File under: R Date: 17 Jul 1979 Name: Robert Poor

Name: Robert Poor
Project: 1 Programmer: ROB
File Name: LOWER.TXT[SAM,MUS]
File Last Written: 21:29 4 Apr 1979
Time: 7:45 Date: 17 Jul 1679
’ Stanford University
Artificial Intelligence Laboratory

Computer Science Department
Stanford, California

17 Jul 1979 7:45 LOWER.TXT[SAM,MUS] PAGE 1-1

COMMENT e VALID 88824 PAGES

C REC PAGE DESCRIPTION

cogeal eoapal

Cppan3 vaav2 An uninhibited guide to LOWER.FAIL...
Cepoos ppopl Internal data to lower

C8po1]1 POPO4 Opcode definitons

Cgbel2 088BS Generator definitions

CopBl4 £8886 Modifier definitions

Cegold 8eBB7 Pointers to Conos, etc.

Coo6l6 0poBS Arguments to the bind procedure

Copgl7 oeae9 Opcode definitions for Cono, etc.

Copel8 ogeole Mode and field definitions

Cosel9 a8ol1l Macros for set_field and set_mode

Ccegeze 09912 Finally the code... begins with set_mode:
cepa2z2 99813 ° The get procedure!)
CBEE24 90614 Give, Decode and Relative

CogB2h BEBlS The fabulous bind procedure...

cegaze psLle Initialize, Geiptr, Newptr, Chksm and Box error
cegez8 88817 Flush and friends

Co0829 86818 - Load delay

Cpgsle 8pal9 Set {error, procedure, channel and output)
CogB32 ALazA Macros for unpacked commands

Coos3s 6e021 Macros for loading targe fields

cosa37 gap2? The packed macros are used for commands which have 2 commands in them.
CppB3Y PAB23 The End!

Cepo4p 0BB24 022-Sep~78 2287 DGL RAIDing LOWER
Co5843 ENDMK ' :

Ce;

17 Jul 1979 7145 LOWER . TXT[SAM,MUS] PAGE 2-1

An uninhibited guide to LOWER.FAI..,
the low level assembler for the Systems Concepts Digital Synthesizer

[KS 4-Apr-79] This document 1i5 somewhat out of date. In particular,
Bind has been extensively changed, and many pages shuffled around. Thus
many of the references in this document will be meaningless.

Tha first fact to know is that LOWER.FAI (hereafter referred to as
lower) is read by a program known as MAKDEF. MAKDEF turns out a file
generally called LOWER.DEF. In order to perform this marvel of the modern
age, it is necessary for the definitions in lower to have a certain format.
To state it briefiy, the format depends on the number of left arrows in
the symbol definition., For example, f « & will NOT be put in lower. BUT,
op_sweep ++~ 13 will. 50, two arrows wiil pass the symbol to LOWER.DEF.
Also, all comments of the format "comment e ... " are passed to
LOWER.DEF. And how does MAKDEF know the end of the definitions? The
answer a statement of the form *; End of definitions". Perhaps someday
this funny syntax wiil be replaced by macros such as SDEF(symbol,value)
and REMARK(text).

Another‘important note is the form of the identifiers. ¢g_ indicates

this declaration refers to a generator. m_ a modifier, d_ a delay unit. p_
is a pointer,

This guide wiil take each page one by one, so a listing of lower.fai
should be on the right hand, a copy of Tower.ixt on the left hart. Here we
go! ‘ :

The first comment is strictly for MAKDEF to pass directly to Jower. It
includes ail the external definitions a typical SAIL program needs to
take. Next follow the internal definitions for the Tloader to find. Also
USERERR 1is external’ed since it might be called by BOX_ERROR.

" Now for the first macro definitions... ptr{name,size,1sb) creates a
byte pointer shifted to the right 18 bits, i.e., without the address bits.
This is so we can save a memory reference (and WHY not?) by doing a HRLI
rather than a MOVE or HRL. bit(name,1sb) is a byte pointer definition for
a one bit field. Otherwise it is the same as ptr.

Now for the first definitions,.., id_x, where x is generator, modifier,
sum_memory and delay are the identifiers passed to GET in order to grab an
appropriate resource, x_data is the pointer {generally &8 bits) for the
data field. x_op a pointer to the opcode field and x_number is the pointer
to the resource number,

Bias definitions come next. They were added in order to write MERGE,
but they might be useful otherwise.

17 Jul 1979 7:45 LOWER. TXT[SAM,MUS] PAGE 3-1
Internal data to lower

Next, we focus our attention on the internal arrays used by the lower
tevel routines. In order to make SAIL happy and the machine language
programmers unhappy, all arrays are defined with the ARRAY macro. 1It’'s
arguments are the address of the array, the size of the array and the
Tower and upper bounds. Note that the sum memory array is siiced up into
quadrants. '

data_begin marks the point in the data storage area where the BIG BLT
can start taking place. Next are all the resource arrays. Currently, it
Just acts as a boolean array... But should the need ever arise, it could
very easily become an integer array.

dp_begin marks the beginning of the dual pointer arrays. Dual pointers
are used to save the box from making too many memory references. The
halves hold the relative address (index) into the buffer where the command
for a particular command can be found. For example, take Mmode and Msum...
Under packing mode, they can share a command word. S0, if a
bind{m_id,mode,...} is done, then a pointer to the word where the set mode
command is will be found at mmodesum{m_id]. Furthermore, the pointer will
be found the left half!

mode_x holds the modes for the resources, This is so the various mode
commands can set a new run mode without affecting the other modes, such as
the envelope mode. sum_x nolds the sum memory locations, but not for any
present reason.

Most of the following definitions do NOT need a comment, so I won't!
max_1id is used by GET to determine whether the program has run out of
resources. '

17 Jul 1979 7:45 LOWER ., TXT[SAM, MUS] PAGE 4-1
Opcode definitons

This page contains the opcode definitions for various (surprise)
opcodes. op_x means that this vaiue is suitable For application to either
y_op, where x 1is an opcode for a resource y. However... o_ definitions
exist so that there is a uniform way to decode opcodes for BOTH generators
and MODIFIERS. Therefore, all o_x definitions are created with g_op in
mind. Since op_ definitions for modifiers are 5 bits, then the o_
definition for modifiers are the op_ definition shifted to the right by 1
bit.

17 Jul 1979 7:45 LOWER. TXT[SAM,MUS] PAGE 5-1
Generator definitions

'xxx1sb is the least significant bit; xxxmask is the mask for the modes.
A1l commands are shifted to the left by xxxlsb, Not much else to say ...

Generator pointers
These are pointers to various fields and bits in generator commands.

