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A B S T R A C T   

Humans make predictions about future events in many domains, including when they listen to music. Previous 
accounts of harmonic expectation in music have emphasised the role of implicit musical knowledge acquired in 
the long term through the mechanism of statistical learning. However, it is not known whether listeners can 
adapt their expectations for unusual harmonies in the short term through repetition priming, and whether the 
extent of any short-term adaptation depends on the unfolding statistical structure of the music. To explore these 
possibilities, we presented 150 participants with phrases from Bach chorales that ended with a cadence that was 
either a priori likely or unlikely based on the long-term statistical structure of the corpus of chorales. While 
holding the 50–50 incidence of likely vs. unlikely cadences constant, we manipulated the order in which these 
phrases were presented such that the local probability of hearing an unlikely cadence changed throughout the 
experiment. For each phrase, participants provided two judgements: (a) a prospective rating of how confident 
they were in their expectations for the cadence, and (b) a retrospective rating of how well the presented cadence 
matched their expectations. While confidence ratings increased over the course of the experiment, the rate of 
change decreased as the local probability of an unexpected cadence increased. Participants' expectations fav-
oured likely cadences over unlikely cadences on average, but their expectation ratings for unlikely cadences 
increased at a faster rate over the course of the experiment than for likely cadences, particularly when the local 
probability of hearing an unlikely cadence was high. Thus, despite entrenched long-term statistics about ca-
dences, listeners can indeed adapt to unusual musical harmonies and are sensitive to the local statistical structure 
of the musical environment. We suggest that this adaptation is an instance of Bayesian belief updating, a domain- 
general process that accounts for expectation adaptation in multiple domains.   

1. Introduction 

Repetition is a pervasive feature across various musical styles 
throughout the world, as well as across parameters such as harmony, 
melody, and rhythm. It offers listeners opportunities to encounter 
recurring patterns within a single piece and across multiple composi-
tions (Margulis, 2014). Patterns that recur especially frequently across 
compositions are typically termed schemata (Gjerdingen, 2007) and 
listeners process them more easily than non-schematic structures due to 
their familiarity (Bharucha & Stoeckig, 1986; Tekman & Bharucha, 
1998; Tillmann, Janata, Birk, & Bharucha, 2003). However, novel pat-
terns that are repeated sufficiently within a piece can sometimes chal-
lenge the extensive schematic knowledge that listeners have acquired 

through enculturation to a particular musical style. This study aims to 
investigate whether Western listeners possess the capacity to adapt their 
expectations for non-normative harmonic patterns that deviate from a 
highly learned schema – namely, a cadence – if such patterns are 
extensively repeated in the short term during a single listening session. 
By exploring this phenomenon, we seek to gain insights into the dynamic 
processes underlying harmonic expectation adaptation and the interplay 
between short-term repetition and long-term enculturated musical 
knowledge. 

One of the most important cognitive capacities that humans have is 
the ability to form expectations and make predictions about upcoming 
events, which we do in many sensory and cognitive domains (Bubic, Von 
Cramon, & Schubotz, 2010). There is evidence for expectation and 
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prediction in the visual domain (Haith, Hazan, & Goodman, 1988; Kok, 
Jehee, & de Lange, 2012; Summerfield & Egner, 2009), in motor control 
(Körding & Wolpert, 2004), in decision making (J. I. Gold & Shadlen, 
2007), and in auditory domains such as language (Altmann & Kamide, 
1999; Federmeier, 2007; Kamide, 2008; Van Berkum, Brown, Zwitser-
lood, Kooijman, & Hagoort, 2005) and music (Besson & Faïta, 1995; 
Huron, 2006; Jones, 2018; Meyer, 1957; Schmuckler, 1989; Steinbeis, 
Koelsch, & Sloboda, 2006). Expectation and prediction are valuable 
human capabilities in that they facilitate learning through response to 
errors (Frank, Woroch, & Curran, 2005; B. P. Gold, Pearce, Mas-Herrero, 
Dagher, & Zatorre, 2019; Keiflin & Janak, 2017). Additionally, multiple 
encounters with similar stimuli improve the encoding of such stimuli 
and allow for faster and more efficient processing (Kok et al., 2012; 
Logan, 1990; Wiggs & Martin, 1998). This process is known as repetition 
priming. 

Accounts of repetition priming in the harmony perception literature 
fall into two categories. On the one hand, some scholars suggest that 
repetition priming (and priming more generally) is a process that im-
plicates short-term sensory memory: specifically, if a target chord ap-
pears in a given harmonic context, that appearance has an effect on a 
listener's subsequent ability to process the target due to the acoustic 
image of the context overlapping with that of the target. However, the 
effects of this type of repetition on a listener's ability to process a chord 
are mixed, with repetition facilitating the perception of a target chord 
only if that chord did not provide harmonic closure to the phrase (Big-
and, Tillmann, Poulin-Charronnat, & Manderlier, 2005). An earlier 
study showed that the inclusion of an unexpected target chord in the 
context did not facilitate its processing compared to a phrase that did not 
include it, with phrases ending with a typical closure chord receiving 
more accurate and faster responses (Bigand, Poulin, Tillmann, Madurell, 
& D'Adamo, 2003). The results of this study were not predicted by a 
computational model of auditory short-term memory (Bigand, Delbé, 
Poulin-Charronnat, Leman, & Tillmann, 2014) or a model combining 
representations of sensory similarity with a pretrained style-agnostic 
model of relationships between musical keys (Collins, Tillmann, Bar-
rett, Delbé, & Janata, 2014). 

On the other hand, Tillmann and Bigand (2010) articulate another 
possible definition of repetition priming that entails the repetition of an 
abstract structure over a longer timescale (on the order of minutes). This 
is consistent with more domain-general cognitive accounts of repetition 
priming, which suggest that it helps humans build implicit knowledge 
about the structure of their environment. Implicit knowledge is acquired 
through a process called statistical learning, in which distributional in-
formation is acquired through mere exposure (Aslin, 2017). A capacity 
present from infancy, statistical learning is used to segment continuous 
speech streams into words (Aslin, Saffran, & Newport, 1998; Graf Estes, 
Evans, Alibali, & Saffran, 2007; Isbilen, McCauley, & Christiansen, 
2022; Saffran, Aslin, & Newport, 1996), segment tone streams into 
“tone-words” (Saffran, Johnson, Aslin, & Newport, 1999), detect non- 
adjacent statistical dependencies in streams of syllables (Newport & 
Aslin, 2004) and tones (Creel, Newport, & Aslin, 2004), acquire 
knowledge about an artificial musical grammar (Loui, Wessel, & Hudson 
Kam, 2010), and predict the order of presentation of visual scenes (Ellis 
et al., 2021; Fiser & Aslin, 2002). We adopt this more abstract account of 
repetition priming in our study because our aim is to determine how 
malleable long-term representations of musical cadences are when 
short-term deviations from canonical cadences are introduced. 

While statistical learning is a powerful mechanism that generates 
expectations for the most likely outcome of an event, our expectations 
can be thwarted when the actual outcome is not the most probable. For 
instance, in language, the opening of a “garden path” sentence strongly 
implies a particular type of completion, but a less likely conclusion with 
a different grammatical structure follows. An example of such a sentence 
is “The horse raced past the barn fell”, where the word “raced” would 
usually be interpreted as a main verb (as in “The horse raced past the 
barn”) but is reinterpreted as belonging to a relative clause by the end of 

the sentence, with “fell” being the main verb. On average, readers take 
longer to process garden path sentences than regular sentences and 
make more mistakes in comprehending them (MacDonald, Just, & 
Carpenter, 1992; Waters & Caplan, 1996). The processing time deficit 
for garden-path sentences is exacerbated when presented simulta-
neously with unexpected musical syntax (Slevc, Rosenberg, & Patel, 
2009). Another type of expectation mismatch in the linguistic domain is 
not grammatical but lexical, where the most expected word is replaced 
by a less likely word that has the same grammatical function and is still 
compatible with the prevailing discourse. An example of such a sentence 
is “At the grocery store he bought three eggs”, where “eggs” is a less 
likely completion than, say, “apples” (as eggs typically come in cartons 
of six or more rather than being purchased individually) but is still 
consistent with the discourse of the sentence (as it is possible to buy eggs 
at the grocery store). Such replacements have been found to slow down 
reading times and elicit the N400 component in the EEG-evoked 
response when presented auditorily (Van Berkum et al., 2005). (The 
N400 component is typically associated with prediction errors in lan-
guage; see Kutas & Federmeier, 2011 for a review.) These results suggest 
processing deficits for low-probability sentence completions. 

