16 Feb 1976 12:25 MLANG. TXT [TXT, JAM] PAGE 3-1
INTERMEDIATE LEVEL

I propose that we do the entire intermediate level using the SAIL
process and co-routine primitives. The advantage is versatilituy,
clairity, and modifiability; the disadvantage is efficiency.

We need to make tuwo procedufes for scheduling:

WAIT _UNTIL (time);
DO_IT_ALL;

For instance, the "main program" for a six voice piece might ook
like this: C

<declare procedures YOICEl, YOICEZ, . . . VOICES and items IV1l, 1V2,
. « VB, etc etc etc> i

<do things hete like initialize the box, set the number of process

ticks and update ticks (sampling rate), where the commands are to go,

and all that stuff> .

CH1_GEN«GET (GENERATOR) ; > Get an output generator;
" OUTA<GET (GEN_SUM_MEMORY) ; > And a place for all to go;
SET (CH1_GEN, MODE, ’ 288} ; > Set mode to feed DAC;
SET (CH1_GEN, FM_ADDRESS, OUTA) ; > Get its input from OUTA;
SET (CH1_GEN,NUMBER,1}; > Send it to DAC channel 1;
SPROUT (ivl, veicel,SUSPME) ;
SPROUT (iv2,voiceZ,SUSPME]) ;
SPROUT (iv3, voice3d, SUSPME) ;
© SPROUT (ivé4, voice4,SUSPME) ;
SPROUT (i v5, voice5, SUSPME) ;
SPROUT (ivB, voiceB,SUSPME) ;
OO_IT_ALL;
END "WORLD";

A typical voice might look like this:

PROCEDURE VOICEl;

BEGIN '
TIME«B;
BLAT(TIME, T-QUARTER%TEMPO, A, 2847) 3
TIMETIME+T;
BLAT(TIME, T<HALFxTEMPO, AS, 2847) ;
TIMETIME+T:
BLAT(TIME, T-QUARTER%TEMPG, G, 2847) ;
TIME<TIME+T;

i BLAT(TIME, T<QUARTER%TEMPG,FS, 2847) 3

D; }

This was a verbose definition and you will surely want to streamline
this a bit. It was written out like this so it would be clear what is
going on. We should go further and see what the "instrument" BLAT
does. A typical definition might be this:

PROCEDURE BLAT (REAL TIME,DURATION,PITCH,AMPLITUDE);

BEGIN
INTEGER MOB_0SC,CARRIER_OSC, CONNECT_LOC;
ITEMVAR AMP_P1, INDEX_PI;
WATT_UNTIL(TIME) > Make sure uwe are at start time;
MOD_OSC«GET (GENERATOR); > Do a simple FM instrument;

16 Feb 1976 12:25 MLANG. TXT [TXT, JAM] PAGE 3-2

CARRIER_OSC«GET (GENERATOR} ;

CONNECT_LOC<GET (GEN_SUM_MEMORY) ;

SET (MOD_OSC,DECAY_EXPONENT,B); > Set amplitude to zero first;
SET(CARRIER_OSC,DECAY_EXPONENT,B); > Before turning ong

SET (MOD_0SC, DECAY_RATE, 8} ; > Dittos
SET(CARRIER_0OSC,DECAY_RATE,) ;

SET (MOD_0SC, FREQUENCY_SWEEP,B); > Dittos

SET (CARRIER_0OSC, FREQUENCY_SWEEP, 8) 3

SET (CARRIER_QSC, FM_ADDRESS, CONNECT _LOC) s

SET (MOD_0OSC, FM_ADDRESS, ZERO) ; > Hmm, Sum memory ZERO must be a

"null", or unused location;
SET (CARRIER_OSC,WRITE_ADDRESS,OUTA) ;
SET(MOD_0SC,WRITE_ADDRESS,CONNECT_LOC) ;
SET (MOD_0SC, FREQUENCY, MAGxPITCH) ;

SET (CARRIER_OSC, FREQUENCY,MAG*PITCH); > We'll never get rid of MAG!;

SET(MOD_0OSC,MODE, *1784) ; - > Standard SIN(k+Fm);
SET (CARRIER_OSC,MODE, *1784) ; > Also standard SIN(k+Fm);
> | think that’s all that has to be done here,
though | wouldn’t swuear on it!;

> Here, we are going to feed an amplitude function and an index
function into the oscilliators. We will assume that there is a MRG
file open on channel CHAN with functions called AMP and INDEX that

are the ampiitude and index functions.;’

AMP_PlNEW; > We need an item for each process we sprout;
INDEX_PI«NEW;
SPROUT (INDEX_PI,
STUFF (MOD_0SC, DECAY_RATE, P1 TCHxMAG%8, CHAN, "INDEX",DURATION] ,
SUSPME) ;
> This is all hypothetical, meaning stuff the
function called "INDEX" into the DECAY_RATE
parameter of generator MOD_OSC. I think there
Will have to be an additional scale factor in
the index, but I haven’t thought it out;
SPROUT (AMP_PT,
STUFF(CARHIER _0SC, DECAY RATE AMPLITUDE, CHAN, "AMP" ,DURATION),

SUSPME) ;
WAIT UNTIL(TIME+DURATION); 5> Go until note is done;

TERMINATE (AMP_P1) - > Should already be terminated;

TERMINATE (INDEX_PI) ;. :

. > I think these last three statements can be replaced
by a JOIN({AMP_PI, INDEX_PI}):

DELETE(AMP_PI) ' > Return the process items;
DELETE(INDEX_PI);
SET (MOD_0SC, MODE, 8) 3 > Stop the presses;

SET (CARRIER_OSC, MODE, 8) ;
UTAB [MOD_0SC] «FALSE; .
UTAB [CARRIER_OSC] «FALSE s > Then release all the stuff;
N UTAB [CONNECT_LOC] «FALSE; '
D;

" Now ue'neéd to look at what STUFF does, because this is where a lot

of the magic occurs. To do this, I am going to have to use some MRG
file reading routines.