The pointers are defined through the use of the pir and bit macros.
For all the dope on these macres, see the first page.

17 Jul 1979 7:45 LOWER . TXT[SAM,MUS] PAGE 6-1

Modifier definitions

fnisb stands for the function least significant bit. The » is used to shift
the value into the right (i.e., proper) field.

Modifer Pointers

What can I say here that I didn't say for generators?

17 Jul 1979 7:45 LOWER . TXT[SAM,MUS] PAGE 7-1

Pointers to Conos, etc,

These are pointers defined for creating the command stream. As of this writing,
22 June 1977, it had not been decided where the command stream would go. The

pointers for the delay field are also on this page.

17 Jul 1978 7:45 LOWER . TXT[SAM,MUS] PAGE 8-1

Arguments to the bind procedure

These are the arguments that are defined and given as the second argument

to the bind procedure. A few things should be noticed. First, note that

the commands overlap. This may be a bad idea, I'm not sure, but it did aliow
me to be able to use the identifier "sum_memory* for both modifiers and
generators without preference. These are offsets jnto a table, which you

will see soon enough,

17 Jul 1979 7:45 LOWER. TXT[SAM,HUS] PAGE 0-]
Opcode definitions for Cono, etc.

These are the opcode definitions used to define certatin modes in the command
stream and also in the delay memory. Right?

17 Jul 1879 7:45 LOWER. TXT[SAM, MUS] PAGE 18-1
Mode and field definitions

These definitions are used by set_field and set_mode. Their use is strictly
limited to these two commands. These two commands are commands to control

the internals of Tower. The set_field command is also used to create command
stream stuff AND for internal stuff, Specifically, size buffer, size_commands
and packing_mode are used to control the size of the code buffer, the size of
the command stream buffer and the packing mode for numbers.

17 Jul 1879 7:45 LOWER . TXT{ SAM,MUS] PAGE 11-1
Macros for set_field and set_mode

These macros are defined for use by the table which these two procedures
call by indirection. Note how there are Jjrsts to literals. This is because
we want to have just one word in the Jump table. Note also that co_fieid
sets a Tield and co_bit sets a bit. A misc_bit {or field) is used to set
a field in a so called "miscellaneous" command. See the infamous cram
sheat for more details on this as well as timer and ticks, both of which

are alse command pames.,

17 Jul 1979 7:45 LOWER. TXT[SAM,MUS] PAGE 12-1
Finally the code... begins with set_mode:

set_mode and set _field are finally explained herein. The first thing that

any procedure in lower will do is to check to see that lower has been 1n1t1a11zed.
This can be done explicitly by the initialize procedure or automatically by

the init subroutine in lower. Back to set_mode. If the mode (an <index) is
greater than the maximum index, then ap error is given, otherwise, it (the
index) is used as an index into the mode table. The mode table makes use of

of the relocate macro. The relocate macro makes the program counter jump to

the right place, place the word (called entry) and then sets the maximum

(if the offset > current offset then set current offset to offset). Then

there is a reloc back to where the pc was. This macro was designed because

one upon a time, Pete Samson threatened that the machine was in a great

state of flux and could be changed at any time. That is why lower has all these
hacks which permit things to be moved around as much as possible. Finally,
after all the relocates have been given, a final relate is given to move

the pc up to the end of the table. Set_field is alse very much Tike set_mode.

17 Jul 1979 7:45 LOWER, TXT[SAM,MUS] PAGE 13-1
The get procedure!

Here is the well knownh and beloved get procedure. Besides initing, the

first thing to do is to check the id against id_maximum. Note that

since DGL complained, it became necaessary to add a field for the sum_memory.
S0 the first thing we do is to mask off this field. Assuming the id is

ok, then we branch through the ldbtbl, If it isn’t a sum_memory, then

it must be either a generator, a modifier or a delay unit. These are called
"normal®". If it is normal, then we check to make sure the field isn't contaminated.
Then we get the next device by searching linearly thru the table (SKIPing

" the first one!). If no free one is found, then get will return a -1.

On the other hand, if the argument was sum_memory, then we use that field

to get the proper quadrant. Note that since the field is already Jeft shifted
by 3, we only need to shift by 3 (to make 6, or 64). The table function_table
is kept around in case anyone needs it in the future.

17 Jul 1979 7:45 LOWER . TXT[5AM,MUS] PAGE 14-1

Give, Decode and Relative

Give is used to give back an identifier. It should be obvious.

Decode is used to tell what kind of identifier an identifier is. Relative
returns the relative number of the identifier. I hope the code is obvious.
But in case it isn’t, the identifier is compared against the ranges of
identifiers. When it is found, then it is subtracted from the bottom

of this range to give the relative number of the identifier.

17 Jui 1979 7:45 LOWER . TXT[SAM,HUS] PAGE 15-1

The fabulous bind procedure,..

Here in all of its magnificence, is the bind procedure. It is pretty
straight forward until the tables. The tables consist of relocate macros
which have as arguments the offset (the argument given to bind) and the
location of a macro which handles that type of bind. The maximum bind

field is determined by the end of a tabie-the beg1nnin§ of a tabie. The
‘bind_fTield procedure is used to bind an argument in a specific packing mode.
It does this by temporarily changing the packing mode and calling bind

and then changing the packing mode back again.

17 Jui 1979 7:45 LOWER . TXT[SAM,MUS] PAGE 16-1
Initialize, Getptr, Newptr, Chksm and Box error

Initialize (alsce known as init) initializes the lower level routines by
clearing out the data area (from data_begin to data_end). It also
resets alil the pointers to various records and so forth. Finally,

it sets inited, a boolean variable so that the skipn inited will be
skipped and the push} p,init also skipped.

Getptr gets a pointer to the code stream. Newptr gets a pointer to the
command stream. ’

Length, which called by box_error, computes the length of a asciz string.
This is used by box_error to make a SAIL string for usererr to gobble.

The pushing of theé &s in box_error is used to create a Usererr(#,8,message)
cali. Note that if the user has specified a different error handler, then
box_error will call that procedure with that string INSTEAD of calling
USERERR.,

Chksm is used by procedures in bind to check that the argument is indeed
a sum_memory address., If it isn’'t, it will complain, believe me.

17 Jul 1979 7:45 LOWER , TXT{ SAM,MUS] PAGE 17-1

Flush and friends

Flush should be called at the end of any program which makes use of the
lTower level routines. Flush will flush out any of the remaining buffers
as well as tlobbering the dual peinter tabies so that no attampt is made
to share a code word that is already used!

17 Jui 1979 7:45 LOWER. TXT[SAM,MUS] PAGE 18-1

Load delay

Load delay is used by the user to load up a deiay table with data. At the
time of this writing, 1t is still a bit incompiete.