Analogous situations may arise in the domain of music, which is 
characterised by probability relationships between sound objects 
(Meyer, 1957). Much work on musical expectation has focused on the 
perception of cadences. Cadences are formulaic patterns of harmony 
(chord motion) and counterpoint (the interaction of different lines in a 
musical texture) that end phrases in Western tonal music. They are used 
in a number of Western musical traditions, including both classical 
(Caplin, 2004; Harrison, 2020a; Neuwirth & Bergé, 2015) and popular 
styles (Sears & Forrest, 2021; Stephenson, 2002; Temperley, 2011). 
Cadences are thought to be the most predictable patterns in Western 
tonal music (Huron, 2006; Meyer, 1957), and this claim has been sup-
ported by corpus studies. In an analysis of 18th-century chorales (hymns 
in four parts) composed by Johann Sebastian Bach, Huron (2006) 
showed that the bigram probability of a cadence's final chord is on 
average more predictable than the bigram probability of a chord 
occurring mid-phrase. Sears, Pearce, Caplin and McAdams (2018) used 
the Information Dynamics of Music (hereafter IDyOM; Pearce, 2005, 
2018) to model a corpus of 18th-century string quartets by Josef Haydn. 
IDyOM simulates statistical learning computations with variable-order 
Markov models across multiple viewpoints (features of the music such 
as pitch, melodic interval, duration, and metrical position). The result-
ing model estimates the entropy (uncertainty) and information content 
(surprisal) of musical events. Using IDyOM models defined by various 
combinations of three viewpoints (chromatic pitch, melodic interval, 
and scale degree), the authors found that terminal events of cadences 
were more predictable than those from non-cadential events, consistent 
with Huron (2006). Moreover, the models revealed prediction errors 
following the cadence, supporting the idea that a cadence is a moment of 
syntactic closure that does not strongly determine the subsequent 
musical material. Sears and Forrest (2021) also showed that IDyOM 
predicts similar syntactic closure effects at the final chord of cadential 
progressions in 20th-century popular music, since this chord is more 
predictable than either of the chords that surround it. 

While cadences may be more predictable on average than mid- 
phrase musical events, there are many cadence types that occur with 
different probabilities. For instance, perfect authentic cadences (PACs) are 
the most commonly occurring cadence. They appear much more 
frequently than deceptive cadences (DCs), a family of cadences involving 
a deviation from the PAC schema in which the melody resolves to the 
same stable scale degree but the underlying chord is changed (Harrison, 
2020a). In the Bach chorales corpus, phrases that ended with a PAC- 
compatible melodic pattern were almost 24 times as likely to end with 
a PAC than a DC (de Clercq, 2015). In the Haydn quartet corpus, PACs 
occur around 50% of the time and appear more than six times as often as 
DCs (Sears, Pearce, Caplin, & McAdams, 2018). Sears, Pearce, Caplin 
and McAdams (2018) used another IDyOM model with two viewpoints 
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(scale degree and the set of intervals above the bass note) to predict the 
information content of terminal chords at DCs and PACs, finding that 
DCs had significantly higher information content than PACs. Indeed, 
they also found that IDyOM's predictions for the surprisal of the terminal 
event were consistent with music-theoretic models of cadential strength 
across multiple cadence types beyond PACs and DCs. 

Sears, Pearce, Spitzer, Caplin, and McAdams (2019) showed that 
Western listeners are sensitive to these different occurrence probabili-
ties, regardless of their level of musical training. In their study, musi-
cians and nonmusicians rated phrases from Mozart piano sonatas ending 
with PACs as matching their expectations better than phrases ending 
with DCs. Their participants also reacted faster to intonation deviations 
at the final chord of these phrases (and more accurately in the case of 
nonmusicians) for PACs than DCs. The authors used IDyOM to model the 
behavioural responses to the cadence categories using variable-order 
models with three melodic viewpoints (chromatic pitch, melodic inter-
val, and scale degree) and one harmonic viewpoint (the vertical interval 
set above the bass) to represent the musical surface. The information 
content estimates from these variable-order models correlated signifi-
cantly with the expectation ratings and reaction times to intonation 
deviations for the different cadence categories, providing a better fit to 
the data than models representing the sensory similarity of harmonic 
contexts and targets. More generally, variable-order models have been 
found to correlate significantly and consistently with listeners' ratings of 
melodic phrase-ending unexpectedness and the entropy of these rating 
distributions, while models bounded at a low order (such as unigram or 
bigram models) did not exhibit consistent significant correlations 
(Hansen & Pearce, 2014). 

Several other studies have manipulated PACs in more extreme ways 
to elicit surprise, replacing the final chord with another chord from a 
different key. These studies found different responses to unexpected 
chords, including slower judgements of the contour of a melody 
underpinned by these unexpected chords (Loui & Wessel, 2007), the 
elicitation of ERP components associated with surprise (Janata, 1995; 
Koelsch, Gunter, Friederici, & Schröger, 2000; Koelsch, Gunter, Witt-
foth, & Sammler, 2005; Koelsch, Schmidt, & Kansok, 2002), and 
increased electrodermal activity (Steinbeis et al., 2006). Together, the 
results of these studies suggest a processing deficit for the low- 
probability cadence types. They support the idea that schematic expec-
tation, where a mental template of the most likely outcome is compared 
to what actually happens in the music (Bharucha, 1987; Huron, 2006), 
dominates the perceptual experience of cadences. 

The strength of schematic expectations demonstrated in several 
studies has led some researchers to conclude that priming a listener with 
repeated rare musical structures from a familiar musical style has no 
effect on their ability to process the event more efficiently. One impor-
tant study that makes this claim is Tillmann and Bigand (2010), who 
passively exposed two groups of participants to chorale-like phrases 
ending in PACs before they completed a reaction-time task. In the 
exposure phase, one group only heard phrases that suddenly changed 
key for the cadence (the “less-related” condition, which occurs rarely in 
Western classical music), while the other group's phrases stayed in key 
for the cadence (the “related” condition, much more common in Western 
classical music). In the reaction-time task, participants responded as 
quickly and accurately as possible to the timbre of the final chord on 
trials containing either related or less-related phrase endings. The au-
thors expected that the less-related group would exhibit an advantage 
for the less-related phrases in the test phase, but this was not the case: 
reaction times were still significantly faster on related endings in both 
groups. Only when the test and exposure items were identical did the 
difference between ending types become smaller in the less-related 
group, but these participants were still slower on the less-related 
endings. 

