] I Il SYSTEMS CONCEPTS 520 THIRD STREET SAN FRANCISCO. CALIFORNIA §2107

SYSTEMS CONCEPTS
DIGITAL SYNTHESIZER

SPECIFICATIONS

TELEPHONE: 415-442-1500 TWX: 910-372-6062

SYSTEMS CONCEPTS DIGITAL SYNTHESIZER PROGRAMMING SPECIFICATION

INTRODUCTION 780714

Generators and Modifiers

The synthesizer has two kinds of processing elements:
generators and modifiers. An additional type of element, termed
a delay unit, is optional.

Generators produce sine, square, and sawtooth waves,
pulse trains, and equal-amplitude sum-of-cosines (band-limited
pulse trains); apply linear and exponential envelopes; perform
frequency modulation; can automatically sweep frequency
linearly; read data from computer memory; and write data into
computer memory or to digital-to-analocg converters. Up to 256
generators can be active at one time.

Modifiers simulate a resonance or antiresonance; perform
amplitude modulation, four-quadrant multiplication, mixing,
clipping, and memory (sample and hold) functions; can generate
uniform noise; and pass data to and from the optional delay
units. Up to 128 modifiers can be active at the same time.

Delay units have two uses: as delay lines for signals;
and to hold precomputed tables, such as time-domain waveforms.
Up to 32 delay units can be active at the same time.

Passes and Ticks; Sum Memory

The processing performed on a per-sample basis comprises
one pass. A pass is a series of ticks, of three types: processing
ticks, overhead ticks, and update ticks. Processing ticks perform
the calculations corresponding to generators and modifiers, and
update ticks permit performance of commands to load new parameters.
Within a pass, all processing ticks are performed first, then all
overhead ticks, then all update ticks. A tick of any type takes
195 nsec. The number of processing ticks per pass is the maximum
of: the number of generators used; twice the number of modifiers
used. For delay units, divide the number of processing ticks minus
six by four to get the number of delay memory cycles possible per
pass. The number of delay units that can be used is this number
less however many delay memory cycles the computer may make during
the processing ticks. There are eight overhead ticks per pass.

The number of update ticks per pass should be chosen according to
the number of processing and overhead ticks to give the desired
overall sample rate.

Information is passed among generators and modifiers
through a scratchpad area called sum memory, which is divided into
four 64-word guadrants. In one guadrant, sums are accumulated
of generator outputs during a given pass; another quadrant holds
the accumulated generator sums from the previous pass. The other
two quadrants act likewise for modifier outputs. Any generator
or modifier can read data from either previous-pass quadrant, and
any modifier can read from the current-pass modifier quadrant also.

Computer Interface

Information is passed to and from the computer in two ways:
I/0 instructions, and direct memory access. With the delay
memory option, a low-bandwidth bidirectional 20-bit path permits
read- and write—accesses by the computer.

Computer I/O instructions perform general control, status
sensing, and diagnostic functions. The direct memory access path
is provided for data transfer in real time. There are three types
of such data transfer: commands (to the device), read data (per
sample) (to the device), and write data (per sample) (from the
device). Each of these three has its own word count (WC) and
core address (CA) registers in the device; they are set up by
I/0 instructions. Commands are always 32 bits; read data may be
either 16 or 32 bits, giving a choice between packed data and full
precision (the left 20 bits are significant in 32-bit mode; in
1l6-bit mode, the left 16-bit data item precedes the right one);
write data is the left 20 of 32 bits. The device has buffering
for 28 commands, 4 read-data items, and 1 write-data item.

The synthesizer can be conditioned to interrupt the computer
in various circumstances. One class of them can be termed data
errors: arithmetic overflow during processing, and command overrun.
Command overrun occurs when a Linger command is performed which
specifies a pass at least 1, but no more than 4096, before the
current pass. The other class of interrupt conditions relates to
direct memory access. Separate indications are provided for read
data, write data, and command WCs being exhausted, and also for
underrun conditions. Command underrun occurs when on an update
tick there is no command to be performed (normally when there is
no update activity due, a Linger command is being performed). The
read data and write data underrun states occur when the device must
stop its clock momentarily to wait for memory access; this means the
device is not operating in real time.

