CCRMA MIR Workshop 2014 Wavelets and multiresolution representations

Leigh M. Smith Humtap Inc. leigh@humtap.com

Basic system overview

Short Term Fourier Transform

Wavelet time-frequency analysis

Continuous wavelet transform (CWT) decomposes (**invertibly**) a signal onto scaled and translated instances of a finite time "mother function" or "basis".

$$W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \left(\bar{g} \left(\frac{\tau - b}{a} \right) \right) d\tau, \ a > 0$$
$$g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}$$

Example: Sinusoidal Signal

Example: Sinusoidal Signal

Example: Simple Rhythm

Scaleogram and Phaseogram of an isochronous pulse rhythmic signal:

Implementation

- Implemented as a set of complex value bandpass filters in Fourier domain.
- Scaling produces a "zooming" time window for each frequency "scale".
- Creates simultaneous time and frequency localisation close to the Heisenberg inequality.

Wavelet Time-Frequency Resolution from Dilation ("Zooming")

Wavelets for Rhythm (Smith & Honing 2008)

- The CWT enables representation of temporal structure in terms of time varying rhythmic frequencies.
- Produces magnitude and phase measures which reveal time-frequency ridges indicating the frequencies present in the input rhythm signal (collectively a skeleton, Tchamitchian & Torrésani '92).

Musical Example

The rhythm of "Greensleeves"...

Greensleeves

Memory Based Tactus

Wavelet rhythm analysis is also applicable to continuous onset salience traces from auditory models (Coath, et. al 2009).

Memory Based Tactus

- Uses lossy windowed integrator to amass tactus likelihood.
- Suppress all but the magnitude coefficients of the extracted tactus ridge.
- Invert the extracted tactus ridge and original phase plane back to the time domain.
 Creates a single beat oscillation.
- Nominating a starting beat and noting its phase, all other foot-taps are generated for the same phase value.

Reconstructed Phase

Example: Foot-tapping to singing

- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute).
- Uses continuous wavelet transform of rhythmic signals (Smith 1996, Smith & Honing 2008) to derive tactus:
- Example 1: Original... + Accompaniment.
- Example 2: ...Original + Accompaniment.