
Juan-Pablo Cáceres | CCRMA | Stanford University | jcaceres@ccrma.stanford.edu

INTERNETWORKING TUTORIAL

Juan-Pablo Cáceres
Network Musical Performance Workshop

Technical and Artistic Strategies to Perform Around the Globe
Center for Computer Research in Music and  Acoustics (CCRMA)

Stanford University

mailto:jcaceres@ccrma.stanford.edu
mailto:jcaceres@ccrma.stanford.edu


Juan-Pablo Cáceres | CCRMA | Stanford University | jcaceres@ccrma.stanford.edu

What is a NETWORK?

mailto:jcaceres@ccrma.stanford.edu
mailto:jcaceres@ccrma.stanford.edu


Juan-Pablo Cáceres | CCRMA | Stanford University | jcaceres@ccrma.stanford.edu

Direct Links

1.2 Requirements 7

This section attempts to distill these different perspectives into a high-level

introduction to the major considerations that drive network design, and in doing

so, identifies the challenges addressed throughout the rest of this book.

1.2.1 Connectivity

Starting with the obvious, a network must provide connectivity among a set of com-

puters. Sometimes it is enough to build a limited network that connects only a few

select machines. In fact, for reasons of privacy and security, many private (corporate)

networks have the explicit goal of limiting the set of machines that are connected. In

contrast, other networks (of which the Internet is the prime example) are designed

to grow in a way that allows them the potential to connect all the computers in the

world. A system that is designed to support growth to an arbitrarily large size is said

to scale. Using the Internet as a model, this book addresses the challenge of scalability.

Links, Nodes, and Clouds

Network connectivity occurs at many different levels. At the lowest level, a network

can consist of two or more computers directly connected by some physical medium,

such as a coaxial cable or an optical fiber. We call such a physical medium a link, and

we often refer to the computers it connects as nodes. (Sometimes a node is a more

specialized piece of hardware rather than a computer, but we overlook that distinction

for the purposes of this discussion.) As illustrated in Figure 1.2, physical links are

sometimes limited to a pair of nodes (such a link is said to be point-to-point), while

in other cases, more than two nodes may share a single physical link (such a link is

said to be multiple access). Whether a given link supports point-to-point or multiple-

access connectivity depends on how the node is attached to the link. It is also the case

that multiple-access links are often limited in size, in terms of both the geographical

distance they can cover and the number of nodes they can connect. The exception is

a satellite link, which can cover a wide geographic area.

(a)

(b)
…

Figure 1.2 Direct links: (a) point-to-point; (b) multiple-access.
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Switched Network
8 1 Foundation

Figure 1.3 Switched network.

If computer networks were limited to situations in which all nodes are directly

connected to each other over a common physical medium, then either networks would

be very limited in the number of computers they could connect, or the number of wires

coming out of the back of each node would quickly become both unmanageable and

very expensive. Fortunately, connectivity between two nodes does not necessarily imply

a direct physical connection between them—indirect connectivity may be achieved

among a set of cooperating nodes. Consider the following two examples of how a

collection of computers can be indirectly connected.

Figure 1.3 shows a set of nodes, each of which is attached to one or more point-

to-point links. Those nodes that are attached to at least two links run software that for-

wards data received on one link out on another. If organized in a systematic way, these

forwarding nodes form a switched network. There are numerous types of switched net-

works, of which the two most common are circuit switched and packet switched. The

former is most notably employed by the telephone system, while the latter is used for

the overwhelming majority of computer networks and will be the focus of this book.

The important feature of packet-switched networks is that the nodes in such a network

send discrete blocks of data to each other. Think of these blocks of data as correspond-

ing to some piece of application data such as a file, a piece of email, or an image. We

call each block of data either a packet or a message, and for now we use these terms

interchangeably; we discuss the reason they are not always the same in Section 1.2.2.

Packet-switched networks typically use a strategy called store-and-forward. As

the name suggests, each node in a store-and-forward network first receives a complete

Packet Switched
Discrete blocks of data

switch
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packet over some link, stores the packet in its internal memory, and then forwards

the complete packet to the next node. In contrast, a circuit-switched network first

establishes a dedicated circuit across a sequence of links and then allows the source

node to send a stream of bits across this circuit to a destination node. The major

reason for using packet switching rather than circuit switching in a computer network

is efficiency, discussed in the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that

implement the network (they are commonly called switches, and their sole func-

tion is to store and forward packets) and the nodes on the outside of the cloud that

use the network (they are commonly called hosts, and they support users and run

application programs). Also note that the cloud in Figure 1.3 is one of the most

important icons of computer networking. In general, we use a cloud to denote any

type of network, whether it is a single point-to-point link, a multiple-access link, or a

switched network. Thus, whenever you see a cloud used in a figure, you can think of

it as a placeholder for any of the networking technologies covered in this book.

A second way in which a set of computers can be indirectly connected is shown in

Figure 1.4. In this situation, a set of independent networks (clouds) are interconnected

to form an internetwork, or internet for short. We adopt the Internet’s convention

of referring to a generic internetwork of networks as a lowercase i internet, and the

Figure 1.4 Interconnection of networks.

clouds
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4.1 Simple Internetworking (IP) 237
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(point-to-point)

H7 R3 H8
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Figure 4.1 A simple internetwork. Hn = host; Rn = router.

is a single-technology network. The nodes that interconnect the networks are called

routers. They are also sometimes called gateways, but since this term has several other

connotations, we restrict our usage to router.

