Day 5: Music Recommendation

Douglas Eck
Research Scientist, Google, Mountain View (deck@google.com)
Overview

- Overview of music recommendation.
- Content-based method: autotagging.
- Side issues of interest
Three Approaches to Recommendation

- Collaborative filtering (Amazon)
 “Many people who bought A also bought B.
 You bought A, you’ll probably like B.”
 Cannot recommend items no one has bought.
 Suffers from popularity bias

- Social recommendation (Last.FM)
 Community members tag music. Tag clouds used as basis for similarity measure.
 Cannot recommend items no one has tagged.
 Popularity bias (all roads lead to Radiohead)

- Expert recommendation (Pandora)
 Trained experts annotate music based on ~400 parameters
 Not scalable (thousands of new songs online daily)
Music Recommendation
Point - Counterpoint:

What’s the best way to help users find music they like?
Point: Use content analysis for music recommendation.

- Paul Lamere (EchoNest)
- Audio helps us know more about music in the long tail.
- Evidence: Examples, observations.
Help! My iPod thinks I’m emo.

Paul Lamere
Anthony Volodkin
Music recommendation is broken
A recommendation that no human would make

If you like Britney Spears ...

You own Baby One More Time.
We recommend:

Report On Pre-War Intelligence
Senate Intelligence Committee ...
Released 2005
$0.95

You might like the Report on Pre-War Intelligence
Why do we care?
Compulsory Long Tail slide

INDEX

i just want to make you dance

http://www.says-it.com/cassette/
Why do we care?
Compulsory Long Tail slide

Dashboard Confessional
A Mark, A Mission, A Brand, A Scar
Why do we care?
Compulsory Long Tail slide
Why do we care?

Compulsory Long Tail slide
We can’t seem to find the long tail

Sales data for 2007

- 4 million unique tracks sold

But...

- 1% of tracks account for 80% of sales
- 13% of sales are from American Idol or Disney artists

State of the Industry 2007 - Nielsen Soundscan
We can’t seem to find the long tail

Sales data for 2007
- **4 million** unique tracks sold

But ...
- **1%** of tracks account for **80%** of sales
- **13%** of sales are from American Idol or Disney artists

State of the Industry 2007 - Nielsen Soundscan
State of music discovery
We can’t seem to find the long tail

Sales data for 2007
- 4 million unique tracks sold

But ...
- 1% of tracks account for 80% of sales
- 13% of sales are from American Idol or Disney artists

State of the Industry 2007 - Nielsen Soundscan

Make everything available

Thursday, July 7, 2011
State of music discovery
We can’t seem to find the long tail

Sales data for 2007
- 4 million unique tracks sold

But ...
- 1% of tracks account for 80% of sales
- 13% of sales are from American Idol or Disney artists

State of the Industry 2007 - Nielsen Soundscan

Make everything available
Help me find it
Help! I’m stuck in the head
The limited reach of music recommendation

83 Artists | 6,659 Artists | 239,798 Artists

Study by Dr. Oscar Celma - MTG UPF
Thursday, July 7, 2011
Help! I’m stuck in the head
The limited reach of music recommendation

Study by Dr. Oscar Celma - MTG UPF

Thursday, July 7, 2011
Help! I’m stuck in the head
The limited reach of music recommendation

Study by Dr. Oscar Celma - MTG UPF
Thursday, July 7, 2011
Help! I’m stuck in the head
The limited reach of music recommendation

48% of recommendations
52% of recommendations

0% of recommendations

Study by Dr. Oscar Celma - MTG UPF

Thursday, July 7, 2011
Help! My iPod thinks I’m emo

Why is music recommendation broken?
The Wisdom of Crowds
How does collaborative filtering work?

Overlap Data based on listening behavior of 12,000 Last.fm Listeners
If you like Blondie, you might like the DeBretts ...

But the recommender will never tell you that.
The stupidity of solitude
The Cold Start problem

If you like Blondie, you might like the DeBretts ...