17 Jul 1979 7:45 - LOWER . TXT[SAM,NUS] PAGE 19-1
Set {(error, procedure, channel and output)
These routines are used to set things internal to lower. They set:

Set_error sets this block of accumulators to the current contents of all
the acs. It also saves the pc of the return. It is possible to return
to exactly where you were by use of this procedure.

- Set_procedure is used by users who want to handle their own box errors.
Unfortunately, the present way of handling errers is strictly through
error messages, so it would be necessary to write code that decoded

the strings. Perhaps this can be changed sometime. I envision a procedure
which knows enough about box errors to change whatever was at fault and
continue. ‘

Set_channel is used to set the output channel for the disk. It has to be
opened in mode *17. This too could probably be changed to mode '13.

Set_output is used to set the output channel for the command stream.
Any comments that apply to set_channel apply to set_output. These two
should probably have better names.

17 Jul 1979 7:45 LOWER . TXT[SAM,MUS] PAGE 28-1
Macros for unpacked commands

These macros are used for the creation of code words for unpacked commands.

By unpacked, we mean commands which are not able to share a word with another
command. I should note at this point the strategy used in the creation of these
macros: When lower was first written, I thought "geez, this should run as fast
as possible, let's trade space for time". In retrospect, this was probably an
error. If I had patience, I rewrite this portion of lower to use procedure
calls and probably push all this stuff on the stack and call a procedure.

Or something. Anyway, the way ALL of the macros I will discuss work is the
following: The first thing to de is to get a pointer to the command

Tist. Note that this process may automagically flush the buffer if the

buffer pointer exceeds the length of the buffer. In any case, then we

take the pointer (which was carefully packed so that it could be used

in immediate mode) and make & pointer without an address. We then take the
address of the word in the buffer and place it in the right half. We then

use the pointer definitions defined in earlier pages to set various fields/bits.

g_loose sets a word for a generator. m_loose does the same for a modifier
and d_loose does guess what for a delay unit.

17 Jul 1979 7:45 LOWER. TXT[SAM,MUS] PAGE 21-1
Macros for loading large fields

g_load and m_load are used for loading numbers like frequency, which are

often longer than the 20 bit field. The probiem with the 28 bit field is solved
by @ hack called the extension register. The extension register is loaded with
the HIGH ORDER x-28 bits (where x is the length of the field) and then a

MISC command is put out to load the DX register. Then the appropriate

Toad command is emitted. Note that some of this depends on whether

the left_justified or fuli_word mode is turned on.

The procedure bit_check is used to see if there are any bits on the left
hand side of a word. (The left hand side is defined as the 36-32 = 4
bits on the very jeft). If so a warning 1s emitted. This can be left out
by removing the call to it in the _load macros.

17 Juil 1979 7:45 LOWER., TXT[SAM,MUS] PAGE 22-1

The packed macros are used for commands which have 2 tommands in them.
g_packed and m_packed are used to create such commands, The call to the
macro takes 4 arguments: the name of the opcode, the name of the left and
right field and a flag teiling us which field to set. If the x hand side
of & dual pointer (where x is left if the command wanted is right and
vice versa) is non zero and our side of the dual pointer is zero, then
there is a word in the code buffer which we can share this command with.
If not then we get a new buffer pointer and do the thing as tho there
wasn't a command there.

The generator bind routines call these macros. See the macros expand.

See the macros generate gobs of code. My My. See the run modes. Aren’t
they different? You bet. They work in the folowing manner: They use
pointers to the proper field to set the various modes. Then they generate
a mode command. Note that we save the mode away. This is so when we
change the mode in any way, we still have the other modes that the mode is
packed in the same. Right? Right,

The Delay bind procedures are just like modifiers/generators. We even
save the mode for the delay mode just 1ike we do for generators and modifiers.

17 Jul 1979 7:45 LOWER . TXT{ SAM,MUS] PAGE 23-1

The End!

Yes, that's it. There ain't no more except for the patch space. This is for
the unlikely (I hope!) event that there are bugs in lower that need to be patched.
Or better yet, you can use it to write patches for your buggy programs! Good

Tuck! (and bon appetit!)

17 Jul 1979 7:45 LOWER . TXT[SAM, MUS] PAGE 24-1

 022-5ep-78 2287 DGL RAIDing LOWER

021-Sep-78 2204 KS RAIDing LOWER

The next time you feel the need to RAID LOWER, you might like to try the
following technique on Bind:

Put & breakpoint at the JRA R,(R) instruction in Bind. You can find it easily
by stepping thru ti3 you get there.

Display ac's A, B, C, D, and R using <cnt1>; to keep them around. ‘

While pointing at R, type <cntl1>{meta>] to get a dynamic display of the word
pointed to by the left half of R. Both R and that word should be disp]ayed

as half-words {use <cnti>h for that).

While pointing at the dynamically displayed word, type <cntli>{meta>] again,

to get the word pointed to by THAT word’s left haif This should be displayed
as text (with <cnti>t).

Now everytime you hit your breakpoint, ac's A thru D will tell you about the
arguments for that call; R will tell you what routine you are going to use
(in the right half); the word pointed to by the left half of R wiil tell you
what parameter discriptor block you are going to use (with names 1ike %GO,
#EBMODE, ¥ML1, etc.j); and the word pointed to by the left half of THAT will
tell you the (English-like) name of the parameter being twiddied.

With al1 that information at your disposal, débugging ought to be easy; with
ail that organization and style, debugging ought to be unnecessary!

-~ Ken

File under: R ~ Date: 17 Jul 1979

Name: Robert Poor
Project: 1 Programmer: ROB
File Name: LOWER.FAI[SAM,MUS]
File Last WEitten: 11:38 14 Jul 1979
Time: 7:35 Date: 17 Jui 1979
Stanford University
Artificial Intelligence Laboratory

Computer 3Science Department
Stanford, California

Neme: Robert Poor

17 Jul 1979 7:35 LOWER.FAI[SAM,MUS] PAGE 1-1

COMMENT © VALID 60843 PAGES

C REC PAGE DESCRIPTION

Copopl peed)

Copged BBoo? titie BOXASS Low Level code assembler for the SC box
Copop7 pBOOI Internal/external symbols

CoBBll poAR4 Random definitions of common interest

CBBB13 poeBS Basic structures and constants

CBoB22 BOBAG Opcode definitions

Coopee 0oga7 Generator definitions

Cepazs popos Generator pointers

Cope3] ppon9 Modifier definitions

" CoBB33 AOBlE Modifier pointers

CeBs35 28811 Pointers for CONOs, Misc, Timer and Ticks (and Delay!)
CogB37 #BBl2 Opcode definitions and modes for CONO, Misc, Timer and Ticks (and Delay!)
Cegelg s0013 Arguments for the bind procedure