The Internet Protocol is the key tool used today to build scalable, heterogeneous

internetworks. It was originally known as the Kahn-Cerf protocol after its inventors.

One way to think of IP is that it runs on all the nodes (both hosts and routers) in

a collection of networks and defines the infrastructure that allows these nodes and

networks to function as a single logical internetwork. For example, Figure 4.2 shows

how hosts H1 and H8 are logically connected by the internet in Figure 4.1, including

the protocol graph running on each node. Note that higher-level protocols, such as

TCP and UDP, typically run on top of IP on the hosts.

Most of the rest of this chapter is about various aspects of IP. While it is certainly

possible to build an internetwork that does not use IP—for example, Novell created

an internetworking protocol called IPX, which was in turn based on the XNS internet

designed by Xerox—IP is the most interesting case to study simply because of the

size of the Internet. Said another way, it is only the IP Internet that has really faced

the issue of scale. Thus it provides the best case study of a scalable internetworking

protocol.
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Multiplexing

1.2 Requirements 11

Given a collection of nodes indirectly connected by a nesting of networks, it is

possible for any pair of hosts to send messages to each other across a sequence of

links and nodes. Of course, we want to do more than support just one pair of com-

municating hosts—we want to provide all pairs of hosts with the ability to exchange

messages. The question then is, How do all the hosts that want to communicate share

the network, especially if they want to use it at the same time? And, as if that problem

isn’t hard enough, how do several hosts share the same link when they all want to use

it at the same time?

To understand how hosts share a network, we need to introduce a fundamental

concept, multiplexing, which means that a system resource is shared among multiple

users. At an intuitive level, multiplexing can be explained by analogy to a timesharing

computer system, where a single physical CPU is shared (multiplexed) among multiple

jobs, each of which believes it has its own private processor. Similarly, data being sent

by multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5,

where the three hosts on the left side of the network (L1–L3) are sending data to the

three hosts on the right (R1–R3) by sharing a switched network that contains only

one physical link. (For simplicity, assume that host L1 is communicating with host R1,

and so on.) In this situation, three flows of data—corresponding to the three pairs of

hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed

back into separate flows by switch 2. Note that we are being intentionally vague about

exactly what a “flow of data” corresponds to. For the purposes of this discussion,

assume that each host on the left has a large supply of data that it wants to send to its

counterpart on the right.

There are several different methods for multiplexing multiple flows onto one phy-

sical link. One common method is synchronous time-division multiplexing (STDM).

The idea of STDM is to divide time into equal-sized quanta and, in a round-robin

L2

L3

R2

R3

L1 R1

Switch 1 Switch 2

Figure 1.5 Multiplexing multiple logical flows over a single physical link.

single physical link
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Switch Multiplexing Packets
14 1 Foundation

…

Figure 1.6 A switch multiplexing packets from multiple sources onto one shared link.

The decision as to which packet to send next on a shared link can be made in a

number of different ways. For example, in a network consisting of switches inter-

connected by links such as the one in Figure 1.5, the decision would be made by

the switch that transmits packets onto the shared link. (As we will see later, not all

packet-switched networks actually involve switches, and they may use other mech-

anisms to determine whose packet goes onto the link next.) Each switch in a packet-

switched network makes this decision independently, on a packet-by-packet basis.

One of the issues that faces a network designer is how to make this decision in a

fair manner. For example, a switch could be designed to service packets on a first-

in-first-out (FIFO) basis. Another approach would be to service the different flows

in a round-robin manner, just as in STDM. This might be done to ensure that cer-

tain flows receive a particular share of the link’s bandwidth, or that they never have

their packets delayed in the switch for more than a certain length of time. A net-

work that allows flows to request such treatment is said to support quality of service

(QoS).

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming

packet streams onto one outgoing link, it is possible that the switch will receive packets

faster than the shared link can accommodate. In this case, the switch is forced to buffer

these packets in its memory. Should a switch receive packets faster than it can send them

for an extended period of time, then the switch will eventually run out of buffer space,

and some packets will have to be dropped. When a switch is operating in this state,

it is said to be congested.

buffer in memory
congestion
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Host

HostHost
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Application

Host

Application
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Figure 1.7 Processes communicating over an abstract channel.

messages sent over the channel are delivered, or is it acceptable if some messages fail to

arrive? Is it necessary that messages arrive at the recipient process in the same order in

which they are sent, or does the recipient not care about the order in which messages

arrive? Does the network need to ensure that no third parties are able to eavesdrop

on the channel, or is privacy not a concern? In general, a network provides a variety

of different types of channels, with each application selecting the type that best meets

its needs. The rest of this section illustrates the thinking involved in defining useful

channels.

Identifying Common Communication Patterns

Designing abstract channels involves first understanding the communication needs

of a representative collection of applications, then extracting their common commu-

nication requirements, and finally incorporating the functionality that meets these

requirements in the network.

