual
effects of the modifications, a great deal of information has been produced on the waiy
musical timbre is perceived. Several papers and technical reports have been produced

describing the techniques and results of this research [Grey, 1975, Moorer, 1975],

In addition to the normal teaching and research function during the academic yéar,
CCRMA holds special summer workshops for musicians and scientists from outside the
university, These workshops have been held every summer since 1969 with students
attending from this country and abroad. In a six-week session, the students are able to learn

basic computer programming, fundamentals of acoustics and psychoacoustics, and produce a




composition. These summer sessions are limited to 20 people each year. One of the
compositions from the most recent summer session was chosen for performance at the 1976
Music Computation Conference in Boston.

‘ Anothér aspect of CCRMA's work Is in the field of archiving recorded sound. Each time
an audio tape is copied, the sound quality deteriorates. As an audio tape ages, the sound
quality deteriorates. One way to prevent this process is to digitize the sound and store it as
' binary data on computer tapes. These can be recopied without error any number of times.
This promises to be a way to produce any number of "master” quality recordings without
degradation of the sound. Extending this further, we can in fact replace ali the analog
equipment (tape, mixer, processing devices) by digital hardware. This was implemented at .
CCRMA in 1976. A series of live digital recordings were made which were of extremely
high quality. With the computer, this sound can be processed in many ways:; Perfectly
precise and noise-free splices can be made, passages may be retuned, "dirty" attacks can be
edited and cleaned up. In short, the digital recording studio promises higher quality and
greater flexibility than was ever before possible. The prototype digital recording studio at

Stanford will serve as a mode] for future installations.

Several new methods for analyzing natural sounds have been developed. Analysis can be
done for insight or for the purpose of resynthesizing the sound accurately, or with
modifications to produce new sounds that still preserve lifelike quality. The combination of
the phase vocoder and the linear predictor [Moorer, 1976] is capable of analyzing passages
with vibrato, glissando, or any other musical nuance with perfect fidelity. One intended use
of this technique is not only for musical composition but also for experiments in music
perception in context. By analysing entire musical passages, the acoustical data can be

modified, changing just the features under study and leaving other features constant.

In computer language design, a powerful interactive interpretive data manipulation
language has been developed. This ianguage allows the user to deal with the large amount
of coordinated data that the analysis techniques produce in a graphical and interactive
manner. The language has a macro facility, so that extreme conciseness is possible.'
Positional notation in procedure calls has been abandoned in favor of named procedure
parameters. This permits "intelligent” defaulting of parameters, such that the program



always attempts to "do what I mean" without the user having to supply specific values for

every optional argument.

CCRMA is now in the process of acquiring, through purchase and construction, a large
scale real-time computing facility. This include a special purpose all-digital signal processor,
and an interaction console, consisting of knobs, buttons, a tablet, ane or more organ-like
keyboards, and other man-machine interface devices. This will allow instantaneous
auditioning of changes in synthesis data, as well as on-line psychoacoustic testing with

~ complex stimuli,

This proposal is concerned mainly with the interactive, graphical, and computer language
aspects of the Center's work. It is proposed that the work currently in progress continue, and
additionally several other prejects relating to real-time interactive use of the computer

system be initiated.

Reader's Guide

This proposal is oraganized such that there are three major headings, Previous Work,
Work in Progress, and Proposed Work. Within each of these headings the particular
research areas of Interest are defined or proposed, as the case may be. These areas are
concerned with the interactive, graphical, and computer language aspects of the Center's
work. The table of contents includes the ‘keywords’ so that the reader can easily track a

topic of interest,

Appendix A consists of a brief history of the Center and a descript_ion of the facility, while
Appendix C is a description of parallel processing applications. The other four appendices
are articles, either published or in process, which constitute useful background for the work -

which is proposed.




PREVIOUS WORK

The Stanford computer music group has a history stretching over more than twelve yéars of
the .creation and use of interactive graphical tools for experimentation with acoustical
phenomena, mostly in the context of computer synthesized musical sound. Over the last 5
years, however, the emphasis has been broadened to include psychoacoustics and perceptuat -
testing, as well as advanced digital signal processing techniques. To these ends, a number
of powerful interactive graphical programs have been written that help the user
conceptualize and manipulate the vast amounts of data that are often required for lifelike

sound synthesis.

