CCRMA MIR Workshop 2013
Beat-finding and Rhythm Analysis

Leigh M. Smith
iZotope Inc.
lsmith@izotope.com

Monday, June 24, 2013
Outline

- Modelling Rhythm Cognition.
- Onset-detection.
- Beat-tracking & Tempo-derivation.
 - Autocorrelation.
 - Beat Spectral approaches.
 - Histogram models.
- Meter determination.
- Applications, Exercises
Basic system overview

Segmentation (Frames, Onsets, Beats, Bars, Chord Changes, etc)

Feature Extraction (Time-based, spectral energy, MFCC, etc)

Analysis / Decision Making (Classification, Clustering, etc)
Basic system overview

Segmentation (Frames, Onsets, Beats, Bars, Chord Changes, etc)

Feature Extraction (Time-based, spectral energy, MFCC, etc)

Analysis / Decision Making (Classification, Clustering, etc)
Beat-finding and Tempo Derivation

Why?

- Tempo and Beat are strong discriminators in judgements of music similarity, and even genre (Tzanetakis & Cooke 2002, Dixon et. al 2004).
- Understanding the beat facilitates understanding the importance other musical elements:
 - Relative importance of tonal features.
 - Diatonic or chromatic character of a piece.
 - Complexity of a piece.
- Applications: musicology & ethnomusicology, automatic DJing, query by example, composition tools.
Modelling Rhythm

- “...the systematic patterning of sound in terms of timing, accent, and grouping.” (Patel 2008 p.96)

 - (Not always periodic patterns)

- Accent sources include: dynamics, melody, harmony, articulation, timbre, onset asynchrony etc.

- Consists of hierarchical and figural (proximal) temporal structures.
Measuring Beat

- Inter-Onset Intervals (IOI)
- Inter-Beat Interval (IBI)
- Tempo: frequency of the beat (BPM) = 1/IBI
Musical Time

Multiple simultaneous levels of musical time
- Tactus: the foot-tapping rate.
- Tempo: estimated from tactus, typically median IBI.
- Meter: Periodic perceived accentuation of beats.
- Tatum: Shortest interval between events.

Rubato – change in tempo during performance to emphasise structure.
Rhythmic Strata

Musical rhythm can be considered as composed of a hierarchy of temporal levels or strata (Yeston 1976, Lerdahl & Jackendoff 1983, Clarke 1987, Jones & Boltz 1989).

From Jones & Boltz ‘89
Metrical Structure

- Meter is expressed as a hierarchical grouping in time. E.g. Subdivision of 4/4 (4 beats to the bar):
Meter

- Subdivision of 3/4 (3 beats to the bar):
Meter

- Subdivision of 6/8:

![Salience Hierarchy for (2 3 2) meter](chart.png)
Hierarchical Grouping: Meter

Meters are argued to arise from the interaction between temporal levels (Yeston 1976).

- Therefore a meter implies two frequencies: the pulse rate and the measure (“bar”) rate.
- The tactus is considered as the most salient hierarchical level, consistent with the notated meter, or the foot tapping rate (Desain & Honing 1994).
Mental schemas for Meter

Metrical Profiles (Palmer & Krumhansl 1990)
- Pre-established mental frameworks (“schemas”) for musical meter are used during listening.
Mental schemas for Meter

Metrical Profiles (Palmer & Krumhansl 1990)
- Pre-established mental frameworks (“schemas”) for musical meter are used during listening.

From Palmer & Krumhansl (1990). Mean goodness-of-fit ratings for musicians (solid line) and nonmusicians (dashed line).
Mental schemas for Meter

Metrical Profiles (Palmer & Krumhansl 1990)
- Pre-established mental frameworks ("schemas") for musical meter are used during listening.

From Palmer & Krumhansl (1990). Mean goodness-of-fit ratings for musicians (solid line) and nonmusicians (dashed line).
Syncopation

“...some kind of conflict between [phenomenal] accents and meter” (Temperely 2001, p.239).

Syncopation

“...some kind of conflict between [phenomenal] accents and meter” (Temperely 2001, p.239).

Syncopation

- Listener judgements of musical complexity are correlated with degree of syncopation (i.e. note location within the beat) (Shmulevich & Povel 2000, Smith & Honing 2006).