One of the earliest applications supported on any network is a file access pro-

gram like FTP (File Transfer Protocol) or NFS (Network File System). Although many

details vary—for example, whether whole files are transferred across the network or

only single blocks of the file are read/written at a given time—the communication
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Open Systems Interconnection (OSI) Architecture

26 1 Foundation

RRP is not unique in its support for multiplexing; nearly every protocol imple-

ments this mechanism. For example, HHP has its own demux key to determine which

messages to pass up to RRP and which to pass up to MSP. However, there is no uniform

agreement among protocols—even those within a single network architecture—on ex-

actly what constitutes a demux key. Some protocols use an 8-bit field (meaning they can

support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some

protocols have a single demultiplexing field in their header, while others have a pair of

demultiplexing fields. In the former case, the same demux key is used on both sides of

the communication, while in the latter case, each side uses a different key to identify the

high-level protocol (or application program) to which the message is to be delivered.

1.3.2 OSI Architecture

The ISO was one of the first organizations to formally define a common way to connect

computers. Their architecture, called the Open Systems Interconnection (OSI) architec-

ture and illustrated in Figure 1.13, defines a partitioning of network functionality into

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Figure 1.13 OSI network architecture.

intermediate switches and routers
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…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Figure 1.14 Internet protocol graph.

TCP UDP

IP

Network

Application

Figure 1.15 Alternative view of the Internet architecture.

packet-switched network called the ARPANET. Both the Internet and the ARPANET

were funded by the Advanced Research Projects Agency (ARPA), one of the R&D

funding agencies of the U.S. Department of Defense. The Internet and ARPANET

were around before the OSI architecture, and the experience gained from building

them was a major influence on the OSI reference model.

While the seven-layer OSI model can, with some imagination, be applied to the

Internet, a four-layer model is often used instead. At the lowest level are a wide variety

of network protocols, denoted NET1, NET2, and so on. In practice, these protocols

are implemented by a combination of hardware (e.g., a network adaptor) and soft-

ware (e.g., a network device driver). For example, you might find Ethernet or Fiber

Distributed Data Interface (FDDI) protocols at this layer. (These protocols in turn

may actually involve several sublayers, but the Internet architecture does not presume

anything about them.) The second layer consists of a single protocol—the Internet

Protocol (IP). This is the protocol that supports the interconnection of multiple net-

working technologies into a single, logical internetwork. The third layer contains two

main protocols—the Transmission Control Protocol (TCP) and the User Datagram

Protocol (UDP). TCP and UDP provide alternative logical channels to application

hardware/software

Internet protocol

e.g.  FTP, Telnet, HTTP,
Mail Transfer Protocol
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Datagram Delivery and Packer Format (IPv4)

240 4 Internetworking

Version HLen TOS Length

Ident Flags Offset

TTL Protocol Checksum

SourceAddr

DestinationAddr

Options (variable) Pad
(variable)

0 4 8 16 19 31

Data

Figure 4.3 IPv4 packet header.

version of IP. The current version of IP is 4, and it is sometimes called IPv4.1 Observe

that putting this field right at the start of the datagram makes it easy for everything

else in the packet format to be redefined in subsequent versions; the header processing

software starts off by looking at the version and then branches off to process the rest

of the packet according to the appropriate format. The next field, HLen, specifies the

length of the header in 32-bit words. When there are no options, which is most of the

time, the header is 5 words (20 bytes) long. The 8-bit TOS (type of service) field has

had a number of different definitions over the years, but its basic function is to allow

packets to be treated differently based on application needs. For example, the TOS

value might determine whether or not a packet should be placed in a special queue

that receives low delay. We discuss the use of this field (and a new name for it) in more

detail in Section 6.5.3.

The next 16 bits of the header contain the Length of the datagram, including the

header. Unlike the HLen field, the Length field counts bytes rather than words. Thus,

the maximum size of an IP datagram is 65,535 bytes. The physical network over

which IP is running, however, may not support such long packets. For this reason,

IP supports a fragmentation and reassembly process. The second word of the header

contains information about fragmentation, and the details of its use are presented

under “Fragmentation and Reassembly” below.

1The next major version of IP, which is discussed later in this chapter, has a new version number 6 and is known
as IPv6. The version number 5 was used for an experimental protocol called ST-II that was not widely used.

Info to forward 
packet to its 
correct destination
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H1 R1 R2 R3 H8

ETH FDDI

PPP IP (376)

PPP IP (512)

PPP IP (512) (512)

ETH IP

ETH IP

(512)ETH IP

(376)

IP (1400) IP (1400)

R1 R2 R3

Figure 4.4 IP datagrams traversing the sequence of physical networks graphed in
Figure 4.1.

is 1500 bytes for the two Ethernets, 4500 bytes for the FDDI network, and 532 bytes

for the point-to-point network, then a 1420-byte datagram (20-byte IP header plus

1400 bytes of data) sent from H1 makes it across the first Ethernet and the FDDI net-

work without fragmentation but must be fragmented into three datagrams at router

R2. These three fragments are then forwarded by router R3 across the second Ethernet

to the destination host. This situation is illustrated in Figure 4.4. This figure also serves

to reinforce two important points:

1 Each fragment is itself a self-contained IP datagram that is transmitted over a

sequence of physical networks, independent of the other fragments.

2 Each IP datagram is reencapsulated for each physical network over which it

travels.