The authors argue that schematic knowledge – which comes from 
years of listening experience dominated by the canonical PAC in the 
same key – overrode an adaptation to the true statistics of the music that 

the participants heard over the course of the experiment. To frame their 
argument using terminology first defined in Bharucha (1987) and 
adopted by others such as Huron (2006), Margulis (2005), and the au-
thors themselves, veridical expectations – which are thought to be 
formed from specific experience with certain musical examples that may 
contradict schematic knowledge – did not facilitate the processing of 
those same events in the test phase. But even if their participants still 
responded slower to the less-related endings regardless of exposure type, 
they may still have adapted their expectations in the short term even if 
they did not respond faster overall to the low-probability targets. In 
other words, veridical knowledge may have still affected responses to 
the schematically rare events because of repetition priming occurring 
during the exposure phase, even if schematic expectations primarily 
explained the pattern of responses. In fact, Bharucha (1987) used DCs to 
illustrate the conflict between veridical and schematic expectations: a 
listener may know that a DC is coming based on prior experience hearing 
a piece, but the DC is veridically expected and schematically unex-
pected. However, since the analysis in Tillmann and Bigand (2010) 
averaged reaction times across trials, the timecourse of expectation 
adaptation was lost. 

A different modelling approach that accounts for the timecourse of 
the experiment might have provided support for their claim. Such ap-
proaches have been used effectively to demonstrate syntactic adaptation 
in language. Fine, Jaeger, Farmer, and Qian (2013) found that reading 
times for garden-path sentences containing a low-probability relative 
clause decreased significantly faster over the course of the experiment 
than they did for garden-path sentences containing a high-probability 
main verb. They frame this adaptation in Bayesian terms: a corpus 
study estimated the prior probability of relative-clause resolutions (e.g. 
“The experienced soldiers warned about the dangers conducted the 
midnight raid”) to be 0.8% and the probability of main verb resolutions 
(e.g. “The experienced soldiers warned about the dangers before the 
midnight raid”) to be 70%. However, in their experiment, the two types 
of resolution were equally likely, so the surprisal for relative-clause 
resolutions sharply decreases and faster reaction times are predicted. 
Additionally, they found that presenting participants with an increased 
number of relative-clause resolutions before the presentation of the first 
main verb resolution resulted in slower reading times for the main verb, 
lending further support to the Bayesian adaptation framework where a 
higher surprisal is predicted at the first main verb. Myslín and Levy 
(2016) provide additional support for the Bayesian framework, finding 
that readers are also sensitive to higher-order statistics in the linguistic 
environment. They observed that garden-path sentences resolved with a 
sentential complement (e.g. “The reviewers acknowledged the study had 
been revolutionary”) cluster together in natural language, and found 
that participants exposed to clusters of this syntactic structure processed 
them more rapidly than participants exposed to the same number spaced 
out in time. Finally, outside the domain of language, Desender, Donner, 
and Verguts (2021) asked participants to report how confident they 
were in which direction a collection of dots would move. These dots 
mostly moved randomly, but a variable proportion of them moved 
coherently to the left or right of the screen. They collected confidence 
ratings at the start of the trial and after a delay of one second where 
participants were presented with more dot motion (i.e., more evidence). 
After the presentation of additional evidence, confidence ratings 
increased if they were ultimately correct and decreased if they were 
ultimately incorrect. Together, these studies suggest that expectation is a 
time-dependent process and hence shows the importance of accounting 
for how the probabilistic structure of the environment changes over 
time. 

In the musical domain, there is evidence of expectation adaptation 
for melodic structure. Musical expectation adaptation is typically 
modelled using IDyOM, which can be configured to encode both long- 
term knowledge (implicit musical knowledge acquired through exten-
sive exposure to music over one's lifetime) and short-term knowledge 
(representing the acquisition of the local statistics of the musical 
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environment). This combined model predicted listeners' expectedness 
ratings for artificially generated melodies better than a long-term model 
alone (Agres, Abdallah, & Pearce, 2018). In a more naturalistic setting, a 
combined long- and short-term IDyOM model also predicted the distri-
bution of sung completions of incomplete melodies composed by a 
professional musician in a cloze task (Morgan, Fogel, Nair, & Patel, 
2019). However, it is not known whether listeners can adapt their ex-
pectations for a priori rare harmonic patterns. 

2. The present study 

2.1. Aims and hypotheses 

The purpose of the present study is twofold. First, we explore 
whether it is possible for listeners to adapt their expectations for rare 
cadences, so that by the end of the experiment they sound more expected 
than at the beginning. We measured expectation adaptation via two sets 
of explicit ratings: first, a participant's confidence in which cadence 
would end an incomplete musical phrase (the completion confidence or 
CC rating); and second, a retrospective rating of how well the cadence 
matched their expectations after hearing the complete phrase (the 
expectation match or EM rating). This design is similar to what was used 
in Experiment 1 of Sears et al. (2019), though we did not ask participants 
how specific their expectations were. We opted to use explicit ratings 
rather than an implicit measure such as reaction time or accuracy on a 
cover task. Implicit measures tend to be favoured in priming studies, 
since explicit ratings may not tap directly into implicitly acquired 
musical knowledge (Bigand, 2003), being unduly influenced by partic-
ipants' reflection on the purpose of the task (Huron & Margulis, 2010; 
Isbilen, McCauley, Kidd, & Christiansen, 2017; Västfjäll, 2010). How-
ever, we found from pilot experiments using implicit measures that 
participants performed at ceiling and had high variability in their re-
action times, resulting in poor sensitivity. This may have been resolved 
with in-person data collection using a low-latency interface for 
measuring reaction times, but the speed of data collection would have 
been considerably slower than what is possible with online recruitment 
platforms, particularly with the restrictions of the COVID-19 pandemic. 

Participants provided ratings to phrases from Bach chorales that 
ended with either a conventional PAC or a DC featuring a particularly 
rare final chord. Details of this specific type of DC are discussed in 
section 3.2. We presented participants with equal numbers of PACs and 
DCs, a distribution that would not be predicted by the original Bach 
chorale corpus where PACs are far more common (Huron, 2006). We 
predicted that participants' CC ratings would decrease, reflecting the 
impact of hearing many DCs that conflict with their prior expectations 
for a PAC. We also predicted that participants would provide higher EM 
ratings for DCs by the end of the experiment than they did at the 
beginning, while PAC ratings would not significantly increase. This 
would indicate an adaptation to the local statistics of the musical envi-
ronment. Both predictions are consistent with a Bayesian belief updating 
framework. 

Second, we explore how manipulating the local probability of 
hearing a DC while maintaining the global statistical structure of the 
stimulus set (50% PACs, 50% DCs) affects the rate at which expectation 
ratings change. Given that the ratio of PAC to DC is high in the long-term 
statistics of Western music, a short-term exposure to 50% of each in-
troduces a sudden and large discrepancy from the long-term distribution 
(i.e., the participant's prior expectation). Thus, we created three condi-
tions in which the magnitude of this discrepancy from the prior expec-
tation was varied, with DCs occurring on 20%, 50% or 80% of trials in a 
series of blocks presented one after another. The order of these blocks 
was either 20/80–80/20, 80/20–20/80, or 50/50–50/50 as detailed in 
section 3.4, thereby manipulating how rapidly the DCs were introduced 
while equating the overall DC statistics across blocks. Regardless of the 
order in which the blocks were presented, we computed the probability 
of hearing a DC at each trial using maximum likelihood estimation from 

all previous trials. We predicted that CC ratings would decrease at a 
faster rate if the local probability of hearing a DC is higher, as there is 
more conflicting evidence with participants' prior expectations. Addi-
tionally, we predicted that for a given trial, the rate at which EM ratings 
for PACs and DCs changed would respectively decrease and increase if 
the probability of hearing a DC at that trial also increased. Evidence in 
support of our hypotheses would provide a motivation for modelling 
ratings from trial to trial, an approach that has not been used in previous 
studies of expectation adaptation in the music domain and has thus led 
to the conclusion that long-term priors dominate expectations. 