PDP-10 INTERFACE

The computer interface specifications are discussed here in
terms of the implementation for the PDP-10 computer. Direct memory
access refers to 32-bit data and commands right-justified in 36-bit
words. The synthesizer uses a group of four contiguous device codes
(beginning with one which is divisible by four), referred to below
as A, B, C, and D. Codes A, B, and C are used by the basic
synthesizer; code D is used for the Delay Memory option. Two
priority interrupt channels are employed; channel B for command
word count exhausted, and channel A for all other interrupt causes.

CONO-A 18 bits: sets overall status, diagnostic readback address

CONO-B 18 bits: sets miscellaneous status

DATAO-A 32 bits: sends command to be performed

DATAQO-B 36 bits: sets CA (core address) or WC (word count) for
commands, read data, write data

DATAO-C 20 bits: (only when running) for diagnostic purposes,
sets write-buffer data from bits 4-23

DATAO-D 36 bits: writes bits 0-~19 into Delay Memory location
designated by the ones' complement of bits
20-35. Data overwritten is saved to be read
by DATAI-D.

CONI-A 20 bits: reads overall conditions

CONI-B 16 bits: reads cause of interrupt

DATAI-A 20 bits: (only when not running) diagnostic readback

DATAI-D 20 bits: reads Delay Memory data saved when overwritten by
most recent DATAQO-D.

CONI-D : reads state of TZA flag into bit 25, TZA is
cleared by DATAO-D and set shortly thereafter
when the overwritten data is available to be
read by DATAI-D. Between the DATAO-D and the
setting of TZA no DATAO should be given to
the synthesizer.

18 19 20 21 22 23 24 25 FiE 320313 35

——— ——— ————— o — - Y. - e - S S e e T D G A R N S D G G G G D G S D Gy TS SN G W D e G S v et S —

CC: 00 no effect
01 stop clock
10 start clock
11 cause one tick

T: 0 no effect
1 reset tick counter to beginning of pass (if stopped,
and processing ticks permitted)
A: 0 set interrupt channel A from PIA
1 no effect
B: 0 set interrupt channel B from PIA
1 no effect

NN: 00 no effect
01 permit processing ticks
10 inhibit processing ticks (all ticks update)
Note: To ensure that all ticks update,
after this CONO is given the clock must
be run at least eight ticks.
11 (reserved)
DDDDDDD: diagnostic readback address, specifies internal
data to be read by DATAI-A.
0 no effect
1 reset (also caused by the PDP-10 i/0 Bus Reset)
Principal effects: stops clock; inhibits
processing ticks (all ticks update); resets ME,
PE, NX errors; disables stop and interrupt on
AAA causes, CE, WE, and RE; indicates 1l6-bit
read data; sets WC exhausted for commands, read
data, and write data; marks empty the buffers
for commands, read data and write data; sets PIA
channels A and B to 0. Does not reset the tick
counter, pass counter, or CONI-B information.

R:

28 29 30 31 3Z 33 35

o — - . — T - S G G S S S T G W S G e S Gn S RS Sen GEE Sme e S SN S M v S e T TN e e S e G D S

BB:

00 no effect
01l reset ME error
10 reset PE, NX errors
ll reset ME, PE, NX errors
(for error descriptions see CONI-A below)
(decoded with AAA)
00AAA disable stop on cause AAA

10aAaA

01AAA

enable stop on cause AAA
disable interrupt on cause AAA

11AAA enable interrupt on cause AAA
AAA: 001 command overrun: Linger command being

00110
10110
01110
il JE951
01000
11000
00111
L1 Lk
02111
11111

performed specifies pass number less
than current pass count (but difference
less than 4,096 passes).
010 modifier mixer overflow
011 modifier multiplier overflow
100 modifier add to sum overflow
101 generator add to sum overflow
disable interrupt on write data WC exhausted
enable interrupt on write data WC exhausted
disable interrupt on read data WC exhausted
enable interrupt on read data WC exhausted
disable interrupt on command WC exhausted
enable interrupt on command WC exhausted
indicate 16-bit read data
indicate 32-bit read data
(reserved)
(reserved)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 35
CONI-A :AR:BR:IR:CE:WE:RE:ME:PE:NX: R:NH:CU:WU:RU: PIA-A : PIA-B :

—— v — T ——— D TES Sem TR A G W e S G S G S AmS MG W MR ST S A WE My A ey S GRS Gam AR S GEe SN e e S S e S e S R . ——

AR: interrupt desired on channel A (regardless of PIA)

BR: interrupt desired on channel B (regardless of PIA)

IR: interrupt desired (by 11AAA cause, ME, PE, NX, WE, RE,
CE, regardless of PIA). The actual interrupt request
will not occur before the interrupt-desired indication.
The clock must be running for an interrupt request to
be presented.