But the recommender will never tell you that.
If you like Blondie, you might like the DeBretts ...

But the recommender will never tell you that.
The Harry Potter Problem
If you like X you might like Harry Potter

Powell's Recommendations
If you enjoyed Java RMI by William Grosso, you might also enjoy the following titles:

- Pragmatic Unit Testing in Java with JUnit (Pragmatic Programmers)
 Andrew Hunt
 $29.95
 New Trade Paper
 add to wishlist

- Design Patterns: Elements of Reusable Object-Oriented Software
 (Addison-Wesley Professional Computing)
 Erich Gamma
 $41.00
 Used Hardcover
 add to wishlist

- Harry Potter #01: Harry Potter and the Sorcerer's Stone
 J K Rowling
 $14.95
 Used Hardcover
 add to wishlist
The Harry Potter Problem
If you like X you might like Harry Potter

Powell's Recommendations

If you enjoyed Java RMI by William Grosso, you might also enjoy the following titles:

- **Pragmatic Unit Testing in Java with JUnit (Pragmatic Programmers)**
 - By Andrew Hunt
 - $29.95

- **Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional Computing)**
 - By Erich Gamma
 - $41.00

- **Harry Potter #01: Harry Potter and the Sorcerer’s Stone**
 - By J K Rowling
 - $14.95

What Do Customers Ultimately Buy After Viewing This Item?

- **The Big Penis Book**
 - 75% buy this item featured on this page:
 - The Big Penis Book ★★★☆☆ (14)
 - $43.79

- **The Tales of Beedle the Bard, Standard Edition**
 - 8% buy this item:
 - The Tales of Beedle the Bard, Standard Edition ★★★☆☆ (79)
 - $7.14
Popularity Bias
Rich get richer - diversity is the biggest loser

Results of popularity bias:
- Rich get richer
- Loss of diversity
- No long tail recommendations
Popularity Bias
Rich get richer - diversity is the biggest loser

<table>
<thead>
<tr>
<th>Rank</th>
<th>Track Title</th>
<th>Artist</th>
<th>Full Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Viva La Vida</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>2</td>
<td>Violet Hill</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>3</td>
<td>Cemeteries of London</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>4</td>
<td>Life in Technicolor</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>6</td>
<td>Strawberry Swing</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>7</td>
<td>Death And All His Friends</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>8</td>
<td>Lost!</td>
<td>Coldplay</td>
<td>full track</td>
</tr>
<tr>
<td>9</td>
<td>Yes</td>
<td>Coldplay</td>
<td></td>
</tr>
</tbody>
</table>
If you like The Beatles you might like ...

Sgt. Pepper's Lonely Hearts Club Band
The Beatles

5 stars (1,192 customer reviews) | More about this product

List Price: $18.98
Price: $10.99 & eligible for free shipping with Amazon Prime
You Save: $7.99 (42%)

In Stock.
Ships from and sold by Amazon.com. Gift-wrap available.

Want it delivered Monday, January 26? Order it in the next 6 hours and 5 min at checkout. Details

60 new from $8.15 41 used from $7.24 20 collectible from $18.98

Customers Who Bought This Item Also Bought

Abbey Road ~ The Beatles
5 stars (1,106) $13.99

Help! [UK] ~ The Beatles
5 stars (240) $14.99

Please Please Me ~ The Beatles
5 stars (229) $14.99

With the Beatles ~ The Beatles
5 stars (186) $13.97

The Beatles 1 ~ The Beatles
5 stars (1,144) $12.
The Napoleon Dynamite Problem
Some items are not easy to categorize

1 of 8 people found the following review helpful:

⭐⭐⭐⭐⭐ Pure Garbage, January 20, 2009
By Tristan Briggs ☐ - See all my reviews

2 of 2 people found the following review helpful:

⭐⭐⭐⭐⭐ unique and funny, January 14, 2009
By B. Helm "celticboy10" ☐ (new orleans) - See all my reviews

5 star: √ √ √ √ √
4 star: √ √ √ √
3 star: √ √ √
2 star: √ √
1 star: √
Help! My iPod thinks I’m emo

Fixing music recommendation
Fixing music recommendation
Eliminating popularity bias and feedback loops
Fixing music recommendation
Semantic-based recommendation

pop legend dance diva sexy american guilty pleasure
90s teen pop 00s rnb pop rock rock singer-songwriter
dance-pop soul emo hot alternative 90s
Fixing music recommendation
Where does this information come from?