2.2. Modelling participants' responses 

Although there are ongoing efforts to make publicly available ver-
sions of IDyOM to model harmony (P. Harrison, 2020), the current 
release of IDyOM (Version 1.6, 2020) is only configured to model 
monophonic music – that is, single musical lines with no accompaniment. 
It is possible to map hand-crafted features to arbitrary viewpoints in 
IDyOM, and this has been done in a few studies that measure or simulate 
expectancy (Cheung et al., 2020; P. Harrison, 2020; P. Harrison & 
Pearce, 2018; Sauvé & Pearce, 2019; Sears, Korzeniowski, & Widmer, 
2018). However, there is no standard way to model harmony in IDyOM. 

Since we presented our participants with Bach chorale phrases, we 
initially decided to use a variable-order IDyOM model trained on 
musical features that have been shown to be successful in estimating the 
key of a chorale (Quinn, 2010). These features are detailed in section 
3.2. We opted to use these features in place of Roman numeral anno-
tations to train our model, even though Roman numerals have been used 
to represent chords in several studies of harmonic priming and expec-
tation (Bigand & Pineau, 1997; Koelsch et al., 2000; Poulin-Charronnat, 
Bigand, & Koelsch, 2006; Sears, Verbeten, & Percival, 2021; Sears, 
Verbeten, & Percival, 2023; Tillmann & Bigand, 2010). These studies 
make use of simplified chorale passages that stay in a single key with 
isochronous quarter-note chords and much of the voice‑leading 
complexity removed. However, we used unmodified passages with a 
considerable degree of passing dissonance at the eighth-note level, with 
some phrases featuring modulations. We thus contend that it is not a 
trivial matter for a listener to assign Roman numerals to the chords in 
the chorale excerpts that we present, as there may be multiple possible 
interpretations that could result in different conclusions about the 
likelihood of certain chord transitions. Meanwhile, our representation 
does not rely on the specifics of the tonal interpretation, but leverages 
theories of voice leading at cadences (Caplin, 1998; D. Harrison, 2020). 

Although using these features predicted higher surprisal at DCs than 
PACs, we were concerned that the difference in surprisal was over-
estimated due to the size of the chord vocabulary (a problem that would 
also arise if Roman numerals were used to represent the harmony). 
Therefore, while we still selected stimuli according to this IDyOM 
model, we instead opted to use linear mixed models to predict partici-
pants' responses to different cadences. Linear mixed models have been 
used successfully in linguistic expectation adaptation studies to model 
Bayesian belief updating (Fine et al., 2013; Myslín & Levy, 2016) as well 
as in studies of harmonic priming and expectation (Slevc et al., 2009; 
Wall, Lieck, Neuwirth, & Rohrmeier, 2020). We thus adopt a similar 
modelling approach here. 

3. Materials and method 

The following experiment was approved by the Institutional Review 
Board of Yale University (Protocol ID: 2000021951). 

3.1. Participants 

To ensure sufficient statistical power relative to previous studies 
examining the timecourse of expectation adaptation (e.g., Fine et al., 
2013: 73 participants; Wall et al., 2020: 36 participants), we recruited 
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150 participants (N = 150; 73 female, 70 male, 7 did not specify) using 
the online platform Prolific (www.prolific.co). All participants were 
adults (M = 35.59, SD = 12.98) and lived in either the United States or 
United Kingdom. None reported having hearing difficulties. Participants 
were not screened on their self-reported musical ability or experience. 
Their scores on the combined Musical Training, Perceptual Abilities and 
Singing Abilities subscales of the Goldsmiths Musical Sophistication 
Index (GMSI; Müllensiefen, Gingras, Musil, & Stewart, 2014) ranged 
from 23 to 86 (M = 48.7, SD = 12.3) out of a maximum of 89. More 
details about participants' GMSI scores are reported in section B of the 
Supplementary Information. Eight additional participants completed the 
study but were rejected because they failed the attention check (see 
section 3.3 for details). 

3.2. Stimuli 

The stimuli were 50 chord sequences synthesised in a piano timbre. 
Each sequence was presented at a tempo of 100 quarter-note beats per 
minute (i.e., each quarter-note beat lasted 600 ms). The stimuli were 
initially rendered as MIDI files and converted to MP3 using the TiMid-
ity++ (www.timidity.sourceforge.net) and FFmpeg (www.ffmpeg.org) 
command-line tools on a MacBook Pro running Mac OS X Version 12.4 
(Monterey). The piano was rendered using TiMidity++’s default 
soundfont. 

The chord progressions themselves were excerpts of 50 phrases taken 
from the complete Bach chorales, accessed via the music21 Python 
package (Cuthbert & Ariza, 2010). Each phrase was in 4/4 metre, lasted 
nine quarter-note beats in duration, and ended on a PAC. The final chord 
of the PAC in each phrase (indicated by a fermata) was always a major 
chord occurring on beat 1 of a measure. Its duration was adjusted to be 
one quarter note. 

Similar to Ohriner (2013), the bass line's final note was required to be 
approached by an ascending perfect fourth or descending perfect fifth, 
which is standard for a PAC. We also imposed some constraints beyond 
those in Ohriner (2013) to ensure that major-key PACs were identified: 

1. The penultimate chord was required to contain a simple or com-
pound major third above the bass note. This interval could be real-
ised by any one of the remaining three voices. This ensured that we 

did not include phrases with minor chords at the penultimate beat, as 
this would make a different type of cadence.  

2. The soprano voice of the final chord was required to be the root of the 
chord; in other words, it had to have the same pitch class as the bass.  

3. The phrase was required to be predominantly in the major mode. To 
determine this, the mode of each phrase was estimated with the 
Krumhansl-Schmuckler key-finding algorithm (Krumhansl, 1990). 
This algorithm finds the rotation of the major and minor probe-tone 
profiles from Krumhansl and Kessler (1982) that correlates most 
closely with the pitch content of the phrase. Any phrase estimated to 
be in one of the 12 minor keys was rejected. 

The 50 selected excerpts were subsequently manually inspected to 
ensure they ended with a V(7)-I harmonic progression with both chords 
in root position, and with scale-degree 1 appearing in the highest 
sounding note in the final (target) chord. All excerpts passed this in-
spection. Subsequently, two phrases were set aside for the practice trials 
and another eight were reserved for foil trials. (The details of these 
practice and foil trials are described below in section 3.3.) Of the 
remaining 40 phrases, 20 of them were modified to end with a type of 
DC that is consistent with the definition of a DC in Caplin (1998) and D. 
Harrison, Bianco, Chait, and Pearce (2020). This DC ended on a 
diminished-seventh chord with the bass moving down by a semitone 
from the penultimate note and the soprano melody staying the same as it 
was for the PAC. An annotated example of an original PAC (showing 
where it meets the criteria for inclusion in the stimulus set) and its 
modified DC counterpart is shown in Fig. 1A, with the full PAC-ending 
phrase shown in Fig. 1B. A full corpus analysis of the Bach chorales 
revealed that the voice‑leading pattern of this DC appears only twice in 
the 314 chorales in 4/4 metre, and these two instances are not cadential. 
Thus, we expected listeners' prior estimates of the probability of this 
cadence to be near zero, even though the continuation is musically 
lawful. 

To select which 20 phrases to modify, we used IDyOM to train a 
model of the Bach chorales and used that model to estimate the differ-
ence in harmonic information content between the DC and the PAC for 
each of the 40 phrases reserved for the main task. This model was a 
variable-order multiple-viewpoint Markov model with an upper bound 
of five events and no incremental training on the test set (that is, we used 
IDyOM's long-term model, or LTM setting). The features in the model 

Fig. 1. A) A perfect authentic cadence (PAC) and a 
modified version showing the specific type of decep-
tive cadence (DC) used in this study. The PAC is 
defined by the features provided in the annotations: 
the bass descends by perfect fifth, the penultimate 
chord contains a major third above the bass, the final 
chord contains a (compound) major third above the 
bass, and the soprano and bass have the same pitch 
class (note name). The DC is also defined by the fea-
tures provided in the annotations: the bass descend-
ing fifth is modified to be a descending semitone (half 
step), the final chord is changed to be a diminished 
seventh, and the soprano is the same as it is in the 
PAC. B) The complete phrase from the experiment 
that ends with the PAC illustrated in Fig. 1A.   
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were:  

1. the interval between pitches in the bass line,  
2. the set of harmonic intervals above the bass,  
3. the ratio of chord duration between successive sonorities, and  
4. the strength of the beat at which the chord appeared. 