ME: ©parity error detected in delay memory

PE: parity error during direct memory access

NX: non-existent memory addressed by direct memory

access (PE and NX errors suppress further memory
access and DATAO-A functions until reset by reset
or CONO-B)

R: clock running (not stopped)

NH: not held (like R but also off while clock stopped

for memory access)

WU: set by write data underrun; cleared by this CONI

RU: set by read data underrun; cleared by this CONI

CU: set by command underrun; cleared by this CONI

WE: write data WC exhausted

RE: read data WC exhausted

CE: command WC exhausted

PIA-A: Priority Interrupt Assignment, channel A

PIA-B: Priority Interrupt Assignment, channel B

el S8 BEK

W.y‘ vy_

CONI-B

DATAO-B

20 21 22 23 24 25 26 27 ’ 35

$I1:I2:I3:T4:I5: x:LC: TTTRTTTTT

I1l: command overrun

I2: modifier mixer overflow: T...T = (2 * modifier #) + 7

I3: modifier multiplier overflow: T...T = (2 * modifier #)
+ 5 or 6

I4: modifier add to sum overflow: T...T = (2 * modifier #)
+ 9

I5: generator add to sum overflow: T...T = generator # +9
Note: TIl...I5 only come on if the associated
condition occurs and interrupt is enabled on
it (llaaa). If Il...I5 are all off TTTTTTTTT
is indeterminate. 1Il...I5 and LC are cleared
by this CONI.

LC: (lost cause) After the interrupt cause encoded in
this word occurred, but before this word was read by
the computer, another of these interrupt causes
occurred.

TTTTTTTTT: tick number when cause occurred (nine bits
needed to allow for pipelining)

UUUU: 0000 no effect
0001 set write data CA
0010 set read data CA
0011 set command CA
0101 set write data WC
0110 set read data WC
0111 set command WC
others: (reserved)
A...A (24 bits): core address (if CA)
two's complement of word count (if WC)
Note: A WC becomes not exhausted as soon as it is written
into, thereby permitting memory cycles, so a CA should
be written before the corresponding WC.

GENERATORS

Parameters

Associated with each generator are the following quantities:

GO (20 bits) alpha -- oscillator frequency sweep rate
GJ (28 bits) omega -- oscillator frequency
GK (20 bits) theta -- oscillator angle

GN (11 bits) number of cosines to be summed

GM (4 bits) binary scale of cosine or sum of cosines

GP (20 bits) delta ~- decay rate

GQ (24 bits) phi -- decay exponent

GL (12 bits) asymptote

GSUM (6 bits) sum memory address into which output is added

GFM (7 bits) sum memory address from which frequency modulation
data is taken
GFM = QAAAAAA
Q: 0 generator-last-pass guadrant
1 modifier-last-pass quadrant
AAAAAA: sum address within quadrant

GMODE (10 bits) generator mode
GMODE = RRRREESSSS

Run Mode
osc. run? env. run? add to sum?
RRRR:0000 inactive no no no
0001 pause no no no
1111 running A yes yes, sticky yes
1110 running B yes yves, free; yes
triggers subseq.
on overflow
1001 wait yes no no
1101 running C yes ves, free; yes
stops and
triggers subseq.
on overflow
0111 read data from computer no yes ves
0011 write data to computer no no no
0010 write data to DAC no no no

(address in GO)

The envelope side of the generator can be sticky, which means
that rather than overflow it will stay at the last value it attained
before it would have overflowed; or it can be free, in which case it
wraps around.

Transitions between run modes can be accomplished in various

ways.
1)
)

3)

4)

5)

A command can output a new GMODE.

A MISC command can specify “"clear all pause bits", which
will cause any generator in run mode 0001 to change to
mode 1111.

A MISC command can specify "clear all wait bits", which
will cause any generator in run mode 1001 to change to
mode 1111, _

If the envelope side of a generator in run mode 1101
overflows, that generator goes to run mode 1001.