The fragmentation process can be understood in detail by looking at the header

fields of each datagram, as is done in Figure 4.5. The unfragmented packet, shown at

the top, has 1400 bytes of data and a 20-byte IP header. When the packet arrives at

router R2, which has an MTU of 532 bytes, it has to be fragmented. A 532-byte MTU

leaves 512 bytes for data after the 20-byte IP header, so the first fragment contains

512 bytes of data. The router sets the M bit in the Flags field (see Figure 4.3), meaning

that there are more fragments to follow, and it sets the Offset to 0, since this fragment

contains the first part of the original datagram. The data carried in the second fragment

starts with the 513th byte of the original data, so the Offset field in this header is set

to 64, which is 512 ÷ 8. Why the division by 8? Because the designers of IP decided

that fragmentation should always happen on 8-byte boundaries, which means that

the Offset field counts 8-byte chunks, not bytes. (We leave it as an exercise for you to

figure out why this design decision was made.) The third fragment contains the last
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Network Host

7 24

0
(a)

Network Host

14 16

1 0
(b)

Network Host

21 8

1 1 0
(c)

Figure 4.6 IP addresses: (a) class A; (b) class B; (c) class C.

class B address. If the first two bits are 1 and the third is 0, it is a class C address.

Thus, of the approximately 4 billion possible IP addresses, half are class A, one-

quarter are class B, and one-eighth are class C. Each class allocates a certain number

of bits for the network part of the address and the rest for the host part. Class A

networks have 7 bits for the network part and 24 bits for the host part, meaning

that there can be only 126 class A networks (the values 0 and 127 are reserved),

but each of them can accommodate up to 224 − 2 (about 16 million) hosts (again,

there are two reserved values). Class B addresses allocate 14 bits for the network and

16 bits for the host, meaning that each class B network has room for 65,534 hosts.

Finally, class C addresses have only 8 bits for the host and 21 for the network part.

Therefore, a class C network can have only 256 unique host identifiers, which means

only 254 attached hosts (one host identifier, 255, is reserved for broadcast, and 0

is not a valid host number). However, the addressing scheme supports 221 class C

networks.

On the face of it, this addressing scheme has a lot of flexibility, allowing networks

of vastly different sizes to be accommodated fairly efficiently. The original idea was

that the Internet would consist of a small number of wide area networks (these would

be class A networks), a modest number of site- (campus-) sized networks (these would

be class B networks), and a large number of LANs (these would be class C networks).

However, as we shall see in Section 4.3, additional flexibility has been needed, and

some innovative ways to provide it are now in use. Because one of these techniques

actually removes the distinction between address classes, the addressing scheme just

described is now known as “classful” addressing to distinguish it from the newer

“classless” approach.

Before we look at how IP addresses get used, it is helpful to look at some practical

matters, such as how you write them down. By convention, IP addresses are written

class a

class b

class c

Classes | Network Sizes
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ARP: IP to Physical Address

Address Resolution Protocol

Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5 

The Address Resolution Protocol, ARP, allows a host to find the phy- 
sical address of a target host on the same physical network, given 
only the target's IP address. 

Figure 5.1 The ARP protocol. To determine PB, B's physical address, from 
IB, its IP address, (a) host A broadcasts an ARP request containing 
IB to all machines on the net, and (b) host B responds with an 
ARP reply that contains the pair (Is, PB).  

5.6 The Address Resolution Cache 

It may seem silly that for A to send a packet to B it first sends a broadcast that 
reaches B. Or it may seem even sillier that A broadcasts the question, "how can I reach 
you?" instead of just broadcasting the packet it wants to deliver. But there is an impor- 
tant reason for the exchange. Broadcasting is far too expensive to be used every time 
one machine needs to transmit a packet to another because every machine on the net- 
work must receive and process the broadcast packet. 
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Network number Host number

Class B address

Subnet mask (255.255.255.0)

Subnetted address

111111111111111111111111 00000000

Network number Host IDSubnet ID

Figure 4.25 Subnet addressing.

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15
128.96.34.1

H1 R1

128.96.34.130 Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

128.96.34.129
128.96.34.139

R2
H2

128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

H3

Figure 4.26 An example of subnetting.

network in a class B address, we may now think of the address as having not two parts

but three: a network part, a subnet part, and a host part. That is, we have divided what

used to be the host part into a subnet part and a host part. This is shown in Figure 4.25.

What subnetting means to a host is that it is now configured with both an IP

address and a subnet mask for the subnet to which it is attached. For example, host

H1 in Figure 4.26 is configured with an address of 128.96.34.15 and a subnet mask

of 255.255.255.128. (All hosts on a given subnet are configured with the same mask;

304 4 Internetworking

i.e., there is exactly one subnet mask per subnet.) The bitwise AND of these two

numbers defines the subnet number of the host and of all other hosts on the same

subnet. In this case, 128.96.34.15 AND 255.255.255.128 equals 128.96.34.0, so this

is the subnet number for the topmost subnet in the figure.

When the host wants to send a packet to a certain IP address, the first thing it

does is to perform a bitwise AND between its own subnet mask and the destination

IP address. If the result equals the subnet number of the sending host, then it knows

that the destination host is on the same subnet and the packet can be delivered directly

over the subnet. If the results are not equal, the packet needs to be sent to a router

to be forwarded to another subnet. For example, if H1 is sending to H2, then H1

ANDs its subnet mask (255.255.255.128) with the address for H2 (128.96.34.139) to

obtain 128.96.34.128. This does not match the subnet number for H1 (128.96.34.0)

so H1 knows that H2 is on a different subnet. Since H1 cannot deliver the packet to

H2 directly over the subnet, it sends the packet to its default router R1.