- Compared judgements against formal model of syncopation (Longuet-Higgins & Lee 1984).
Active Rhythm Perception

Viewed as a resonance between top down and bottom-up processes (see e.g. Desain & Honing 2001):

![Diagram of rhythmic processes]

- **Musical Memory**
- **Current Rhythmic Schema**
- **Metrical Grouping** (Beat Induction)
- **Categorisation**
- **Figural Grouping** (by Proximity)
- **Structural Grouping**
- **Event Detection**

Connections:
- **Expectation**
- **Induction**
- **Learning**
Onset-detection vs. Beat-detection

- Traditionally beat detection relied on accurate onset detection.
 - i.e. from MIDI data for **Score Following** (Dannenberg 1991, Cont 2009).

- This can be difficult for MIR from polyphonic audio recordings.
 - A higher freq. **Onset Detection Function** from the entire audio signal can be used for beat tracking without all onsets being detected (Schloss 1985, Goto & Muraoka 1994, Scheirer 1998).
The Onset Detection Function

- **Represents:**
 - Ideal: Each note that contributes to the beat.
 - Practice: Combined envelopes of all notes.

- **Tends to emphasise:**
 - strong transients (i.e. impulsive sounds)
 - loud notes
 - bass notes
 - wide-band spectrum events (e.g. snare drums).
Dixon’s Envelope Onset Detection
Example Onset Detection

- Pre-processing
 - Filtering
 - Down-sampling
 - Difference function
Common ODF methods

e.g (Bello et. al 2005, Dixon 2007, Peeters 2007)

• Optional pre-rectification filtering.
• Envelope mixture from rectification/energy.
• Smoothing of envelope (LP filter).
• Down-sampling for data reduction.
• $d(\log E)/dt$ highlights perceived impulses.
• Weighting higher frequencies captures wide-band events.
• Spectral difference between STFT frames.
Existing Beat tracking Models

- Parsing metrical grammars (Longuet-Higgins and Lee 1982).
- Forward projection of likelihood (Desain 1992).
Approaches to beat tracking considered

- **Autocorrelation**
 - Finding Periodicity in the ODF.

- **Beat Spectrum approaches:**
 - Spectrum of the ODF.
 - Multi-resolution representation of ODF.

- **Dynamic Programming approaches.**
 - Efficient selection of correct beat interval.
Autocorrelation of ODF

- AC peaks ⇒ time lags where signal is most similar to itself.
- Captures periodicities of ODF.
- Does not capture rubato well.
- OK for metronomic music, not for those with variation in tempo.
Windowed RMS and its Autocorrelation (for drum loop)

Max peak = 2-bar loop

1st peak = 1/8 note

1/4 note

Max peak = 2-bar loop
Beat spectrum methods (Scheirer 1998)

- Filterbanks of tuned resonators (i.e. “rhythmic reverb”) of the ODF.
- Resonator whose resonant F matches rate of ODF modulation will phase-lock.
- Resonator outputs of common freq summed across subbands:

\[T = \arg \max_r \sum_s F_{rs} \]
Beat Tracking by Peeters (2007)

Figure 1: Flowchart of our system for tempo, meter estimation, and beat marking.
Peeters 2007

- Filtered, rectified spectral energy envelope
 - Onset detection function.
- Combined Fourier & autocorrelation analysis
 - DFT of ODF, ACF of ODF
 - ACF result mapped into Fourier domain.
 - DFT * Freq(ACF) – disambiguates periodicities.
 - Octave errors occur in two different domains.
Peeters 2007

- Viterbi decoding of joint estimates of meter and tempo.
Peeters 2007

- Viterbi decoding of joint estimates of meter and tempo.
Multiresolution Representations

- Auditory–Motor “Primal Sketch” from Sombrero filter banks (Todd 1994, Todd, O’Boyle & Lee 1999)
- Continuous wavelet transform of rhythmic signals (Smith 1996, Smith & Honing 2008)
Wavelet time–frequency analysis

Continuous wavelet transform (CWT) decomposes (invertibly) a signal onto scaled and translated instances of a finite time “mother function” or “basis”.
Wavelet time–frequency analysis

Continuous wavelet transform (CWT) decomposes (invertibly) a signal onto scaled and translated instances of a finite time “mother function” or “basis”.