A combination of these features was used to predict the bass note and 
the chord quality. More details about the corpus modelling are available 
in section A of the Supplementary Information. 

Subsequently, the 20 phrases with the highest estimated difference in 
surprisal between the DC and PAC were chosen for modification. For 
these 20 phrases, the average difference in surprisal between the DC and 
PAC was 16.72 bits (SD = 1.07 bits), whereas the average difference in 
surprisal for the remaining 20 phrases was 12.95 bits (SD = 2.40 bits). 

3.3. Procedure 

Participants accessed the experiment online using their personal 
computers. Those who signed up were redirected from Prolific to Gorilla 
(www.gorilla.sc), which was used to build and host the experiment 
(Anwyl-Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2020). They 
were instructed to use headphones and close all other tabs on their web 
browser. Participants were paid at the rate of $15/h through Prolific. 

After signing a digital informed consent form, participants' musical 
expertise was assessed using subscales of the Musical Training, Percep-
tual Abilities and Singing Abilities components of the GMSI. The specific 
questions that were asked are reported in section B of the Supplementary 
Information. 

Participants were subsequently presented with instructions for the 
task, which was similar to Experiment 1 of Sears et al. (2019). On each 
trial, a stimulus was first presented without the final chord (i.e., just the 
first eight beats), and participants were instructed to rate how certain 
they were about what chord would come next on a scale of 1 (not 
confident at all) to 7 (extremely confident). This was the CC rating. 
Then, they heard the full sequence, and were asked to rate how well the 
completion matched what they expected to hear on a scale of 1 (not well 
at all) to 7 (extremely well). This was the EM rating. They were 
encouraged to use the full range of the 1–7 scale in their responses. 
During stimulus presentation, participants were instructed to focus their 
gaze on a loudspeaker icon that was presented in the middle of the 
screen. The sequence of screens displayed in a trial is shown in Fig. 2. 

Participants received two practice trials before the main task in 
which both complete phrases ended with PACs. The main task consisted 
of 48 trials. Forty trials used the reserved PAC- and DC-ending phrases 
described above in section 3.2. The remaining eight trials were foil trials 
and consisted of the following: 

Fig. 2. The four screens presented to participants on the regular experimental trials. (A) Participants hear the phrase without the final cadential chord. (B) Par-
ticipants rate how confident they are about what chord will follow. (C) Participants hear the full sequence. (D) Participants rate how well the final chord matched 
their expectations. 
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1. Length foils. On four trials, participants received the same pair of 
questions, but instead of hearing an eight-beat truncated stimulus 
followed by the nine-beat complete version, they heard just the first 
six beats as the truncated version followed by the first seven beats as 
the complete version. All length foils were also presented in a piano 
timbre. Length foils were included to make the task less monotonous, 
but also to provide a contrast with the cadential contexts by pre-
senting phrase openings that were less predictive of what followed 
them.  

2. Timbre foils. On another four trials, participants heard just the first six 
beats of a phrase. For two of these trials, the timbre of the last chord 
was changed to sound like an organ instead of a piano. Participants 
were instructed to report whether the instrument changed or stayed 
the same. They were not presented with a complete version of the 
stimulus after responding. 

Performance on the timbre foil trials was used as a measure of 
attention, and participants were warned that they might occasionally 
receive a different question from what they were used to. If participants 
got fewer than three questions right, their data were excluded. Addi-
tionally, if a participant used fewer than three response values for the CC 
or EM ratings, their data were excluded for only that response category. 
Of the 150 participants who completed the experiment, one participant's 
CC ratings and another participant's EM ratings were excluded under 
this criterion. 

3.4. Trial randomisation 

The trials in the main task were split into two sub-blocks of 24 trials 
that followed each other without a break. Each sub-block contained two 
length foils, two timbre foils and 20 regular trials. There were three 
conditions, each corresponding to a different distribution of the PACs 
and DCs across the sub-blocks, with approximately equal numbers of 
participants assigned to each condition (n50/50 = 51, n80/20 = 49, n20/80 
= 50):  

1. The “50/50” condition. Both sub-blocks featured 10 DCs and 10 
PACs.  

2. The “80/20” condition. The first sub-block featured 16 DCs and 4 
PACs, while the second featured 4 DCs and 16 PACs.  

3. The “20/80” condition. The inverse of the 80/20 condition, the first 
sub-block featured 4 DCs and 16 PACs, while the second featured 16 
DCs and 4 PACs. 

Within each sub-block, the order of the 24 trials was randomised. 

3.5. Analysis 

Firstly, we checked whether participants were indeed providing 
lower average CC ratings for the length foils compared to the cadential 
trials. To test this, we used a paired-sample t-test on the mean length foil 
and mean cadential CC rating for each participant. For all other ana-
lyses, only data from cadential trials were analysed, as it was believed 
that phrases ending with a non-cadential harmony would not contribute 
to any change in expectation for a particular cadence. 

3.5.1. Representing trials 
Each cadential trial was represented using three features:  

1. The cadence. This feature was sum-contrast coded with DC = 1 and 
PAC = − 1.  

2. The proportion of prior non-foil trials ending with a DC (hereafter DC 
proportion). This feature could take on any rational value from 0 to 1. 
In a Bayesian framework, it represents the posterior distribution of 
PACs and DCs at the current trial. Note that we did not model the 

condition directly as this would result in a loss of information about 
the true real-time statistics of the stimulus set.  

3. The item order. This feature could take on any integer value from 1 to 
40. It represents the index of the trial relative to all other non-foil 
trials. In a Bayesian framework, it is an estimate of the amount of 
evidence for the posterior distribution. 

3.5.2. Modelling ratings for cadential trials 
Considering just the cadential trials, there were 5960 observations 

for each rating type (40 ratings × 149 participants). We modelled CC 
and EM ratings separately using linear mixed-effects models fitted with 
the lmer function from the lme4 package (Bates, Mächler, Bolker, & 
Walker, 2015) in R. All models were fitted using maximum likelihood 
estimation to be able to make model comparisons. 

For the CC ratings, we modelled responses in two ways. To observe 
the overall change in confidence regardless of the local statistics, we 
built a simple model with a fixed effect of item order, a random intercept 
for the different stimuli, and a by-participant random intercept and 
slope for item order. Then, to account for the local statistics, we built a 
second full model that added an interaction term between item order and 
DC proportion. (The effect of DC proportion on its own was excluded, as 
without item order it would represent an estimate of the prior probability 
of DCs, but this probability is already estimated to be zero.) We also 
added a by-participant random slope for the item order × DC proportion 
interaction, and as before we included random by-participant and by- 
stimulus intercepts. 

For the EM ratings, we also modelled responses in two ways. Firstly, 
to observe the overall expectation adaptation regardless of the local 
statistics, we built a simple model with fixed effects of item order, cadence 
and their interaction, a random intercept for the different stimuli, and 
by-participant random intercept and slopes for all fixed effects and in-
teractions. The second full model featured the same fixed effects and 
interactions, plus the two-way interaction of item order × DC proportion 
and the three-way interaction of cadence × item order × DC proportion. 
(The effect of DC proportion on its own was excluded, as was its inter-
action with cadence, for the same reason as the choice to exclude DC 
proportion from the second CC model.) The by-participant random slopes 
for item order × DC proportion and cadence × item order × DC proportion 
were also added, and as before we included random by-participant and 
by-stimulus intercepts. 