The web

- Reviews
- Blogs
- Forums
- Social sites
- Lyrics
- Artist Bios
- Playlists

Crawler

pop legend dance diva sexy american guilty pleasure 90s teen pop 00s rnb pop rock rock singer-songwriter dance-pop soul emo hot alternative 90s

female fronted metal dark rock alternative goth metal metal goth rock emo gothic dark gothic rock heavy metal gothic metal hard rock melodic metal symphonic metal rock metal pop nu

Thursday, July 7, 2011
Fixing music recommendation

Content-based recommendation
Content-based recommendation
Using machines to listen to music

Perceptual features audio:
- time signature / tempo
- key/ mode
- timbre
- pitch
- loudness
- structure
Hybrid Recommendation

The best of all worlds

listener data
- user history
- preference
- editorial

audio data
- audio analysis

web data
- cultural analysis

Hybrid Recommender

<table>
<thead>
<tr>
<th>Hybrid Recommender</th>
<th>collaborative filterer</th>
<th>content-based</th>
<th>semantic-based</th>
</tr>
</thead>
</table>

recommendations
- artist
- track
- user

<table>
<thead>
<tr>
<th>adj/Term</th>
<th>K-L bit</th>
<th>ap Term</th>
<th>K-L bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregative</td>
<td>0.0015</td>
<td>in</td>
<td>0.0013</td>
</tr>
<tr>
<td>folk</td>
<td>0.0029</td>
<td>in</td>
<td>0.0026</td>
</tr>
<tr>
<td>synthetic</td>
<td>0.0202</td>
<td>in</td>
<td>0.0029</td>
</tr>
<tr>
<td>punk</td>
<td>0.0024</td>
<td>in</td>
<td>0.0029</td>
</tr>
<tr>
<td>hip hop</td>
<td>0.0023</td>
<td>in</td>
<td>0.0029</td>
</tr>
<tr>
<td>funky</td>
<td>0.0018</td>
<td>in</td>
<td>0.0029</td>
</tr>
<tr>
<td>heavy</td>
<td>0.0029</td>
<td>in</td>
<td>0.0029</td>
</tr>
<tr>
<td>reggae</td>
<td>0.0018</td>
<td>in</td>
<td>0.0029</td>
</tr>
<tr>
<td>acoustic</td>
<td>0.0013</td>
<td>in</td>
<td>0.0029</td>
</tr>
<tr>
<td>romantic</td>
<td>0.0014</td>
<td>in</td>
<td>0.0029</td>
</tr>
</tbody>
</table>
Counterpoint: Ignore content. Look at users instead

- Malcolm Slaney (Yahoo)
- Using content *hurts* performance.
- Evidence: Netflix competition.
An email exchange on Music-IR

[Music-IR] Recommendations using Music Content Data

Malcolm Slaney to music-ir

I had a number of conversations with people at ISMIR about the use of music content data to improve recommendations. I don't remember who I was talking to, but I thought it was worthwhile to update people with the final outcome.

The winning entries for the Netflix (movie) recommendation contest did NOT use any content data. The names of the movies in the Netflix dataset were known, and many people did try to use content data at the start of the competition. But the final winning entry did NOT include any measures of the content. The winning entry included lots of other data, but not content.

A blog posting talking about this result is available at

It is worth noting that just because the movie people couldn't benefit from content data, it doesn't mean there isn't value in music-content data. Three minutes of music is easier to summarize than 120 minutes of movie. But, I personally wouldn't bet against the accumulated wisdom of the Netflix competitors. :-)

Food for thought...

