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Introductions, Context

e Stephen Pope

e Leigh Smith

e Steve Tjoa

e CCRMA MIR Workshop
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Outline

Signal Analysis and Feature Extraction
MIR Application Design
Windowed Feature Extraction
Feature-vector Design
- Time-domain Features
- Frequency-domain Features
- Spatial-domain Features
- Other Feature Domains
e Onset-detection
- Beat-finding and Tempo-derivation
e Applications, Exercises
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The Big MAT Book:
Courseware for Audio &
Multimedia Engineering

TheBigMATBook

Volume 1: Multimedia Engineering

e The Big MAT Book: Courseware for

Audio & Multimedia Engineering

- 11 courses taught at UCSB

- Volume 1: Multimedia Engineering
(280 pages, 1680 slides)®™

- Volume 2: Audio Software (253
pages, 1518 slides)

- Volume 3: Audio Hardware (147
pages, 882 slides)

- http://HeavenEverywhere.com/TheBigMATBook
<>
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Signal Analysis and Feature
Extraction for MIR Applications

e What do we want to do?

- Match, search, index, transcribe, src-sep, ...
e What do we need to know to do it?
Basic feature set

- Higher-level features

- Feature data post-processing

- Application integration
e MIR application design

- Many are not “IR” at all

- How does the metadata fit in?
e Feature vector design for applications
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Problem Statement: Applications

e Examples
- Automatic playlist generation
- Audio transcription

Pl Recommended Play List
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Non-pure
o Speech
ith- s

[Non-silence|
Background

Music Metadata

e Introduction
- Kinds of Audio Data and Metadata
- Dimensions of Music Info. Retrieval
- APIs for MIR Tools

e Multimedia Databases
- Feature Vectors and Indexing
- Feature Extraction and Signal Analysis
- Numerical Processing: Clustering, Classification

o Audio Signal Processing for Feature Extraction
- Time Sequences, Windowing
- Analysis Domains, Transformations
- Multi-level, High-level

e Data Smoothing and Reduction ‘<©7>,

Numerical Processing

Sensor

 Data Reduction, Smoothing signal |

Pre-processing/
segmentation

Correlation, Grouping

segment l

Princ./Indep. Component

. Feature extraction
Analysis

feature vector l

Audio Segmentation and e
Classification

Musical Form class 1

Clustering and Classification Post-processing
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Signal Analysis }

Speech Waveform Front End Processing
(16 bit integer data) Parameters

Time-domain Audio Analysis

- Windowed RMS Envelope Extraction
- Beat Detection and Tempo Analysis
- Time-based signal segmentation

Frequency-domain Analysis
frame base
- Pitch Detection Techniques i

- Spectral Analysis and Interpretation
- Spectral Peaks and Tracking

- Other Spectral Measures —
Other Kinds of Analysis: Wavelets e e cos osticions 52t oning poin o
Cross—-domain analysis

(@8),
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Typical Processing Stages

Input processing

- Streaming, decompression, reformatting
Signal segmentation, windowing

- window size, share, overlap

1st-pass windowed feature extraction
- Basic time-, freq-domain features
2nd-pass feature processing

- Feature massaging, smoothing, pruning
- 2nd-pass features (tempo, segmentation)
Post-processing, data output

- Many options
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Databases & Applications

e Database Issues

Handling of Large or Dynamic Feature Vectors

Application Requirements and Design

Searching, Indexing, and Players

Audio Summarization and Thumb-nailing

Content Matching and Finger-printing

Data Clustering and Genre Classification

Other Applications: Mapping Systems
>3

Spectuum for Trumpet Playing Concert 44

MIR Application .
Design

e Dimensions

- Content format al

- Low-level analysis procedures % s g e e
High-level derived features

- DB design

- Application flow and integration
e Design Issues

- System architecture and design impacted by each

of the MDB dimensions
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Content Format

Impacts all levels of system

- Data volume, storage options, analysis DSP, DB
design, etc.

Systems may or may not maintain original

source content (vs. metadata)

Systems may preserve several formats of

source and metadata (n-tier)

This is typically a given rather than a design

option
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Real Applications

e DBMS issues

L4 Qu ery Syste ms, 1%/1[11;2 Stage 1 Analysis
browsers, and MIR
fl’a mewor kS Al-based classification

XML
Database

¢ Informed tools
e Stand-alone delivery

Statistical Analysis

Content Formats

Audio-based

- Properties/volume of source recordings

- MP3/AAC/WMA decoders

MIDI-based

- Problems with MIDI, assumptions to make
- Human-performed vs “dead pan” MIDI
Score image based

- Useful, but not treated here

User Preferences
D>
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Toput Matching Features
2| £
HE Collection
Name B2 Indexing ize
(Records)
, Tnverted <
audentify . . oo e e 15,000
C-Brahms . . K o e . . none 278
) CubyHum . . . . LET 310
yp es [ s
Cuidado . . o ol off Bt el for >
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App | Tl
. GUIDO/
. . . ol . o || transition 150
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Table s T T e [ o
reensions
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SOMEIB 0 . e 0 R
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2 2
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Themefinder 0 I 0 K none 35,000

e Formal language-based
- SCORE, SMDL, Smoke, etc.
- MusicXML
@
Applications
e One-step Tools

- Tracker, segmenter, single feature extraction
- Interactive programs

Multi-feature tools

- Finger-print, thumb-nail, etc.