A generator in run mode 1001 will go to run mode 1101 if
on the same pass the preceding generator (the one
whose generator number is one less) caused a
trigger (was in run mode 1110 or 1101 and envelope

Envelope Mode

overflowed) .
Q
Q
(-0
2%* (~Q)

Oscillator Mode

888S: 0100
0001
0010
0011
0000
1000

Processing

sum of cosines
sawtooth
square

pulse train
sin (K)

sin (J + fm)

Calculations performed for a generator, governed by its
mode, proceed as detailed below.

1) The word in sum memory addressed by GFM is read (20 bits);
the sum is formed of it and the high-order 20 bits of
GJ (call the result TempO).

2) If the oscillator side is running, GO, right-adjusted with
sign extended, is added into GJ.

3) If the oscillator mode is 1000, TempO is taken; otherwise GK.
Call the 20-bit result TemplE, and its high-order 13 bits
Templ.

4) If the oscillator side is running, Temp0 is added into GK.

5) If the run mode is 0011, the word in sum memory addressed by GFM
is sent to the CPU as the next write-data item; if the run
mode is 0010, it is sent to the DAC addressed by the low-order
4 bits of GO.

6) In oscillator modes other than 0000 and 1000, Templ is multiplied
by GN. Call the low-order 12 bits of the product, with two bits
equal to 01 appended to the right, the 1l4-bit result Temp2.

In oscillator modes 0000 and 1000, Temp2 is the high-order 13
bits of TemplE, with a bit equal to 1 appended to the right.

7) If the oscillator mode is 0000 or 1000, pi/2 is taken (the binary
number 010...0); otherwise Templ. Call the result Temp3.

8) In floating point, the product csc (Temp3) * sin (Temp2) is
formed; then converted to fixed point with a scale factor
of 2**(-GM). Call the result (13 bits) Tempd.

9) The result of the oscillator side (13 bits, call it Temp5) 1is
then determined according to the oscillator mode.
SSSs: 0100 Temp4
0001 Templ (but 0 when Templ is 1000000000000)
0010 -1/2 (on a scale from -1 to +1) if Templ is negative,
else +1/2
0011 +1/2 if overflow occurred in step 1) or 4) above;
else 0.
0000 Temp4
1000 Temp4

10) The high-order 12 bits of GQ are taken (call this Temp6).

11) 1If the envelope side is running, GP right-adjusted, sign
extended, is added into GQ (overflow dealt with according
to the run mode). (The overflow condition is GQ changing
sign such that the high-order bit of the resultant GQ eguals
the sign bit of GP.)

12) If the envelope mode is 10 or 11, 2**(-Temp6) is looked up;
otherwise Temp6 is taken. Call the resulting 12 bits Temp7.
Scaling is such that if Temp6 is 0, then 2**(-Temp6) is
111 111 111 101 binary; if Temp6 is 000 100 000 000 binary,
then 2**(-Temp6) is 011 111 111 110.

13) 1If the envelope mode is 01 or 11, Temp7 is added to GL; else
it is subtracted from GL. This creates Temp8, the result
of the envelope side.

14) Temp5 is multiplied by Temp8. If the run mode specifies adding
into sum memory, the high-order 19 bits of the rounded product,
right-adjusted with sign extended, are added into the sum
memory location designated by GSUM; except that in run mode
0111, the product is added to the next read-data item from the
CPU and the sum replaces the contents of the sum memory
location addressed.

=

Parameters

MO (30
M1 (30
Lol (20
LL (20
MIN (8
MRM (8

AAAADA:

MODIFIERS

Each modifier has the following numeric parameters.

bits)
bits)
bits)
bits)

bits)
bits)

coefficient
other coefficient
running term
other running term

address in sum memory where modifier reads "A" data
address in sum memory where modifier reads "B" data

MIN, MRM = QOAAAARA

00 generator-last-pass quadrant
01 modifier-last-pass gquadrant

10 modifier-this-pass gquadrant

11 (reserved)

sum address within quadrant

MSUM (7 bits) result address in sum memory

R:

MSUM

RAAAAAA

add to sum
replace sum

AAAAAA: sum address in modifier-this-pass quadrant

-11-

MMODE (9 bits) modifier mode
MMODE = MMMMMAARBRB

AA: scale of second multiplication
BB: scale of first multiplication
For fraction multiplications:

00: x 1
Al ik 2
10: x 4
11: x 8
For integer multiplications:
00: x 1/4
OLs =2 1/2
10: x 1
Pk x72

A multiplication involving parameter M1 will be the first
multiplication; one involving MO will be the second.