All of this work to date has been done at the Stanford Artificial Inteltigence L'abbratory on
the PDP-I0 time-sharing system. A description of the facillity may be found in Appendix
A, '

Early Work

Interactive Music Compiler

One of the first interactive programs written at Stanford is the MUS10 music synthesis
language. This is an ALGOL-based interactive music language patterned somewhat after
MUSIC V [{Mathews, 1969). In music languages In general, the program is divided into two
parts: the instrument definition and the note list. In MUS 10, the instrument definition was
- in essence a smail ALGOL-like program which generated the next sample of the sound. It
made use of precoded basic functional modules called "unit generators”. An example of a
unit generator might be a sinusoidal oscillator. Other unit generators were provided for
wave shaping and various kinds of modulations, and other processes. In addition, any
construct not provided in the various unit generators could be written directly in ALGOL.
For instance, even though there was no unit gehefator to do digital filtering, this aigorithm
was easily written as an ALGOL-like subroutine some years ago. The language is a
load-and-go compiler, where instrument definitions are compiled into the program’s local




storage. The note list then specifies instantiations of these instruments: when they are to

begin, how long they are to sound, what are the performance parameters (pitch, amplitude,
etc). The note list can be prepared beforehand, or it can be typed in on-line for interactive
experimentation. The sound is then computed quickly and‘piayed,‘ thus providing the
necessary feedback to allow the user to alter the synthesis parameters at will. Ail statements
are compiled. There is no interpretation, although the effect is immediate and highly
reminiscent of purely interpretive languages. The process of compilation is entirely

invisibie to the user.

Soon after MUSI0 was in use, graphical features were added, as well as more advanced
ALGOL constructs such as IF-THEN-ELSE statements and loop constructs (FOR,

WHILE, DO-UNTIL), all of these operating in a load-and go fashion, accessible-

interactively from the terminal as well as from prepared programs. Waveforms and
synthesis functions (envelopes) can be displayed and altered in an on-line fashion,

auditioning the resuiting sound after each change.
Interactive Graphic Spatial Routines

In addition, two -n)ore support programs for preparing synthesis data for MUSIQ were
written. These included a program for designing synthesis functions and a program for
designing spacial patterns [Chowning, 1971). With this latter program, the user could
specify a trajectory that he wished the illusory sound source to follow. The program would
display the trajectory with a diagram of the room and its four loud-speakers superimposed
within the trajectory. The user couid then edit the sound path until the desired shape was
attained (see Figure 32 of Appendix B). The program then automaticaily prepared the
required synthesis functions (energy distribution to the four channels, amount of

reverberation, doppler shift, etc etc) to simulate that trajectory in synthesizing the tone.

Frequ'encj Modulation Synthesis

Through the period of 1968 through 1971 a fundamental breakthrough was achieved in

the synthesis of complex audio spectra. Until this time nearly all electronic sound synthesis,

both analog and digital, was based upon the processing of fixed waveforms. The only



exceptions were a few computer based studies in summation synthesis where the amplitude

and frequency components were independently controlled as a function of time. Summation
"sznthesis proved to be be very powerful although expensive and not always intuitive. At
Stanford we discovered a means to generate time-dependent spectra by modulating the
frequency of a sinusoid by a second sinusold (frequency modulation synthesis). This
technique proved to be economical in computation and yielded a multitude of perceptually
different timbres by changing just a few parameters. This technique has been under

" development ever since and is described in the section ‘Work in Progress’.
Music Manuscript Program

Soon after this, work was also begun on a program for music manuscripting. This has
developed over the years into one of the most powerful computer-aided manuscripting
systems in existence. The user types in, one staff at a time, the notes of the piece. Any
special symbols to be used can easily be defined using the light pen and then positioned’
accurately. The computer provides a wide variety of semi-automatic features, such as
positioning the notes on the staff to achieve a reasonable spacing without overlap, alighing
of multiple staves to achieve spacial synchrony over the total score, and extraction of
individual parts from full orchestral scores [Smith, 1973). The resulting score can be
quickly printed by a Xerographic process, or can be slowly drawn at 4X enlargement by a
Calcomp plotter.  Subsequent photoreduction produces an extremely high quality
hanuscript. Using this system, sample pages of scores of exceptional difficuity (such as
Ligeti's San Francisco Polyphony) have been printed with ease. Several music composition
graduate students at Stanford. have notated their new works entirely using the
manusctipting programs. This not only aids "debugging” of the composition, but produces

highly readable copy for the performers - somewhat of a novelty for student compositions.




