
 
 
 
 
 

June 2012 

Intelligent Audio Systems:  
A review of the foundations and applications of semantic 

audio analysis and music information retrieval 

DAY 5 



Details 

Send me your contact info: jay@izotope.com 

CCRMA Tour (?) 
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ANALYSIS AND DECISION MAKING: 
GMMS 



Mixture Models (GMM) 

• K-means = hard clusters. 
• GMM = soft clusters.   

 



 



Mixture Models (GMM) 

• GMM is good because:  
1. Can approximate any pdf with enough components 
2. EM makes it easy to find components parameters 

– EM - the means and variances adapt to fit the data as well as 
possible 

3.     Compresses data considerably 

 
• Can make softer decisions (decide further 

downstream given additional information) 
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Input 
• Number of components (Gaussians) 

– e.g., 3 
• Mixture coefficients (sum = 1)  

– e.g., [0.5 0.2 0.3] 
– “Priors” or “Prior probabilities” 
– Priors are “the original probability that each point came from a given mixture.” 
– “A prior is often the purely subjective assessment of an experienced expert.” 

• Initialized centers, means, variances. (optional) 
 

Output 
• Component centers/means, variances, and mixture coeff. 
• Posterior probabilities 

– “Posterior probabilities are the responsibilities which the Gaussian components 
have for each of the data points.” 

Query 
• Obtain similarity via Likelihood 

GMM Parameters  



 



 



 
 
 
 
 
 

• From Netlab (p82-83) 



 



 



GMM: Likelihood  

1. Evaluate the probability of that mixture modeling 
your point. 

  likelihoodgm1 = gmmprob(gm1,testing_features) 
  likelihoodgm2 = gmmprob(gm2,testing_features); 
  loglikelihood  = log(likelihoodKick ./likelihoodSnare ) 

 
• Log-function is “order-preserving” – maximizing a 

function vs. maximizing its log gives same results 
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Minimization Problems 
>Demgmm1 

 
• EM is gradient-based – it does not find the global 

maximum in the general case, unless properly initialized 
in the general region of interest. 
 

• Error wants to be –inf, which occurs when Gaussian is fit 
for each data point. (mean = data point and variance = 0)   
 

• “There are often a large number of local minima which 
correspond to poor models.  Solution is to build models 
from many different initialization points and take the 
best model.”   
 



• “Pooled covariance" - using a single covariance to 
describe all clusters (saves on parameter 
computation) 
 

 
 

GMM  



EXAMPLE OF GMMS: GENRE 
CLASSIFICATION 



Genre 
“Because feature vectors are computed from short 

segments of audio, an entire song induces a cloud of 
points in feature space.” 

 
“The cloud can be thought of as samples from a 

distribution that characterizes the song, and we can 
model that distribution using statistical techniques. 
Extending this idea, we can conceive of a distribution in 
feature space that characterizes the entire repertoire of 
each artist.” 

 
A. Berenzweig, B. Logan, D. Ellis, and B. Whitman. A large-scale evalutation 
 of acoustic and subjective music similarity measures. In Proceedings 
 of 4th International Symposium on Music Information Retrieval, 
 Baltimore, Maryland, 2003. 
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From ISMIR 2007 Music Recommender 
Tutorial (Lamere & Celma)  
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How? 
• Version 1 - One feature vector per song 

– High-level features extracted from data 
• Timbral (MFCCs, etc), Rhythmic content (beat histogram, 

autocor, tempos), Pitch info 
• Sampling of the frames in the song 

– Statistics of features extracted from a piece (includes means, 
weights, etc) 

– Representative of MFCC spectral shape 
– Could further use “Anchor space” where classifiers are training to 

represent musically meaningful classifiers.  (Euclidean distance 
between anchor space)  
 

• Version 2 - Cloud of points 
– Extract audio every N frames 
– K-Means or GMM representing a “cloud of points” for song 

• Clusters: mean, covariance and weight of each cluster = signature 
for song/artist/genre 
 



Training and test data 

• An overfit model matches every training example 
(Now it’s “overtrained.”) 

• Training Error AKA “Class Loss”  
• Generalization  

– The goal is to classify new, unseen data. 
– The goal is NOT to fit the training data perfectly. 

• An overfit model will not be well-generalized, and 
will make errors.   

• Rule of thumb: favor simple solutions and more 
“general” solutions. 
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True+  correct Classifier correctly predicted something in it's list of known 
positives 

False- absent Classifier did not hit, for a known positive result.     

False+ incorrect Classifier said that something was positive when it's actually 
negative 

Evaluation Measures 



“Accuracy”  
 ↑ is good 
 
Precision -  “Positive Predictive Value” 
 ↓ = high F+ rate, the classifier is hitting all the time 
 ↑ = low F+ rate, no extraneous hits 
 
Recall – “Missed Hits” 
 ↓ = high F- rate, the classifier is missing good hits 
 ↑ = low F- rate, great at negative discrimination – 

 always returns a negative when it should 
 
F-Measure – a blend of precision and recall (harmonic-weighted 

 mean) 
  ↑ 

Evaluation Measures 
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Evaluate Measures  

P = T+ / (T+  +  F+  )  [0…1] 

R = T+ / (T+   +  F -) [0…1] 

F = 2*P*R/(P+R) [0…1] 



Training and test data 

• Cross-validation 
• Training, Validation, and Test set 

– Partition randomly to ensure that relative proportion of 
files in each category was preserved for each set 

• Weka or Netlab has sampling code 

• Warnings:  
– Don’t test (or optimize, at least) with training data 
– Don’t train on test data (no!) 



Data preparation 

• Examine your data at every chance.  (means, max, min, 
std, “NaN”, “Infs”) 

• Try to visualize data when possible to see patterns and 
see if it makes.  Incredible sanity check.   

• Eliminate noisy data 
• Data preparation 

– Cleaning  
• Open up and examine  
• Handle missing values 

– Relevance / Feature analysis  
• Remove irrelevant or redundant attributes 

– Data Transformation 
• Generalize or normalize data 
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APIs for MIR Tools 

• Marsyas: G. Tzanetakis (11), flexible tool set, scripting 

language, segmentation and classification 

• LibOFA: Holm/Pope (00), simple FV for unique ID 

comparing to a large pre-analyzed database 

• D2K/M2K: West/MIREX (06), Java-based GUI related to 

D2K, many apps. 

• LibTSP: P. Kabal (00), C routines for DASP & IO 

• CSL: STP/MAT (05), C++ class library for DASP, 

synthesis, control, spatialization and MIR 
27 
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APIs - 2 

• Libxtract 

• Aubio 

• SonicVisualizer plug-ins 

• Loris 

• SPEAR 

• CSL 

• LibTSP 

• Mirtoolbox 

• Echonest 

28 
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Spectral Tools 

• SPEAR 

• Loris 

• Marsyas 

• Sonic visualizer 

29 
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Code Examples 

• Buffer, Window classes (see CSL) 

• Analyzer class (Marsyas) 

• aubio, libxtract 

• IO libraries (libSndFile, PortAudio) 

• DASP libraries (libTSP, etc.) 

30 
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Using FFT APIs 

• Simple FFT 

• See MAT240B (http://HeavenEverywhere.com/TheBigMATBook) 

• See F. R. Moore’s Elements of Computer Music 

• FFTW 

• FFTW data types 

• FFTW plans 

• See CSL Spectral class 
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