&0

&

CCRMA NOTES (cont)

DAJ - Here is JOS's translation into english of the generator processing.
See also SAMSIM.SAI([SIM,DAJ] for a SAIL implementation (with all the right
word sizes, etc.).

GENERATORS

Parameters

Associated with each generator are the following quantities:
Frgswp20 (20 bits) alpha -- oscillator frequency sweep rate
OscfFrg28 (28 bits) omega -- oscillator freguency

/5 < 0scAng20 (20 bits) theta -- oscillator angle

’-

NumCos11 (11 bits) number of cosines to be summed

CosScl4 (4 bits) binary scale of cosine or sum of cosines
AmpSwp20 (20 bits) delta -- decay rate

CurAmp24 (24 bits) phi -- decay exponent

%;,1, AmpOff12 (12 bits) asymptote

St

- OutSumé (6 bits) sum memory address into which output is added

0 Fmsum? (7 bits) sum memory address from which frequency modulation

data is taken
FmSum? = QAAAAAA
Q: 0 generator-last-pass quadrant
1 modifier-last-pass quadrant
AAAAAA: sum address within gquadrant
Gmode 3 (10 bits) generator mode
Gmode10 = RRRREESSSS

Processing

Calculations performed for a generator, governed by its
mode, proceed as detailed below.

1) The word in sum memory addressed by FmSum? is read (20 bits);
the sum is formed of it and the high-order 20 bits of
OscFrqg28 (call the result FmPhasel0).

2) If the oscillator side is running, FrgqSwp20, right-adjusted with
sign extended, is added into Oscfrg28.

3) 1If the oscillator mode is SIN(J+Fm), FmPhase20 is taken; otherwise OscAng20.

Call the 20-bit result Phase20, and its high-order 13 bits
Phase13. =

4) 1f the oscillator side is running, FmPhase20 is added into OscAng20.

5) If the run mode is WRITEDATA, the word in sum memory addressed by FmSum?

is sent to the CPU as the next write-data item; if the run
made is DACOUT it is sent to the DAC addressed by the low-order
4 bits of FrgSwp20.

6) In oscitlator modes other than SIN(K) and SIN(J+Fm), Phase13 is multiplied
by NumCos11. Call the low-order 12 bits of the product, with two bits

equal to 01 appended to the right, the 14-bit result SipAdr.

In oscillator modes SIN(K) and SIN(J+Fm), SinAdr is the high-order 13

bits of Phase20, with a bit equal to 1 appended to the right.

7) If the oscillator mode is SIN(K) or SIN(J+Fm), pi/2 is taken (the binary

number 010...0); otherwise Phasel3. Call the result CscAdr.
i

8) In floating point, the product csc (CscAdr) * sin (SinAdr) is
formed; then converted to fixed point with a scale factor
of 2**(-CosScl4). Call the resuit (13 bits) TblOut13.

9N

10)

m

12)

13

14)

The result of the oscillator side (13 bits, call it OscOutl13) is
then determined according to the oscillator mode.
S$SSS: SUMCOS Tblout13
SAWTOOTH Phasel3 (but 0 when Phasel13 is 1000000000000)

SQUARE -1/2 (on a scale from -1 to +1) if Phasel13 is negative,
else +1/2

PULSE +1/2 if overflow occured in step 1) or 4) above;
else 0.

SIN(K) Tblout13
SIN(J+Fm) TblOut13

The high-order 12 bits of CurAmp24 are taken (call the result CurAmp12).

If the envelope side is running, AmpSwp20 right-adjusted, sign
extended, is added into CurAmp24 (overflow dealt with according
to the run mode). (The overflow condition is CurAmp2é4 changing
sign such that the high-order bit of the resultant CurAmp24 equals
the sign bit of AmpSwp20.)

If the envelope mode is 10 or 11, 2**(-CurAmp12) is looked up;
otherwise CurAmp12 is taken. Call the resulting 12 bits NewAmpi2.
Scaling is such that if CurAmp12 is 0 then 2**(-CurAmpl12) is
111 111 111 101 binary; if CurAmp12 is 000 100 000 000 binary,
then 2**(-CurAmp12) is 011 111 111 110.

If the envelope mode is 01 or 11, NewAmpl12 is added to AmpOff12; else
it is subtracted from AmpOff12. This creates Envi2, the result
of the envelope side.

OscOut13 is multiplied by Envi2. [If the run mode specifies adding
into sum memory, the high-order 19 bits of the rounded product,
right-adjusted with sign extended, are added into the sum
memory location designated by OutSumé; except that in run mode
READDATA, the product is added to the next read-data item from the
CPU and the sum replaces the contents of the sum memory
location addressed.

OK (type a command or type opt for Options):

CCRMA NOTES

Write data format: 4 bits of 0, then 20 bits of data, then 12 bits of 0. (DAJ)

Use of special no-ops:

1. The timer no-op with all x bits=0 is being used for encoding Slog and EdSam
information (like breakpoints). (DAJ April 26, 1983)

2. The timer no-op with the x bits 29 and/or 30 set is being used for encoding
comments as follows: (DAJ/AWN June 12, 1983)

bit 29 bit 30

0 1 The data field of this instruction has 2 text characters.
(stored as 7 bit ascii, right justified)

1 0 start of comment

1 1 end of comment

These commands have bits 33-35 = O.

3. Analog output lowpass 3dB points at 4.5 kHz, 9, 13.5 and 18 kHz
(i.e., A=4.5, B=4.5, C=4.5) [old DACs]

4, It's not clear from the documentaticn, so to clarify: On the # TICKS
command, the number to be supplied for Q=1 is the total number of ticks
per pass minus 2. (TVR - 7 August 1984)

5. BIL has discovered empirically that the modifier latch mode operation
(page 15, line 28), which reads,

00100: Llatch (sample and hold). S :

L1; I!f B*M1 is not 0, L1 := A
should actuatly read
00100: Llatch (sample and hold). S :=L1; If B*M1 is not 0, L1 := A*MO

6. DAJ - If the #ptix field has a value > 255, a single write data generator
witl write double samples! (#TICKS command, Q=0)

7. The '"don't care" high order bits in the high-ticks command are ignored
(the #TICKS command, Q=1). This means that the box cannot run slower

than 5003 Hz.
8. In generator processing description, step 12, it says:

Scaling is such that if tempé is 0 then 2**(-tempé) is
111 111 111 101 binary; if tempé is 000 100 000 000 binary,
then 2**(-tempé) is 011 111 111 110.

The scaling involved is a left shift of temps by 4 bits.

9. 23-Jun-86" 0026 DAJ
What IS the rationale between '10 - '17 for dacs?

There are two sets of slots for DAC cards (upper and lower). The upper
slots are for 14-bit DACs, the lower for 16-bit. There is room for 8
14-bit DACs, so they are addresses 0 to 7. Pete put the new DAC card
into the slot corresponding to '13 (who knows why) in the 8 16 bit DAC
slots 110 to '17. Actually there are 4 slots for each, but each slot
has two channels (potentially) with the upper being first in addressing.
Slots are counted from right to left, so '13 is the lower connector of
the second slot from the right of the lower set of slots. Actually...

10. DAJ - It seems that (from pg. 16, line 3) the modifier mode one pote
which is given as

10001:
is really

10001:

one pole.

one pote.

S :

B 7

LT*M1 + B*MO; L1

LT*M1 + B*LO; L1

i