WORK IN PROGRESS

In this section, we describe hardware under construction, programs under development, and
new techniques of sound processing. Of the projects described below, the software
dévempment is the most complete at this time. All of the programs described are in use. The
continuing development consists of making the system more general and more efficient.

The hardware is set for completion within the next six months.

The goal of this work is to establish a comprehensive system for recording, editing,‘
processing, manipulation, storage, and synthesis of sound. We wish to provide a range of
- turn-around times from batch mode, through interactive mode (both these modes are

availabie now) to real-time mode {which awaits the appropriate hardware),

We shall describe the hardware first, the software next, then the signal processing support,

and lastly the digital recording and processing.

Real-time System Hardware

We have currently nearing completion of hardware which wiil aliow real-time synthesis of
complei audio signals and real-time interaction at a high level with the synthesis and
display routines. The hardware is divided into three parts: the digital synthesizer which is
- being buiit out-of-house at Systems Concepts, Inc,, the interaction console, which is much

simpler and is being built in-house, and a DEC GT-46 graphics computet,
Interaction Console

The interaction console is a mictoprocessor-based data collection center with provisiens for
the connections of a large amount of Input devices, such as knobs, tablets, organ-like
keyboards, button and switch panels, and the like. The microprocessor has basically two
interfaces. The first interface is a high speed serial interface with the PDP-10 computer.

This interface transmits a 24-bit datum (three microprocessor words) to the PDP-10 in




about 5 microseconds. This datum consists of an 8-bit source identifier and a 16-bit data
word. The other interface is what we call the "panel” interface. It connects to 16 EIA
connectors, each one of which can access up to eight 8-bit words. This gives each connector
the capability of reading 64 bits. This means that a single 64-key organ keyboard will piug
into a single siot on the cannector panel. Each connector, then, supplies a 3-bit address, an
~ enable signal, a read/write signal, and an 8-bit bidirectional data bus. A box containing 8
potentiometers, each digitized to an accuracy of 8 bits, can plug into single siot also. The
devices that are initially planned are one or two organ keyboards, 2 boxes of 8
potentiometers each, and a square atray of 64 momentary pushbuttons. The microprocessor
will scan these panels repetitively. When changes. in state are noted, these changes will be
forwarded to the PDP-10 via the high-speed bit-serial line. If ali 16 panels are used, a
complete scan of ail the panels will take about 20 milliseconds. As fewer panels are used,

faster interaction is possible.

Since the interaction console forwards only changes to the PDP-10, the main cdmputer can
treat these as interrupts, or events. The PDP-10 is relieved of the burden of scanning these
devices individually. Additionally, the use of the microcomputer allows more sophisticated
coding of the devices. For instance, a panel of momentary push-buttons can be made to
b-ehave like toggle switches simply by changing the program in the microprocessor. It is
planned to include a light-emmiting diode with each momentary switch so that the internal

state, on or off, will be visible.
The Systems Concepts Digital Synthesizer

Systems Concepts, Inc, of San Francisco is now building for CCRMA a farge-scale digital
‘synthesizer. The Systems Concepts device has a fixed menu of ﬂ;nctional modules: there
are up to 256 "generators” and 128 "modifiers”. They are interconnected by RAM called
"sum" memory. There is, in addition, an associated memory of up to 64K 20-~bit words
‘which can be used as up to 32 tapped delay fines for table lookup. Figure 2 shows a
simplified block diagram‘of‘ the device. Each generator reads one datum from sum memory
and outputs one datum. Each modifier can read two data and write one datum. These
functional moduies are time-division multiplexéd. The device operates on a 195 nanosecond

