ICMC

INTERNATIONAL ~ COMPUTER | ‘MUSIC CONFERENCE

MONTREAL 1991

PROCEEDINGS

Editors: Bo Alphonce, Bruce Pennycook
Published by ICMC-1991
Faculty of Music

McGill University

All Copyrights remain with the authors

VleWpomts on the History of Digital Synthesis
- Keynote Paper, ICMC-91

Julius Orion ‘Sm)th II

~ Assoc..Prof. (Research), CCRMA, Music Dept.. tanford Umvemty Stanford. CA 94305
- Signal Processing Engineer, NeXT Inc., 900 Chesapeake Dr + Redwood City, CA 94063
email: jos@next.com or jos@cermasunford.edu

Abstract - This essay sketches one view of the development of d:gml symhem techniques from the days of Music
V1o the presenL A taxonomy of digital synthesis lechmques is proposed and future pro_pecuons are ventured. It is
anticipated that synthesis in the future will be domlnated by rpectml und physical models.

Introduction -

In a highly stimulating Science article, Max Mathews painted an exciting vision of “the digital computer as a
musical instrument” (Mathews 1963). *“Sound from Numbers." it pointed out, was a completely general way to
synthesize sound because the bandwidth and dynamic range of hearing are bounded “any percexvable sound can be
50 produced.” The promise of computer music was that the computer is capable of genem:mg any sound that could
ever come from a loudspeaker. In The Technology of Computer Mu:tc (Mathews 1969), Max wrote

‘The two fundamemal problems in sound symhesls are (1) the vast amount of data needed to.
specnfy a pressure function—hence the necessity of a very. fast program—and (2) the need for a
snmple powerful language in which to describe a complex sequence of sounds.”

Problem (631 has been solved toa large extent by the march of technology Dlgnal processor perfommanoe has
mcreased at the e of 40-50% per year for the past. ﬁﬁeen years, and lhe trend shows no signof weakemng At
present. mulUple vonoes of many. symhesls techmques can be sustained in real time on a smgle-cth. general purpose
computer. : ,

Problem (2) remains unsolved, and cannot, in pnncxple ever be completely solved. Nobody has the ume 1o type in
every sample of sound for a musical piece, (unless the piece is very short), nor does anyone know how to directly
type the samples of natural- -sounding waveforms. Therefore, sound samples must be synthesized from a much
smaller set of numbers, or derived from recordmgs of natural phenomena, or both In either case, a large number of
samples must be specxﬁed or mampulated according a much smaller set. of numbers Thls implies a great sacnﬁce of
genemhty Formnalely. the vast. ma;omy of waveforms are either musxcally undesu'able or musncally equxvalem to
other wavefonm so we should in fact be able to give up most waveforms wlthout giving up anything of musxcal
value. The fundamental dxfﬁculty of digital symhesxs becomes ﬁndmg the smallest collection of synthesis tech-
iniques which span the space of mu51cally useful. sounds without redundancy Itis helpful when a technique is.
intuitively predictable. Predictability is good when analogies exist with well- -known musical instruments.

ICMC 1

; Historkal View of Di‘lhl Syntheds Developmcnt

Inthe Music V. program (Mathews 1969). the concept-of the unir.generaior was introduced. A unit-generator is a
fundamental building block for sound synthesls It takes numeric parameiers and/or audio signal(s) as input, and

produces an output signal. The pmmctcrs are constmned to be constant over the duration of a note, or “event.”
ed anfoscﬂlator. ﬁlta addct. muluphcr, nndom numba ;enentor and enve-

The unit generators of Music Vine
lope generator. This, Music V unu-
bined to create interesting symhetxc sounds The tcchmqucs of addmve subrracnve, and nonlinear synthesis (such
as FM) could be 1mplcmcnwd qmtc namrally with these elements. They were similar in function to the sound-gcn
mnnglprocesmng ‘modules used in lnalog symhcsxzcrs :t the ume such as volnge—cootmlled osc:llators (VCO)
amphﬁers (VCA), and ﬁlters (VCF) Analog symhcs:s in wm, unhud modules from earhcr :udlo clectromcs