e Heuristic techniques

- Blackboard, neural nets, SOMaps
Real-world MIR applications

@
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MIR/MDB Applications

Indexing
Content
escripti Classification
Real-ti deseription Real-time
eal-time - i
:'u dio Time I Browsing —— multichannel
ana
segmentation . audio
8 Rendering
Recorded »| Separation - Navigation » Recorded
audio Tempo audio
tracking Authoring
{ L
- > >
Pitch = " ner
¢ Performing Ope
Other analyses

| |

| Local & remote storage - Internet access - Peer-to-peer Sharing

Dimensions of Music Information
Retrieval Applications

¢ Indexing, query, access
- Use content or metadata for query
e Understanding, transcription
- Derive (music/speech) model
e Clustering, classification
- Feature vector for discrimination
e Content identification, finger-printing
e Preference-matching, recommendation

@
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GT’s “MIR Pipeline”

Hearing Understanding Acting
Representation Analysis Interaction
b D

Windows and their Spectra
(see MAT 240B)

e Trade-offs between

Rectangle Window Rectangle Windouw's Transform

window :

characteristics o

¢ Different windows
for different Trengle Wiadow

analysis domains nngmj:W

T s 0 05 1

@

Triangle Window’s Transform

Signal Processing Machine Learning Human Computer
Interaction
‘(@),
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Time Sequences, Windowing
e Read audio input
e Vector multiply by
window function
e Perform analysis
e Step to next window
e Hop size not normally = —
window size
e Window features
- Main lobe width, side
lobe level, side lobe slope
@
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B Iljl;;’miﬂl‘zi:dwi o Blackman Window's Transform
]JZ\ 0= 0427, ay = 0497, 4y =
075 -0
Advanced ! T o5 o 05 —
Windows for Ko Vi -
Spectral . -
. 05 g™
Analysis -
o S A i
-1 -05 0 05 1
Blackman-Harris Window Blackman-Harris Window's Transform
(4-term, -96 dB) . (d-term ,-96 dB)
°A 422 A A I Attt
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Windowing and the STFT

I“PutAul\vf\v — P /\ /\ ya

- - Time

I é ~ N Windowed excerpts

e o™
P ARR
M Time-varying spectra
-
Fast Founier Transform FFT
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Time-domain Audio Analysis and
Applications

Use rectangular window if no overlap or

triangular window if overlapping

Medium-sized window (10 Hz or better
resolution desired)

Derived windowed RMS value

Count zero crossings
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Multi-window Multi-rate Analysis

e Example: FMAK3 analysis driver

e -r rmsWindow_size rmsHop_size
- window size and hop size for the RMS time-
domain analysis
e —f fftWindow_size fftLen fftHop_size
- for the FFT spectral analysis
e —-| IpcWindow_size IpcOrder IpcHop_size
- for the LPC analysis
e -w fwtWindow_size fwtLen fwtHop_size
- for the wavelet analysis
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Optional Time-domain Steps

o Pre-filter to get low-freq and high-freq
RMS values

e Process stereo channels to get M/S (sum/
difference) signals

* Noise detection

e Silence detection

e Loop code examples and main()s

«>D»
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Windowed RMS Envelope Extraction

e C code for envelope extraction
- Outer loop for windows
- Inner loop to run window and compute RMS value
- Silence threshold (noise gate)
- Note-on trigger (peak detector)

- Example sound: piano sample, drum loop

«>D»
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Feature-vector Design

e http://www.create.ucsb.edu/~stp/PostScript/
PopeHolmKouznetsov_icmc2.pdf
e Application Requirements
- Labeling, segmentation, etc.
- Derive feature vector from the app requirements
e Kinds/Domains of Features
- Time-domain
e Simple features, onset detection
- Frequency-domain
e Spectrum, spectral statistics
e Pitch, chroma, key “?"
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Feature Vectors and
Indexing

ampitate

Hamenc

e Feature = derived (numerical) parameter

o Feature vector = list of features for a single
point/window in time, or average for an entire
selection

e Feature table = list of feature vectors for
several time slices (not always used)
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Example Features

e Features:
Time-domain, low-level

e Windowed RMS amplitude
Time-domain, high-level

e Tempo, beat structure, segmentation
Frequency-domain, low-level

e Pitch, spectrum, spectral peaks
- Frequency-domain, high-level

e Peak track birth/death statistics, instrument ID

- Many other possibilities (see below)
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Example: FMAK3 Feature Table,
cont’d
// Frequency-domain features
unsigned int mFFTWindowSize; // Size of FFT window
FtVector mSpectrum; // Hanning windowed FFT data (1024 points, or NULL)
FtVector mReducedSpectrum; // l-octave FFT data (10-12 points)
FtVector mBandSpectrum; // 2.5-octave FFT data (4 points -- spectral bands)
FPartialVector mSpectralPeaks;// List of major spectral peak indeces
FPartialVector mSpectralTracks; // List of tracked peak frequencies
1Centroid; // Spectral centroid measure
1Slope; // Spectral slope measure
FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure
// Hi-frequency properties
FeatureDatum HiFregBalance; // Relative HF level
FeatureDatum HiFreqVariety; // HF inter-frame spectral variety
HiFreqCorrelation;// Correlation between HF and audio-band tracks
FeatureDatum mSTrackBirths; // Spectral peak track births and deaths
// LEC features
unsigned int mLPCWindowSize; // Size of LPC window
FPartialVector mLPCFormants; // List of LPC formant peaks
FPartialVector mLECTracks; // List of tracked LEC formants
FeatureDatum mLPCResidual; // LEC residual level (noisiness)
FeatureDatum mLPCPitch; // Pitch estimate
FeatureDatum mLTrackBirths; // LEC formant peak track births, deaths
// Wavelet-domain (FWT) features
FtVector mWaveletCoeff; // FWT coefficient or NULL
FtVector mWINSpectrum; // Reduced FWT HiFreq noise spectrum
FtVector mWTTracks; // List of tracked FWT peaks
FeatureDatum mWTNoise; // FWT noise estimate «>D»
35
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Example: FMAK3 Feature Table