"tick", Each generator takes one tick and each modifier takes two ticks. Ticks on which
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FIGURE 2. Block diagram of the Systems Concepls Digital Synthesizer, designed by Peter Samson.
Fach generator can synthesize a sinuscid, band-limited pulse train, non-limited square wave,
sawtooth, or pulse train. The amplitude of the waveform can also be modulated by a piece of a
piece-wise linear or exponential envelope. Each modifier can do two poles or zeros (second-order
digital filter section, either numerator or denominator), amplitude modulation, 4-quadrant
multiplication, white noise generation, max and min functions, zero-cross pulsing, and in conjunction
with the delay memory, can perform the operations of a unit reverberator. The delay memory can
be partitioned in to up to 32 independent sections. Each section can be a tapped delay line, for
use in unit reverberators, or can serve as a table for generalized function approximation (like
square root, reciprocal, arctangent, etc). A generator can aiso be a data channel which can
transfer sample-time data to or from the CPU or the DACs. The sum memory serves as an
interconnection matrix for the functional modules. The modules are controled through their control
memories {labeled C.M. in the figure) which can be set by the CPU.



i

computations take place are called processing ticks, There are also update ticks which are
used to change the controliing parameters of any of the functional modules. The total of
processing ticks plus update ticks (plus 9 for pipelining) determines the overali sample rate.
If all the generators are to be used, the maximum sampling rate would be somewhat less
than 20 KHz. If only half the generators are néeded, the resulting sampling rate could be as
high as 40 KHz. These figures would be somewhat lower if manj update ticks were needed

for a given task.

Each generator and modifier has a control memory that determines its function and holds
its running values and parameters. This control memory can be written by the CPU, and

this is how the device is operated.

A generator can have several different functions, depending on its "mode", which is a
parameter in its control memory. A generator can produce non-band-limited square waves,
pulse trains, sawtooth signals as well as pure sinusoids and band-limited puise trains
[Winham and Steiglitz, 1970]. For all of these modes, the input datum from sum memory
serves as a frequency modulation contro! so that any of these waveforms can be frequency
modulated by other functional modules. Inside the generator there is a provision for linearly
sweeping the frequency in addition to the exiernal irequency rcdulation input. There is
also amplitude control of any of the generated waveforms. The amplitude may be changed
either linearly or exponentially. The result of this power is that control functions (like
~ amplitudes and frequencies of sinusoids with time) in piecewise-linear form can be used
directly by the hardware. This corresponds nicely to our analysis form for additive

synthesis.

A generator can also be used as a data channel to pass sampled data between the sum
memory and the CPU. This allows mixing of precomputed or prerecorded sounds with
freshly generated or modified sounds. The output can also be stored by the CPU. This
means that the device will never be outgrown, because the data can always be shuffled back
to the GPU for anything the device cannot do. We consider this provision one of the most
important features of the device. Too many synthesizer designs do not allow this most

simple process and thus have "hard” limitations.
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A modifier can be used to synthesize a second-order section of a digital filter (either two
poles 6r two zeros but not both), amplitude modulation, 4-quadrant muitiplication, max and
min functions, zero crossing pulser, random noise (by the linear congruential methad
{Knuth, 1969]) and several others. When used in conjunction with the delay memory, unit
reverberators or tabie lookup can be realized. The table lookup feature we consider quite
important because this allows one to do general purpose functional approximation for
getting functions that are not hard-wired into the device, such as division (reciprocal tabie),
square roots (for enmergy normalization), arc-tangents, and numerous others. This is the
“escape” that allows quite a bit of generality, with the only limit being the restriction to a

maximum of 32 such functions that can be accessed at once.

Most of the data paths through the machine are 20-bit fixed-point paths. The sine tabie in
the generators is effectively 8192 locations fong. The muiltiplies in the modifiers are 20x20

multiplies. Both sum memory and delay memory are 20-bit fixed-point memories,

The sum memory is so named because it is cieared at the beginning of a pass through all
the functional units (one sampie) and each write into this memory adds into the location
rather than replaces. Each modifier has the option of adding intc memory or replacing, but
the generators only add into sum memory. There are actually two sum memories, one for
this pass and one for tast pass. Reading from sum memory usually comes from the last pass,
so there is a one sample delay in passing data from one functional module to the other, but
ordering of the modules is not critical when using this mode. Since the modifiers can read
from either sum memory (this pass or last pass), they can be cascaded with nb delay. When
using this feature, care must be given to the ordering of the units. The programmer must
be assured that the previous unit has deposited its output in the memory before the next
unit is to read it. Since the machine is extensively pipelined, the data is deposited several