Instrument definitions in Music V were written as uml-gencmor paiches. An instrument invocation was: -essentially

a subroutine call with arguments, called “P fields,” which plugged into the unit-generator patch A Music V “score”
was esscnnally 2 time- sumped sequence of i instrument calls. ance the lnstrumcnt and score deﬁmuons in Mus:c v
oomplctely specxﬁed the music computauon ina prooedunl ASCI! format, Musnc \4 gave us the musical countcrpan

of PostScript for 2D graphics (the standard marking hnguage used first for laser pnmers and more recently for
computer displays). Apparemly, Music V was born at least three decades 100 s00n 10 be awepted as thg PostScript

of the music world. Instead, we got MIDL o N

In the years following the availability of Music V, a number of research centers with access to large, mainframe
computers and D/A converters cxtended the music compllcr in various ways. At CCRMA, for examp]e, various
Music V descendants, such as Mus10, introduced named variables, an Algol-style language for instrument defini-
tion, more built-in unit generators, p;eccwxsc-hmar-funcuons for use as envelope parameters, and an mstrumem
compxlcr Descendants of Music V appeared at Pnnoeton (Paul Lansky) , MIT (Barry Vercoe), and UCSD (Dick
Moore) as well a few other places. Computer music blossomed in the seventies, with many software and hardware
systems appearing. It would not be feasible to adequately survey paraliel developmems throughout the world in this
short essay, so the remainder of this historical sketch will describe developments from CCRMA's point of view.
The CCRMA story is qune applicable to other computer music labs that have invested significantly in digital
synthesis hardware.

While the Music V software synthesis approach was very general and powerful—a unit generator could do anything
permitted by the undcrlymg programming languagc—computauona] costs on a general-purpose computer were
dauntingly high. It was not uncommon to be spendmg hundreds of seconds of computer time for each second of
sound produced. Student composers were forced to work between 3AM and 6AM to finish their pieces. Pressure
mounted to move the primitive sound-gencranng algorithms into specml—purposc hardware.

In October 1977, CCRMA took delivery of the: Systcms Concepts Dngxtal Synthesizer (Roads 1989, pp. 333-349:
Loy 1981), affectionately known around CCRMA ‘as the “Samson Box,” named after its designer Pete Samson. The
Samson Box resembled a large, green refrigerator in the machine room at the Stanford Al lab, and it cost on the
order of $100,000. In its hardware architecture, it provided 256 “generators™ which were waveform oscillators with
several modes and controls, complete with amplitude and frequency envelope support, and 128 “modifiers,” each of
which could be a second-order digital filter, random-number generator, amplitude-modulator, signum function,

ICMC 2

allpass controller, and the like. Up to 64K words of delay memory with 32 ports could be used to construct
reverberators, other delay effects, and large wavetables. Finally, four D/A converters came with “the Box™ to supply
four-channel sound output. These analog lines were fed 1o a 16-by-32 “audio switch” which routed sound to the
various listening stations around the lab.

The Samson Box was a very elegant implementation of nearly all known, desirable, unit-generators in hardware
form, and sound synthesis was sped up by three orders of magnitude in many cases. Additive, subtractive, and
nonlinear FM synthesis and waveshaping were supported very nicely. A lot of music was produced by many
composers on the Samson Box over more than a decade. It was a clear success.

The Samson Box, however, was not a panacea. There werel very sizeable costs in moving from a general software
synthesis environment to a constrained, special-purpose hardware synthesizer. Tens of man-years of effort were
poured into software support: A large instrument library was written to manage the patching of hardware unit
generators into instruments. Such patching had to be done indirectly via the synthesizer “command stream,” that is,
instrument procedures in SAIL executed to produce synthesizer commands which were saved in a file. Debugging
tools were developed for disassembling, editing, and reassembling the synthesizer command stream. The command
stream was difficult to work with, but it was unavoidable in serious debugging work. Software for managing the
unique envelope hardware on the synthesizer was developed, requiring a lot of work. Filter support was complicated
by the use of 20-bit fixed-point with non-saturating overflow and lack of rounding control. General wavetables
were not supported in the oscillators. In general, it simply took a lot of work to make everything work right.