Capo40 apR14 ‘Mode and field definitions and stream fields too
Cegg4Z2 poolS Macros for the set_mode and set_field procadures
COB045 ppalS Set_mode and Set_field procedures

Coppbe 60817 set_interrupt and set_code

CoBo52 BBO1B Get procedure

Cospbs 60819 Give and Decode and Relative

CBoBh7 BoA20 Putlmd - put an arbitrary word in code stream

CBpB58 88R21 Bind procedure (bind_field too)

CoBa6Gl BEe2?2 Vectors to routines and parameters (Bind)

Copaoch 60823 Parameter descriptor blocks
Co0867 80024 GENERATOR parameters-
CopoacY9 pas2s MODIFIER parameters

C8B87]1 pAB26 DELAY parameters

ceop72 peB27 EASY routine - for simple cases

CBBa74 gEBeZE LONG routine = for parameters u¢1ng DX

CeBE?7 BBEBRO SHARED routing - for pazrameters with =lends
CepB7S 04836 ZEROED routine - for parameters having ciear biv
cogpsz geB3l Generator bind routines :
Coeos4 ppE32 Modifier bind routines

Ceopss voB33 Delay bind routines

CeopB9 pBB34 GetPtr, NewPtr

CBod9] pBB3S Flush and its subroutines

Capaas ppo36 Chksm, Smquad

CoBoa97 BRO3T7 Init

Co8099 ABB38 Error handling - Box_error, Length, Set procedure .

ceglae? 06839 - TooBig, BadMem, NotMem, BadDly
Cbolae gpe4s - errcrlf, errstr, erroct, errdec, errend
Co81a9 gop4l - errist

CoBll2 poR42 Stream procedures - Set_output and Set_stream and Unset_output
CBO117 BHO43 The End!

COB8118 ENDMK

Ce;

17 Jul 1979 7:35 LOWER.FAI[SAM,HUS] PAGE 2-1

title BOXASS Low Level code assemblier for the SC box

ENTRY SET.FI,INITIA,UNSET.,GET,PUTCMD,BIND,GIVE,BIND,.F,FLUSH,RELATI
ENTRY SET.OU,SET.MO,DECODE, PASS,SET.PR

subttl Basic definitions

.insert samdef[six,mus] v message definitions for the box

sHistory:

; Major revision of Bind by KS. JUN-78

; Various bug Tixes and gratuitous modifications by KS. NOV-77 and after

; @ This is the corrected version, by DGL, 18/9/77, from the new spec sheet.
; comments throughout of the changes are preceeded by "g".

; This program is dedicated to J Brown and the ail night movies!

: ACs

OO0 Tm -
b S S S S 4
b wrhe—~ &

6
7
i 18
ad « 11
fp « 12
r e« 13
X «~ 14
z + 15
sp +~ 16
p+ 17

i)
ny
ttt

; POP-6 switch: removes all UUO calls
ifndef nouuo,<{nouuc « 8>
; used for error calls

verstre+«g
%erchresl
Yeroctee?
%erdece«3
“Hercrifeed
%erpars+5h
%ertyp++6

17 Jul 1979

7

135

LOWER.FAI[LSAM,MUS] PAGE 3-1

SUBTTL Internal/external symbols

; Exciting symbdis to pass to the loader for SAIL programs to call

comment e

external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external

external

external
external
external
external
external
external
externai
external
external
external
external
e

1

simple
simpie
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

external

procedure

initialize;

integer procedure get{integer id,number(-1));

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

give{integer id);

putcmd{integer command);

bind(integer src,op,dest};
bind_field{integer src,op,dest,type);
set_output(integer stream,sail_channel};
unset_output{integer stream,saii_channel);
set_procedure(reference procedure pj;
set_mode(integer name);

set_fieid(integer name,field);
set_stream{integer stream,field,value);
set_interrupt(boolean enable; integer cause});
set_code{integer code):

fiush;

integer procedure decode(integer unit);
integer procedure relative(integer unit};

array
array
array
array
array
array
array
array
array

unit_generators[8:671];
generators[B:255];
modifiers[8:127];
gen_this_pass_sum_memory[#:6
gen_last_pass_sum_memory[&:6
mod_this_pass_sum_memory[8:6
mod_last_pass_sum_memory[8:6
eli_sun_memoryl 12687,
delays{8:31];

3
3
3
3

[N} N § N) S

update_tick;

pass;

usererr

initialize,get,gjve,bind,set_procedure,unset_output ;,set_error
bind_field,unit_generators,generators,modifiers,all_sum_memory
delays,set_output,gen_this_pass_sum_memory,mod_this_pass_sum_memory
flush,set_mode,set_field,update_tick,relative,set_stream
pass,decode,gen_last_pass_sum_memory,mod_last_pass_sum_memory
set_code,set_interrupt

internal
internal
internal
internal
internal
internal

17 Jul 1979 7:35 LOWER ,FAI[SAM, MUS] PAGE 4-1
SUBTTL Random definitions of common interest
; Field macro definitions, shifted right to save a memory reference

define ptr(name,size,1sb) { name ++ <{point size,8,1sbd>e-=18 }
define bit{name,1sb) { name «+~ {point 1,8,1sbde-=18 }

; Identifier opcode definitions
; Passed to GET to specify element type

id_generator e« @
id_modifier «« 1
id_sum_memory e+ 2
id_delay «+~ 3 ’
id_maximum «+~ 4

; sub fields (Oniy allowed for sum_memory)

last_gen_pass «+~ 6

last_mod_pass ++ 18
this_mod_pass «+ 28
this_gen_pass «+ 38

: Basic field definitions
; Pointers for data fields, opcode fields &nd element numbers for all element
; types that take commands: generators, modifiers and delay units.

ptr(g_data,28,23)
ptri(g_op,4,27)
ptr{g_number,8,35)

ptr({m_data,26,23)
ptr(m_op,5,28)
ptr(m_number,7,35)

ptr(d_data,16,19)
ptr{d _whole_data,28,23)
ptr{d_op,z,3q)
ptr{d_number,5,35)

; Bias definitions, used for MERGE prog.

bias_generator «+~ 8

bias_modifier «+~ bias_generator+=256
bias_sum_memory «+ bias_modifier+=128
bias_delay +«+ bias_sum_memory+=25§
bias_end ++ bias_delay+=32

17 Jui 1979 7:35 - LOWER,FAI[SAM,HUS] PAGE 5-1
subttl Basic structures and constants

; These are the famed unit generators. They are considered used
; when a non zero number is stored within them

define array & (address,size,lower,upper) {
+6
address
Tower
upper
1 ; one dimensional arrays
l,,size