ticks after it is read.
T he Graphics Console
The DEC GT-46 graphics console is a general-purpose PDP-11 computer with a vector

display and a small amount of disk storage. This will be interconnected with the PDP-10

with another high-speed bit-serial line, much like the interaction console, except that the
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primary direction will be from the PDP-10 to the graphics consale, rather than the other

way around; the graphics console is mostly an output device.

The pdint of having a stand-alone computer for a graphics console independent of the
main computer is that this aliows the possibility of doing extensive graphics, such as
rotations of spacial configurations or "moving windows" on actual sound waveforms
concurrent with complex sound synthesis and high-level interactive input. This way each
part of the process (the input, the display, and the synthesis) is done by entirely different,
distributed, computing devices, all coordinated by the PDP-10.

Software Support

Rather than write an entirely new language from scratch, we have chosen to augment an
existing language. That language is SAIL, an extended version of ALGOL [Reiser, 1978).
The augmentations are principally in the form of interactive top-level command loops.
SAIL itself provides a rich framework for research, allowing paraliel processes, records and
references, and events and interrupts, as well as the standard sorts of control structures
available in a modern high level language, The features of SAIL make it suitabie for use as
a simulation language, which as we shall see below is a convenient way to represent musical

structures.
A Simulation Model of Musical Sound

Let us describe one possible division of musical synthesis to iliustrate the use of parailet
processes to simulate the production of musical sound. Figure 3 shows such a division which
carries the process of music production from the highest level (the piece itseif) through the
intermediate levels (the voices and the notes in each voice) through the lowest acoustical
levels (the partials of each note and the line segments that make up each partial).

Appendix C gives a more detailed description of the use of parallel pfocesses in SAIL.

For purposes of iliustration, we will use the additive (or Fourier) model of sound synthesis

[see Chowning et al, 1975] in which a tone is represented by a collection of nearly harmonic
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FIGURE 3. Diagram of a parallel process model of one kind musical sound from the highest level (the
plece itself) through various intermediate lavels (voicaes, notes within a voice) to the acoustical level
(the partials of each note and the line segments for each partial).
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stnusoidal partials, each one with time-varying amplitude and frequency. These amplitucie
and frequency contours are generally approximated by piecewise-linear functions, where
each function consists of a number of straight line segments. A simple but very powerful
model was developed by Grey [1975] that uses 5 to 7 line segments for each function. To
synthesize the tone, then, a series of sinusoidal osciilators, currently software but soon to be
hardware osciliators, are computed and added together to produce the sampled-data
waveform for that nhote. The outputs of all the oscillators over all the
simultaneousiy-sounding notes must be added-together to produce a single data stream to be

presented to the digital-to-analog converter and thus to the listening ear.

In this particular division of music synthesis, the top of Figure 3 is the piece itseif. The
piece sprouts N parallel processes, each one of which represents one parallel voice. For
instance, in a string quartet, the piece might sprout 4 voices representing each part as a
separate voice. Each voice then would sprout, in time order, each nate of that voice. The
use of a simple calander queue allows the interleaving of the various notes of the voices.
Each veice would execute a WAIT_UNTIL(TIME) operation to advance to the time of the
next note, then the note would be sprouted. The notes must be sprouted rather than just
‘executed as subroutine calls because with some instruments {bells, far instance) notes overlap
heavily such that consecutive notes o even the same Voics yust be considered to be parallel
processes. Each note then starts up the numerical routines necessary to generate the tone of

that particular insttument.

Figure 3 is drawn as & hierarchical structure, but it is in fact a directed graph. For instance,
the piece may execute a JOIN instruction to wait until some of its voices have terminated,
then perhaps begin other voices. Each voice can execute a JOIN with some of the notes so

that the oscillators used by the notes can be recycied and used by other notes.