Another type of cost was incurred in moving over to the Samson Box. Research into new synthesis techniques
slowed to a trickle. While editing an Algol-like dcsérip!ion’ of a Mus10 instrument was easy, reconfiguring a
complicated patch of Samson Box modules was much more difficult, and a lot of expertise was required to design,
develop, and debug new instruments on the Box. Manyl new techniques such as waveguide synthesis and the Chant
vocal synthesis method did not map easily onto the Samson Box architecture. Bowed suingé based on a physical
model could not be given a physically correct vibrato mechanism due to the way delay memory usage was
constrained. Simple “Feedback FM™ did not work because phase rather than frequency feedback is required. Most
memorably, the simple interpolating delay-line, called Zdelay in Mus10, turned out to be incredibly difficult to
implement on the Box, and an incredible amount of time was expended trying to do it. While the Samson Box was a
paragon of design elegance and hardware excellence, it did not provide the proper foundation for future growth of
digital synthesis technology. It was a computer-music production device more than a research tool.

Another problem with supporting special-purpose, computer-music hardware is that it can be obsolete by the time its
controlling software is considered useable. Hardware is changing so quickly and software environments are getting
so elaborate that we are almost forced to write software that will port easily from one hardware platform to the next.
A major reason for the success of UNIX—*the ultimate computer virus"—is that it ports readily 1o new processors.
We simply don’t have time to recreate our software universe for new, special-purpose machines. A compromise that
works well today is to write all software in a high-level language, but take the time to write hand-coded unit
generators for each new processor that comes along. It is possible to implement all known techniques on top of a

~ small number of unit generators which comprise more than 90% of the computational Joad. The NeXT Music Kit is

built according to this model: it is an object-oriented system in which only the UnitGenerator and Orchestra classes
must be rewritten for new hardware environments. As a result, the Music Kit can be ported to radically new

ICMC 3

unu-gcnemtor paramcters “That way. in addmon 10 the Joosely dcscnbed. standard timbres of Gcneral MIDI; such+

“honky-tmk piano,” there: could also be a handful of simple yet powerful unit generators capable of the Genéral
MIDI umbres'and much, much more; Addnng msnumemdeﬁmnon 1o MIDI'would not: sngmﬁcamly increase the:
size of the ty 'typ cal MIDI file; and ‘the reproduceabiliry of 1 3 MIDI perfomlance—the whole-point of General MIDI—
would actually be right Of- course, Tow-end’ synthesizers not capable '?’enough ‘voices specnﬁed as-unit-generaior -
patches: could continue to implément-named timbres in their ¢ own'‘way as provid Seneral MIDL. It would:also
be helpful if General MIDI would define & few controller parameter names for each timbre; such as “brightness™,
“legato™, and so on; so thai' gféaiér‘eibi‘ésSiVé'hesS‘ of performance is possible. In-the 'more distant future; it would be
ideal 10 have MIDI instrument definitions spec:ﬁable ina popular high= level language. as was done:in Mus10:--

Happily, software synthesis is making bit of a come=-back, thanks to more powerful processors. The Motorola
DSP56001-signal processing chip, for example, running at 25 MHz, can synthesize a simple guitar model at 44 kHz
in real time. “The Music Kit on the NeXT Computer ‘uses the DSP56001 for synthesis. Because the DSP. chipisa
general-purpose-processor with extensions for:signal processing. it is much-easier to program than-most prior
music-synthesis engines. ‘While the cant.rolling software for the Samson Box represents perhaps more than a
bundred man-years of software effort, the DSP-based s‘ynlh'esisvsoftwane on the NeXT Computer has absorbed only a
few man-years so far, and to reach the same degree of completeness would require considerably less total :e‘ffonk.
S B oo
For a given cost, DSP chips provide much more synthesis power than do general-purpose processor chlps. How-
ever, current software development tools are significantly inferior for DSP chips. The DSP56001, for example, is
still integrated as a “second computer™ requiring its own assembly language; quirks and pitfalls, assembler, com-
piler, loader, debugger, and user-managed i interprocessor commumcauon The DSPC compiler, for example has
simply not been useful, forcing all DSP-code to be written in asscmbly language ‘Due presumably to the. languagc
-barrier, separate development tools, and general difficulty of programming DSP chips, there does not appear to have
»been a significant resurgence of software synthesis research using DSP chips as an implementation vehicle.: On the
NeXT Computer, the “DSP” is serving mostly as a built-in synthesizer with a set of canned patches to choose from.
Hardly anyone takes on programming the DSP; perhaps they feel life is too short to take up yet another computer.