}

unit_generators:
array{u_gen,=256+=128+=32+=256,0,=256+=128+=32+=256~1)
generators:

array{b_gen,=256,8,=256-1) ; generator allocation
modifiers:

array(b_mod,-128,6,-128-1) ; modifier allocation
delays:

array(b_del,=32,8,=32-1) -3 delay alloecation

all_sum_memory:
array{b_sum,=256,8,=256-1)
gen_last_pass_sum_memory:
array{b_sum,=64,8, —64-1)
mod_Tast_pass_sum_memory:
array(b_sum+=64,564, B =64-1)
mod_this_pass_sum_memorv
array({b_sum+=64+=64,=64,8,=64-1)
gen_this_pass_sum_memory:
array(b_sum+=64+=64+=64,=64,B,=64-1)

3; These are SAIL array pointers which can be passed by the empty
; buffer routine in Tlush.

array(codbuf,codsiz,®,codsiz-1)
code_array:
array(combuf,comsiz,8,comsiz-1)

cmd_array:

data_begin « , ; begin of data area

u_gen: . : unit generators (all four of them)
b_gen: block =256 i generators

b_mod: block =128 ; modifiers

b_sum: block =256 ; sum memory locations

b_del: block =32 ; delays

max- unit + .-b_gen

; These are the shared command arrays and the zeroed command arrays. The

; arrays are half-word arrays, with entries being pointers into the command
; {everywhere else in this shit called cede!) buffer. The idea here is to

; use multiple function commands as much as possible (if optimizing). The

; zeroed command arrays have a share array in the left half for the command
; which has a clear bit for the associated parameter; the right half points
; to any known use of a non-zerc load of the parameter. A zero entry in any
; of these arrays means no known use of the command exists. These arrays are
; indexed by unit number {i.e. generator, modifier, or delay unit number).

i To insure that the re-ordering of parameter loads effected by optimization

17 Jul 1979 7:35

; is safe, all arrays are cleared when the update ticks for a pass are exhausted.

LOWER .FAI[SAM,MUS]

PAGE 5-2

; Consequently we can further optimize by never loading a parameter more than

i once during a single pass.

dp_begin « ,

gnm: glsum: block =256
gmodfm: gkclr: block =256
mmdscsm:migcir: block =128
mrmin: mllelr: block =128

dxy: dyclr: block =32
dzp: block =32
dp_end « .-l

; Miscellaneous storage

mode_g: block =256
scl_m: block =128
mode_d: block =32

sum_g: block =256
sum_m: block =128

W e WA W w e W

i
N
]
H
’
.
L]

left is GN/GM right is GL/GSUM
1eft is GMODE/GFM right is GK{clearable)

Teft 1s MMODE/MSCALE/MSUM right is LB{clearable)

Teft is MRM/MIN- right is Ll{clearable}
Tleft 1s DLY X right is DLY Y(cliearable)
left 1s DLY Z/P right is unused

generator modes

modifier scales

delay unit modes

generator sum memory locations
modifier sum memory locations

; the next blocks are organized by pairs so they can be referenced by using
; the offsets code_stream and command_stream

codsiz « =1824
comsiz + =64

codbuf: block
combuf: block

codsiz
comsiz

bufent:
codent: block 1
coment: block 1

bufmax:
codmax: block 1
commax: block 1

bufptr:
codptr: block i
comptr: block 1

bufpre:
codprc: block 1
comprc: block 1

outc: block 1
olist: block
g

packmode: block
optim: block
acblk: block
savblk: block

LI LI el]
e

data_end « .-1

inited: block 1
errorl: block 1

buffer: codbuf

maximum instruction buffer size

code buffer
command buffer

count of words in code buffer
count of words in command command buffer

real buffer size (can be set with set_stream)
real command buffer size

code buffer pointer
command buffer pointer

procedure to empty code buffer
procedure to empty command buffer

out channel,oiist for instruction flush
iowd words,buffer
terminator for instruction list

Packing: left or right justified or fullword
optimize instruction packing

where all the acs go when set_error is called
where to temporarily Save acs

end of data area

basic init done
where to go to when errors happen

buffer pointers

17 Jui

outchn:

codchn:
comchn:
outent:
codcct:
comcet:

bufary:

1979 7:35
combuf
codchn
comchn
block =16
biock =16
block i
block 1
code_array
cmd_array

LOWER .

; indirect table for set_stream

strmtb: buffer
bufmax
bufptr
bufpre
pass: biock 1
update_tick:
block 1
max_update_ticks:
block 1
proc_ticks:
biock 1

; Maximum identifier for each unit

max_id:

v =2664+=128+=256-1
=2564+=128+52564=32~]

-1

-1

=256-1
=256+z128-1

1]

.
'
]
’
.
]
.
»
-
]
*
?

FAI[SAM,MUS] PAGE 5-3

pointers to the buffers...

channels for set_output (code channels)
channels for set_output (command channels)

code stream count
command stream count

code array
command array

buffer pointers
maximum buffer count
current pointer
buffer flusher

pass count

update“tick count

; update ticks per pass (total-processing)

: process ticks per pass

tnis one's Tor decode

trick to make it all come out in the wash (Get)

generator
modifier

sum memory
delay memory

; definitions for set_output procedure

code_stream «+~ @
command_stream ++ 1
max_stream ~+« 1

; flag for devchr

f_disk « 200660

*
’

; code offset
; command offset

it's a disk!

17 Jul 1979 7:35
subttl Opcode definitions

LOWER .FAI[SAM,MUS]

PAGE 6-1

; Timer and Ticks opcode definitions

op_timer «« ¢
op_ticks ++ 3

REPEAT &,<

; TIMER
; TICKS

; most of these are unused now - only TiMER and TICKS used

; generator opcode definitions (placed in g_op)

op_sweep ++ 13
op_frequency «+ &4
op_angle «~+ 11
aop_ncosines «« 87
op_scale «- 87
op_rate «+ 86
op_exponent ++ 82
op_asymptote e+ 1@
op_gsum-«« 185
op_fm ~+ 12
op_ogmode «+ 12

set sweep
¥ frequency
" angle
' number of cosines
" scale
]

rate of decay
" decay exponent

" asymptote

" sum memory address
" fm address

¥ mode

»
¥
.
¥
.
]
]
4
.
!
.
’
[
!
»
!
]
¥
»
t
.
1)

; generator opcodes as seen by g_op field (all the same for syntax)

