
Stephen Travis Pope and Leigh M. Smith
Imagine Research

{stephen,leigh}@imagine-research.com

CCRMA MIR Workshop 2011
Day 2

1

• Signal Analysis and Feature Extraction
• MIR Application Design
• Windowed Feature Extraction
• Feature-vector Design

– Time-domain Features
– Frequency-domain Features
– Spatial-domain Features
– Other Feature Domains

• Onset-detection
– Beat-finding and Tempo-derivation

• Applications, Exercises

Outline

2

2

Introductions, Context
• Stephen Pope
• Leigh Smith
• Steve Tjoa
• CCRMA MIR Workshop

3

3

TheBigMATBook

• The Big MAT Book: Courseware for
Audio & Multimedia Engineering
– 11 courses taught at UCSB
– Volume 1: Multimedia Engineering

(280 pages, 1680 slides)
– Volume 2: Audio Software (253

pages, 1518 slides)
– Volume 3: Audio Hardware (147

pages, 882 slides)

4

Text

– http://HeavenEverywhere.com/TheBigMATBook

4

Signal Analysis and Feature
Extraction for MIR Applications
• What do we want to do?

– Match, search, index, transcribe, src-sep, ...
• What do we need to know to do it?

– Basic feature set
– Higher-level features
– Feature data post-processing
– Application integration

• MIR application design
– Many are not “IR” at all
– How does the metadata fit in?

• Feature vector design for applications
5

5

Problem Statement: Applications
• Examples

– Automatic playlist generation
– Audio transcription

6

6

Music Metadata
• Introduction

– Kinds of Audio Data and Metadata
– Dimensions of Music Info. Retrieval
– APIs for MIR Tools

• Multimedia Databases
– Feature Vectors and Indexing
– Feature Extraction and Signal Analysis
– Numerical Processing: Clustering, Classification

• Audio Signal Processing for Feature Extraction
– Time Sequences, Windowing
– Analysis Domains, Transformations
– Multi-level, High-level

• Data Smoothing and Reduction
7

7

Signal Analysis
• Time-domain Audio Analysis

– Windowed RMS Envelope Extraction
– Beat Detection and Tempo Analysis
– Time-based signal segmentation

• Frequency-domain Analysis
– Pitch Detection Techniques
– Spectral Analysis and Interpretation
– Spectral Peaks and Tracking
– Other Spectral Measures

• Other Kinds of Analysis: Wavelets
• Cross-domain analysis

8

8

Numerical Processing
• Data Reduction, Smoothing
• Correlation, Grouping
• Princ./Indep. Component

Analysis
• Audio Segmentation and

Musical Form
• Clustering and Classification

9

9

Databases & Applications
• Database Issues
• Handling of Large or Dynamic Feature Vectors
• Application Requirements and Design
• Searching, Indexing, and Players
• Audio Summarization and Thumb-nailing
• Content Matching and Finger-printing
• Data Clustering and Genre Classification
• Other Applications: Mapping Systems

10

10

Typical Processing Stages

• Input processing
– Streaming, decompression, reformatting

• Signal segmentation, windowing
– window size, share, overlap

• 1st-pass windowed feature extraction
– Basic time-, freq-domain features

• 2nd-pass feature processing
– Feature massaging, smoothing, pruning
– 2nd-pass features (tempo, segmentation)

• Post-processing, data output
– Many options

11

11

MIR Application
Design

12

• Dimensions
– Content format
– Low-level analysis procedures
– High-level derived features
– DB design
– Application flow and integration

• Design Issues
– System architecture and design impacted by each

of the MDB dimensions

12

Content Format
• Impacts all levels of system

– Data volume, storage options, analysis DSP, DB
design, etc.

• Systems may or may not maintain original
source content (vs. metadata)

• Systems may preserve several formats of
source and metadata (n-tier)

• This is typically a given rather than a design
option

13

13

Content Formats
• Audio-based

– Properties/volume of source recordings
– MP3/AAC/WMA decoders

• MIDI-based
– Problems with MIDI, assumptions to make
– Human-performed vs “dead pan” MIDI

• Score image based
– Useful, but not treated here

• Formal language-based
– SCORE, SMDL, Smoke, etc.
– MusicXML

14

14

Real Applications
• DBMS issues
• Query systems,

browsers, and MIR
frameworks

• Informed tools
• Stand-alone delivery

applications

15

15

Applications

16

• One-step Tools
– Tracker, segmenter, single feature extraction
– Interactive programs

• Multi-feature tools
– Finger-print, thumb-nail, etc.