- Malcolm

P.S. A very readable explanation of what it took to (almost) win is online at
(The algorithms of the final solution are similar, but involve lots of boosting and many more types of underlying regressors...)
On Mon, Nov 16, 2009 at 12:35 AM, Malcolm Slaney <malcolm@ieee.org> wrote:

I had a number of conversations with people at ISMIR about the use of music content data to improve recommendations. I don't remember who I was talking to, but I thought it was worthwhile to update people with the final outcome.

The winning entries for the Netflix (movie) recommendation contest did NOT use any content data. The names of the movies in the Netflix dataset were known, and many people did try to use content data at the start of the competition. But the final winning entry did NOT include any measures of the content. The winning entry included lots of other data, but not content.

As I understood it every single movie in the Netflix prize had usage data associated with it. And there was only 17,000 movies or so listed.

So let's assume a Netflix 2 (or 3) prize that better maps to what music recommenders are actually up against in the real world -- a list of 6-10 million movie titles with about half of them having no metadata or usage data at all. A good 2 million of them have chinese character set titles with no other metadata. What then?
On Nov 16, 2009, at 6:11 AM, one otherwise VERY smart Music-IR researcher wrote :-)

I believe any content based method can be improved using good collaborative data and vice versa.

The Netflix competition suggests that statement is wrong. A pure machine-learning approach says that all information is good. But the evidence in the Netflix competition says that the content-based signals tried so far added more noise than signal :-(

Paul Lamere and Brian Whitman point out that the cold-start problem can probably benefit from content data. That is a good point about a hard problem.

But there are other ways to solve the cold-start problem, without using the content, based on machine learning and exploration. The paper below talks about how to solve the cold-start problem by using exploration. New news stories for the Yahoo front page enter the system more often than new music releases, and news stories take less time to consume than music. One solution is to try the content out on a small fraction of the users and see who likes it.

http://research.yahoo.com/pub/2963
(I'm sorry, the paper isn't online yet.. send me email and I can send you a preprint.)

I don't want to say that content measures will never help recommendation systems. But so far the large-scale evidence (i.e. the Netflix competition) says content doesn't help. I think a paper that wants to suggest otherwise will have a much harder time establishing that the approach is interesting. Millions of users seem to be smarter than FFTs :-)
Hi all,

I can’t resist throwing in my $.02 on this issue. Let me cast this in a different light:

Imagine doing low-level frame-based feature measurement of stories broadcast on the US’s National Public Radio. Not speech-to-text. I mean things like mfcc, chroma, spectral centroid, RMS amplitude. You know. The features we all use. Now try differentiating between interesting stories and uninteresting ones. You might be able to tell different radio shows (Cartalk vs This American Life) based on talker identification using the mfccs. To that extent you might be successful in finding good things to recommend, but separating the INTERESTING Cartalk episode from the UNINTERESTING one? Not likely.

Why not? Because simple frame-based features don’t capture the structures that we process to decide what makes something interesting. Not in speech. Not in music. So of course collaborative filtering works better. The filters (people) are actually basing their ratings on attention to what at least one human cares about in the signal.

My belief is that content-based recommendation systems will only reach the next level when they can identify things about a recording like this:

The singing style is similar to Tom Waits
This is an up-tempo polka
The lyrical content is about puppies
The instruments are all jugs (bottles you blow in).
The song structure is blues

When we content-based have features like that, we’re finally talking in terms that might (in conjunction with meta data like record label, year recorded, etc) give meaningful recommendations.