O_Sweep ++ op_sweep
o_frequency «+« op_frequency
o_angle +«+ op_angle o
0_ncosines «« op_ncosines
0o_scale &= cr conls

o_rate = op_rale
o_exponent <+ op_exponent
o_asymptote <+ op_asymptote
O_gsum +«+ op_gsum

o_fm «+ op_fm

o_gmode ++ op_gmode

i " angle

;" number of cosines
¥ zesie

ToTEWE UL Gelag

" decay exponent

" asymptote

" sum memory address
" fm address

" mode

- ww e W we -

; modifier opcode definitions (placed in m_op)

op_m ++ 38
op_m_8 «+ 38
op_m_1} e~ 31
op_mBl ee 32
op_mll «~~ 33
op_1 «+ 34
op_1_8 «+ 34
op_1_1 «+ 35
op_in «+« 37
op_rm +« 37
op_msum «« 36
op_mmode «+ 36

; MB/M1

; M8 (Right Justified)

; M1 (Right Jjustified)

;OM8 Jeft-ajusted, low bits from Jeft of DX clear DX
;oMl left-ajusted, low bits from left of DX cliear DX
; La/sLl

; LB

; L1

i 8 input
; b oinput

; set sum memory address
i " mode

; modifier opcodes as seen by g_op

O_Mm ++ op_me-1

o_m_8 «+ op_m_Be~-]
o_m_1 «+ op_m_le~1]
o_m8l «+ op_mBle-]
c_mll «~ op_mliie~1
o_1 «+~ op_le-1

0_1_8 +- op_1_8e-1
0_T_1 ++ op_1_le-1

; MB/M1

: M8 Right justified)

; M1 Right justified)

;OM8 left-ajusted, low bits from left of DX clear DX
18M1 left-ajusted, low bits from ieft of DX clear DX
; La/Ll

; LB

;L1

17 Jul 1979 7:35 LOWER.FAI[SAM,MUS]

o_in «« op_ine-]

o_rm +«+ op_rme-1

O_MSuUm ++ op_msume-1

o_mmode ++ op_mmode®-1

; the only delay opcods
op_delay ++]

; delay opcode as seen by g_op
o_delay ++ op_delaye-1

>;END REPEAT 9

; a input

i b input

; set sum memory address
i " mode

; set a deiay unit

; set a delay unit

PAGE 6-2

17 Jul 1979 7:35
subttl Generator definitions
; Generator modes

runish «« 6
runmask e« l7erunisbh

g_inactive «+ Berunlsb
g_pause ++ lerunlsh

a_running «+« l7erunisb
b_running «+« l6erunilsb
g wait e+« llerunilsb

c_running «+« l15erunisb
data_read ++« 7erunlsb
data_write «+~ 3erunisb
dac_write «+ Zerunisb

W WE W4 W we wa WE owe we

; Generator envelope modes

envish e+ 4

envmask «+ 3senvisb
min_envelope «+ deenvisb
max_envelope ++ 3eenvisb

1plusq «« leenvisb

Iminusqg ++ Peenvish

lexpplus «« 3sanvisb
lexpminus «« 2eenvisb

-e Wy wa ws

; Oscillator modes

0sclsb +~+ @

oscmask «« 17¢0scisb ;
min_oscillator «+~ @eosclsb
max_oscillator «+ lOeosclisb H

sine «+« @eoscisb

sawtooth «+~ leosclsh
sguare ++ 2eoscisb
pulse_train ++ 3eosclsb
sum_of_cosines «+~ 4eosclisb
sin_fm «+- 16eoscisb

e wE we wm wme we

LOWER.FAI[SAM,NMUS]

No
No
Yes
Yes
Yes
Yes

1+g
1-q
1+21(-q)
1+2¢(-q)

o was 7
d was 5

sin{k)}
sawtooth
square

pulse train
sum of cosines
sin(Jd + fm)

PAGE 7-

No
No
Yes
No+
No
Yes+

9 was 8
0 was 1
d was 2
9 was 3

1

"No

No
Yes
Yes
No
Yes
Yes
No
No

0 was 4

0 was B
0 was 5

R

17 Juil 1879 7:35 LOWER.FAI[SAM,MUS] PAGE B-1
subttl Generator pointers

REPEAT 8,¢ ; mostly unused
; pointers to generator fields

decay exponent (Q)

decay rate (P)

oscillator frequency (J)

number of cosines {N)

scale of sines or sum of cosines (M)
asymptote (L)

sum memory write address {(SUM)
oscillator angle (K)

oscillator mode {MODE)

FM (FM}

sweap frequency or memory address {(0)

ptr{p_exponent,28,23)
ptr(p_rate,28,23)
ptri{p_frequency,28,23)
ptr{p_ncosines, 11,19}
ptr{p_scale,4,23)}
ptr{p_asymptote,12,17)
ptr{p_gsum,6,23)
ptr{p_angle,20,23)
ptr{p_gmode,18,16)
ptri{p_fm,7,23)
ptr{p_sweep,28,23)
>:END REPEAT o

Wa WE W WP W WA WE wa W W e

ptr{p_g_run_mode,4,29} ; run_mode field in mode - unbiased | .
ptr(p_g_enveiope,2,3l) ; envelope Tield too - unbiased |{in mode_g)
ptr{p_g_osc_mode,4,35) 3 oscillator mode - unbiased

REPEAT 8,¢

; pointers to important bits

bit{exp_just,27)
bit{freq_just,27)
bit{no_ncosines,4)

decay exponent adjustified left
frequency adjustified left
Don’t Joad ncosines (N)

bit{no_n,4) Don't load ncosines (N)
bit(no_scale,b) Don't load scale (M)
bit{no_m,5) Don’¢ load scale (M)

Don't load asymptote (L}
Don’t load asymptote (L)
Don't load sum {SUM)
Don't load mode (HODE)
Don't load fm (FM)

clear angle (K)

bit{no_asymptote,d)
bit{no_1,4)
bit({no_gsum,5)
bit{no_gmode,4)
bhit{no_fm,5)
bit(k_clear,6)
>;END REPEAT &

. mE WE we W We W mE WwE W WA WE

17 dul 1979 7:35

subttl Modifier definitions

: Function definitions

fnlsb e« @

fnmask +~+« 37efnish
fo_minimum «« @
fn_maximum «« 35

m_inactive «+~ Bsfnisb
U_noise ++~ 2efnisb
tr_u_noise ~~ 3#fplsb
latch «+ 4efnisb
threshold «~ 6efnisb
delay ++ 7efnlisb

notwopoles ++ lB8efnisb
two_Bpoles ++« llefnishb
two_lpoles «« J3efnisb

notwozeroes +« l4efnisb
two_Gzeroes ++~ 15e¢fnish
two_lzeroces «+~ l7efnlsb

int_mixing «+~ Z8efpnisk

ohe_pole ++ 21efnisb

mixing «+~ 24efnisb

one_zero ++ 26efnish
four_quad_multiply «+ 38efnlsb
am ++ 3lefnish

maximum «+« 32efnisb

minimum «+« 33&8fnlsb

signum «+ 34efnisb
zero_crossing_puiser +~+~ 35¢fnlsb

LOWER.FAI[SAM,MUS]