Note that ARP is largely unaffected by the change in address structure. Once a

host or router figures out which node it needs to deliver a packet to on one of the

networks to which it is attached, it performs ARP to find the MAC address for that

node if necessary.

The job of a router also changes when we introduce subnetting. Recall that,

for simple IP, a router has a forwarding table that consists of entries of the form

〈NetworkNum, NextHop〉. To support subnetting, the table must now hold entries of

the form 〈SubnetNumber, SubnetMask, NextHop〉. To find the right entry in the table,

the router ANDs the packet’s destination address with the SubnetMask for each entry

in turn; if the result matches the SubnetNumber of the entry, then this is the right entry

to use, and it forwards the packet to the next hop router indicated. In the example

network of Figure 4.26, router R1 would have the entries shown in Table 4.10.

Continuing with the example of a datagram from H1 being sent to H2, R1

would AND H2’s address (128.96.34.139) with the subnet mask of the first entry

(255.255.255.128) and compare the result (128.96.34.128) with the network number

SubnetNumber SubnetMask NextHop

128.96.34.0 255.255.255.128 Interface 0

128.96.34.128 255.255.255.128 Interface 1

128.96.33.0 255.255.255.0 R2

Table 4.10 Example forwarding table with subnetting for Figure 4.26.
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(DHCP)
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DHCP
relay

DHCP
server

Unicast to server

Broadcast

Host

Other networks

Figure 4.10 A DHCP relay agent receives a broadcast DHCPDISCOVER message from
a host and sends a unicast DHCPDISCOVER message to the DHCP server.

Operation HType HLen Hops

Xid

ciaddr

yiaddr

siaddr

giaddr

chaddr (16 bytes)

sname (64 bytes)

file (128 bytes)

options

Secs Flags

Figure 4.11 DHCP packet format.

concept of a relay agent. There is at least one relay agent on each network, and it is

configured with just one piece of information: the IP address of the DHCP server. When

a relay agent receives a DHCPDISCOVER message, it unicasts it to the DHCP server and

awaits the response, which it will then send back to the requesting client. The process

of relaying a message from a host to a remote DHCP server is shown in Figure 4.10.

Figure 4.11 shows the format of a DHCP message. The message is actually sent

using a protocol called UDP (the User Datagram Protocol) that runs over IP. UDP is
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28 1 Foundation

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Figure 1.14 Internet protocol graph.

TCP UDP

IP

Network

Application

Figure 1.15 Alternative view of the Internet architecture.

packet-switched network called the ARPANET. Both the Internet and the ARPANET

were funded by the Advanced Research Projects Agency (ARPA), one of the R&D

funding agencies of the U.S. Department of Defense. The Internet and ARPANET

were around before the OSI architecture, and the experience gained from building

them was a major influence on the OSI reference model.

While the seven-layer OSI model can, with some imagination, be applied to the

Internet, a four-layer model is often used instead. At the lowest level are a wide variety

of network protocols, denoted NET1, NET2, and so on. In practice, these protocols

are implemented by a combination of hardware (e.g., a network adaptor) and soft-

ware (e.g., a network device driver). For example, you might find Ethernet or Fiber

Distributed Data Interface (FDDI) protocols at this layer. (These protocols in turn

may actually involve several sublayers, but the Internet architecture does not presume

anything about them.) The second layer consists of a single protocol—the Internet

Protocol (IP). This is the protocol that supports the interconnection of multiple net-

working technologies into a single, logical internetwork. The third layer contains two

main protocols—the Transmission Control Protocol (TCP) and the User Datagram

Protocol (UDP). TCP and UDP provide alternative logical channels to application
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5.1 Simple Demultiplexer (UDP)
The simplest possible transport protocol is one that extends the host-to-host delivery

service of the underlying network into a process-to-process communication service.

There are likely to be many processes running on any given host, so the protocol needs

to add a level of demultiplexing, thereby allowing multiple application processes on

each host to share the network. Aside from this requirement, the transport protocol

adds no other functionality to the best-effort service provided by the underlying net-

work. The Internet’s User Datagram Protocol (UDP) is an example of such a transport

protocol.

The only interesting issue in such a protocol is the form of the address used to

identify the target process. Although it is possible for processes to directly identify

each other with an OS-assigned process id (pid), such an approach is only practical

in a closed distributed system in which a single OS runs on all hosts and assigns each

process a unique id. A more common approach, and the one used by UDP, is for

processes to indirectly identify each other using an abstract locator, often called a port

or mailbox. The basic idea is for a source process to send a message to a port and for

the destination process to receive the message from a port.

The header for an end-to-end protocol that implements this demultiplexing func-

tion typically contains an identifier (port) for both the sender (source) and the receiver

(destination) of the message. For example, the UDP header is given in Figure 5.1. Notice

that the UDP port field is only 16 bits long. This means that there are up to 64K possi-

ble ports, clearly not enough to identify all the processes on all the hosts in the Internet.

Fortunately, ports are not interpreted across the entire Internet, but only on a single

host. That is, a process is really identified by a port on some particular host—a 〈port,

host〉 pair. In fact, this pair constitutes the demultiplexing key for the UDP protocol.