MMMMM: function
00000: inactive
00010: uniform noise
00011: triggered uniform noise
00100: 1latch
00110: threshold
00111: invoke delay unit

01000: two poles
01001: two poles, MO variable
01011: two poles, Ml variable
01100: two zeros
01101: +two zeros, MO variable
0111l: +two zeros, Ml variable

10000: integer mixing
10001: one pole
10100: mixing

10110: one zero

11000: four-quadrant multiplication
11001: amplitude modulation

11010: maximum

11011: minimum

11100: signum

11101: zero-crossing pulser

others: (reserved)

—]2=

Processing

Computations performed by a modifier depend entirely on
its mode. 1In the descriptions below, A is the 20-bit sum memory
word addressed by MIN; B is the word addressed by MRM; when MO
or Ml is used, its high-order 20 bits are taken, but when a
quantity is added to MO or Ml it is added right-justified, with
sign extended; S is the 20-bit result that is added into the sum
memory location addressed by MSUM. DM is the 20-bit word read
from or sent to a delay unit. Multiplications are 20 bits x 20
bits, signed, and the product (unless otherwise noted) is the
high-order 20 bits, rounded.

MMMMM
00000: 1inactive. S := 0
10000: integer mixing. S := A*MO + B*M1 (integer multiply, low-order

20 bits of product used; overflow ignored)
10100: mixing. S := A*MO + B*Ml

00100: 1latch (sample and hold). S := Ll; 1If B*M1l is not 0, L1 := A
11100: signum. If A*MO is less than B*M1l, then S := -1 (integer);
if A*MO equals B*Ml, then S := 0;

if A*MO0 is greater than B*M1l, then S := 1 (integer)

11101: zero-crossing pulser. TempO := B*M0; Templ := L1*Ml;

if Templ is not 0 and either TempO is 0 or TempO*Templ is

negative then S := -epsilon, else S := 0; L1l := TempO

- (The term -epsilon is a binary number with all bits set.)
11011: minimum. S := min (A*M0, B*MI1)
11010: maximum. S := max (A*MO, B*M1l)
11001: amplitude modulation. S := L1*M1l; L1 := A * ((B+1)/2)

(The term ((B+1l)/2) interprets B as a signed two's-complement
fraction ranging in value from -1 to +l-epsilon.)

11000: four-quadrant multiplication. S := L1*Ml; L1 := A*B

0

10001: one pole. S := L1*Ml + B*L0; L1 := S
10110: one zero. S := L1*M1 + LO*MO; 1O := Ll; L1 := A
01000: two poles. S := L1*Ml + LO*MO + A; LO := Ll1; L1 := S
01001: two poles, MO variable. S := L1*Ml1 + LO*MO + A;
IO := L1; L1 := S; MO := MO + B
01011: two poles, Ml variable. S := L1*M1 + LO*MO + A;
1.0 :=Ll; L1 := S; Ml := ML + B
01100: two zeros. S := L1*M1 + LO*MO + A; LO := Ll; L1 := A
01101: +two zeros, MO variable. S := L1*M1 + LO*MO + A;
L0 :=L1; L1 := A; MO := MO + B
01111: two zeros, M1l variable. S := L1*M1 + LO*MO + A;
LO :=Ll; L1 :=A; Ml := ML + B
00010: uniform noise. S := L0 + L1*MO (integer multiply, low-order
20 bits of product used; overflow ignored); L1 := S
00011: triggered uniform noise. S := L0 + L1*MO (integer multiply,

low-order 20 bits of product used; overflow ignored) ;
if B*M1 (integer multiply, low~order 20 bits of product

used; overflow ignored) is not 0, L1 := S
00110: threshold. If A*MO + LO is less than 0, then S := 0;

if A*MO + LO is equal to or greater than 0, then S := B*Ml
00111: invoke delay unit.

Unit # := MRM (low-order 5 bits);

S := LO + L1*M0; LO := DM; TempO := A + DM*M1;

L1 := TempO; DM := TempO

Timing Considerations

The following relationships apply to references to the

modifier-this-pass quadrant of sum memory.