class FeatureTable { // FeatureTable is a root object (no parents)
public: // Data members (instance variables)

float mTimeStamp; // When do I start?

float mTimeDur; // How long a time-span do I represent?

// Time-domain features
unsigned int mRMSWindowSize; // Size of RMS window

FeatureDatum mRMS ; // Rectangular-windowed RMS amplitude
FeatureDatum mPeak; // Max sample amplitude

FeatureDatum mLPRMS ; // RMS amplitude of LP-filtered signal
FeatureDatum mHPRMS; // RMS amplitude of HP-filtered signal
size_t mZeroCrossings; // Count of zero crossings
FeatureDatum mDynamicRange; // RMS dynamic range of sub-windows
FeatureDatum mPeakIndex; // RMS peak sub-window index
FeatureDatum mTempo; // RMS/FWT instantaneous tempo estimate
FeatureDatum mTimeSignature; // Time signature guess

FeatureDatum mBassPitch; // Bass pitch guess in Hz

unsigned int mBassNote; // Bass note (MIDI key number) guess

FeatureDatum mBassDynamicity; // Bass note dynamicity (size of histogram)
// spatial features
idth; // L/R di
; // Front, di
mCenterDistinction; // Center vs. L/R sum difference

@
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Windowed Feature Comparison

FMAK Testing GUI
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Analysis Domains and
Transformations

e Time-domain Audio Analysis and Applications
e Windowed RMS Envelope Extraction
e Beat Detection and Tempo Analysis
Time-based signal segmentation
Frequency-domain Analysis
Pitch Detection Techniques
Spectral Analysis and Interpretation
Spectral Peaks and Tracking
Other Spectral Measures
Other Kinds of Analysis: Wavelets
Cross-domain analysis

D>
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Windowed Amplitude Envelopes

e Choice of window size, hop size, window
function shape

e May use several frequency bands (kick drum
vs. hi-hat)

o Useful for silence detection, beat tracking,
simple segmentation, summarization, etc.

e Simple, effective, well-understood techniques,
many options

D>
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Time-domain Features

RMS, Peak

LPF/HPF RMS

- e.g., F < 200 Hz, F > 2000 Hz

Dynamic range

- What window for calc?

Zero-crossing rate (time- or freq-domain?)
Higher-level statistics

- Mean/variance

- Variance of sliding windows

- Spacing of peaks/troughs

- Many other options

Time-domain onset-detection & beats

«>D»
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Frequency-domain Analysis

e Short-time Fourier transform
- Configuration options and trade-offs
- Interpretation/weighting of spectral bins
(perceptual scales)
e Other frequency-domain techniques
- Filter banks
- Linear prediction
- Filter matching
e Loads of options

Frequency-domain Features

e Spectrum, Spectral bins
- Window/hop sizes
- Improving spectral data: phase unwrapping, time
realignment

Spectral measures (statistical moments)
MFCCs

Peak-picking and peak-tracking
Pitch-estimation and pitch-tracking

D>
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Speech Spectrogram

e Kinds of _EEE T -
spectral plots cofatigns e i

e Features o B s B
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The Pitch/Time Trade-off

MNarrowhand Spectrogram
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Using FFT APIs

e Simple FFT

- See MAT240B

- See F. R. Moore’s Elements of Computer Music
e FFTW

- FFTW data types

- FFTW plans

- See CSL Spectral class

Harmonics and Formants
e Source/Filter - instr resonances

0dB

—
Formants Eee vowel

(beet)

Harmonics

-30

OHz 1.5kHz 3kHz 4.5kHz
@
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Spectral Analysis and Interpretation

e Spectral data extraction
- Base frequency
- Overtone spectrum
- Formants, resonances, regions
- Instrument sighatures
e Spectral statistics
- Peak, mean, average, centroid, slope, etc.
- Spectral variety, etc.