Bryan Pardo
CF has limitations by design. Content-based similarity has limitations by the quality of the analysis and the combining of features: it's only a matter of time.
Anatomy of an Autotagger
Our approach: content-based music recommendation

“I hear 1970s glam rock. It’s David Bowie, but with a harder punk edge, like the Clash, but wearing platform shoes and silk jumpsuits.”
Our approach: content-based music recommendation

Acoustic feature extraction

Machine Learning

0.74 80s, 0.68 classic_rock 0.65 proto-punk
0.71 glam 0.67 england 0.64 new_wave
0.69 70s 0.65 english 0.64 glam_rock

A more realizable goal: generate tag clouds useful for annotation and retrieval

Douglas Eck (deck@google.com) CCRMA MIR Workshop Day 5
Recommendation from tags

• Annotate all tracks using Autotagger model.
• Use TF-IDF normalization to downweight overused words.
• Cosine distance over word vectors for similarity.
• Combine autotag signal with other signals:
 • Social tags,
 • Explicit user preferences,
 • Implicit user preferences (skips, long plays)
 • Similarity among users, etc.
ML challenges and previous approaches

- Challenges
 - What features to use?
 - What machine learning algorithm to use?
 - How to scale to huge datasets?

- ML approaches (tag, genre and artist prediction):
 - SVM (Ellis & Mandel 2006)
 - Decision Trees (West, 2005)
 - Nearest Neighbors (Palmpalk, 2005)
 - Hierarchical Mixture Models (Turnbull et al, 2009)
 - AdaBoost / FilterBoost (our work)
One autotagging pipeline

1. Extract features
 - Waveform
 - Feature Extractor
 - Feature (e.g. MFCC)

2. Train on labeled data
 - Training Features
 - Training Tags
 - Classifier
 - Trained Model

3. Predict unseen data
 - Unseen Features
 - Predicted Tags
Audio Feature Demos
Curse of dimensionality

- A 3min stereo CD-quality audio sequence contains 254,016,000 bits (44100 * 2 * 60 * 3 * 16)

- Number of possible unique bit configurations for 3min songs: \(2^{254,016,000}\)

- We need to process >100K audio files for lab work >1M for commercial work
Representing different musical attributes

- **MFCC**
 - Timbre / instrumentation

- **Autocorrelation**
 - Temporal structure (rhythm, meter)

- **Spectrogram**
 - Pitch, melody

Pink Floyd "Money"
Aggregate Features

- Aggregate chunks of feature frames into longer-timescale segments
- Vote over these larger segments.
- Question: What is the best segment size?
- One answer: 3-5 seconds (Bergstra et al.)
Sparse coding techniques

- Example: K-Means Analysis.
- Simpler than (but similar to) a Gaussian Mixture Model
Sparse coding techniques.

- Performed k-means on MFCCs
- K=3000 / 20,000 30sec audio files
- Used to build sparse representation of audio (Bengio et al; Google)
- Song represented as a sparse histogram of frame centroids. *Extremely* sparse.
- Motivation: sparse document similarity approaches. Can a single MFCC frame function as a concept? Song is a histogram of concepts.

Representation:
\[19=2, 722=2, 1387=1\]

Thursday, July 7, 2011
A more complete (and complex) example

[FIG4] Generating sparse codes from an “audio document,” in four steps: 1) cochlea simulation, 2) stabilized auditory image creation, 3) sparse coding by vector quantization of multiscale patches, and 4) aggregation into a “bag of features” representation of the entire audio document. Steps 3 and 4 here correspond to the feature extraction module in the four-module system structure. To the fourth module, a PAMIR-based learning and retrieval system, this entire diagram represents a front end providing abstract sparse features for audio document characterization.

From “Machine Hearing: An Emerging Field”
Beat-based aggregation

Cheap to compute and popular (e.g. Dan Ellis cover song detector).
Training data
Data source: Last.FM

- Social tags obtained via data mining (Last.fm AudioScrobbler API)
- Identified 350 most popular tags
- Mined tags and tag frequencies for nearly 100,000s artist from Last.FM
- Genre, mood, instrumentation account for 77% of tags