One of the great advantages to using a general-purpose language for musical structures,’

rather than building special-purpose languages, is the already existing rightness of
available control structures. For example, in some more modern music, it is convenient to
think of one voice “controlling” certain aspects of other voices. This could be done in SAIL
in many ways. Perhaps the simplest way is through global variables that one voice sets and

another voice reads. The EVENT structure provides a general inter-process communication
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system with methods for creating and interrogating events in a unified manner.

Software Support for the Digital Synthesizer -
The support packages for the digital synthesizer are set up in two distinct subroutine

packages: what we cali the "lower-level” routines and the "intermediate-level" routines.

T he lower-level routines. These consist of subroutines to allocate and deallocate modules of
the synthesizer, to set and modify parameters of allocated units, and to set run modes and
controlling information. The routines are unified into a small set of calls: GET, GIVE,
BIND, and SET_FIELD (plus a few other less important ones) {Loy, 1977 GET and
GIVE are used to allocate and deallocate modules. GET takes as argument an identifier
specifying what kind of module is desired. BIND takes three arguments: the unit name, the
field name, and the datum. This assembles the triple into a command word for the
synthesizer and places it into the output stteam. A primary function of the SET.FIELD
call is to specify timing of the output stream. Normally, the commands wili be ‘read and
interpreted by the synthesizer as fast as possible, which is not always desirable. To specify
that a particular command is not to be executed until a certain time, a "linger” command
must be given using the SET_FIELD call. This specifies that the synthesizer is not to read
any more commands from the data stream until the sample number specified in the iinger

command is reached. Then tommand processing begins again.

Since the input command format of the synthesizer has options for packing more than one
command to a word, the low level routines provide an optimising formater where this
repacking is done automatically as much as possible. This assures a minimum command
data rate at the cost of some obscurity in the resulting command stream,

The intermediate-level routines. This package organizes the basic-level calls into more
* coherent and compact routines which are designed around the concepts we have found
useful in music synthesis experimentation. These routines use both the SAIL process
structure for interleaving parameter settings and the low-level routines for packing and

optimising the output stream.
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Perhaps the most useful way to describe how one actually uses these routines is to give some’

examples of some of the calling sequencés and what they do.

GOSC starts an oscillator at a given frequency and sprouts a parallel process to feed it
successive line segments of an amplitude envelope. It takes as arguments the starting time
and duration of the note, the frequency, the address in sum mémory where it is to deposit
its output, and a record defining the amplitude function, It returns the number of the

oscillator and the process item of the new paralief process.

SHAPE multipiies an arbitrary signal by an amplitude envelope. It claims a modifier, sets
up its parameters, then sprouts a parallel process to feed the modifier the amplitude
envelope. The arguments include the address in sum memory of the input to the shaper and
the destination address for the output. )
REYV starts up a unit reverberator of either the comb or the all-pass form. The arguments

include the gain coefficient, the delay line length, and the input and output addresses.

Similar routines exist for filtering, mixing, random noise, and many others. Thus setting up
a complex instrument, such as an additive synthesis instrument, Jjust involves calling the
above routines several times to start up the appropriate modules and connect them together

through the interconnection memory.

Thusly, the programmer is relieved of the burden of having to remember all the things
prerequisite to making (for instance) an oscillator work. Parameters are intelligently

defauited wherever possible.

An Interactive Acoustic Manipulation Language

We have constructed a language for the interactive manipulation of acoustic data. This
language provides a flexible access to the acoustic data in order to evaluate its perceptual
correlates. The data is obtained from an analysis of actual recorded materials, and modeis

the sound waves In some convenient form. For instance, data used extensively in past
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research was the time-variant amplitude and frequency functions for harmonics of selected
instrument tones. The language was derived as a much needed extension of an earlier
program for acoustic data manipulation in order to provide greater flexibility and a wider

range of application, -

The basic function of the language is as a tool for the modeling of perceptually salient
features of waveforms. To facilitate this, it allows for the active manipulation of acoustic
data to be used in constructing a synthetic sound, Perceptual measurements can evaluate the
significance of acoustic data manipulation; the researcher can then relate findings to a
mode} for critical features of timbre. A second provision of this research tool is the access to
analytic procedures for reprocessing the acoustic data in forms which may give further
insights into component attributes. The availability of interactive feedback with a graphic

orientation greatly assists research efforts,

A simple hypothetical example of this is given. Suppose that the wave were represented as
a set of harmonics which varied in frequency and amplitude. Let us suppose that the
investigator was interested in the frequency domain of the signal. Yarious analytic searches
can be performed through the set of frequency functions to trace correlated activity - and,
for instance, some overall frequency contour superimposed upon all partials might be
uncovered. The researcher couid then vary the shape, extent and representational

complexity of this factor in exploring its salience and possiblities for representation as a |

modeled feature of synthesis.