\[
W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \overline{g}\left(\frac{\tau - b}{a}\right) d\tau, \ a > 0
\]

\[
g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}
\]
Wavelet time–frequency analysis

Continuous wavelet transform (CWT) decomposes (invertibly) a signal onto scaled and translated instances of a finite time “mother function” or “basis”.

\[W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \bar{g}\left(\frac{\tau - b}{a}\right) d\tau, \quad a > 0 \]

\[g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t} \]
Continuous wavelet transform (CWT) decomposes \textbf{(invertibly)} a signal onto scaled and translated instances of a finite time “mother function” or “basis”.

\[
W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \overline{g\left(\frac{\tau - b}{a}\right)} d\tau, \quad a > 0
\]

\[
g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}
\]
Wavelet time–frequency analysis

Continuous wavelet transform (CWT) decomposes (invertibly) a signal onto scaled and translated instances of a finite time “mother function” or “basis”.

\[
W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \cdot \overline{g(\frac{\tau - b}{a})} \, d\tau, \quad a > 0
\]

\[
g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}
\]
Wavelets for Rhythm (Smith & Honing 2008)
Wavelets for Rhythm (Smith & Honing 2008)

The CWT enables representation of temporal structure in terms of time varying rhythmic frequencies.
Wavelets for Rhythm (Smith & Honing 2008)

- The CWT enables representation of temporal structure in terms of time varying rhythmic frequencies.
- Produces magnitude and phase measures which reveal time–frequency ridges indicating the frequencies present in the input rhythm signal (collectively a skeleton, Tchamitchian & Torrésani ’92).
Implementation

- Implemented as a set of complex value bandpass filters in Fourier domain.
- Scaling produces a “zooming” time window for each frequency “scale”.
- Creates simultaneous time and frequency localisation close to the Heisenberg inequality.
Memory Based Tactus

Wavelet rhythm analysis is also applicable to continuous onset salience traces from auditory models (Coath, et. al 2009).
Memory Based Tactus
Memory Based Tactus

- Uses lossy windowed integrator to amass tactus likelihood.
Memory Based Tactus

- Uses lossy windowed integrator to amass tactus likelihood.
- Suppress all but the magnitude coefficients of the extracted tactus ridge.
Memory Based Tactus

- Uses lossy windowed integrator to amass tactus likelihood.
- Suppress all but the magnitude coefficients of the extracted tactus ridge.
- Invert the extracted tactus ridge and original phase plane back to the time domain. Creates a single beat oscillation.
Memory Based Tactus

- Uses lossy windowed integrator to amass tactus likelihood.
- Suppress all but the magnitude coefficients of the extracted tactus ridge.
- Invert the extracted tactus ridge and original phase plane back to the time domain. Creates a single beat oscillation.
- Nominating a starting beat and noting its phase, all other foot–taps are generated for the same phase value.
Foot-tapping to singing
Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
Foot-tapping to singing

- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example 1:
Foot-tapping to singing

- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example 1: Original...
Foot-tapping to singing

- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example 1: Original... + Accompaniment.
Foot-tapping to singing

- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
- Example 1: Original... + Accompaniment.
- Example 2: ...Original + Accompaniment.
Dynamic Programming (Ellis 2007)

- Goal to generate beat times that match onsets and have near constant IBI.

\[C(\{t_i\}) = \sum_{i=1}^{N} O(t_i) + \alpha \sum_{i=2}^{N} F(t_i - t_{i-1}, \tau_p) \]

- \(F(\Delta t, \tau) = - \log(\text{actual IBI/ideal IBI})^2 \).
- Ideal IBI from tempo estimation from weighted autocorrelation.
- Recursively calculates max \(C^*(t) \) starting from \(t=0-2\tau \), finding times of \(\max(F + C^*(\tau)) \).
- Chooses final max \(C^*(t) \) from last interval, backtraces the saved times.
Beat Histograms

- Summarises rhythmic behaviour of a piece for similarity measures, classification etc.
 - Pampalk, Dixon & Widmer (2003)
 - Uses summation of comb filters of Scheirer, not just argmax, for comparison.
 - Tempo histogram is weighted using a preference model (van Noorden & Moelants 1999).
 - PCA used to reduce 2000 \(\rightarrow \) 60 dimensions for matching.