<table>
<thead>
<tr>
<th>Tag Type</th>
<th>Frequency</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genre</td>
<td>68%</td>
<td>heavy metal, punk</td>
</tr>
<tr>
<td>Locale</td>
<td>12%</td>
<td>French, Seattle, NYC</td>
</tr>
<tr>
<td>Mood</td>
<td>5%</td>
<td>chill, party</td>
</tr>
<tr>
<td>Opinion</td>
<td>4%</td>
<td>love, favorite</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>4%</td>
<td>piano, female vocal</td>
</tr>
<tr>
<td>Style</td>
<td>3%</td>
<td>political, humor</td>
</tr>
<tr>
<td>Misc</td>
<td>3%</td>
<td>Coldplay, composers</td>
</tr>
<tr>
<td>Personal</td>
<td>1%</td>
<td>seen live, I own it</td>
</tr>
</tbody>
</table>
Shoegaze

Shoegazing is a style of alternative rock that emerged from the United Kingdom in the late 1980s. It lasted until the mid 1990s, peaking circa 1990 to 1993. The British music press (notably NME and Melody Maker) called this genre “shoegazing” because the musicians in these bands often maintained a motionless performing style, standing on stage and staring at the floor while playing their instruments; hence, the idea that they were gazing at their shoes. Read more... | Edit this

Artist photo: A Sunny Day In Glasgow

“shoegaze” music on Last.fm
Built by 18,288 people (Used 82,106 times)

Related tags
- dream pop
- shoegazer
- space rock
- dreampop
- 4ad
- dreamy
- noise pop
- ethereal

Top Artists

My Bloody Valentine
Slowdive
The Jesus and Mary Chain
M83
Ride
Lush
Asobi Seksu
Deerhunter

Recently Added

Alpinisms
School of Seven Bells
Buy
Released: 8 Dec 2009 (21 tracks)

D-Sides
Gorillaz
Buy
Released: 19 Nov 2007 (22 tracks)

Shocking Pinks
Shorkina Pinks
Constructing datasets

• Built list of 350 most popular tags

• Generate classification targets for each tag:
 • All songs by top 10 artists for a tag used as positive examples
 • All songs by next 200 artists ignored (uncertain)
 • All remaining songs treated as negative examples

• Matched songs to audio collection and extracted features from audio.
Learning details and results
Voting over blocks of features

- MFCCs calculated over timescale where audio should be steady-state (~100ms)
- MFCCs aggregated into 3 to 5sec blocks (mean, std, covariance)
- Train segments (columns) individually; all on same song-level label
- Integrate predictions over song (vote) to choose winner

Target \{\text{glam? glam? glam?}\}
Prediction \{-0.397 0.92 0.74\} \ldots \text{Vote (average score for song)}
\text{“Yeah! Glam.”}
Classifier

- Used AdaBoost ensemble learner (Freund & Schapire 1995)

- Basic idea:
 1) Search for best weak learner in set of learners
 2) Add it to list of active learners (store its weight and confidence)
 3) Reweight data to avoid wasting resources on points already classified

- Builds smart classifier from weighted linear combination of relatively-stupid “weak learners”

- Feature selection based on minimization of empirical error
Principle of Adaboost

- Three cobblers with their wits combined equal Zhuge Liang the master mind.
- Failure is the mother of success

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + ... \]

From rii.ricoh.com/~liu/homepage/adaboost.ppt (Xu and Arun)
Each data point has a class label:
\[y_t = \begin{cases} +1 & (\bullet) \\ -1 & (\circ) \end{cases} \]
and a weight:
\[w_t = 1 \]

Weak learners from the family of lines

From rii.ricoh.com/~liu/homepage/adaboost.ppt (Xu and Arun)
Toy example

Each data point has a class label:

\[y_t = \begin{cases}
+1 \ (\bullet) \\
-1 \ (\bigcirc)
\end{cases} \]

and a weight:

\[w_t = 1 \]

This one seems to be the best

This is a ‘weak classifier’: It performs slightly better than chance.
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\text{red}) \\
-1 & (\text{yellow})
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again. Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\circ) \\
-1 & (\bullet)
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
+1 \ (\circ) \\
-1 \ (\bullet)
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases} +1 \ (\circ) \\ -1 \ (\bullet) \end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