The language as such is a top-level interpretive package written in SAIL for a SAIL
environment. This use of an existant language as the base for a higher level interpreter has,
of course, taken its toll in the efficiency of the various operhtions, but provides a
tremendous degree of flexibility that for the time being is well worth the price. In addition,
since the extensions are written entirely in SAIL, this assures that changes can easily be
made in the higher level tanguage itself, thus aliowing programmers who are not ,highly
skilled at PDP-10 assembly language to make modifications. Also, the interactive
source-language debugging system available for SAIL can be brought to bear on lingeringr
bugs [Reiser, 1975].
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The interactive upper level of the language is an amalgam of ALGOL, APL-like vector
structures, and music languages such as MUSIC V. The ALGOL-like syntax is used for
conditionals, loop constructs, declarations, assignment statements, and the like. The arrays

are like those in APL, where the sizes can change dynamically, and simple operations can

- be petformed elementwise on the arrays. We have, however, the additional information that

these are, in fact, sampled data functions, so several other operations (i‘nte'rpolation,
decimation, piecewise-linear approximation) are available that are not used in classical

vector processing.

For any operations that are not immediately available, the researcher can just write a SAIL
subroutine and easily incorporate it into the package. (SAIL {Reiser, 1976] is an extended
dialect of ALGOL.) This is also how effictency can be achieved. Since the interpretive top
level of the system is inherently inefficient, highly repetitive tasks can easily be recoded in
SAIL and incorporated into the system.

Internaliy, the routines are organized into pracedures which receive messages defining their
calling sequences. Each procedure can then determine for itself how to interpret this

message. This is much like the message procedure system in SMALLTALK [Goldberg and

© Kay, 1976, though it is implemented in SAIL rather than in an entirely special-purpose

language. A price is paid here in terms of efficiency, Indeed, part of the ongoing work on

this language are methods for improving the efficiency of the system while maintaining as

much of the flexibility as possible.

The language provides the researcher with a way to interactively construct patticular

schemes for tests on the acoustic information, By being display oriented, the research process
is greatly assisted. The power of research intuition Is increased Further by the flexibility of
interactive modes - including the possibilty for hand editing acoustic data. Schemes for
analysis or modification found successful in one case may be extracted from interactive
cormands and preserved for other test cases. Of course, other schemes may be directly
programmed in the language and tested on a variety of data, Interaction is made easier by
an interpreter that allows the abbreviation of commands, defaults of unspecified arguments

and on-line formulation of macres. We outline below the specific benefits of this language.
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1. Construction and call of arbitrary analysis and modification procedures. Any technique of
sighal processing may be accessed programatically or interactively with this language
through unified interfacing conventions. This facilitates the arbitrary combination of
analysis techniques and modification -procedures, allowing the researcher to test any
particular hypothesis about the acoustic data - both in terms of acoustic manipulation and

in the light of further analysis of data.

9. Construction of arbitrary synthetic models. Closely related to the first point, arbitrary

models for synthesis may be formulated. Manipulation of the structure itseif of the acoustic
data may be performed in view of hypotheses of the researcher, In this way, the model for
the stimuhl will change from the original mathematical model to one more based upon
significant features of the sounds. For instance, we might decide that frequency contours
should be specified by a smooth "baseline” pitch curve and an additional perturbation
which was strictly random in nature. Using this language a number of such hypotheses can

be developed and tested very quickly.