(from Scheirer 1998)
Beat Histograms (Tzanetakis and Cook, 2002)

Similar approach using Autocorrelation.

- Add the amplitudes of the top 3 AC peaks to histogram at each frame.

- Beat histograms are reducible to single features including sum and peak/mean.
Fluctuation Patterns

- Also summarises rhythmic behaviour.
- FFT of envelope: the fluctuation (AM) frequency of the perceived loudness of critical bands (log spectral) (represented on the Bark scale).
- 20 Bark x 60 BF matrix \Rightarrow PCA for matching

Median of the fluctuation patterns of examples of (L-R) Heavy Metal, Dance and Pop. Y axis shows critical bands (Bark 1-20), X axis shows beat frequencies 0-10Hz (0-600BPM) From Pampalk, Rauber & Merkl, (2002)
Meter estimation

- Requires measure ("bar") period and phase (downbeat) identification.
- Measure period reasonably successful, albeit with octave errors.
- Downbeat identification much harder!
- Genre dependent.
Meter Estimation Systems

Table 1. Characteristics of some meter estimation systems.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Input</th>
<th>Output</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperley & Sleator (1999)</td>
<td>MIDI</td>
<td>Meter, time quantization</td>
<td>Rule-based approach; implementation of the preference rules in (Lerdahl et al., 1983)</td>
</tr>
<tr>
<td>Dixon (2001)</td>
<td>MIDI, audio</td>
<td>Tactus</td>
<td>First find periods using IOI histogram, then phases using multiple agents</td>
</tr>
<tr>
<td>Raphael (2001)</td>
<td>MIDI, audio</td>
<td>Tactus, time quantization</td>
<td>Probabilistic generative model for onset times; MAP estimation (Viterbi)</td>
</tr>
<tr>
<td>Cemgil & Kappen (2003)</td>
<td>MIDI</td>
<td>Tactus, time quantization</td>
<td>Probabilistic generative model for onset times; sequential Monte Carlo methods</td>
</tr>
<tr>
<td>Goto & Mur-aoka (1995, 1997)</td>
<td>Audio</td>
<td>Meter</td>
<td>Extract onset components; IOI histogram; multiple tracking agents</td>
</tr>
<tr>
<td>Scheirer (1998)</td>
<td>Audio</td>
<td>Tactus</td>
<td>Bank of comb filters to analyze periodicity of power envelopes at six subbands</td>
</tr>
<tr>
<td>Laroche (2001)</td>
<td>Audio</td>
<td>Tactus, swing</td>
<td>Extract discrete onsets; maximum-likelihood estimation</td>
</tr>
<tr>
<td>Sethares & Staley (2001)</td>
<td>Audio</td>
<td>Meter</td>
<td>Calculate RMS-energies at 1/3-octave subbands; apply a periodicity transform</td>
</tr>
<tr>
<td>Gouyon et al. (2002)</td>
<td>Audio</td>
<td>Tatum</td>
<td>First find periods (IOI histogram), then phases by matching isochronous pattern</td>
</tr>
<tr>
<td>Klapuri et al. (to appear)</td>
<td>Audio</td>
<td>Meter</td>
<td>Measure degree of accentuation; bank of comb filters; probabilistic model</td>
</tr>
</tbody>
</table>
Joint estimation of chord change and downbeat (Papadopoulos & Peeters 2008)

- **Hidden Markov Model:**
 - States: 24 Major & Minor triads * 4 positions within the Measure (pim) for (4/4 time signature).
 - Computes chroma features at each beat.
 - Assumes independence between beat position and chord type: $P(O|s) = P(O|c) P(O|pim)$
 - Transition probabilities enforce sequential beats & likelihood of chord transitions.

- **Optimal state determined by Viterbi decoding.**
 - Chord progression detection improved using metrical knowledge.
 - Identification of downbeats aided by harmonic information.
Review

- Modeling rhythm requires representing perception.
- Onset detection functions capture significant events.
- Multiple approaches to beat-tracking represent competing perceptual models.
- Beat-tracking enables higher-level rhythmic features (FP, BH).
- Beat-tracking enables multi-modal estimation (e.g., down-beat from chords).