General-purpose processors are not far behind digital signal processing chips in being suitable as software-synthesis
engines. Sufficiently powerful chips exist today (at high cost). Already, the IRCAMYAriel musical workstation
uses two Intel i860 RISC processors to perform multivoiced synthesis in real time.- A sihglé 860 can out-perform a
DSP56001, for example, at real- time music synthesis. (In faimess, one can define the problem so.that the DSP chip
is faster for that problem.) While DSP chips are less expensive by more than a factor of 10 in terms of dollars per
computation per second, and while DSP chips possess valuable built-in conveniences due to being oriented
specifically toward signal processing, use of a true general-purpose processor leverages off far superior compilers
and development tools. Furthermore, RISC procesSgrs are adding hardware features for-efficient graphics
and sound processing. It is probably safe to say that software synthesis is on the threshold of retuming forever to the
form in which it started decades ago: written in high-level languages on fully general-purpose computers. It is now
hard to justify the tens of man-years of software cfldh::'gquhed to fully integrate and support special-purpose
hardware for computer-music synthesis when one can buy mass-produced, general-purpose processors-very cheaply,
delivering tens and soon hundreds of megaflops per chip. Quality support of high-level languages and the ability 1o
use immediately all previously existing software and development tools is an advantage not to be taken lightly.

ICMC 5

processor families in a very short time. Similarly, Bill Schottstaedt at CCRMA wrote “Common Lisp Music™
entirely in Common Lisp; a single Lisp macro, “Run,” which encloses the sample loop of an instrument definition,
tests for the presence of DSP chips (either the one on the NeXT CPU board or five on an Ariel QuintProcessor
board) and compiles and loads Lisp code to any DSPs present for acceleration of execution. To port Bill's system to
another processor family requires only a Common Lisp implementation on the new computer.

Over the past several years, MIDI-compatible digital synthesizers have been taking over the world as the synthesis
engines used by composers and musicians everywhere, including CCRMA. MIDI-compatible digital synthesizers
provide far more synthesis power per dollar than we ever saw before. Unfortunately, the development of new
techniques is now primarily in the hands of industry. We are no longer likely to read about new synthesis advances
in the Computer Music Journal. Instead, we continue to hear opaque marketing terms such as “LA Synthesis™ with
no paper in the literature that explains the technique. On the positive side, musical instrument manufacturers are
more likely to hire our students 1o push forward the degree of sophistication in their synthesizers.

The ease of using MIDI synthesizers has sapped momentum from synthesis-algorithm research by composers.
Many composers who once tried out their own ideas by writing their own unit generators and instruments are now
setding for synthesis of a MIDI command stream instead. In times such as these, John Chowning would not likely
have discovered FM synthesis: a novel timbral effect obtained when an oscillator’s vibrato is increased to audio

frequencies.

|

Unlike software synthesis or the Samson Box, MIDI synthesizers require very little effort to control. The MIDI
specification simplifies the perfoﬁnancc-instrumem intérface down to that of a piano-roll plus some continuous
controllers. In other words, MIDI was designed to mechanize performance on a keyboard-controlled synthesizer. It
was not designed to serve as an interchange format for computer-music. MIDI instrument control is limited to
selecting a patch, triggering it with one of 128 key numbers, and optionally wiggling one or more controllers to
which the palct'x may or may not respond in a useful way. Rarely is it possible to know precisely what the patch is
actually doing, or what effect the controllers will have on the sound, if any. The advantage of MIDI is easy control
of preset synthesis techniques. The disadvantage is greatly reduced generality of control, and greatly limited
synthesis specification. As Andy Moorer is fond of saying, “no adjustment necessary—in fact, no adjustment
possible!” 1

“Direct digital synthesis makes it possible to compose directly with sound, rather than by having 10 assemble notes™
(Mathews et al. 1974). Thus, pant of the promise of computer music was to free composers of the note concept. The
note concept become a more abstract evenr which could denote any kind of infusion of information into the sound-
computing machinery at a given time. The sound generated by an event could be blended seamlessly with sound
generated by surrounding events, obscuring any traditional concept of discrete notes. Hardware synthesizers and
MIDI have sent us back to the “Note Age” by placing a wall between the instrument and the note that is played on it.
MIDI works against this promise of computer music, however understandably.