PAGE 9-1

;DGL - was 4

inactive

uniform noise 8 was 1
triggered uniform noise
Tatch

threshold 8 was missing
delay

two poies; no variables
two poles; M8 variable
two poles; M1 variable

two zeroes; no variables
two zeroes; M8 variable
two zeroes; Ml variable

irteper mires

: one pole

. ws wa we we wa W we #

mixer

one zero

four quadrant multiply 8 was 31
amplitude modulator ® was 38
maximum 8 was 33

minimum 8 was 32

sighum function

Zero crossing puiser

17 Jul 197¢ 7:35

subttl Modifier pointers
REPEAT 8,¢
ptrip_m,28,23)
ptr(p_m_8,26,23)
ptr{p_m_1,26,23)
ptr(p_1,28,23)
ptr{p_1_9,28,23)
ptr{p_1_1,28,23)
ptr{p_mmode,5,12)
ptr{p_msum,7,23)
ptr{p_rm,8,15)
ptr{p_in,8,23)
ptr{p_mscale,4,16)
>;END REPEAT @

ptr{p_a_scale,?,33)
ptr{p_b_scale,2,3§)

REPEAT #,<
; Modifier bits

bit{no_mmode,4)
bit(no_msum,5)
bit(18_ciear,6)
bit{no_mscale,7)
“bit{no_rm,4)
bit{no_in,5)
bit(11_clear,6)
bit{m_just,27)
bit{m_select,28)
>;END REPEAT 8

LOWER .FAI[5AM,MUS]

W e we me We we ws we we W wE

we we wes we we wa

e e wme

PAGE 18-~1

Ma/Ml field

MB field

Ml fielid

L8/L1 field

L8 fieid

L1 fieid »
Modifier mode (MODE)
Modifier sum (SUM)

B data address (RM)
A data address {IN}
A and B scale (SCALE)

A scale - unbiased](in sci_m)
B scaie - unbiased |

Don't load mode

Don't load sum

Clear L8

Don’t load AABB (scale) bits of MMODE
Don*t load rm

Don't load in

Clear L]

Ma/Ml Neft justified

Mg if off; M1 if on

17 Jul 1979 7:35 LOWER.FAI[SAM,HUS] PAGE 11-1
subttl Pointers for CONOs, Misc, Timer and Ticks (and Delay!)
; CONO-A pointers

Processor control & 2,21

Reset tick counter @ 22

(Set) Inhibit/Permit Processing ticks 9 2,23
Diagnostic ReadBack @ 25

Master Reset

Priority Interrrupt Assignment

ptr{p_contro},2,19)
bit(p_rtc,28)
ptr{p_spt,2,24)
ptr{p_drb,7,31)
bit{p_mr,32)
ptr{p_pia,3,35)

; CONO-B pointers

ptr{p_re,2,38) ' ; Reset Error @ 2,38
ptri{p_int,1,31) ; Interrupt enable/disable
ptr{p_cause,4,35) ; Cause number '

; MISC pointers

misc., data

misc. opcode @ 2,32
clear all waits
clear all pauses

ptr{misc_data,28,23)
ptr{misc_op,2,38)
bit{misc_wait_clear,33)
bit(misc_pause_clear,34)

.. wa we wa was

bit{misc_stop,35) stop!

; TIME pointers

ptr(time_data,28,23) ; timer data

ptr{time_op,2,32) ; timer opcode

; TICK pointers

ptr{tick_data,16,23) ; vick data

hit{tick_op,32) ; tick operation

; Delay pointers

ptr{p_d_mode,4,35) ; Delay mode - unbiased |{data) |
ptr{p_d_scale,4,31) ; Scaling factor for table Tookup - unbiased |

ptr{p_d_size,16,31) ; Size of delay line-1 - unbiased |

17 Jud 1979 7:35 LOWER . FAI[SAM,HUS] PAGE 12~1
subttl Opcode definitions and modes for CONO.'Misc, Timer and Ticks {and Delay!)
:+ CONO-A

c_stop e+ 1
c_start «+ 2
c_step &« 3

ena_ticks &+ 1
dis_ticks w+ 2

; CONO-B

bad_linger e«]
mix_overflow «+ 2
mult_overfiow e« 3
msum_overflow e« 4
gsum_overflow «« 5
w_exhausted «- 6
r_32_data e~ 7
¢_exhausted ~+~ 18
r_exhausted «+ 16

; Misc opcodes

dx e+«]

ttla e« 2

ttlb &« 3

f@ «~ B

fl 1

f2 = ¢

f3 «+« 3
unfiltered «+ 4
same_fTilter «+~ 18

; Ticks opcodes

tix_processing «~ 8
tix_total ++ 1

: Timer opcodes

pass_set =+~]
founge ++ 2
pass_clear &~ 3

; Delay modes (for p_d_mode when in size/mode)

d_inactive «« @

delayline «+~ 18

table_lookup &+ 12 -
round_table_Jlookup ++ 13

; delay mode definitions (placed in d_mode)

d_base «+ 8§ ; base address
d_index ««] ; index

d_size «+ 2 ; size of delay unit
d_mode «+ 2 ; or the mode/scale
d_scale ++ 2 ; delay scaling factor

17 Jul 1979 7:35 LOWER .FAI[SAM,MUS]
subttl Arguments for the bind procedure
; Generator definitions

sum_memory ++ B
osc_mode «+ 1
mode +«+ 2

sweep ++ 3
‘frequency «« 4
angle «+ §
ncosines «« 6
scale «~+« 7

rate «+ 148
exponent ++~ 11
asymptote e+ 12
fm =« 13
ran_mode «« 14
envelope ++ 15