• Heuristic techniques
– Blackboard, neural nets, SOMaps

• Real-world MIR applications

16

Typke’s
Appl.
Table

17

17

MIR Systems & Retrieval Tasks

18

18

MIR/MDB Applications

19

19

GT’s “MIR Pipeline”

20

20

Dimensions of Music Information
Retrieval Applications
• Indexing, query, access

– Use content or metadata for query
• Understanding, transcription

– Derive (music/speech) model
• Clustering, classification

– Feature vector for discrimination
• Content identification, finger-printing
• Preference-matching, recommendation

21

21

Time Sequences, Windowing

• Read audio input
• Vector multiply by

window function
• Perform analysis
• Step to next window
• Hop size not normally =

window size
• Window features

– Main lobe width, side
lobe level, side lobe slope

22

22

Windows and their Spectra
(see MAT 240B)
• Trade-offs between

window
characteristics

• Different windows
for different
analysis domains

23

23

Advanced
Windows for
Spectral
Analysis

24

24

Windowing and the STFT

25

25

Multi-window Multi-rate Analysis
• Example: FMAK3 analysis driver

• -r rmsWindow_size rmsHop_size
– window size and hop size for the RMS time-

domain analysis
• -f fftWindow_size fftLen fftHop_size

– for the FFT spectral analysis
• -l lpcWindow_size lpcOrder lpcHop_size

– for the LPC analysis
• -w fwtWindow_size fwtLen fwtHop_size

– for the wavelet analysis

26

26

Time-domain Audio Analysis and
Applications
• Use rectangular window if no overlap or

triangular window if overlapping
• Medium-sized window (10 Hz or better

resolution desired)
• Derived windowed RMS value
• Count zero crossings

27

27

Windowed RMS Envelope Extraction
• C code for envelope extraction

– Outer loop for windows
– Inner loop to run window and compute RMS value
– Silence threshold (noise gate)
– Note-on trigger (peak detector)
– Example sound: piano sample, drum loop

28

28

Optional Time-domain Steps
• Pre-filter to get low-freq and high-freq

RMS values
• Process stereo channels to get M/S (sum/

difference) signals
• Noise detection
• Silence detection
• Loop code examples and main()s

29

29

Feature-vector Design
• http://www.create.ucsb.edu/~stp/PostScript/

PopeHolmKouznetsov_icmc2.pdf
• Application Requirements

– Labeling, segmentation, etc.
– Derive feature vector from the app requirements

• Kinds/Domains of Features
– Time-domain

• Simple features, onset detection
– Frequency-domain

• Spectrum, spectral statistics
• Pitch, chroma, key

30

30

Feature Vectors and
Indexing

• Feature = derived (numerical) parameter
• Feature vector = list of features for a single

point/window in time, or average for an entire
selection

• Feature table = list of feature vectors for
several time slices (not always used)

31

31

Example Features
• Features:

– Time-domain, low-level
• Windowed RMS amplitude

– Time-domain, high-level
• Tempo, beat structure, segmentation

– Frequency-domain, low-level
• Pitch, spectrum, spectral peaks

– Frequency-domain, high-level
• Peak track birth/death statistics, instrument ID

– Many other possibilities (see below)

32

32

Feature
Vector
Examples

33

33

Example: FMAK3 Feature Table
class FeatureTable { // FeatureTable is a root object (no parents)

public: // Data members (instance variables)
 float mTimeStamp; // When do I start?
 float mTimeDur; // How long a time-span do I represent?
 // Time-domain features
 unsigned int mRMSWindowSize; // Size of RMS window
 FeatureDatum mRMS; // Rectangular-windowed RMS amplitude
 FeatureDatum mPeak; // Max sample amplitude
 FeatureDatum mLPRMS; // RMS amplitude of LP-filtered signal
 FeatureDatum mHPRMS; // RMS amplitude of HP-filtered signal
 size_t mZeroCrossings; // Count of zero crossings
 FeatureDatum mDynamicRange; // RMS dynamic range of sub-windows
 FeatureDatum mPeakIndex; // RMS peak sub-window index
 FeatureDatum mTempo; // RMS/FWT instantaneous tempo estimate
 FeatureDatum mTimeSignature; // Time signature guess
 FeatureDatum mBassPitch; // Bass pitch guess in Hz
 unsigned int mBassNote; // Bass note (MIDI key number) guess
 FeatureDatum mBassDynamicity; // Bass note dynamicity (size of histogram)
 // Spatial features
 FeatureDatum mStereoWidth; // L/R difference
 FeatureDatum mSurroundDepth; // Front/Surround difference
 FeatureDatum mCenterDistinction; // Center vs. L/R sum difference