D>
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Composite £ I ﬂla M |
e L
S {
_600‘ 1000 2000 3(?‘90 4000 (IE-’IO?O 6000 7000 8000
requency (Hz,
e How to 4000
disambiguate? 3500
e Track birth/death 3000
statistics R
e Vibrato (see figure) §2m e s
« Statistical techniques £,
1000 —
500 -
00 0.5 1 15T' (2) 25 3 35
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Spectra as Time-varying

e Track peaks/regions M
between frames (requires
thresholds of change)

e Model the dynamicity
(e.g., formant trajectory, t F
vibrato extraction)

t+1 F

«>D»
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Spectral Peaks and Tracking

Peak finding
(remember
autocorrelation?)
Peak discrimination
Peak continuation:
tracks and guides
Derived statistics
Problem cases

freq.

x

revive

Spectral Peak-Tracking Example

- D:\ParasoftiWav\StoelyDan_WhatAShame_short wav

L olal=le N=] [Tl 12 %210

‘ Coress RO gy || ARG SI ne FT e | [T Mg CFFT
| e oot TR [0 otz PIOB i P51 Wi 5 oo 5 WP
> x| ] || Refect oo [EALT ||| P ovetp % tin [ cor o 776 ken o0 waTiocks || iz Bins p 3

o Poles

Peaks and Tracks

e Peak-finding oo ,x\ MR
- Thresholds, Al Vo ﬂw\r AN
distances, heuristics  ** VT A
e Peak-continuation .
- Inter-frame distances
and guides [ T Nl
- Dropped frames and \4_.,\‘
stretching S E— |8 e 2
- Track birth/death i m j
criteria \n—a—é .
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Spectral Peak |
Detection Algorithm

e From Blum et al.
patent # 5,918,223

center

Tight)

e o e
51
Spectral Smoothness Measure
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Amplitude [d6]

Smoothed Spectrum Types

Cepstrum envelope (order 30)
Discrete cepstrum (order 30)
Partial peak

LPC envelope (order 30)
Log magnitude spectrum

5

4000
Frequency [He]




Deriving Spectral Bands

e Octave-band loops
- outer loop - step size —
doubles every octave

- inner loop - sums

oz, -

bins in range o
e Weighted, non- e N WO
linear bands

= i IT
=) [&fptaycues

Filter-based Pitch Detection
Current estinated center frequency

v

Bandpass
filter

Input
Signal —1—»

()

yin)

—»

Pitch

estumate

e Simple adaptive process for single-frequency
source with strong fundamental (i.e., many,
but not all, instruments and voices)

e Easily implemented in analog circuitry

e Many variations
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Pitch Detection | ;. 4 |
Techniques WY W W

e Find the period of a “periodic” signal
- First guess whether or not it’s periodic
e Simple techniques work for many signals
- Zero-crossings (with direction, slope)
- Autocorrelation (with range limitation)
e It’s hard to tell when they fail
- Random data, silence
- Octave over/under-tone errors

Harmonic Product Spectra

e Decimation of FFT spectra, summation, and
spectral peak location

e Assumes overtones are significant, not that
fundamental is

HPS
Signal Fundamental
AWANANIN Spectrun 4 I i M Frequency
[PHTA »
‘H | e Ll 7T

T :
o M W H » L]
Window
5

>
Auto-Correlation
° Sllde a Sign al across e T«\g‘ne\s‘gna\(Eme)eneswgna\snmguhyenamnun‘meaymemneamema\pma
itself, taking the 0 \‘ (\/\ WW
(A T
vector product at 02 \\ f\f\‘\“\ HVH \ /
each step ol ml } ' \\\ |
e This ACarrayhasa - ¢ || ,’ \\‘ m\ /
peak at 0, and the \\w'\f\‘ W “/ \,w
A \vf\‘ |
period of the signal | " \\\,\ H W
e No peaks for noise ~ ” WA
<

Harmonic Product Spectra

Implementation

Outer loop (octaves)

- Scales copy of spectrum into buffer
Inner loop

- Take max or avg of sub-window?

- Use interp. peak picker?

e Post

- first max > min_val
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Mel-Freq Cepstral Coefficients

e Steps: e Instead of AC, use FFT
- Signal or DCT of PDS
- FT

e Leads to interesting
statistics of higher-level
spectral properties, see
next section

- Log magnitude
- Phase unwrapping
FT (or DCT)
e Name reversal
e Interpretations
- Quefrency
- Mel-scale
- Mel-scale filters

«>D»
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Comparison With LPC (by Andrianakis
& White)

FFT PSD 13-pole LPC 20 Mel

Spectrum Spectrum

Train

Car

Frequency [Hz]
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MFCC Analysis

e Analogy of]

- Start with log spectrum .
of mixed complex tones: ‘
several sets of related i
partial peaks B o

- Take, e.g., the autocorr. s o "
of the FFT PDS o

- Warped frequencies of 0 e
peaks correspond to s R
fundamental frequencies R R R
of overtone series

) waveform

5 10 15 20 2 30 3 40 4
time (ms)

) spectium

Other Feature Domains

e Other time-domain features
- Beats, beat histograms

e Other frequency-domain features
- Fluctuation patterns

e Other time-frequency transforms
- Filter banks

e Wavelets

e Linear Predictive Coding

D>
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Spatial-domain Features

M/S Encoding (stereo sum & difference)
Surround-sound processing

-L/RvsC

- L/Rvs Ls/Rs

Frequency-dependent spatial separation
Higher-dimensional sources
Stem tracks

D>
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Review

e MIR Apps

e Signal analysis processing chains

e Feature vector design from app
requirements

¢ Kinds of audio features

e Basic feature statistics

«>D»
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Beat-finding and Tempo Derivation

Leigh M. Smith
Imagine Research
leigh@imagine-research.com

Modelling Rhythm

- “...the systematic patterning of sound in terms of
timing, accent, and grouping.” (Patel 2008 p.96)

- (Not always periodic patterns)

- Accent sources include: dynamics, melody,
harmony, articulation, timbre, onset asynchrony
etc.