The significance of the fixed effects was determined by analyses of 
variance (ANOVA) using the Satterthwaite method to approximate the 
degrees of freedom with the lmerTest package (Kuznetsova, Brockhoff, & 
Christensen, 2017). Additionally, for each rating type, we compared the 
fit of the simple and full models against each other and against a null 
model containing only by-participant and by-stimulus random in-
tercepts. Following Nakagawa and Schielzeth (2013), we calculated the 
marginal R2 (variance explained by fixed effects only) and conditional 
R2 (variance explained by both fixed and random effects) for the three 
CC and the three EM models to provide an estimate of the total variance 
explained by each model. Then, we used chi-square tests to measure 
whether the full models provided a significantly better fit to the data 
than the simple models and null models. Finally, we compared the 
tradeoff between model fit and model complexity using the Bayesian 
Information Criterion (hereafter BIC; Schwarz, 1978). The formula for 
BIC is 

BIC = − 2 × LL + d × log(N)

where LL is the log likelihood of the model, d is the number of pa-
rameters in the model, and N is the number of observations. Models with 
a smaller BIC are typically preferred. 

For both CC and EM ratings, we also performed moderation analyses 
to see whether the effects were driven by musical sophistication, 
indexed by the GMSI scores. These analyses are reported in section C of 
the Supplementary Information. The moderation analyses revealed that 
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the key results were identified in subgroups with both above-average 
and below-average subgroups GMSI scores, so we will not discuss 
them further. 

4. Results 

4.1. Foil vs. non-foil trials 

Average CC ratings for cadential trials (M = 4.84, SD = 0.92) were 
significantly higher than those for length foils (M = 4.09, SD = 1.06), t 
(148) = 10.46, p < .001. The effect size was large, with Cohen's d = 0.86. 

4.2. CC ratings 

4.2.1. Ignoring local statistics 
The simple CC model's coefficient estimates and analysis of variance 

are presented in the upper half of Table 1. The main effect of item order 
was significant. The positive coefficient means that the confidence in 
how the phrase will end increases over the course of the experiment 
when not accounting for the local statistics of the stimulus set at the 
current trial. 

4.2.2. Incorporating local statistics 
Fig. 3 displays line plots of the full linear mixed model's estimates of 

CC ratings over the non-foil trials at different values of DC proportion. 
The model's coefficient estimates and analysis of variance are presented 
in the lower half of Table 1. Both the main effect of item order and the 
item order × DC proportion interaction were significant. This means that 
at a baseline level of DC proportion = 0, the confidence in how the phrase 
will end increases over the course of the experiment. However, as DC 
proportion increases, the rate of change of the CC ratings decreases. At a 
value of DC proportion = 0.74, the slope of the CC ratings dips below 
0 and the confidence in how the phrase ends becomes progressively 
lower over the course of the experiment. 

4.2.3. Model comparison 
Table 2 contains the in-sample model fits and model comparisons for 

the null, simple, and full CC models. While the null CC model had a 
marginal R2 (proportion of variance explained by fixed effects only) of 0, 
since it contains no fixed effects, the low marginal R2 of the simple and 
full CC models suggests that the fixed effect of item order and the 
interaction item order × DC proportion do not explain much variance on 
their own, despite the high significance of their coefficients. 

The null model's conditional R2 (proportion of variance explained by 
fixed and random effects) was moderate, but the conditional R2 values 
for the simple and full models were considerably higher than those for 
the null model, suggesting that the explanatory power of the model 
improved with the addition of by-participant random slopes. However, 
the conditional R2 values of the simple and full models are very close to 
each other. 

Unsurprisingly, the simple model explained significantly more vari-
ance than the null model. However, despite their seemingly similar 
model fits, the full model explained significantly more variance than the 
simple model according to the χ2 test. Additionally, the full model had a 
lower BIC than the simple model (which in turn had a lower BIC than the 
null model), meaning that the inclusion of predictors that capture the 
local statistics of the stimulus set improved the tradeoff between model 
fit and model complexity. 

4.3. EM ratings 

4.3.1. Ignoring local statistics 
The simple EM model's coefficient estimates and analysis of variance 

are presented in the upper half of Table 3. The main effects of item order 
and cadence were significant. The negative cadence coefficient means 
that DCs were rated as less expected on average than PACs, while the 
positive item order coefficient means that EM ratings increased over the 
course of the experiment. The interaction was not significant, meaning 
that there was no difference in the rate of change of EM ratings when not 
accounting for the local statistics of the stimulus set. 

4.3.2. Incorporating local statistics 
Fig. 4 displays line plots of the full linear mixed model's estimates of 

EM ratings over the non-foil trials at different values of DC proportion for 
the two different cadence types. The model's coefficient estimates and 
analysis of variance are presented in the lower half of Table 3. The main 
effect of cadence was significant, meaning that before a participant even 
completes any trials, they would theoretically rate a PAC as matching 
their expectations better than a DC. While the effect of item order was not 
significant on its own, the interaction between item order and cadence 
was significant. The interpretation of this coefficient is that the ratings of 
DCs decreases over the trials at a faster rate than PACs at a baseline level 
of DC proportion = 0. The interaction between item order and DC pro-
portion was significant, meaning that ratings on average increased at a 
greater rate as DC proportion increased. However, the significant three- 
way interaction between cadence, item order and DC proportion shows 
that the increase was greater for the DCs than for the PACs. Indeed, 
looking at Fig. 4, the model estimates that EM ratings for DCs decrease 

Table 1 
Coefficient estimates and analysis of variance for fixed effects in linear mixed 
effects models predicting completion confidence ratings.  

Predictor Estimate SE df Wald 
F 

p 

Simple model (ignoring local statistics) 
Item order 0.01 <0.01 165.47 17.96 <0.001***  

Full model (incorporating local statistics) 
Item order 0.03 0.01 1624.23 40.50 <0.001*** 
Item order × DC 

proportion 
− 0.04 0.01 1210.47 22.20 <0.001*** 

Note. N = 5960 (40 non-foil trials × 149 participants). SE = standard error, df =
denominator degrees of freedom for Type III Wald F tests (which were deter-
mined with the Satterthwaite approximation). *** p < .001. 

Fig. 3. Completion confidence (CC) ratings estimated by the full linear mixed 
model that accounts for the local statistics of the stimulus set. Slopes are shown 
for three different values of DC proportion (0.2, 0.5 and 0.8). 
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over the trials for DC proportion = 0.2 but increase once DC proportion 
reaches 0.5. Meanwhile, PAC ratings increase over the trials for DC 
proportion = 0.2 but are almost constant for DC proportion = 0.8. 

4.3.3. Model comparison 
Table 4 contains the in-sample model fits and model comparisons for 

the null, simple, and full EM models. The marginal R2 of the simple and 
full EM models suggests that the fixed effects and interactions explain a 
considerable amount of variance on their own (as compared with the CC 
models); however, the R2 values for the simple and full models them-
selves are once again very similar to each other. 

The null model's conditional R2 (proportion of variance explained by 
fixed and random effects) was reasonably high, but the conditional R2 

values for the simple and full models were considerably higher than 
those for the null model, suggesting that once again the explanatory 
power of the model improved with the addition of by-participant 
random slopes. However, the conditional R2 values of the simple and 
full models are comparable. 

Unsurprisingly, the simple model explained significantly more vari-
ance than the null model. Once again, despite their seemingly similar 
model fits, the full model also explained significantly more variance 
than the simple model according to the χ2 test. Additionally, the full 
model had a lower BIC than the simple model (which in turn had a lower 
BIC than the null model), meaning that the inclusion of predictors that 
capture the local statistics of the stimulus set improved the tradeoff 
between model fit and model complexity. 