The next issue is how a process learns the port for the process to which it wants

to send a message. Typically, a client process initiates a message exchange with a server

SrcPort DstPort

ChecksumLength

Data

0 16 31

Figure 5.1 Format for UDP header.

Unreliable Datagrams (like postal mail)
    - no acknowledgment 
     - ports to distinguish between applications
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The User Datagram Protocol (UDP) provides an unreliable connec- 
tionless delivery service using IP to transport messages between 
machines. It uses IP to carry messages, but adds the ability to distin- 
guish among multiple destinations within a given host computer. 

An application program that uses UDP accepts full responsibility for handling the 
problem of reliability, including message loss, duplication, delay, out-of-order delivery, 
and loss of connectivity. Unfortunately, application programmers often ignore these 
problems when designing software. Furthermore, because programmers often test net- 
work software using highly reliable, low-delay local area networks, testing may not ex- 
pose potential failures. Thus, many application programs that rely on UDP work well 
in a local environment but fail in dramatic ways when used in a larger TCP/IP internet. 

12.4 Format Of UDP Messages 

Each UDP message is called a user datagram. Conceptually, a user datagram con- 
sists of two parts: a UDP header and a UDP data area. As Figure 12.1 shows, the 
header is divided into four 16-bit fields that specify the port from which the message 
was sent, the port to which the message is destined, the message length, and a UDP 
checksum. 

I UDP SOURCE PORT 1 UDP DESTINATION PORT I 
I DATA I 

UDP MESSAGE LENGTH 

Figure 12.1 The format of fields in a UDP datagram. 

UDP CHECKSUM 

The SOURCE PORT and DESTINATION PORT fields contain the 16-bit UDP pro- 
tocol port numbers used to demultiplex datagram among the processes waiting to re- 
ceive them. The SOURCE PORT is optional. When used, it specifies the port to which 
replies should be sent; if not used, it should be zero. 

The LENGTH field contains a count of octets in the UDP datagram, including the 
UDP header and the user data. Thus, the minimum value for LENGTH is eight, the 
length of the header alone. 

The UDP checksum is optional and need not be used at all; a value of zero in the 
CHECKSUM field means that the checksum has not been computed. The designers 
chose to make the checksum optional to allow implementations to operate with little 

I 
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Encapsulation
User Datagram Protocol (UDP) Chap. 12 

UDP 
EADER UDP DATA AREA 

t t 

Figure 12.4 A UDP datagram encapsulated in an IP datagram for transmis- 
sion across an internet. The datagram is further encapsulated in 
a frame each time it travels across a single network. 

I 

IP 
HEADER 

. 

For the protocols we have examined, encapsulation means that UDP prepends a 
header to the data that a user sends and passes it to IP. The IP layer prepends a header 
to what it receives from UDP. Finally, the network interface layer embeds the datagram 
in a frame before sending it from one machine to another. The format of the frame 
depends on the underlying network technology. Usually, network frames include an ad- 
ditional header. 

On input, a packet arrives at the lowest layer of network software and begins its 
ascent through successively higher layers. Each layer removes one header before pass- 
ing the message on, so that by the time the highest level passes data to the receiving 
process, all headers have been removed. Thus, the outermost header corresponds to the 
lowest layer of protocol, while the innermost header corresponds to the highest protocol 
layer. When considering how headers are inserted and removed, it is important to keep 
in mind the layering principle. In particular, observe that the layering principle applies 
to UDP, so the UDP datagram received from IP on the destination machine is identical 
to the datagram that UDP passed to IP on the source machine. Also, the data that UDP 
delivers to a user process on the receiving machine will be exactly the data that a user 
process passed to UDP on the sending machine. 

The division of duties among various protocol layers is rigid and clear: 

IP DATA AREA 

FRAME 
HEADER 

The ZP layer is responsible only for transferring data between a pair 
of hosts on an internet, while the UDP layer is responsible only for 
diferentiating among multiple sources or destinations within one host. 

I I 

FRAME DATA AREA 

Thus, only the IP header identifies the source and destination hosts; only the UDP layer 
identifies the source or destination ports within a host. 

1 
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Application
process

Application
process

Application
process

UDP

Packets arrive

Ports

Queues

Packets
demultiplexed

Figure 5.2 UDP message queue.

delivered between the correct two endpoints. For example, if the destination IP address

was modified while the packet was in transit, causing the packet to be misdelivered,

this fact would be detected by the UDP checksum.

5.2 Reliable Byte Stream (TCP)
In contrast to a simple demultiplexing protocol like UDP, a more sophisticated trans-

port protocol is one that offers a reliable, connection-oriented, byte-stream service.

Such a service has proven useful to a wide assortment of applications because it frees

the application from having to worry about missing or reordered data. The Internet’s

Transmission Control Protocol (TCP) is probably the most widely used protocol of

this type; it is also the most carefully tuned. It is for these two reasons that this section

studies TCP in detail, although we identify and discuss alternative design choices at

the end of the section.

In terms of the properties of transport protocols given in the problem statement

at the start of this chapter, TCP guarantees the reliable, in-order delivery of a stream

of bytes. It is a full-duplex protocol, meaning that each TCP connection supports a
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The second approach to port assignment uses dynamic binding. In the dynamic 
binding approach, ports are not globally known. Instead, whenever a program needs a 
port, the network software assigns one. To learn about the current port assignment on 
another computer, it is necessary to send a request that asks about the current port as- 
signment (e.g., What port is the file transfer service using?). The target machine replies 
by giving the correct port number to use. 