- Consists of hierarchical and figural (proximal)
temporal structures. ;

<>
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Beat-finding and Tempo Derivation

- Why?

- Tempo and Beat are strong discriminators in
judgements of music similarity, and even genre
(Tzanetakis & Cooke 2002, Dixon et. al 2004).

- Understanding the beat facilitates understanding
the importance other musical elements:

- Relative importance of tonal features.
- Diatonic or chromatic character of a piece.
- Complexity of a piece.

- Applications: musicology & ethnomusicology,
automatic DJing, query by example, composition
tools.

<>
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Musical Time

e Multiple simultaneous levels of musical time
- Tactus: the foot-tapping rate.
- Tempo: estimated from tactus, typically median
IBI.
- Meter: Periodic perceived accentuation of beats.
- Tatum: Shortest interval between events.
e Rubato - change in tempo during

performance to emphasise structure.

>3
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Measuring Beat

e Inter-Onset Intervals (101)
¢ Inter-Beat Interval (IBI)
e Tempo: frequency of the beat (BPM)

Amplitude
€ Inter-Onset Interval —————————————————>|

“Tw--- Amplitude Envelope - J

Duration

Time @
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Meter

e Meter is expressed in Western music as
time-signatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):

salience

(Courtesy Olivia Ladinig) )
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Rhythmic Strata

- Musical rhythm can be considered as
composed of a hierarchy of temporal levels
or strata (Yeston 1976, Lerdahl & Jackendoff 1983,
Clarke 1987, Jones & Boltz 1989).

a)

Potential
cvent Focal Levels
ven|

Time
Structure
4T,

Organismic. |
ime \ ]

Structure /| Focal Attendings

/ (Dominance Region)

From
Jones &
Boltz ‘89

Future-Orienfed Attending ‘(?”
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Mental schemas for Meter

- Metrical Profiles (paimer & Krumhans!| 1990)
- Pre-established mental frameworks (“schemas”)
for musical meter are used during listening.

From Palmer & "7
Krumhansl (1990).
Mean goodness-of-fit
ratings for musicians
(solid line) and
nonmusicians (dashed
line).
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Hierarchical Grouping: Meter

- Meters are argued to arise from the
interaction between temporal levels (veston
1976).

- Therefore a meter implies two frequencies: the
pulse rate and the measure (“bar”) rate.

- The tactus is considered as the most salient
hierarchical level, consistent with the
notated meter, or the foot tapping rate (Desain
& Honing 1994).

Active Rhythm Perception

- Viewed as a resonance between top down and
bottom-up processes (see e.g Desain & Honing 2001):

(" 2\

S— N
Musical Current Rhythmic
Memory Schema
Metrical Structural
Grouping Categorisation Grouping
(Beat Induction)

e <
] <>

Figural
Grouping
(by Proximity)

<
Syncopation

- Listener judgements of ] H ™ }—‘
musical complexity are 03 2 3 13 2 3

correlated with degree of gJ’_.T’_LLLLLM

syncopation (i.e. note
location within the beat) NOR

(Shmulevich & Povel 2000, ) s E I D
Smith & Honing 2006). RNse-@mr g

- Compared judgements R

against formal model of ) D
R-N=(-3)-(-1)=-2 %

syncopation (Longuet- (no syncopation)
Higgins & Lee 1984).

<>
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Onset-detection vs. Beat-detection

e Traditionally beat detection relied on
accurate onset detection.
- i.e from MIDI data for Score Following
(Dannenberg 1991, Cont 2009).

e This can be difficult for MIR from polyphonic
audio recordings.

- A higher freq. Onset Detection Function from
the entire audio signal can be used for beat
tracking without all onsets being detected (Schloss
1985, Goto & Muraoka 1994, Scheirer 1998).

>3
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The Onset Detection Function

e Represents:
- Ideal: Each note that contributes to the beat.
- Practice: Combined envelopes of all notes.
e Tends to emphasise:
- strong transients (i.e. impulsive sounds)
- loud notes
- bass notes
- wide-band spectrum events (e.g. snare drums).

>3
Example Onset
Detection

e Pre—processing

e Filtering

e Down-sampling

o Difference function

Retum peaks I the relaiive (>

et
difference function (RDF)
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Dixon’s Envelope Onset Detection

0.04

0.03f | ' |

Amplitude

-0.01 3

-0.02f

-0.03

-0.04

0 0.5 1 15 2
Time (s) <@
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Existing Rhythmic Models

- Parsing metrical grammars (Longuet-Higgins and Lee
1982).

- Forward projection of likelihood (Desain 1992).

- Autocorrelation (Desain & Vos 1990, Brown 1993, Eck
2006).

- Oscillator bank entrainment (Toiviainen 1998, Large
& Kolen 1994, Ohya 1994, Miller, Scarborough & Jones 1989).

- Frequency of Onset Function: (scheirer 1998,
Klapuri et al. 2006, Peeters 2007, Davies & Plumbley 2007).

- Dynamic time warping of beat interval (Dixon
2001, Ellis 2007).

- Multiresolution Approaches (Todd 1994, Todd,
O’Boyle & Lee 1999, Smith & Honing 2008). @
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Common ODF methods

- e.g (Bello et. al 2005, Dixon 2007, Peeters 2007)

e Optional pre-rectification filtering.

e Envelope mixture from rectification/energy.

e Smoothing of envelope (LP filter).

e Down-sampling for data reduction.

e d(log E)/dt highlights perceived impulses.

e Weighting higher frequencies captures wide-
band events.

e Spectral difference between STFT frames.