1)

2)
3)

4)

Modifier number M writes into sum memory (read-add-write or
replace) on tick number 2*M + 7.

Modifier number M reads word B on tick number 2*M.

Modifier number M reads word A on tick number 2*M in the
following modes: integer mixing; mixing; signum; minimum;
maximum; amplitude modulation; four-quadrant multiplication;
threshold.

Modifier number M reads word A on tick number 2*M + 6 in the
following modes: latch; one zero; two poles, two zeros
(2all six modes); invoke delay unit.

=] 4=

DELAY UNITS

A common pool of addressable memory, which may comprise up
to 65,536 20-bit words, is available for use by the delay units.
By programming, each active delay unit is assigned its own contiguous
area of the memory.

Quantities

Each delay unit has the following numeric parameters.

P mode (4 bits). The mode is interpreted as follows:
mode: 0000 inactive
1000 delay line
1010 table look-up
1011 table look-up, argument rounded
others: (reserved)

Z unit length (16 bits) or blnary scale factor (4 bits).
In delay line mode, Z gives 1 less than the total number of
locations in delay memory used by this delay unit, i.e. the
index of the last delay memory address for this unit. 1In
table look-up modes, the low-order four bits of Z specify
the number of binary places that the argument is shifted to
the right before it is used to address the memoxry; if
rounding is specified, the address after shifting is
incremented by 1 if the most-~significant bit shifted out
was a 1.

Y index (16 bits). In delay line mode, this is the running
index on the memory area for the unit.

X base address (16 bits). The base address is the lowest-numbered
delay memory location used by this unit.

Processing

In inactive mode, delay memory is not modified and the unit
returns indeterminate results. Delay units not accommodated due
to the number of ticks in a pass act as if in the inactive mode.
If the number of processing ticks is 4*n + m where m is 1, 2, or 3,
delay unit number n should be put in the inactive mode.

In delay line mode, a 20-bit data word is received from
the modifier that calls for the delay unit, and another 20-bit
word is sent to it. The word received is put into the next slot
in the delay line. It will be retrieved and sent back to the
modifier Z+3 passes later.

In table look-up mode, the 20-bit data word received
from the modifier is shifted to the right Z bits, bringing in zeros,
and the right 16 bits of the result are used to address the memory
area assigned to the unit. The 20-bit word in the addressed memory
location is returned to the modifier three passes later.

-15-

COMMANDS

All commands have 32 bits. Generally the left 20 bits are data,
the next 4 or 5 bits identify the kind of parameter, and the last 8 or 7
bits address the generator or modifier affected. If more than one data
field is packed in the 20 bits, disable bits will be provided to
facilitate loading a subset of the fields. 1In a few cases, a bit is
also provided in the data area to clear (put to zero) a related parameter
in the same generator or modifier.

4 23 24 28 -29 30 31 32 33: 34 35

RR: 00 no effect
01 load DX from data
10 load TTL buffer A from left 16 bits of data
11 load TTL buffer B from left 16 bits of data;
set analog output filters from right 4 bits of data:
0lxx Mode O
00nn Mode 1, frequency £f0, fl1, f2, or £3 according
to nn
lxxx no change
W: 1if 1, clear all wait bits
P: if 1, clear all pause bits
53 if 1, sttop clock

4 19 20 23 24 28 29 30 31 35
(16) data :{(4)data: 0 0 0 O 1l: U U: (5) unit # :
DLY X, ¥, 2Z
UU: 00 X 16 bits base address; clear Y
01 Y 16 bits one's complement of index

10 z,P 16 bits delay unit size minus 1, or scale (low
4 bits of 16); 4 bits mode
11 (unused)

4 23 24 28. 29 30 31 32 33 35

TT: 00 no effect
10 Linger: process no further commands until pass counter
equals data
11 clear pass counter, then Linger as for 10
01 set pass counter from data

A

4 23 24 28 29 30 31 32 33 85

—— v S e S S S S G T T ST D S Gwe VD e WS S G S S G G S S A Sy G A D G S e e G D e S M S S G S S S S G S — S - S ———

Q: 0 designate highest-numbered processing tick per pass
(should not exceed 255)
1 designate next-to-highest-numbered tick (processing
plus overhead plus update) per pass