PRDCEDURE,STUFF(INTEGER UNIT,PARAM; REAL SCALE; .INTEGER CHANNEL;
. STRING FUNCTION; REAL DURATION)
BEGIN : ’

" DEFINE NWB="128"; 5> We will buffer 128 words at a time;

16 Feb 1976 12:25 MLANG. TXT [TXT, JAM] - PAGE 3-3

REAL ARRAY BUF [1:NWB+1];
INTEGER CLOCK,COMPRS, WD1,WD2,NWDS, POS, WD;
DIRGET (CHANNEL, FUNCTION, CLOCK,COMPRS, WD1, WD2,NWDS) §
> We ignore all the data but the number of wWords;
FOR POS<8 STEP NWB UNTIL NWDS-2 DO
BEGIN "PLP"
PREAD (CHANNEL , FUNCTION, POS,BUF [1] ,NWB+1} s
> Reads NWB+1 words from that function;
FOR WDe1 STEP 1 UNTIL (NWB MIN (NWDS-POS)) DO
BEGIN "WLP"
SET (UNIT, PARAM, (BUF [LD+11-BUF [WDJ] } xSCALE) ;
WATT_UNTIL (TIME_NOW+DURATION/NWDS) 3
END "WLP";
END "PLP";
" SET (UNIT,PARAM, 8) ; > Don’t change it any more;
O3

Presumably, TIME;NUN is a global variable that has the current
“"time". .

At the time DO_IT_ALL is called, we have a bunch of processes, one
for each function, all of which are suspended in a WAIT_UNTIL.
WAIT_UNTIL must have built a list (or whatever) that has all the
processes on it in time order, and every time you call WAIT_UNTIL, it
suspends you and puts you in this list in wake-up time order, There
are some clever ways to do this described in Knuth, volume 3, under
the name "balanced trees". All DO_IT_ALL does is find the first guy
in time, remove him from the list, and RESUME him (a SAIL call).

When he gives a WAIT_UNTIL, he will be suspended again and DO_IT_ALL
will be RESUMEd. DO_IT_ALL will continue unti| the list is empty.

Well, it looks a bit complex, but that's only because it is, plus
I’ve showed you all the gory details, which Wwe can presumably hide
under some more layers of subroutines and macros.

These ideas are not entirely debugged yet, plus | don't entirely
understand SAILs process and co-routine stuff yet, but [think
this is the way it all works.

There are several problems to be resolved. Like first off, there has
to be some way to make sure that these processes get run in the right
order. For instance, we have to run the main program which starts all
the voices, then the main program has to wait while all the voices
start their first notes, and the voices have to wait while all the
STUFF routines get their first function points out. There is a
problem such that if another voice gets run before all the STUFFs for
a particular voice get started, then we'll get non-monotonic time. I
think this can be done.with the priority feature in SAIL. The other
problem is that if the voices proceeded straight through, we wouid
get a zillion processes started, because all of the notes for a voice
would get SPROUTed. This is sort of a disaster, especially for a long
piece. Ideally, each voice would start a note, each note would start
all its STUFFs, each STUFF would issue one WAIT_UNTIL, and the
instrument would proceed until its final WAIT_UNTIL (TIME+DURATION),
at which point the voice would remain suspended &nd the main program
should run to start the next voice. A bit trickuy.

16 Feb 1976 12:25 MLANG. TXTTXT, JAM) PAGE 2-3

arbitrérilg because it is the size of a disk track) and a pointer to
the next record (if anyl.

We can thus "play" a pre-computed command list just by calling
a routine |ike this:

PLAY_FILE(channel);
PLAY_CORE (core_pointer);

This will forward a string of commands to the box from a file (the
channel must be already open for reading in mode 'l7) or from a
record list like the one that was made in the above command.

For sample-data, we can imagine that it should either come from a
file, or the ADC. There is a third case where it shouid come from
both, but I don’t want to think about having to interleave the data
streams right now, so I’Il ignore that possibility (although it could
be added, if enough processing time were available).

INPUT_DATA (channel) ;
This routine is enough. You either have a file opened for reading on
that channel (in mode '17) which points to a sound file aiready in
the proper format, or you have thé ADC open and al! the modes set
{clock rate, paking, number of channels, etc etc etc).
Likeuwise:

OUTPUT_DATA (channel);

I think this covers all the things the low level is supposed to do,
so let’s move on to the higher level.

There is one other routine that is needed:
GIVE_BACK (core_pointer);

This releases the core list of commands.