From rii.ricoh.com/~liu/homepage/adaboost.ppt (Xu and Arun)
Some tags are learned with high precision ("male lead vocals"). Some are completely unlearnable (e.g. "loving").
Top Tags for Artists (annotation)

<table>
<thead>
<tr>
<th>Artist</th>
<th>Top Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiohead</td>
<td>Britrock, alternative_rock, alternative, britpop, melancholic, melancholy, alt_rock, seen_live, 00s, Experimental_Rock</td>
</tr>
<tr>
<td>Peter Tosh</td>
<td>roots_reggae, Rasta, reggae, dancehall, rhythm_and_blues, funk, old_school, soft_rock, soul, male</td>
</tr>
<tr>
<td>The Who</td>
<td>rock, 60s, classic_rock, power_pop, Favourites, good, us, hard_rock, 90's, Aussie</td>
</tr>
<tr>
<td>Ella Fitzgerald</td>
<td>roots_reggae, Rasta, reggae, dancehall, rhythm_and_blues, funk, old_school, soft_rock, soul, male</td>
</tr>
<tr>
<td>David Bowie</td>
<td>80s, glam, 70s, classic_rock, england, english, proto-punk, new_wave, glam_rock, pop</td>
</tr>
<tr>
<td>Douglas Eck</td>
<td>singer-songwriter, folk, blues, folk_rock, genius, mbp (Brazilian pop), bluegrass, indie_folk, gentle, americana</td>
</tr>
<tr>
<td>Enya</td>
<td>ethereal, celtic, Female_Voices, relaxing, relax, Meditation, fantasy, irish, neofolk, female</td>
</tr>
<tr>
<td>James Brown</td>
<td>rhythm_and_blues, soul, funk, motown, funky, blues, Rock_and_Roll, 60s, oldies, rock_n_roll</td>
</tr>
</tbody>
</table>
Tag top-20 lists : Reggae

1 Max Romeo
2 The Upsetters
3 The Meditations
4 Dillinger
5 Dub Specialists
6 U Roy
7 Johnny Clarke
8 The Twinkle Brothers
9 Bunny Wailer
10 Tapper Zukie
11 Bob Marley & The Wailers
12 Leroy Brown
13 Lee "Scratch" Perry
14 The Wailers
15 Sly & Robbie
16 U Brown
17 Poet & The Roots
18 Big Youth
19 Ranking Trevor
20 Jah Lloyd

List from website last.fm

Bob Marley
Bob Marley & The Wailers
Sublime
Manu Chao
Sean Paul
UB40
Gentleman
Matisyahu
Shaggy
Rihanna
Seeed
Damian Marley
5'nizza
Wyclef Jean
Lee "Scratch" Perry
Sizzla
The Police
311
Toots and The Maytals
Peter Tosh
<table>
<thead>
<tr>
<th>Rank</th>
<th>Artist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R.A.V.A.G.E.</td>
</tr>
<tr>
<td>2</td>
<td>Catherine Wheel</td>
</tr>
<tr>
<td>3</td>
<td>Electroluminescent</td>
</tr>
<tr>
<td>4</td>
<td>My Bloody Valentine</td>
</tr>
<tr>
<td>5</td>
<td>Keith Fullerton Whitman</td>
</tr>
<tr>
<td>6</td>
<td>Dan Gardopee</td>
</tr>
<tr>
<td>7</td>
<td>Ulrich Schnauss</td>
</tr>
<tr>
<td>8</td>
<td>M83</td>
</tr>
<tr>
<td>9</td>
<td>The Jesus and Mary Chain</td>
</tr>
<tr>
<td>10</td>
<td>Times New Viking</td>
</tr>
<tr>
<td>11</td>
<td>thisquietarmy</td>
</tr>
<tr>
<td>12</td>
<td>Pumice</td>
</tr>
<tr>
<td>13</td>
<td>Swervedriver</td>
</tr>
<tr>
<td>14</td>
<td>Kinski</td>
</tr>
<tr>
<td>15</td>
<td>Spiritualized®</td>
</tr>
<tr>
<td>16</td>
<td>Readymade</td>
</tr>
<tr>
<td>17</td>
<td>Lush</td>
</tr>
<tr>
<td>18</td>
<td>SIANspheric</td>
</tr>
<tr>
<td>19</td>
<td>Sugar</td>
</tr>
<tr>
<td>20</td>
<td>Throwing Muses</td>
</tr>
</tbody>
</table>