3. Interactive mode. The fact that this is an interactive language allows for greater feedback
potential. Researchers may try out ideas formulated on-line, on the basis of a specific
context of ongoing results. This allows for paths of processing unanticipated at the outset.
The ease of interaction is increased by a more flexible interpreter - one which. allows
abbreviations in commands as well as defaulted arguments so that the researcher need not
type formal and full lines of code in this mode. The construction of macros also increases
on-line potential. Positional notation of procedure calls has been abandoned for named
arguments. This allows the routines to have extensive calling sequences which can be
defaulted in an intelligent manner, For instance, if the array name is not specified, the last
array mentioned can be used. The display routines can decide on their own how to display
a given function, or the defaults can be overridden by including specifications in the calling
sequence, We belteve that this feature of intelligent defaulting is one of the most powei‘ful
aids to concise interactive computing in use today, The ability to either let the program
decide how to do- things, to override its decision when necessary, or to alter the default
settings easily constitutes a powerful set of conveniences that seems to allow the user to
spend most of his time using the results of the programs rather than fighting the syntax.

For instance, one does not have to remember how many arguments a function has: one can
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just call the function and most likely everything will work out all right. Addlitionally, in
interactive mode, all commands typed from the keyboard are stored. These commands can
then be, for instance, used subsequently as macro-operations.

4. Construction of macros. The grouping of command sets, either on-line or in source
programs, into macros allows the quick repetition of processes oh other data. A procéss
tested on one harmonic, for example, may be extracted from the command stream and given
2 name; it may be called thereafter, accepting appropriate arguments if necessary, for ali
other harmonics; it may be saved for other cases in the future by output to a source
program. Macros may be nested to any level and can be edited just like any other program .

on the computer.

Macros may be abbreviated by as little as a single keystroke, thus providing -extremely
concise calling seguences (at the expense of mnemonic labeling!). For the experienced user,
this provides an excellent "impedence match” (in the terms of Swinehart [1974)) while still
allowing the novice user to use the longer more mnemonic labels. Each user can have his
own set of macros which are easily loaded at statt-up time. This macrg faciliity provides a

rudimentary "extensibility” to the language.

5. Graphic environment. The display of information is an important feature of this research
tool, Graphic provisions are inherent in the language - featuring the arbitrary display of
information in any form, up to the possibility of showing related sets of functions in
three-dimensional form. For exampie, the amplitude functions for the set of partials of a
tone may be displayed in an amplitude by frequency by time format, Manipulations and
analysis may be performed with this format of feedback. This is a very important aid to
research, visually suggesting important acoustic a.ctivity and ways of -processing such activity

for the testing of various hypotheses.

Functions can be viewed individually or in collections. When viewed as collections, the
three-dimensional representation is. most convenient, but an alternalte spectrographic
representation is available for the special case of amplitude and frequency curves. Three
dimensional representations may be viewed from any angle or perspective. One can "zoom

in" to observe interesting features in more detail.
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6. Hand editing of data. In addition to the arbitraty application of signal processing
techniques to acoustic data, actual hand editing may be performed. Among the possibie
modes for input are light pen and teletype commands; macros can be constructed for higher
tevel manipulations with appropriate feedback. Beihg implemented are hand inputs via
sketch pad and arbitrary configurations of knobs, buttons and slide potentiometers. Note
that this editing is done in conjunction with the graphical representation of the data. For
. Instance, we may choose to edit one particular function being displayed in a
“ three-dimensional plot. The entire display can be maintained to help give a context for the
propbsed change. In additional, the original unmodified function can be displayed
superimposed on the function under modification. ' ‘

These manipulations are very similar to the kinds of manipulations that were possible with
the "visible speech” system of the Haskins Labs [Cooper et al, 1951). The differences are
that the use of the computer allows iremendous precision in Storage and modification of
these "visible" curves. In addition, the meanings of the curves are not limited by the
hardware as was the case with the visible speech system. We can assign functions to control
any aspect of the sound production we wish, since this is all done through software and
therefore easily modified. Further, the patterns are directly the result of .an analysis

procedure, thus assuring a high degree of fidelity in the synthetic tones when required,.

Signal Processing Support

Without a powerful base of signal processing routines, ali this graphical and interactive
interfacing would have little use in sound analysis and synthesis api:lication [see Chowning
et al, 1975]. New techniques are constantly being developed to extend the domain of sounds -
that can be handled. Some of the more recent discoveries include the use of the phase
vocoder for music analysis, a unification in nonlinear synthesis techniques, and new
methods of reverberation.
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