<
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Approaches to beat tracking considered

e Autocorrelation

- Finding Periodicity in the ODF.
e Beat Spectrum approaches:

- Spectrum of the ODF.

- Multi-resolution representation of ODF.
e Dynamic Programming approaches.

- Efficient selection of correct beat interval.

)
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Autocorrelation of ODF

e AC peaks = time lags
where signal is most o A 7
similar to itself. il [‘\«={J\‘,\ NH

e Captures periodicities of ”?y\“ | al [‘V\/‘\\ |
ODF. ¢ \\‘\ /’ \\ | \\ }’

« Does not capture rubato = || || | / \
well. \J; i ‘\vﬂ\'\K\)f

¢ OK for metronomic o \\‘/\( 4
music, not for thosewith . "%
variation in tempo.

<

Beat spectrum methods scheirer 1998)

¢ Filterbanks of tuned e At
resonators (i.e. “rhythmic
reverb”) of the ODF.

e Resonator whose
resonant F matches rate
of ODF modulation will
phase-lock.

e Resonator outputs of
common freq summed
across subbands: TengoOvp

S
T = arg m;lx Z F,q
S

Resonant
Filterbank

Windowed RMS and its
Autocorrelation (for drum loop)

D S | i i i -
§ L 1“ i ” 1 JAE i \tl 1 !\E 1 1 ] ’E IR
i3 vy m.ﬁﬁ\._hm PFRLY, v Ty, W vy FUCS, W, v, vy v

Tst peak = T/8 note /Max peak = 2-bar loop

Peeters 2007

e Filtered, rectified spectral energy envelope
- Onset detection function.
e Combined Fourier & autocorrelation analysis
- DFT of ODF, ACF of ODF
- ACF result mapped into Fourier domain.
- DFT * Freq(ACF) - disambiguates periodicities.
- Octave errors occur in two different domains.
e Viterbi decoding of joint estimates of meter

and tempo. ¢ 7 7 7 7 7
Q o) 0

e @

™ L T i
DRI,

PESEESES
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Audio mono 11.025 Hz
Onset-energy function [Empoderetionill
i Instantaneous periodicity
Reassigned spectrogram DFT ACFE
Tog-scale . *—PM—ACF
v [Combined DFT FM-ACF]|
[ Threshold > —50dB
Tempo sats
: - Tempo
- - Meter/beat subdivis
Figh-pass fiter @) feter/beat subdivision
Hall-wave rectification Viterbi decoding
Sum over frequencies
Beat marking
sl
PSOLA-based marking
FiGuge 1: Flowchart of our system for tempo, meter estimation, and beat marking. <@
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- Auditory-Motor “Primal Sketch” from Sombrero
filter banks (Todd 1994, Todd, O’Boyle & Lee 1999)

- Continuous wavelet transform of rhythmic
signals (smith 1996, Smith & Honing 2008)

>3
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Wavelet time-frequency analysis

Continuous wavelet transform (CWT) decomposes
(invertibly) a signal onto scaled and translated
instances of a finite time “mother function” or “basis”.

1 o T—0
Wilbo) = - / m~@dﬂ a>0

g(t) — o 1/2 . giwot

; /\U{PVA\ AJ\VA) . /\\/.’h\/ ./\Amv

)
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Implementation

e Implemented as a set of complex value
bandpass filters in Fourier domain.

e Scaling produces a “zooming” time window
for each frequency “scale”.

e Creates simultaneous time and frequency
localisation close to the Heisenberg
inequality.

<
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Wavelets for Rhythm (smith & Honing 2008)

e The CWT enables representation of temporal
structure in terms of time varying rhythmic
frequencies.

- Produces magnitude and phase measures
which reveal time-frequency ridges
indicating the frequencies present in the
input rhythm signal (collectively a skeleton,
Tchamitchian & Torrésani ‘92).

<
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Memory Based Tactus

e Uses lossy windowed integrator to amass
tactus likelihood.

e Suppress all but the magnitude coefficients
of the extracted tactus ridge.

e Invert the extracted tactus ridge and original
phase plane back to the time domain.
Creates a single beat oscillation.

e Nominating a starting beat and noting its
phase, all other foot-taps are generated for
the same phase value.

)
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Memory Based Tactus
Wavelet rhythm analysis is also applicable to
continuous onset salience traces from
auditory models (Coath, et. al 2009).

Magnitude of res4/res4_1_resp_text

T T T T T 24136
18117
-
12078
1 6039
- W 76 5% s s 000

Skeleton of res4/resd_1_resp_text

00

255
19125

— 12750
6375
000

Scale as 101 Range ~ Scale as 101 Range

Time (Seconds)
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Foot-tapping to singing

¢ Singing examples of Dutch folk songs from
the "Onder de Groene Linde" collection
(Meertens Institute) using memory based
derivation of tactus:

e Example 1: Original... + Accompaniment.

e Example 2: ...Original + Accompaniment.

)
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Dynamic Programming (Ellis 2007)

e Goal to generate beat times that match
onsets and have near constant IBI.

c{u}) Zo +foF — 4 1,7p)

o FIAt, T) = - Iog(actual IBI/|deaI IBI)2.

e Ideal IBI from tempo estimation from
weighted autocorrelation.