MIDI synthesizers offer only a tiny subset of the synthesis techniques possible in software. It seems unlikely that
future MIDI extensions will recapture the generality of software synthesis until instrument definitions are provided
for, as in the original Music V. A straightforward way to accomplish this would be to define a set of srandard unir
generators for MIDI, and a syntax for patching them together and binding message-parameters and controllers to

ICMC 4

The new RISC chips are not a panacea for synthesis either. One of the promises of RISC is that compiler technol-
ogy and the processor architecture are developed jointly to make sure high-level language programming can make
maximally efficient use of the hardware . This promise has not yet been fulfilled. Hand-coding of unit generators in
assembly language still increases the performance by a large integer factor on today's RISC processors relative to
what the compilers provide. Unfortunately, optimal assembly-language programming is more work on a RISC
processor than it is on an elegantly designed DSP chip. Nevertheless, socio-economic factors indicate that general-
purpose processors will enjoy many, many more man-years of software-support effort than any special-purpose
processor is likely to see. Given that general-purpose CPU chips now offer very fast, (single-cycle, pipelined),
floating-point, multiply-add units, it would be relatively easy to incorporate remaining features of today’s signal
processing chips—apparently much easier than providing a first-class software development environment for a new,
special-purpose pnece of hardware.

Taxonomy of Digital Synthesis Techniques

The historical sketch above focused more on digital synthesis engines than on techniques used to synthesize sound.
The traditional categories of synthesis were addiive, subtractive, and nonlinear. In this section, an attempt will be
made to organize today's best-known synthesis techniques into the categories displayed in the following table:

Processed Spectral Physical Abstract
Recording Model Model Algorithm
Concréite Wavetable F Ruiz Strings VCO,VCA,VCF
Wavetable T Additive Karplus-Strong Ext. Some Music V
Sampling Phase Vocoder Waveguide Original FM
Vector PARSHL Modal Feedback FM
Granular Sines+Noise (Serra) Cordis-Anima Waveshaping
Prin. Comp. T Prin. Comp. F Mosaic Phase Distortion
Wavelet T Chant ' Karplus-Strong
VOSIM
! Risset FM Brass
; Chowning FM Voice
Subtractive .
LPC
Inverse FFT
Xenakis Line Clusters v

Some of these techniques will now be briefly discussed. Space limitations prevent detailed discussions and refer-
ences for all techniques. The reader is referred to (Roads and Strawn 1985, Roads 1989) and recent issues of the
Computer Music Journal for further reading and references.

Sampling synthesis can be considered a descendant of musique concréte. Jean-Claude Risset noted: “M usique
concréte did open an infinite world of sounds for music, but the control and manipulation one could exert upon them
was rudimentary with respect to the richness of the sounds, which favored an esthetics of collage™ (Roads 1989:
Risset 1985). "It is interesting that the same criticism can be applied to sampling synthesizers three decades later. A
recorded sound can be transformed into any other sound by a linear transformation (some linear, time-varying filter).
A loss of generality is therefore not inherent in the sampling approach. To date, however, highly general iransfor-
mations of recorded material have not yet been introduced into the synthesis repertoire, except in a few disconnected

ICMC 6

research efforts. Derivative techniques such as granular synthesis are yielding significant new colors for the sonic
paletie. It can be argued also that spectral-modeling and wavelet-based synthesis are sampling methods with
powerful transformation capabilities in the frequency domain. ‘

“Wavetable T~ denotes time-domain wavetable synthesis; this is the class%c technique in which an arbitrary wave-
shape is repeated to create a periodic sound. The original Music V oscillator supported this synthesis type, and 10
approximate a real (periodic) instrument tone, one could snip out a period of a recorded sound and joad the table
with it. The wavetable output is invariably multiplied by an amplitude-envelope. Of course, we quickly discovered
that we also needed vibrato, and it often helped 10 add several wavetable units together with independent vibrato
and/or slightly detuned fundamental frequencies in order to obtain a chorus-like effect. Panning between wavetables
was a convenient way (0 get an evolving timbre. More than anything else, wavetable synthesis taught us that
“periodic” sounds are generally poor sounds. Exact repetition is rarely musical. Electronic organs (the first digital
one being the Allen organ) had to add tremolo, vibrato, and the Leslie (niﬁlu’buh delay and Doppler via spinning
speakers and homs) as sonic pos!7pr90essing in order to escape ear-fatiguing, periodic sounds.

“Wavetable F~ denotes wavetable synthesis again, but as approached from the frequency domain. In this case, 2
desired harmonic spectrum is created—either a priori or from the results of a spectrum analysis—and an inverse
Fourier series is used to create the period for the table. This approach, with intcrpblatjon among timbres, was used
by Michael McNabb in the creation of Dreamsong (Roads 1989: McNabb 1981). It was used years earlier in psy-
choacoustics research by John Grey. An ﬁdvamagc of spectral-based wavetable synthesis is that phase is readily
normalized, making interpolation between different wavetable timbres smoother and more predictable.