4 23 24 26 27 28 35
GQ : (20) data : 0 0 1l: E: (8) gen # :
E: 0 Q right-adjusted, sign extended
1 Q left-adjusted, low bits from left of DX; clear DX
4 23 24 26 27 28 35
GJ : (20) data : 0 1 0: E: (8) gen # s
E: 0 J right-adjusted, sign extended
1 J left-adjusted, low bits from left of DX; clear DX
4 23 24 27 28 35
GP (20) data ' 1 1 O (8) gen # 2
4 56 8 9 19 20 23 24 27 28 35
GN, :N:M:x x x: (11) GN :(4) GM : 0 1 1 1: (8) gen #)
GM mmm e e e e e e e e e e e e e
N: if 1, disable loading GN
M: if 1, disable loading GM
4 56 17 18 23 24 27 28 35
GL, ZL:Bs (12) GL : (6) GSUM : 1 0 0 O (8) gen # :
GO UM = s e e e e e e
L: 1if 1, disable loading GL
S: if 1, disable loading GSUM
4 23 24 27 28 35
GK : (20) data & 1w 0 L: (8) gen # <

—— e — . —— —— . —— —— —— — . S A S =S e G YD S S G S D G A S TS GED Gme W G T S S SR S D SR W G WS G S e E— e

7

4 56 7 16:- 17 23 24 27,28 35

——— e — v —————— — - SR Gl G S G M S S Ty S S — G A Sy (e SR D GER M SED M SR AP SER LS SER WS R Mt S G e G S G S s R e S e S S S S e S S

:MaPFiC:: (10B) \GMOBDE :(7) GCFM= 1 0 1 0* (8) gen # 3

M: if 1, disable loading GMODE
F: if 1, disable loading GFM
C: if 1, clear GK

4 23 24 27 28 35
: (20) data ¢ 1 8 1 1: (8) gen # :
4 23 24 26 27 28 29 35
: (20) data e e s V Ve (7) mod # 5

VV: 00 MO right-adjusted, sign extended
01 Ml right-adjusted, sign extended
10 MO left-adjusted, low bits from left of DX; clear DX
11 M1l left-adjusted, low bits from left of DX; clear DX

4 23 24 27 28 29 35
(20) data :1 1 1 0: N: (7) mod # :

N: 0 LO

1 L1
4 56 7 8 l6 17 23 24 28 29 35
:M:S:C:H: (9) MMODE :(7)MSuUM: 1 1 1 1 O: (7) mod # :

M: if 1, disable loading MMMMM bits of MMODE
S: 1if 1, disable loading MSUM

C: 1if 1, clear L0

H: if 1, disable loading AABB bits of MMODE

—— - ——— - —— o —— ——— - — s S S S > G S . S > S S S S S Gy S S A Wev D SIS G G SR S G D G G G b Gm S G S S S S NS S e T e

R: 1if 1, disable loading MRM
I: if 1, disable loading MIN
C: if 1, clear L1

~18-

SYSTEMS CONCEPTS DIGITAL SYNTHESIZER ANALOG OUTPUT SPECIFICATION

The signal path for one analog output involves the following sections:
: Channel selection logic (addressing)
Digital hold register
Digital to analog converter
Sample-and-hold
Program-controlled low-pass filter
Buffer amplifier.

Each section is specified at 25 degrees C as follows.
Channel selection logic: 4 bits (1 of 16)
Digital hold register: 14 bits

Digital to analog converter: 14 bits
Linearity: 0.005%

Sample-and-hold: full power bandwidth 0 to 40 kHz

Filter: two modes
Mode 0: l-pole RC at 200 kHz
Mode 1l: 6-pole Butterworth, 4 programmable
frequencies subject to the relationships f0=A,
fl=A+B, f2=A+C, f3=A+B+C; full power bandwidth
0 to 18.5 kHz max.

Buffer amplifier: output +/- 5 V max., unbalanced
Output current: 4 mA max.
Short circuit protection: to ground only
Full power bandwidth: 0 to 18.5 kHz for 10 V swing
Output source impedance: 100 ohms
Output connector: BNC jack

The following are overall figures with Mode 0 filtering:
Gain error: 2.5%
Offset error: 20 mv
Noise at sampling rate and its harmonics: 10 mV max. (RMS)
Other noise 10 Hz to 50 kHz: 1 mV max. (RMS)