The TCP/IP designers adopted a hybrid approach that assigns some port numbers a 
priori, but leaves many available for local sites or application programs. The assigned 
port numbers begin at low values and extend upward, leaving large integer values avail- 
able for dynamic assignment. The table in Figure 12.6 lists some of the currently as- 
signed UDP port numbers. The second column contains Internet standard assigned key- 
words, while the third contains keywords used on most UNIX systems. 

Decimal Keyword 

ECHO 
DISCARD 
USERS 
DAYTIME 

QUOTE 
CHARGEN 
TIME 
NAMESERVER 
NICNAME 
DOMAIN 
BOOTPS 
BOOTPC 
TFTP 
KERBEROS 
SUNRPC 
NTP 

UNlX Keyword 

echo 
discard 
systat 
daytime 
netstat 
qotd 
chargen 
time 
name 
whois 
nameserver 
bootps 
bootpc 
tftp 
kerberos 
sunrpc 
ntp 
snmp 
snmp-trap 
biff 
who 
syslog 
timed 

Description 
Reserved 
Echo 
Discard 
Active Users 
Daytime 
Network status program 
Quote of the Day 
Character Generator 
Time 
Host Name Server 
Who Is 
Domain Name Server 
BOOTP or DHCP Server 
BOOTP or DHCP Client 
Trivial File Transfer 
Kerberos Security Service 
Sun Remote Procedure Call 
Network Time Protocol 
Simple Network Management Proto 
SNMP traps 
UNlX comsat 
UNlX rwho daemon 
System log 
Time daemon 

Figure 12.6 An illustrative sample of currently assigned UDP ports showing 
the standard keyword and the UNIX equivalent; the list is not 
exhaustive. To the extent possible, other transport protocols that 
offer identical services use the same port numbers as UDP. 
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Virtual Circuit Connection

Buffered Transfer
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Full Duplex Connection
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Application process

Write
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Segment Segment Segment

Transmit segments
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Read
bytes

TCP

Receive buffer

…

… …
Figure 5.3 How TCP manages a byte stream.

5.2.2 Segment Format

TCP is a byte-oriented protocol, which means that the sender writes bytes into a TCP

connection and the receiver reads bytes out of the TCP connection. Although “byte

stream” describes the service TCP offers to application processes, TCP does not, itself,

transmit individual bytes over the Internet. Instead, TCP on the source host buffers

enough bytes from the sending process to fill a reasonably sized packet and then sends

this packet to its peer on the destination host. TCP on the destination host then empties

the contents of the packet into a receive buffer, and the receiving process reads from

this buffer at its leisure. This situation is illustrated in Figure 5.3, which, for simplicity,

shows data flowing in only one direction. Remember that, in general, a single TCP

connection supports byte streams flowing in both directions.

The packets exchanged between TCP peers in Figure 5.3 are called segments,

since each one carries a segment of the byte stream. Each TCP segment contains the

header schematically depicted in Figure 5.4. The relevance of most of these fields will

become apparent throughout this section. For now, we simply introduce them.

The SrcPort and DstPort fields identify the source and destination ports, respec-

tively, just as in UDP. These two fields, plus the source and destination IP addresses,

combine to uniquely identify each TCP connection. That is, TCP’s demux key is given

by the 4-tuple

〈 SrcPort, SrcIPAddr, DstPort, DstIPAddr 〉

Note that because TCP connections come and go, it is possible for a connection be-

tween a particular pair of ports to be established, used to send and receive data, and

closed, and then at a later time for the same pair of ports to be involved in a second

Reliable
Byte-stream oriented (as opposed to Datagram oriented)
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Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Figure 5.4 TCP header format.

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

Figure 5.5 Simplified illustration (showing only one direction) of the TCP process,
with data flow in one direction and ACKs in the other.

connection. We sometimes refer to this situation as two different incarnations of the

same connection.

The Acknowledgment, SequenceNum, and AdvertisedWindow fields are all in-

volved in TCP’s sliding window algorithm. Because TCP is a byte-oriented protocol,

each byte of data has a sequence number; the SequenceNum field contains the sequence

number for the first byte of data carried in that segment. The Acknowledgment and

AdvertisedWindow fields carry information about the flow of data going in the other

direction. To simplify our discussion, we ignore the fact that data can flow in both

directions, and we concentrate on data that has a particular SequenceNum flowing

in one direction and Acknowledgment and AdvertisedWindow values flowing in the

opposite direction, as illustrated in Figure 5.5. The use of these three fields is described

more fully in Section 5.2.4.

The 6-bit Flags field is used to relay control information between TCP peers. The

possible flags include SYN, FIN, RESET, PUSH, URG, and ACK. The SYN and FIN flags
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connection. We sometimes refer to this situation as two different incarnations of the

same connection.