Vector synthesis is essentially multiple-wavetable synthesis 'with interpolation (and more recently, chaining of wave-
tables). This technique, with four-way interpolation, is used in the Korg Wavestation, for example. 1t points out a
way that sampling synthesis can be made sensitive to an arbitrary number of performance control parameters: Given
sufficiently many wavetables plus means for chaining, enveloping, and forming arbitrary linear combinations (in-
terpolations) among them, it is possible to provide any number of expressive control parameters. Sampling synth-
esis need not be restricted to static table playback with looping and post-filtering. In principle, many wavetables
may be necessary along each parameter dimension. Also, it is good to have a wavetable for every combination of
parameters, implying that n parameters of control require 2" wavetables, given two tables per parameter (i.e., no
intermediate tables required). If the parameters are instead orthogonal, (e.g., formant bandwidths), n parameters can
be implemented using interpolation among 2n wavetables. In any case, a lot of memory is likely 1o be used making
a multidimensional timbre space using tables. Perhaps a physical model is worth a thousand wavetables.
Principle-components synthesis was apparently first tried in the time domain by Stapleton and Bass at Purdue Univ-
ersity (Stapleton and Bass 1988). They computed an optimal set of basis periods for approximating a larger set of
periodic musical tones via linear combinations. This would then be a valuable complement to vector synthesis since
it can provide vectors which combine to span a wide variety of natural sounds. The frequency-domain form was
laid out in (Plomp 1976) in the context of steady-state tone discrimination based on changes in harmonic amplitudes.
In this domain, the principle components are fundamental spectral shapes which are mixed together to produce
various spectra.

ICMC 7

Additive synthesis historically models a spectrum as a set of discrete “lines” corresponding to sinusoids. The first
analysis-driven additive synthesis for music appears 10 be Jean-Claude Risset's analysis and resynthesis of trumpet
tones using Music V in 1964 (Roads 1989: Risset 1985). He also appears to have camried out the first piecewise-
linear reduction of the harmonic amplitude envelopes, a technique that has become standard in additive synthesis
based on oscillator banks. The phase vocoder has provided analysis support for additive synthesis for many years.
The PARSHL program at CCRMA extended the phase vocoder to inharmonic partials, motivated initially by the
piano, and Xavier Serra added filtered noise to the inharmonic sinusoidal model (Serra and Smith 1991). Inverse-
FFT additive synthesis is implemented by writing any desired spectrum into an array and using the FFT algorithm to
synthesize each frame of the time waveform (Chamberlin 1980). it undoubtedly has a big future in spectral-mode!-
ing synthesis since it is so general. The only tricky part is writing the spectrum for each frame in such a way that the
frames splice together noiselessly in the time domain. Post-processing operations can be applied to the ideal desired
spectrum to give optimal frame splicing in the time domain.

Linear Predictive Coding (LPC) has been used successfully for synthesis by Andy Moorer, Ken Steiglitz, and Paul
Lansky, and earlier (at lower sampling rates) by speech researchers at Bell Labs. It is listed as a spectral modeling
technique because there is evidence that the reason for the success of LPC in sound synthesis has more to do with
the fact that the upper spectral envelope is estimated by the LPC algorithm than the fact that it has an interpretation
as an estimator for the parameters of an all-pole model for the vocal tract. If this is so, direct spectral modeling
should be able to do anything LPC can do. and more, and with greater ﬂe‘bx‘ibility. LPC has proven valuable for esti-
mating loop-ﬁllu:r coefficients in waveguide models of strings and bores, 5o it could also be entered as a tool for
sampling Ioop-ﬁ‘l(crs in the “Physical Model™ column. Asa synthesis technique, it has the same transient-smearing
problem that spectral modeling based on the short-time Fourier transform has. LPC can be viewed as one of many
possible nonlinear smoothings of the short-time power spectrum, with good audio properties.