5. Discussion 

Though expectation adaptation takes place in several auditory do-
mains, prior research has not found evidence of an adaptation process 
for rare harmonic patterns in music. However, this lack of evidence 
arises from modelling approaches that do not account for the timecourse 
of expectation adaptation and the distribution of possible harmonic 

Table 2 
In-sample model fits and model comparisons for null, simple and full models of completion confidence ratings.  

Model Marginal R2 Conditional R2 Number of parameters BIC χ2 value (df)a p 

Null 0 0.37 4 19,796 – – 
Simple 0.01 0.49 6 19,599 215.25 <0.001*** 
Full 0.01 0.50 8 19,589 27.36 <0.001*** 

Note. N = 5960 (40 non-foil trials × 149 participants), df = degrees of freedom for χ2 tests, *** p < .001. a The χ2 tests were conducted with the next most complex 
model (i.e., simple was compared with null, full was compared with simple). 

Table 3 
Coefficient estimates and analysis of variance for fixed effects in linear mixed 
effects model predicting expectation match ratings.  

Predictor Estimate SE df Wald F p 

Simple model (ignoring local statistics) 
Cadence − 1.36 0.09 182.2 207.00 <0.001*** 
Item order 0.01 <0.01 231.7 22.40 <0.001*** 
Cadence × item order <0.01 <0.01 193.1 0.19 0.661  

Full model (incorporating local statistics) 
Cadence − 1.31 0.10 187.3 188.13 <0.001*** 
Item order − 0.01 0.01 1188.8 1.62 0.203 
Cadence × item order − 0.03 0.01 1624.8 23.44 <0.001*** 
Item order × DC 

proportion 
0.03 0.01 1128.8 8.63 <0.003** 

Cadence × item order ×
DC proportion 

0.05 0.01 1415.4 24.53 <0.001*** 

Note. N = 5960 (40 non-foil trials × 149 participants). SE = standard error, df =
denominator degrees of freedom for Type III Wald F tests (which were deter-
mined with the Satterthwaite approximation). The predictor cadence was coded 
as 1 = DC, − 1 = PAC. *** p < .001. 

Fig. 4. Expectation match (EM) ratings estimated by the full linear mixed model that accounts for the local statistics of the stimulus set. Slopes are shown for the two 
cadence types at three different values of DC proportion (0.2, 0.5 and 0.8). 
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outcomes at a particular trial. In the present study, we measured par-
ticipants' explicit ratings of how confident they were about which 
cadence would conclude a chord progression and how well the actual 
cadence matched their expectations. We directly modelled these ratings 
while accounting for the timecourse of the experiment and the proba-
bility of hearing an a priori rare cadence, namely a DC. We found that 
participants' completion confidence ratings changed over the course of 
the experiment: on average they increased when presented with more 
items, but this rate of change decreased as the probability of hearing a 
DC increased. Additionally, expectation match ratings were consistently 
lower for DCs than PACs, but ratings on average increased for both rare 
and common cadences as they progressed through the experiment. 
However, this effect was once more moderated by the local probability 
of hearing a DC at a particular trial: the higher this probability, the 
greater the increase in expectedness of a DC, and the smaller the increase 
in expectedness of a PAC. Together, these findings suggest that listeners 
can indeed adapt their expectations for rare harmonic patterns and 
provide support for the idea that Bayesian belief updating is a domain- 
general process that applies to music as well as language. In what fol-
lows, we discuss our key results, framing them in Bayesian terms and 
relating them to other findings in the literature. 

5.1. Completion confidence ratings 

We hypothesised that since participants heard far more DCs than 
would be predicted by corpus statistics, their confidence in their ex-
pectations for the “regular” cadence (i.e., PAC) would on average 
decrease over the course of the experiment, because the uncertainty of 
their posterior distribution would increase. Surprisingly, a model that 
accounted for the item order but did not account for the probability of 
hearing a DC at the current trial showed that CC ratings significantly 
increased by the end of the experiment, though this increase was small 
(only 0.01 per additional item). This result suggests one of two possible 
explanations. Firstly, if participants' confidence ratings index their long- 
term mental model of cadence likelihoods, then it is possible that they 
needed an even higher overall ratio of DCs to PACs to cause their con-
fidence to decrease. This account assumes that listeners “explain away” 
the unexpected presence of DCs as due to noise (or a temporary devia-
tion from random sampling) until there is greater evidence that the 
distribution of DCs has, in fact, increased. Secondly, since they needed 
time to get used to the experimental paradigm, their confidence rose 
once they had heard a few examples and became accustomed to the task. 
This account assumes that listeners require some minimal number of 
trials to appropriately “calibrate” their judgements in using the rating 
scale. 

To test this first possibility, we ran a more complex model that also 
accounted for the local probability of hearing a DC by calculating the 
maximum likelihood estimation from all previous trials. This full model 
provided a better fit to the data than the simple model as per the BIC 
scores. We found that once the local probability of hearing a DC rose to 
74%, the CC ratings began to decrease over the course of the experiment, 
suggesting that hearing a sufficiently high proportion of cadences that 
conflicted with our model of participants' prior knowledge did indeed 
affect their ability to predict how a musical phrase will end. However, 
the fact that ratings increased up to this probability suggests that there 
may well have been some adaptation to the task itself, independent of 

the statistics of the stimulus set. 
While the marginal R2 values (fixed effects only) for both the simple 

and full models were very low, the conditional R2 values (fixed and 
random effects) were much higher. This suggests that there was 
considerable variation in how participants used the rating scales, but 
that accounting for this variation improved the fit. Interestingly, both 
types of R2 were comparable between the simple and full model, but 
both the χ2 test and BIC comparisons suggest that the full model had 
more explanatory power and was not overly complex compared to the 
simple model. On balance, we conclude that participants' confidence in 
how a phrase would be resolved was dependent on the changing prob-
ability of hearing a DC over the course of the experiment. 

Confidence ratings for how phrases may end have not been employed 
extensively in music cognition studies. Related measures from other 
studies include Sears et al. (2019), who used ratings to measure the 
strength and specificity of participants' expectations for whether and 
how a phrase would continue (a task taken from Schmuckler, 1989). 
Sears, Caplin, and McAdams (2014) asked participants to rate the degree 
of completion of phrases and additionally asked participants how 
confident they were of their degree of completion rating. However, in 
our task, participants were told that the phrase would continue and only 
had to rate their confidence for the content of the completion. Moreover, 
the studies above did not investigate how confidence changed over time 
but instead measured the average confidence or expectancy strength and 
specificity for different phrase-final cadence types. However, our results 
do align with findings from Desender et al. (2021) who found that 
participants' confidence in the outcome of an event increased with 
additional evidence consistent with their initial belief and decreased 
when the evidence was inconsistent with their initial belief. Assuming 
that our participants were by default expecting a PAC (which is evi-
denced by the expectation match ratings), our results are also consistent 
with this account, though the threshold probability for this switch is 
surprisingly high. 

5.2. Expectation match ratings 

We hypothesised that EM ratings for DCs would be lower than PAC 
ratings, but that DC ratings would increase over the course of the study 
while PAC ratings would not increase. Our simple EM model (not ac-
counting for the local probability of hearing a DC) found that DC ratings 
were indeed lower on average than PAC ratings. This result is consistent 
with evidence from both behavioural studies (Loui & Wessel, 2007; 
Sears et al., 2019; Tillmann & Bigand, 2010) and ERP studies (Janata, 
1995; Koelsch et al., 2000, 2002; Koelsch et al., 2005; Steinbeis et al., 
2006), as well as predictions from corpus analyses (de Clercq, 2015; 
Huron, 2006; Sears, Pearce, et al., 2018). They also parallel analogous 
situations in the language domain (Van Berkum et al., 2005). 