» Recursively calculates max C*(t) starting from
t=0-2T, finding times of max(F + C*(T)).

e Chooses final max C*(t) from last interval,
backtraces the saved times.

<
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Beat H | Stog Fams (tzanetakis and Cook, 2002)

Similar approach cLASSIcAL Rock
using K
Autocorrelation. V i

Add the amplitudes

of the top 3 AC : ,
peaks to histogram wzz | hesor
at each frame. B -

Beat histograms are ' !
reducible to single

features including

sum and peak/mean.

<>
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Beat Histograms

- Summarises rhythmic behaviour
of a piece for similarity
measures, classification etc.

- Pampalk, Dixon & Widmer (2003)

- Uses summation of comb L RV

filters of Scheirer, not just

Tempo Energy

argmax, for comparison.

- Tempo histogram is weighted
using a preference model (van
Noorden & Moelants 1999).

- PCA used to reduce 2000 = i
60 dimensions for matching. =~ " e’

(from Scheirer 1998) «&>»
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Tempo Energy

7 ©
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Fluctuation Patterns

e Also summarises rhythmic behaviour.

e FFT of envelope: the fluctuation (AM)
frequency of the perceived loudness of
critical bands (log spectral) (represented on
the Bark scale).

e 20 Bark x 60 BF matrix = PCA for matching

Rock DJ In Stereo

Yesterda:
_ H 0.4 -. H H H

Median of the fluctuation patterns of examples of (L-R) Heavy Metal,
Dance and Pop. Y axis shows critical bands (Bark 1-20), X axis shows beat
frequencies 0-10Hz (0-600BPM) From Pampalk, Rauber & Merkl, (2002) «&>»
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Meter estimation

e Requires measure (“bar”) period and phase
(downbeat) identification.

e Measure period reasonably successful, albeit
with octave errors.

e Downbeat identification much harder!

e Genre dependent.

>3
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Joint estimation of chord change
and downbeat (Papadopoulos & Peeters 2008)

e Hidden Markov Model:
- States: 24 Major & Minor triads * 4 positions within
the Measure (pim) for (4/4 time signature).
- Computes chroma features at each beat.
- Assumes independence between beat position and
chord type: P(O|s) = P(O|c) P(O|pim)
- Transition probabilities enforce sequential beats &
likelihood of chord transitions.
e Optimal state determined by Viterbi decoding.
- Chord progression detection improved using
metrical knowledge.
- ldentification of downbeats aided by harmonic
information.
>3
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Review

e Modeling rhythm requires representing
perception

* Onset detection functions capture significant
events

e Multiple approaches to beat-tracking
represent competing perceptual models

e Beat-tracking enables higher-level rhythmic
features (FP, BH)

e Beat-tracking enables multi-modal
estimation (e.g., down-beat)

>3
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APIs for MIR Tools

e Marsyas: G. Tzanetakis (11), flexible tool set,
scripting language, segmentation and classification

e LibOFA: Holm/Pope (00), simple FV for unique ID
comparing to a large pre-analyzed database

e D2K/M2K: West/MIREX (06), Java-based GUI related
to D2K, many apps.

e LibTSP: P. Kabal (00), C routines for DASP & 10

e CSL: STP/MAT (05), C++ class library for DASP,
synthesis, control, spatialization and MIR

Applications

e Low-hanging fruit

- Basic non-real-time feature extraction

- Bulk feature extraction into a DB

- Real-time feature extraction and mapping to
synthesis or control

- Song clustering based on feature vector
similarity, clustering, ...

- PCA of feature spaces using Weka

- Segmentation based on inter-frame distances

D>
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>3
Spectral Tools
e SPEAR
e Loris
e Marsyas
e Sonic visualizer
>3
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APIs - 2

e Libxtract
e Aubio

¢ SonicVisualizer plug-ins
e Loris w |
o SPEAR

e CSL

o LibTSP . WN\/V\/\M

«>D»
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Code Exercises

¢ Buffer, Window classes (see CSL)

Analyzer class (Marsyas)

Driver, main(), aubio, libxtract

10 libraries (libSndFile, PortAudio)

DASP libraries (libTSP, etc.)

Starter apps: simple analyzer, sing-along

«>D»
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Q&A

<>
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Example Code 1

e AFsp-vIr0 - General-purpose audio file code in C, Peter Kabal @ McGill

e aubio-0.3.2 - library for audio labeling, P. M. Brossier and J. P. Bello, http://
aubio.piem.org

« beatDetect - MAT 2450C project by Philip Popp (Xcode)

¢ bp_proj - Neural Net demo for VisualStudio

o CNMAT-SDIF-alpha - Spectral Data Interchange Format code from UCBerkeley

e dance-o-matic - MAT 240F project by Philip Popp (Xcode)

« EricNewman - Various projects including MAGIC from Eric Newman @ UCSB
(Xcode)

e fann-2.0.0 - Fast Artificial Neural Network Library, http://leenissen.dk/fann

e FFTW - Fastest Fourier Transform in the West, FFTW.org

* FlowDesigner-0.8.0 - Flow Designer, like SimuLink, jean-
marc.valin@usherbrooke.ca

* FlowDesigner-0.9.1-Darwin.pkg - Mac installer into /usr/local/include, etc.