The Chant vocal synthesis technique (Mathews and Pierce 1989 Bennet and Rodet chapter) is listed a spectral
mpdeling technique because it's a variation on formany synthesis. The Klatt speech synthesizer is another example.
VOSIM is similar in concept, but trading sound quality for lower computational cost. Chant uses five exponentially

decaying sinusoids tuned to the formant frequencies, prewindowed and repeated (overlapped) at the pitch frequency. -

Developing good Chant voices begins with a sung-vowel spectrum. The formants are measured, and Chant para-
meters are set to provide good approximations 1o these formants. Thus; the object of Chant is to mode! the spectrum
as a regular sequence of harmonics multiplied by a formant erivelopq, LPC and subtractive synthesis also take this
point view, except that the excitation can be white noise rather than a pulse train (i.., any flat “excitation” spectrum
will do). In more recent years, Chant has been extended to support noise-modulated harmonics, especially useful in
the higher frequency regions. The problem is that real voices are not perfectly periodic, particularly when glottal
closure is not complete, and higher-frequency harmonics look more like narrowband noise than spectral lines. Thus,
a good spectral model should include provision for spectral lines that are somewhat “fuzzy.” There are many ways
to accomplish this “air brush” effect on the spectrum. Bill Schottstacdt, many years ago, added a little noise to the
output of a modulating FM oscillator to achieve this effect on a formant group. Additive synthesis based on
oscillators can accept a noise input in the same way, or any low-frequency amplitude- or phase-modulation can be
used. Inverse-FFT synthesizers can simply write a broader “hill” into the spectrum instead of a discrete line
(sampled window transform); the phase along the hill controls its shape and spread in the time domain. In the LPC
world, it has been achieved, in effect, by multipulse excitation—that is, the “buzzy” impulse train is replaced by a
small “wft” of impulses, once per period. Multipulse LPC sounds more natural than sihglc-pulsc LPC.

ICMC &

i k: L

The Karplus-Strong algorithm is listed as an abstract algorithm because it was conceived as a wavetable technique
with a means of modifying the table each time through. It was later recognized as a special case of the physical
model for strings being pursued by Mcintyre, Woodhouse, and Schumacher, which led to its extensions for musical
use. Cremer’s “method of the rounded comer” appears to predate even Mclntyre and Woodhouse. What the
Karplus-Strong algorithm showed, to everyone's surprise, was that the “comer rounding function™ could be
simplified to a multiply-free, two-point average with musically useful results. Waveguide synthesis is a set of
extensions in the direction of accurate physical modeling while maintaining the computational simplicity of the
method of the rounded comer. It most efficiently models one-dimensional waveguides, such as strings and bores.
yet it can be coupled in a rigorous way to the more general physical models in Cordis-Anima and Mosaic (ACROE
1990, Smith 1991).

The Control Problem

Issves in digital-synthesis performance practice are 100 numerous even o try to summarize here. The reader is
referred to the survey chapter by Gareth Loy in (Mathews and Pierce 1989, pp. 291-396). Suffice it to say that the
musical control of digital musical instruments is still in its infancy'despite some very good work on the problems.
Perhaps the problem can be better appreciated by considering that instruments made of metal and wood are playéd
by human hands; therefore, to transfer past excellence in rbusical performance to new digital instruments requires
either providing an interface for a human performer—a growing trend—or providing a software control layer which

“knows” how to perform a given score in a given musical context. The latter is a real artificial intelligence problem. |,

Projections for the Future

Abstract-algorithm synthesis seems destined to diminish in “mind-share” due to the lack of analysis support. Itis
very difficult to find a wide variety of musically pleasing sounds by exploring the parameters of some mathematical

‘expression. Most sounds are simply uninteresting. The space of sounds we hear in everyday life is but a tiny pin-

point in the space of all possible sounds. The most straightforward way to obtain interesting sounds is loldfaw on
nature in some way. Both spectral-modeling and physical-modeling synthesis techniques support incorporation
and/or modeling of natural sounds. In both cases the model is determined by some analysis procedure which is
capable of computing optimal model parameters for approximating a particular given sound. The parameliers are
then used 1o provide desirable variations.

Obtaining better control of sampling synthesis will require more general sound transformations. To proceed toward
this goal, ransformations must be understood in terms of what we hear. The best way we know to understand a
sonic transformation is to study its effect on the short-time spectrum, where the spectrum-analysis parameters are
tuned to match the characteristics of hearing as closely as ’]possiblc. Thus, it appears inevitable that sampling synth-
esis will migrate toward spectral modeling.