However, while EM ratings increased significantly over the course of 
the experiment, there was no interaction in this simple model between 
the item order and cadence type, meaning that ratings for both PACs and 
DCs increased at approximately the same rate. As with the CC ratings, 
the lack of a significant interaction can be explained by the exclusion of 
the local probability of DCs from the model. Once local statistics were 
added, the model fit significantly improved, and the expected interac-
tion between cadence and item order became significant, with DC rat-
ings increasing faster than PAC ratings on average. This finding is 

Table 4 
In-sample model fits and model comparisons for null, simple and full models of expectation match ratings.  

Model Marginal R2 Conditional R2 Number of parameters BIC χ2 value (df)a p 

Null 0 0.49 4 22,827 – – 
Simple 0.36 0.67 10 21,094 1784.55 <0.001*** 
Full 0.36 0.68 14 21,075 54.49 <0.001*** 

Note. N = 5960 (40 non-foil trials × 149 participants), df = degrees of freedom for χ2 tests, *** p < .001. a The χ2 tests were conducted with the next most complex 
model (i.e., simple was compared with null, full was compared with simple). 
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consistent with a similar result in language from Fine et al. (2013), who 
found that participants read garden-path sentences that were resolved 
with a rare relative clause slower on average than sentences resolved 
with a common main verb, but their reading times sped up more for the 
relative clause resolutions over the course of the experiment. 

Crucially, we observed a three-way interaction between the cadence, 
item order and local probability of hearing a DC. As the probability of 
hearing a DC increased, the EM ratings increased at a faster rate over the 
trials, and the PAC ratings in fact began to decrease slightly. This finding 
suggests that our participants were not only sensitive to the discrepancy 
between the global statistics of our stimuli and harmonic knowledge that 
they would have acquired implicitly through extensive exposure to 
Western music, but they also adapted in the short term to fluctuations in 
the local statistics of the stimulus set when rating how well the cadence 
matched their expectations. Our finding parallels results from Myslín 
and Levy (2016), who showed that changing the order of presentation of 
rare syntactic constructions so that they clustered together facilitated 
participants' processing, indexed by their faster reading times. However, 
Myslín and Levy only measured reading times after an exposure phase 
and averaged them across subsequent trials. Though they compensate 
for this to an extent by altering the amount of exposure that participants 
had, they do not capture the full timecourse of this adaptation as we do 
in our design. 

The marginal R2 values for both the simple and full models were 
moderate, indicating that the fixed effects alone explained a consider-
able amount of variation in the data. Once again, the conditional R2 

values (fixed and random effects) were considerably higher, implying 
that while there was considerable variation in how participants used the 
rating scales, accounting for this variation improved the fit. As was the 
case for the CC models, both types of R2 were comparable between the 
simple and full EM models, but both the χ2 test and BIC comparisons 
suggest that the full model had more explanatory power and was not 
overly complex compared to the simple model. Taken together with the 
equivalent findings for the CC models, we conclude that participants 
were sensitive to the changing probability of hearing a DC over the 
course of the experiment. 

It is worthy of note that the participants' EM ratings for PACs 
remained high and did not change much throughout the experiment 
regardless of the proportion of DCs presented. This suggests that despite 
the observed adaptation for DCs, PACs did not in turn sound less ex-
pected for participants, perhaps because they are so strongly stored in 
long-term memory (Huron, 2006; Sears, Spitzer, Caplin, & McAdams, 
2020; Tillmann & Bigand, 2010). However, the repetition of the a priori 
highly unexpected DC structure is not represented strongly in long-term 
memory and is thus acquired more readily through statistical learning 
without interfering with a listener's prior schematic knowledge. 

5.3. Theoretical implications 

Previous accounts of music perception have suggested that repetition 
priming has no effect on listeners' expectations for already familiar 
musical styles, as it is believed that schematic knowledge dominates the 
expectation formation process (Bigand et al., 2005; Tillmann & Bigand, 
2010). These accounts are agnostic as to whether this knowledge is ac-
quired through statistical learning (Huron, 2006; Pearce, 2018; Sears 
et al., 2019) or relates to the acoustic similarity of adjacent chords 
(Bharucha & Stoeckig, 1986; Tekman & Bharucha, 1998). However, 
these accounts do not factor in the timecourse of expectation adaptation, 
relying on analyses that average measurements across trials. By using a 
trial-by-trial modelling approach, we provide evidence that listeners use 
short-term statistical learning to adapt to the statistics of the stimulus 
set. Though short-term statistical learning helps listeners acquire the 
structure of unfamiliar musical scales (Loui et al., 2010) and artificial 
harmonic grammars (Jonaitis & Saffran, 2009), we show that it is also 
used when adapting to unusual but plausible cadences within a broadly 
familiar musical style. 

More generally, we suggest that the musical expectation adaptation 
observed in our study is an instance of Bayesian inference, a domain- 
general process that explains a wide range of human behaviours 
(Chater, Oaksford, Hahn, & Heit, 2010). Our models incorporated pre-
dictors that accounted for how an ideal learner might iteratively update 
their priors based on the observed statistics of the musical style. These 
models provided a better fit to the data than models that only accounted 
for the timecourse of adaptation, suggesting that participants do indeed 
update their beliefs in real time when reporting their expectations for 
upcoming musical events. 

Computational models of music perception such as IDyOM also 
operationalise the Bayesian inference process as combining long-term 
musical knowledge with the short-term acquisition of statistical con-
tingencies in musical structure to generate expectations for upcoming 
musical events. However, while IDyOM is a flexible tool for modelling 
musical structure and captures higher-order dependencies between 
stimuli that our model cannot, it is not currently optimised for repre-
senting harmony. Since we were only using two cadence types in our 
study, and since the IDyOM configuration that we tried for the purposes 
of stimulus selection overestimated the difference in surprisal between 
PACs and DCs, we opted to use a simpler modelling approach. Once 
procedures for modelling harmony with IDyOM are more established, 
future work could examine expectation adaptation for a wider range of 
harmonic patterns. 

Though we limited our participants to residents of the United 
Kingdom and the United States, we speculate that our results would be 
robust for participants primarily enculturated in musical styles that 
feature similarly referential chords (i.e., major and minor triads as 
opposed to diminished chords and other dissonant harmonies) and ca-
dences akin to those in Western classical music. However, they may not 
extend to listeners who have extensive experience with styles that 
conflict with the cadential logic of Western classical music. For instance, 
jazz musicians (who frequently play music with complex harmonic logic 
and dissonant chords) have been shown to process cadences faster than 
musicians trained in other styles, and crucially do not exhibit a differ-
ence in reaction times for unexpected or deceptive cadences compared 
to authentic cadences (Adams, 2022). Thus, they may not exhibit much 
of an adaptation effect on the current task given that their reaction times 
across trials were already comparable for different cadences. However, 
they may not apply their expectations for jazz harmony to our classical 
stimuli. In any case, it appears that the level of expertise and encultur-
ation in a musical style are important components in the account of 
expectation adaptation. Future work could examine this more explicitly. 

6. Conclusion and future directions 

In conclusion, we have shown that repetition priming can influence 
listeners' musical expectations in the short term. Moreover, we demon-
strate that models accounting for how the statistical structure of the 
environment changes in real time provide a better fit to explicit ratings 
of confidence and expectedness, suggesting that item order matters in 
repetition priming. In future work, we plan to address expectation 
adaptation in listening contexts that are less homogenous than the 
present case in which all exemplars came from the same genre of Bach 
chorales. For example, hierarchical Bayesian models allow for more 
complex priors in which observations are placed into categories, each of 
which has their own set of expectations. An ideal learner should adopt 
such a hierarchical model so that expectation adaptation only applies to 
the relevant category and is not applied uniformly across musical genres. 
We would also like to explore whether there are neural signatures of 
short-term expectation adaptation, and whether thematic organisation 
in musical structure predicts the faster adaptation to rare events that we 
observed in participants hearing more DCs earlier on in the experiment. 
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