e getRMS2 - store the windowed RMS values of a given input file into a given
output file (Xcode) >
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Lab 2

o Feature extraction and flexible feature vectors
in MATLAB, Marsyas, Aubio, libExtract

e MATLAB/Weka code for sound clustering with
a flexible feature vector

e C++ APl examples Marsyas, Aubio, libExtract
- pre-built examples to read and customize

e Goal: extract CAL 500 per-song features

to .mat or .csv using features from today.
<@
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Example Code 3

« SampleAnalyzer - MAT 240F example code, reads sample files and runs analyzers

« sing_along - MAT 240F example code by STP, play a sine wave along with a singer

« sndan - SNDAN, James Beauchamp, implementation of MQ tracking and analysis

* sonic-visualiser-1.8 - program for viewing and analysing music files

e Sonic Visualiser-1.8.dmg - Mac binary installer

o SpectralTracker - MAT 240F example code by Matthew Crossley

e SPEAR_latest.dmg - "Sinusoidal Partial Editing Analysis and Resynthesis", Michael
Klingbeil

e sphinx3-0.6 - CMU SPHINX Speech Recognition tools

e SPRACHcore-2004-08-26 - Connectionist speech recognition software by Dan Ellis

e STFT - Lance Putnam's C++ wrapper object for FFTW

e svlib - C++ class library for automatic speech recognition and speaker recognition,
Jialong_He@bigfoot.com

« tap_alongPP - MAT 240F example code by S T Pope, play a sine wave along with a
singer

« ww_beat_tracker.c - Will Wolcott's simple beat tracker from MAT 240F >
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Example Code 2

¢ ICA - Independent component analysis code, Shiro Ikeda, shiro@ikeda.cc

e JMARF - "MODULARIZED AUDIO RECOGNITION FRAMEWORK" Serguei Mokhov, The
MARF Research and Development Group, Montreal

e JUCE - Jules' Utility Class Extensions (in C++), http://www.rawmaterialsoftware.com

e libneural-1.0.3 - simple Back-propagation Neural Network, Daniel Franklin

« libofa - Open FingerPrint Architecture, S. T. Pope & Frode Holm, MusicIP (RIP)

e libsndfile - awesome sound file API from Erik de Castro Lopo <erikd@mega-nerd.com>

e libtsp-v7r0 - General-purpose DASP code in C, Peter Kabal @ McGill

o libxtract-0.6.3 - library of audio feature extraction functions by Jamie Bullock

e« m2k - Music-to-Knowledge in Java (stale?), Kris West, kw@cmp.uea.ac.uk, http://
www.music-ir.org

e marf0/2 - "MODULARIZED AUDIO RECOGNITION FRAMEWORK"

e marsyas-0.4.3 - MARSYAS C++ library for MIR, George Tzanetakis

e moc-0.1.1 - "Master of Celebration" playlist generator by Dominik 'Aeneas' Schnitzer

e rtaudio - cross-platform C++ API for audio input/output by Gary P. Scavone, http://
www.music.mcgill.ca/~gary/rtaudios >
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Lab 2 - Where to start

e Running C/C++ Examples
- Using the UNIX shell
- Using Makefiles
e apt-get, tar xvf, cd,
e ./configure --help,
e ./configure, make, sudo make install
- Using C/C++ IDEs
e Eclipse, XCode, VisualStudio
» Code editing
e Project mgmnt
e Debugger
>3
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Lab 2 - Where to start

e The Hell that is C/C++ Development
- UNIX packages and configure scripts
¢ Fixing broken configure scripts
- “Make” packages: make, gmake, cmake
e Fixing broken makefiles
Compiling: getting the right package includes
e Versions of C, of the std headers
- Linking: finding the (static & dynamic) libraries
- Linux vs MacOS or MS-Windows
- The (truly sad) good advice: minimize the number
of libraries you use (JUCE + FFTW)

<@
Lab 2 - DASP Coding
e Support libraries - 1/0, DB, ...

- LibSndFile

- RTaudio/RTmidi

- AFsp

- JUCE

- FFTW

- DB APIs: MySQL, PostgreSQL, XMP, JSON ...
e General-purpose DASP Libraries

- LibTSP, CSL, others

- Handling main(), set-up/clean-up and data I/O

<@
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Lab 2 - Where to start

e Debugging C/C++
- Anti-bugging techniques
- Print statements
- Breakpoints
e Problems
- Compile-time (includes)
- Link-time (libraries, modules)
- Run-time
e |nitialization errors
e Malloc/free new/delete, garbage collection

e Logic errors
«>D»
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MIR Code Examples

e MAT240F examples & student code
- SampleAnalyzer (fftw, libsndfile)
« Single-file or file-list processing
* DB, noDB
- getRMS2 (libsndfile, libtsp)
e Batch analysis
e Windowed RMS, 2nd-stage autocorrelation
- sing_along (portaudio, fftw, libtsp)
e Several pitch detectors
e Runs processing in portaudio call-back

- Extensions...
>3
119

119

MIR Code Examples (in C/C++)

e Aubio
- configure, make
- audioquiet.c
- audioonset.c
- SWIG interfaces
o Libxtract
- simpletest.c - spectrum extraction
- Max/Pd plug-ins
e Marsyas
- Setting up & using Cmake
- sfinfo app
- pitchextract app
- bextract app «<>
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