If abstract methods disappear and sampling synthesis is absorbed into spectral modeling, this leaves only two cate-
gornies: physical-modeling and spectral-modeling. This boils all synthesis techniques down to those which model
either the source or the receiver of the sound. If it isfaQrecd that nature-referenced techniques are required to obtain
natural sounds, it is difficult to ask for greater generality than that covered by these two categories. Spectral model-
ing is the more general of the two, since it is capable of constructing an arbitrary stimulus along the basilar mem-
brane of the ear. However, physical models provide more compact algorithms for generating familiar classes of

ICMC 9

sounds, such as strings and woodwinds. Also, they are generally more efficient at producing effects in the spectrum
arising from attack articulations, long delays, pulsed noise, or nonlinearity in the physical instrument. It is also
interesting to pause and consider how invariably performing musicians have interacted with resonators since the
dawn of time in music. When a resonator has an impulse-response duration greater than that of a spectral frame
(nominally the “integration time™ of the ear), as happens with any string, then implementation of the resonator di-
rectly in the short-time spectrum becomes inconvenient. A resonator is a lot easier to implement as a recursion than
as a super-thin formant in a short-time spectrum. Of course, as O. Larson says: “Anything is possible in software.”

Spectral modeling has unsolved problems in the time domain: it i hot yet known how to best modify a short-time
Fourier analysis in the vicinity of an attack or other phase-sensitive transient. Phase is important during transients
and not during steady-state intervals; a proper time-varying spectrum model should retain phase only where needed
for accurate synthesis. The general question of timbre perception of non-stationary sounds becomes important.
Wavelet transforms support more general signal building blocks which could conceivably help solve the transient
- modeling problem. Most activity with wavelet transforms to date has been confined to basic constant-Q spectrum
analysis. Spectral models are also not yet termibly sophisticated; sinusoids and filtered noise with piecewise-linear
envelopes are a good start, but surely there are other good primitives. Finally, tools for spectral modeling and
transformation, such as spectral envelope and formant estimators, peak-finders, pitch-detectors, polyphonic peak
associators, time compression/expansion transforms, and so on and on, should be developed in a more general-
purpose and sharable way.

The use of granular synthesis to create swarms of ““grains” of sound using wavelet kemels of some kind (Roads
1989: Roads 1978) appears promising as a basis for a future staristical time-domain modeling technique. It would
be very interesting if a kind of wavelet transform could be developed which would determine the optimum grain
waveform, and provide the counterpart of a short-time power spectral density which would indicate the statistical
frequency of each grain scale at a given time. Such a tool could provide a compact, transformable description of
sounds such as rain, breaking glass, and the crushing of rocks, 1o name a few.

‘ |Referenc5
Chambertin 1980. Musical Applications of Microprocessors. New Jersey: Hayden Book Co., Inc
ACROE 1990. Proceedings of the Colloquium on Physical Modeling, Grenoblc. France.

Mu.hews.. M. V. 1963. “The Digital Computer as a Musical Instrument.” Science 142(11):553-557.
Mathews, M. V., et al. 1969. The Technology of Computer Music. Cambridge, Mass.: MIT Press.
Mathews M. V. F. R. Moore, and J.-C. Risset 1974, “Computers and FM Music.” Science 183(1):263-268

Mathews M. V., and J. R. Pierce, eds. 1989. Currear Directions in QWer Music Research Cambridge, Mass.: MIT Press.
Moore F. R. 1990. Elemenis of Computer Music. Englewood Qliffs, New Jersey: Prentice Hall.

Plomp. R. 1976. Aspects of Tone Sensation. New York: Academnic Press.

Roads, C.. and J: Strawn, eds. 1985. Foundations of Computer Music. Cambridge. Mass.: MIT Press.

Roalis. C..ed.. 1989. The Music Machine. Cambridge, Mass.- MIT Press.

Serra X.J., and J. O. Smith 1991. “Spectral Moéehng Synthesis: A Sound Analysis/Synthesis System Based on a Deterministic plus Stochastic
Monpomm Computer Music Journal 14(4):12.24.)

Smith, J.O. 1991. “Waveguide Simulation of Non-CylMicd Acoustic Tubes.” Elsewhere in this proceedings.

Stapleton, J. C., and S. C. Bass 1988, “Synthesis of Musical Tones Based on the Karhunen-Lotve Transform.™ [EEE Tr. ASSP, 36(3):305-319

ICMC 10

