7 Nov 1977 16:43 ACCEPT.TXT[DOC,MUS ] PAGE 2-1

The following are the notes taken by JMG of the meeting we had to discuss
accptance tests for SAM. They are sketchy, but hopfully complete.

On looking them over, it seems that
there are basiciy two phases of tests: acceptance tests and warranty tests.
The first phase should consist of* these steps:

I. ren noise tests

II. run data and update command load tests

II1I. run usability tests (complex instruments playing some piece).
Iv. accept it.

The second phase should consist of opening up the box to the general user as much
as possible and really get down to work using it. This will uncover more
bugs than any other method. Problems encountered in this way will expose
bugs in software as well as hardware. Hardware problems . will still be
covered by warranty, and in fact that's what warranty is ail about.
By using this division of tests, we will be able to say to SC that
we have a set of tests that will take a finite amount of time to run, and
we will be in a position to pay them at that time. I see no reason to hold
onto the money beyond such a time as we get the remainder of their contractuail
obiigations, and we run the above tests.

Remaining problems to clear up with SC:

get drawings

theory of operation manual

5 days consultation/instruction at user site,

device code conflict with mappiplexer

[nice but maybe not in contract:
source code for exercizers MKEXER and JAXTST, plus
guided tour through them.]

1. Generator tests

a, Noise tests:

Sum of cosine mode in generators, should not have glitch as described
in Moore thesis.

rapidly changing envelopes, test for pops.
DACs: test on scope, and with analog spectrum analyzer. .
digital FFT of signals read through DMA. ,
glissando: pops at points of update. \
simulations on the 18, then A:B tests

b. Usability tests:
Additive synthesis (delta frq)
compiex instruments (FM, etc.)

. 2. Modifiers
verification of functions
noise tests as in generators
filter performance
3. Data load: If MKEXER really does what Pete says, then this has been tested.

4. Mode switching: pass a shitload of update ticks, revising run modes and
updating parameters, see if it gets them aill.

5. Power supplies (anybody remember what this was about?)

7. Validate spec. sheet. for op codes and fields,



38 Nov 1977 14:16 ACCEPT.TXTL[SAM,DGL] PAGE 2-1

Whereas it seems reasonable for us at this point to try to clarify
the methodology of our acceptance tests, allow me to propose
that the following outtine should guide our efforts.
I. Formalize the categories of tests.
A. Should cover each genera of algorithm in the machine.
1. Generators:
~-dac, data write-read, sine functons, ramp and logic functions, fm.
2. Medifiers:
-togic testing, arithmetic, filtering, delay linkage.
3. Delay lines.
4. Command and data transfer from the six.
B. A Final Test would bring out weaknesses,
II Tests should go from simplie tests to more musically useful (complex) tests.
A. Generic tests should be very simple and clear.

B. A Final Test would be designed to include any weaknesses discovered in the
generic tests at a greater, but no less well defined, level of complexity,
1. This test might alsoc be referred to as a usability test, and would

want to test the following:
a. Command load test: a compound instrument playing in polyphony
a piece of musically useful complexity.
b. Other weaknesses test, as described above., The additional level
of complexity to be added would be proportional to that which would
be useful in a musical context for that algorithm. For example, if
there were shown to be a bug in the rate term in generators running in
parallel, the final test might include an ensemble of instruments
which would do this in a fixed and predetermined number of permutations,
such as, B instruments playing simultaneously, diddiing this term.
2. The weakness tests would themselves be generic and problems encountered
there would not cause new genera to come into being, but would again
cause additional simplifying and clarifying tests to be run, not more
and more compliex tests.
III. Exaustive tests of each function of each processing element
would be beyond the scope of these tests. Presumably,
probiems found later in isolated categories can be handlied by warranty.
True combinatorial tests would take forever in a machine of this complexity.
HOWEVER ;
IV. Problems found in implementing the generic tests must be scrutinized
by simplification, and additional tests would need to be run in an attempt
to find a specific bug. Furthermore, assuming a problem 1s uncovered,
this specific bug would be inciuded in the Final Test at & level of
complexity greater than in the generic tests, but at a specific level
of greater compliexity, not an expanding one.



38 Nov 1977

14:16 ACCEPT.TXT[SAM,DGL ] PAGE 3-1

Here is a 1ist of the tests that have been set up so far:

30-NOV-

FILNAM

ZANFA
GLSTST
SINTST
SOLFEG
SOLF

SOLSOP
SOLALT
SOLUTX
SOLFEW
NULTST
CLPTST
FMTST
GOSCVF
ALLGEN
FLTTST
GENTST
GOSTST
SFMTST
GFMTST
AMPTST
GF1¥ST
SLOGFM
ONEAMP
AMPLNG
" SLOAMP
MOD

UNOISE
TNOISE
MIX

77
EXT

SAM
5AM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM
SAM

1331
PPN

SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL
SAMDGL

two generators playing Stravinsky's Fanfare for a New Theater
generator glissando

generic generator test

generic generator load test {the one that faiied)
simplification of above

11kew1se

"
"

two generators canceling eachother

to see what would happen when the dacs ovarfliow
generic generator test

varijable freguency generator

256 generators simultaneously, not impliemented
analog filters test (yes, it's redundant!)

sin_fm test

generator fm test
simplification of generator fm test
same

Tikewise

Tikewise

tikewise

Tikewise

generic modifier logic tast
same

same

same



38 Nov 1977 14:16 ACCEPT.TXT{ SAM,DGL] PAGE 4-1

current state:
Basicly the generators have been tested, exept for data transfer to the
six. The genera of tests are these'
Waveforms:
-5ine wave generation
~putse and saw waves
Fm:
-Sin_fm
~-fm proper
Modes:
~-dac
-a,b,c _running
Fields:
-go,gj,etc. singly and gp in combination with another generator.

Additional specific tests:
1. Generator data transfer from six (so far only commands have been stuffed)
2. exponential generator enveiopes,
3. Five tests of modifiers:
logic: SIGNUM,
arithmetic; MIXING,
fi1ltering: TWO_POLES,
uniform noise: TRIGGERED_UMIFORM_NOISE
and finaily, of course delay 1inkage.
4. Delay lines.
5. The Final Test, as described above.