The Acknowledgment, SequenceNum, and AdvertisedWindow fields are all in-

volved in TCP’s sliding window algorithm. Because TCP is a byte-oriented protocol,

each byte of data has a sequence number; the SequenceNum field contains the sequence

number for the first byte of data carried in that segment. The Acknowledgment and

AdvertisedWindow fields carry information about the flow of data going in the other

direction. To simplify our discussion, we ignore the fact that data can flow in both

directions, and we concentrate on data that has a particular SequenceNum flowing

in one direction and Acknowledgment and AdvertisedWindow values flowing in the

opposite direction, as illustrated in Figure 5.5. The use of these three fields is described

more fully in Section 5.2.4.

The 6-bit Flags field is used to relay control information between TCP peers. The

possible flags include SYN, FIN, RESET, PUSH, URG, and ACK. The SYN and FIN flags
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Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Figure 5.6 Timeline for three-way handshake algorithm.

Three-Way Handshake

The algorithm used by TCP to establish and terminate a connection is called a three-

way handshake. We first describe the basic algorithm and then show how it is used by

TCP. The three-way handshake involves the exchange of three messages between the

client and the server, as illustrated by the timeline given in Figure 5.6.

The idea is that two parties want to agree on a set of parameters, which, in the

case of opening a TCP connection, are the starting sequence numbers the two sides plan

to use for their respective byte streams. In general, the parameters might be any facts

that each side wants the other to know about. First, the client (the active participant)

sends a segment to the server (the passive participant) stating the initial sequence

number it plans to use (Flags = SYN, SequenceNum = x). The server then responds

with a single segment that both acknowledges the client’s sequence number (Flags =
ACK, Ack = x + 1) and states its own beginning sequence number (Flags = SYN,

SequenceNum = y). That is, both the SYN and ACK bits are set in the Flags field of this

second message. Finally, the client responds with a third segment that acknowledges

the server’s sequence number (Flags = ACK, Ack = y + 1). The reason that each

side acknowledges a sequence number that is one larger than the one sent is that

the Acknowledgment field actually identifies the “next sequence number expected,”

thereby implicitly acknowledging all earlier sequence numbers. Although not shown

in this timeline, a timer is scheduled for each of the first two segments, and if the

expected response is not received, the segment is retransmitted.

You may be asking yourself why the client and server have to exchange starting

sequence numbers with each other at connection setup time. It would be simpler if

each side simply started at some “well-known” sequence number, such as 0. In fact,
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Sec. 13.5 The Idea Behind Sliding Windows 215 

Conceptually, a sliding window protocol always remembers which packets have 
been acknowledged and keeps a separate timer for each unacknowledged packet. If a 
packet is lost, the timer expires and the sender retransmits that packet. When the sender 
slides its window, it moves past all acknowledged packets. At the receiving end, the 
protocol software keeps an analogous window, accepting and acknowledging packets as 
they arrive. Thus, the window partitions the sequence of packets into three sets: those 
packets to the left of the window have been successfully transmitted, received, and ack- 
nowledged; those packets to the right have not yet been transmitted; and those packets 
that lie in the window are being transmitted. The lowest numbered packet in the win- 
dow is the first packet in the sequence that has not been acknowledged. 

Events At Sender Site Network Messages 

Send Packet 1 

Send Packet 2 

Send Packet 3 

Receive ACK 1 

Receive ACK 2 

Receive ACK 3 

Events At Receiver Site 

Receive Packet 1 
Send ACK 1 
Receive Packet 2 
Send ACK 2 
Receive Packet 3 
Send ACK 3 

Figure 13.4 An example of three packets transmitted using a sliding window 
protocol. The key concept is that the sender can transmit all 
packets in the window without waiting for an acknowledgement. 

13.6 The Transmission Control Protocol 

Now that we understand the principle of sliding windows, we can examine the reli- 
able stream service provided by the TCPIIP Internet protocol suite. The service is de- 
fined by the Transmission Control Protocol, or TCP. The reliable stream service is so 
important that the entire protocol suite is referred to as TCPAP. It is important to 
understand that: 

TCP is a communication protocol, not a piece of sojhare. 

The difference between a protocol and the software that implements it is analogous 
to the difference between the definition of a programming language and a compiler. As 
in the programming language world, the distinction between definition and implementa- 
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What’s OSC

Networking protocol for real-time musical 
control information

Introduced by CNMAT (UC Berkeley) in 1997

Transport-independent (UDP, TCP, WiFi, serial 
connections, and within applications)
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OSC Messages

Address:
         URL-style

Arguments:
            strings, floats, ints, binary numbers, 
“blobs”, etc.

/nmp2010/JPC/freq   2220.02 

address argument
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Argument Types

i int32
f float32
s OSC-string
b blob (binary data)
h int64
t Time Tag
d float64
s symbol

c ASCII character

r RGBA color

m MIDI Message

T TRUE

F FALSE

N nil

I infinitum
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Address Space

Every address space is application-specific

        Symbolic names of features, parameters...  
        Arbitrary arrangement into tree structure

OSC standard proscribes nothing 

        + Utterly flexible 
        – No automatic “plug and play”
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Time

“Bundle” - group of messages 

         Transmitted together 
         Must take effect atomically

Bundles have time-tags saying when messages 
should take effect
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Demo Pd Patch
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Credits

Some networking images taken from:

- Peterson, “Computer Networks”, 3rd edition

- Comer, “Internetworking with TCP/IP”, Vol. 1, 4th edition

OSC slides Inspired from:

- Wright, “Brief Overview of OSC and its Application Areas”, OSC 
Conference 2004
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