

June 2012

Intelligent Audio Systems:
A review of the foundations and applications of semantic

audio analysis and music information retrieval

DAY 5

Details

Send me your contact info: jay@izotope.com

CCRMA Tour (?)

mailto:jay@izotope.com

ANALYSIS AND DECISION MAKING:
GMMS

Mixture Models (GMM)

• K-means = hard clusters.
• GMM = soft clusters.

Mixture Models (GMM)

• GMM is good because:
1. Can approximate any pdf with enough components
2. EM makes it easy to find components parameters

– EM - the means and variances adapt to fit the data as well as
possible

3. Compresses data considerably

• Can make softer decisions (decide further

downstream given additional information)

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

Input
• Number of components (Gaussians)

– e.g., 3
• Mixture coefficients (sum = 1)

– e.g., [0.5 0.2 0.3]
– “Priors” or “Prior probabilities”
– Priors are “the original probability that each point came from a given mixture.”
– “A prior is often the purely subjective assessment of an experienced expert.”

• Initialized centers, means, variances. (optional)

Output
• Component centers/means, variances, and mixture coeff.
• Posterior probabilities

– “Posterior probabilities are the responsibilities which the Gaussian components
have for each of the data points.”

Query
• Obtain similarity via Likelihood

GMM Parameters

• From Netlab (p82-83)

GMM: Likelihood

1. Evaluate the probability of that mixture modeling
your point.

 likelihoodgm1 = gmmprob(gm1,testing_features)
 likelihoodgm2 = gmmprob(gm2,testing_features);
 loglikelihood = log(likelihoodKick ./likelihoodSnare)

• Log-function is “order-preserving” – maximizing a

function vs. maximizing its log gives same results

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

Minimization Problems
>Demgmm1

• EM is gradient-based – it does not find the global

maximum in the general case, unless properly initialized
in the general region of interest.

• Error wants to be –inf, which occurs when Gaussian is fit
for each data point. (mean = data point and variance = 0)

• “There are often a large number of local minima which
correspond to poor models. Solution is to build models
from many different initialization points and take the
best model.”

• “Pooled covariance" - using a single covariance to
describe all clusters (saves on parameter
computation)

GMM

EXAMPLE OF GMMS: GENRE
CLASSIFICATION

Genre
“Because feature vectors are computed from short

segments of audio, an entire song induces a cloud of
points in feature space.”

“The cloud can be thought of as samples from a

distribution that characterizes the song, and we can
model that distribution using statistical techniques.
Extending this idea, we can conceive of a distribution in
feature space that characterizes the entire repertoire of
each artist.”

A. Berenzweig, B. Logan, D. Ellis, and B. Whitman. A large-scale evalutation
 of acoustic and subjective music similarity measures. In Proceedings
 of 4th International Symposium on Music Information Retrieval,
 Baltimore, Maryland, 2003.

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

From ISMIR 2007 Music Recommender
Tutorial (Lamere & Celma)

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

How?
• Version 1 - One feature vector per song

– High-level features extracted from data
• Timbral (MFCCs, etc), Rhythmic content (beat histogram,

autocor, tempos), Pitch info
• Sampling of the frames in the song

– Statistics of features extracted from a piece (includes means,
weights, etc)

– Representative of MFCC spectral shape
– Could further use “Anchor space” where classifiers are training to

represent musically meaningful classifiers. (Euclidean distance
between anchor space)

• Version 2 - Cloud of points
– Extract audio every N frames
– K-Means or GMM representing a “cloud of points” for song

• Clusters: mean, covariance and weight of each cluster = signature
for song/artist/genre

Training and test data

• An overfit model matches every training example
(Now it’s “overtrained.”)

• Training Error AKA “Class Loss”
• Generalization

– The goal is to classify new, unseen data.
– The goal is NOT to fit the training data perfectly.

• An overfit model will not be well-generalized, and
will make errors.

• Rule of thumb: favor simple solutions and more
“general” solutions.

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

True+ correct Classifier correctly predicted something in it's list of known
positives

False- absent Classifier did not hit, for a known positive result.

False+ incorrect Classifier said that something was positive when it's actually
negative

Evaluation Measures

“Accuracy”
 ↑ is good

Precision - “Positive Predictive Value”
 ↓ = high F+ rate, the classifier is hitting all the time
 ↑ = low F+ rate, no extraneous hits

Recall – “Missed Hits”
 ↓ = high F- rate, the classifier is missing good hits
 ↑ = low F- rate, great at negative discrimination –

 always returns a negative when it should

F-Measure – a blend of precision and recall (harmonic-weighted

 mean)
 ↑

Evaluation Measures

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

Evaluate Measures

P = T+ / (T+ + F+) [0…1]

R = T+ / (T+ + F -) [0…1]

F = 2*P*R/(P+R) [0…1]

Training and test data

• Cross-validation
• Training, Validation, and Test set

– Partition randomly to ensure that relative proportion of
files in each category was preserved for each set

• Weka or Netlab has sampling code

• Warnings:
– Don’t test (or optimize, at least) with training data
– Don’t train on test data (no!)

Data preparation

• Examine your data at every chance. (means, max, min,
std, “NaN”, “Infs”)

• Try to visualize data when possible to see patterns and
see if it makes. Incredible sanity check.

• Eliminate noisy data
• Data preparation

– Cleaning
• Open up and examine
• Handle missing values

– Relevance / Feature analysis
• Remove irrelevant or redundant attributes

– Data Transformation
• Generalize or normalize data

27

APIs for MIR Tools

• Marsyas: G. Tzanetakis (11), flexible tool set, scripting

language, segmentation and classification

• LibOFA: Holm/Pope (00), simple FV for unique ID

comparing to a large pre-analyzed database

• D2K/M2K: West/MIREX (06), Java-based GUI related to

D2K, many apps.

• LibTSP: P. Kabal (00), C routines for DASP & IO

• CSL: STP/MAT (05), C++ class library for DASP,

synthesis, control, spatialization and MIR
27

28

APIs - 2

• Libxtract

• Aubio

• SonicVisualizer plug-ins

• Loris

• SPEAR

• CSL

• LibTSP

• Mirtoolbox

• Echonest

28

29

Spectral Tools

• SPEAR

• Loris

• Marsyas

• Sonic visualizer

29

30

Code Examples

• Buffer, Window classes (see CSL)

• Analyzer class (Marsyas)

• aubio, libxtract

• IO libraries (libSndFile, PortAudio)

• DASP libraries (libTSP, etc.)

30

31

Using FFT APIs

• Simple FFT

• See MAT240B (http://HeavenEverywhere.com/TheBigMATBook)

• See F. R. Moore’s Elements of Computer Music

• FFTW

• FFTW data types

• FFTW plans

• See CSL Spectral class

31

http://HeavenEverywhere.com/TheBigMATBook