List from website last.fm

- My Bloody Valentine
- Sigur Rós
- The Jesus and Mary Chain
- M83
- Cocteau Twins
- Slowdive
- Spiritualized
- The Verve
- Black Rebel Motorcycle Club
- The Radio Dept.
- Ride
- The Brian Jonestown Massacre
- Deerhunter
- Yo La Tengo
- Lush
- Mazzy Star
- Spacemen 3
- Asobi Seksu
- Silversun Pickups
- Curve
How do features map onto tags?

Our classifier (AdaBoost) selects features based on their ability to minimize error (automatic feature selection).

Which features predicted what?

Thursday, July 7, 2011
Moving from one artist to another

Path from Ludwig van Beethoven to The Prodigy
Expressive timing and dynamics
Audio detour: multi-timescale learning

- Future Research

- Chopping up a song into 200ms frames and mixing up those frames seems a pretty bad idea

- Localize long-timescale structure using meter/beat

- Features aligned to beat, measure, phrase of music
Example:
Chopin Etude
Opus 10 No 3
Bösendorfer example: Schubert Waltz

Deadpan
(no expressive timing or dynamics)

Human performance
(Recorded on Bösendorfer ZEUS)

Differences from MIDI:
• timing (onset, length)
• velocity (seen as red)
• pedaling (blue shading)
• key angles (below)
Aside: Meter/Pulse
What can we measure?

- Repp (1989) measured note IOIs in 19 famous recordings of a Beethoven minuet (Sonata op 31 no 3)

Grand average timing patterns of performances with repeats plotted separately. (From B. Repp “Patterns of expressive timing in performances of a Beethoven minuet by nineteen famous pianists”, 1990)
What can we measure?

- PCA analysis yields 2 major components
 - Phrase final lengthening
 - Phrase internal variation
- Simply taking mean IOIs yields can yield pleasing performance
- Reconstructing using principal component(s) can yield pleasing performance
- Concluded that timing underlies musical structure
Experiment: Learn to Perform Schubert Waltzes

- 12 highly trained pianists (performance PhD, University of Montreal Faculty of Music)
- 5 similar waltzes by Schubert; 115 total performances; 38284 notes in all
- Recorded on Bösendorfer ZEUS reproducing imperial grand piano
- Used this data to teach a machine learning model about piano performance

Listen at Stan’s Demo....
Training and generation

Training:

• Train algorithms on 4 pieces using MIDI performances captured from Bösendorfer ZEUS.
• Ensure generalization using out-of-sample data

Generation:

• Predict note velocities, local time deviations and overall tempo deviation for 5th piece
• Generate machine performance as MIDI from predictions
• Record performance from MIDI on Bösendorfer ZEUS

Pianist pedaling was ignored. We generated pedaling from note timing profile. (Future work)
Learning Expressive Timing (Stanislas Lauly)

Represent dynamics and timing deviations as input/target vectors

Input (score) at time t:
- P or F
- Crescendo or Decrescendo
- Accent and Staccato
- Position in measure (binary)
- Position in phrase and in peace (%)
- Half note or quarter note or eighth note (length between onsets)
- Position in phrase (binary)
- Indicate last measure of phrase

Target at time t:
- Velocity of each notes of a onset chord
- Local time deviation of each notes of a onset chord
- Tempo and delta tempo

Data at time t:
- Input
 - Input t-2, input t-1, input t, input t+1, input t+2, target t-1, target t-2
- Target
 - Target t
Timing deviations for all 20 performances of a single waltz.

Mean values predictions shown as red squares
Mean timing deviations (blue) versus predicted deviations (red)

Model was not trained on this piece.