; Modifier definitions

; Sum_memory e+ 8
add_sum_memory +« 9
function e+« 1

; mode &+
coeffl e~
coeffl ««
term_8 e~
term_1 e«
a_in e+~ 7
b_in «+ 18
a_scale «+= 11

b_scale e~ 12 :
replace_sum_memory e+ 13
invoke_delay_unit «+« 14

[R I FU AL

; Delay defintions

base_address +«+ 8
; mode ++~ 2
delay_length ¢+~ 3
index +« 4

; scale »+ 6

PAGE 13-1

17 Jul 1879 7:35 LOWER . FAI[SAM,MUS] PAGE 14-1
subttl Mode and field definitions and stream f191ds too

; Mode definitions

reset_tick_counter «~ 8 ; CONO-A
inhibit_processing_ticks e+] ; CONO-A
permit_processing_ticks e+« 2 ; CONO-A

reset ++~ 3 ; CONO-A
wait_clear ++ 4§ ; MISC
pause_clear «+« 5 ; MISC

stop ++ 6 i MISC

optimize «+ 7 i set by set_mode
non_optimize «+~ 18 i Tikewise

; Field definitions

control_mode +« & ; CONO-A

PIA «+ 1 ; CONO-A
diagnostic_address e« 2 ; CONO-A
dx_load «+« 3 ; MISC

tt1_load «+ 4 ; MISC
processing_ticks =+« 5 ; TICKS
total_ticks «+ 6 ; TICKS

dwell «= 7 ; TIMER
set_passes ++ 10 ; TIMER
tlear_passes_dwell e+]1 ; TIMER
packing_mode e« 14 ; internal

; packing modes (for packing_mode)

full_word «+ 8

Teft_justified e« 1|

right_justified «+ 2

; stream fields

address e+ 8 ; buffer address
size_buffer e« 1 ; buffer size

y ptr_buffer e+« 2 » buffer pointer
flusher «+« 3 : ; user flusher

max_sTield -+~ flusher

s End of Definitions

17 Jul 1979 7:35 LOWER.FAI[SAM,MUS] PAGE 15~1
subttl Macros for the set_mode and sei_field procedures

define co_field & {name,field,exeunt) {
jrst [

movei a,field

a_cono(name, exeunt)

}
define co_bit & {name,exeunt) {
Jrst [
seto a,
a_cono{name, exeunt)
] -
}
define a_cono & (name,exeunt) {
push p,a ; save in case
pushj p,newptr ; get & word
move i ¢, MCONOA ; conoa message type
movem ¢,Bb
pushj p,newptr ; get pointer to the command buffer
setzim Eb ; to be sure
hrli b,p_&name ; in the proper place
pop p,d ; recover
dpb &,b
Jjrst exeunt
))
define misc_field & (op,exeunt) {
jrst [
pushj p,getptr
hrii -b,misc_data
dpb a,b
movei a,op ; MISC opcode (RR fieid)
hrii b,misc_op
dpb a,b
jrst exeunt
]
}
define misc_bit & (field,exeunt) {
Jjrst [
pushj p,getptr
seto a,
hrli b,misc_&field
dpb a,b
setz a,
hr1i b,misc_op
dpb a,b
Jjrst exeunt .
]
}
define timer & {op,exeunt) {
Jjrst [

setzm update_tick
pushj p,getptr
hr1i b,time_data
dpb a,b

movei a,0p

17 Jul 1979

hrli
dpb
movei
hr1i
dpb
Jjrst
]

define ticks &
jrst [
pushj
hrii
dpb
movei
hrli
dpb
movei
hrliy
dpb
Jrst
1

7:35 LOWER .FAI[SAM,MUS]

PAGE 15-2

17 Jul 1979 7:35 LOWER ,FAI[SAM,MUS] PAGE 16-1
subtti Set_mode and Set_field procedures

set_mode:
skipn inited ; have we been thru once
pushj p,init ; the first time!
move a,~1(p) ; pick up mode index
caig a,max_mode-1
skipge &
Jjrst T : .
‘ movei al,[asciz /Set_mode: Mode index out of range/]
pushj p,box_error
Jjrst 1
]
. xct modes{a)
mode_exit:
exit2: sub p,[2,,2]
Jjrst &2(p) ; return

define max(w,y) {
ifie <w-y?,{w = y}
}

define relocate (offset,entry) {
reloc .+offset
entry
max(count,offset)
reloc

count «« @

modes: relocate(reset_tick_cuunter,(co_bit(rtc,mode_exit}>}
relocate{inhibit_ process1ng ticks,{co_fieid(spt,dis_ticks,mode_exit)>)
relocate(permit_processing_ticks, <co _field(spt,ena_ticks, mode _exit)>)
relocate(reset,<{co_bit{mr,mode axit)))
relocate(wait_clear,{misc_bit{wait_clear,mode_exit)>)
re1ocate(pause_c1ear,(misc_bit(pause_c]ear,mode_exit)))
relocate(stop,{misc_bit(stop,mode_exit)>)
relocate{optimize,setom optim)
retocate(non_optimize,setzm optim)
reloc ~+count+l

max_mode ++ ,-modes

set_Tfield:

skipn inited ; same old rigamarole

pushy p,init

move b,-2{p}

taig b,max_field-1

skipge b

jrst i
movei al,[asciz /Set_field: Field index out of range/]
push} p,box_error

Jrst 1
move a,-l(p) ; new field parameter
xct fields(b)
f_exit: sub p,i3,,3]
Jrst @3{p)

fields: count «+~ @
reiocate(control_mode,{jrst {a_cono(control,f_axit)]>)

17 Jul 1979 7:35 LOWER .FAI[SAM,MUS] PAGE 16-2

relocate(PIA,{jrst [a_cono{pia,f_exit}1>)
ralocate(diagnostic_address,{jrst [a_cono(drb,f_exit)]>)
relocate(dx_load,{misc_field(dx,f_exit})>)
relocate{tt1_load,¢

Jjrst [
push p,a :
hilrzs a ; left half is ttla

misc_field(ttla,ttirtn)

ttirtn: pop p,a .
right half is ttlb

hrrzs a :
misc_field{tt1b, _exit)
)
relocate(processing_ticks,<
jrst [

movem a,proc_ticks

aos b,proc_ticks : arg. is tick #, 1st tick is #0.
move c,total_%icks

sub c,b

subi c,=8 s overhead ticks

movem ¢,maX_update_ticks

ticks(tix_processing,f_exit)

»)
relocate(total_ticks,{
Jjrst [
move b,a
addi b,2 ; first tick is #8, arg is HiTick-1l, so...

movem b, total_ticks
move ¢,proc_ticks
sub b,
subi - b, ; overhead ticks
movem b,max_update_ticks

ticks(tix_total,f_exit)

»)

relocate(dwell,<

v Jrst L

movem a,pass

move j t,?

movem t,update_tick

pushj p,cirdp

timer(iounge,f_exit)

[a.]

»)
relocate(set_passes,(
Jrst [

movem a,pass
timer(pass_set,f_exit)

)
relocate{clear_passes_dwell,<{
Jrst [

move i t,2 .

movem t,update_tick

movem a&,pass .

pushj p,clirdp

timer{pass_clear,f_exit)

1) '
relocate(packing_mode,{movem a,packmode’)
reloc ctcount+]

max_field e~ ,~fialds