34

34

Example: FMAK3 Feature Table,
cont’d
 // Frequency-domain features
 unsigned int mFFTWindowSize; // Size of FFT window
 FtVector mSpectrum; // Hanning windowed FFT data (1024 points, or NULL)
 FtVector mReducedSpectrum; // 1-octave FFT data (10-12 points)
 FtVector mBandSpectrum; // 2.5-octave FFT data (4 points -- spectral bands)
 FPartialVector mSpectralPeaks;// List of major spectral peak indeces
 FPartialVector mSpectralTracks; // List of tracked peak frequencies
 FeatureDatum mSpectralCentroid; // Spectral centroid measure
 FeatureDatum mSpectralSlope; // Spectral slope measure
 FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure
 // Hi-frequency properties
 FeatureDatum HiFreqBalance; // Relative HF level
 FeatureDatum HiFreqVariety; // HF inter-frame spectral variety
 FeatureDatum HiFreqCorrelation;// Correlation between HF and audio-band tracks
 FeatureDatum mSTrackBirths; // Spectral peak track births and deaths
 // LPC features
 unsigned int mLPCWindowSize; // Size of LPC window
 FPartialVector mLPCFormants; // List of LPC formant peaks
 FPartialVector mLPCTracks; // List of tracked LPC formants
 FeatureDatum mLPCResidual; // LPC residual level (noisiness)
 FeatureDatum mLPCPitch; // Pitch estimate
 FeatureDatum mLTrackBirths; // LPC formant peak track births, deaths
 // Wavelet-domain (FWT) features
 FtVector mWaveletCoeff; // FWT coefficient or NULL
 FtVector mWTNSpectrum; // Reduced FWT HiFreq noise spectrum
 FtVector mWTTracks; // List of tracked FWT peaks
 FeatureDatum mWTNoise; // FWT noise estimate

35

35

Windowed Feature Comparison

36

36

Analysis Domains and
Transformations
• Time-domain Audio Analysis and Applications
• Windowed RMS Envelope Extraction
• Beat Detection and Tempo Analysis
• Time-based signal segmentation
• Frequency-domain Analysis
• Pitch Detection Techniques
• Spectral Analysis and Interpretation
• Spectral Peaks and Tracking
• Other Spectral Measures
• Other Kinds of Analysis: Wavelets
• Cross-domain analysis

37

37

Time-domain Features
• RMS, Peak
• LPF/HPF RMS

– e.g., F < 200 Hz, F > 2000 Hz
• Dynamic range

– What window for calc?
• Zero-crossing rate (time- or freq-domain?)
• Higher-level statistics

– Mean/variance
– Variance of sliding windows
– Spacing of peaks/troughs
– Many other options

• Time-domain onset-detection & beats
38

38

Windowed Amplitude Envelopes
• Choice of window size, hop size, window

function shape
• May use several frequency bands (kick drum

vs. hi-hat)
• Useful for silence detection, beat tracking,

simple segmentation, summarization, etc.
• Simple, effective, well-understood techniques,

many options

39

39

Frequency-domain Features
• Spectrum, Spectral bins

– Window/hop sizes
– Improving spectral data: phase unwrapping, time

realignment
• Spectral measures (statistical moments)
• MFCCs
• Peak-picking and peak-tracking
• Pitch-estimation and pitch-tracking

40

40

Frequency-domain Analysis
• Short-time Fourier transform

– Configuration options and trade-offs
– Interpretation/weighting of spectral bins

(perceptual scales)
• Other frequency-domain techniques

– Filter banks
– Linear prediction
– Filter matching

• Loads of options

41

41

Speech Spectrogram
• Kinds of

spectral plots
• Features

42

42

The Pitch/Time Trade-off

43

43

Harmonics and Formants
• Source/Filter - instr resonances

44

44

Using FFT APIs
• Simple FFT

– See MAT240B
– See F. R. Moore’s Elements of Computer Music

• FFTW
– FFTW data types
– FFTW plans
– See CSL Spectral class

45

45

Composite
Spectra

• How to
disambiguate?

• Track birth/death
statistics

• Vibrato (see figure)
• Statistical techniques

46

46

Spectral Analysis and Interpretation
• Spectral data extraction

– Base frequency
– Overtone spectrum
– Formants, resonances, regions
– Instrument signatures

• Spectral statistics
– Peak, mean, average, centroid, slope, etc.
– Spectral variety, etc.

47

47

Spectra as Time-varying
• Track peaks/regions

between frames (requires
thresholds of change)

• Model the dynamicity
(e.g., formant trajectory,
vibrato extraction)

48

48

Spectral Peaks and Tracking
• Peak finding

(remember
autocorrelation?)

• Peak discrimination
• Peak continuation:

tracks and guides
• Derived statistics
• Problem cases

49

49

Peaks and Tracks
• Peak-finding

– Thresholds,
distances, heuristics

• Peak-continuation
– Inter-frame distances

and guides
– Dropped frames and

stretching
– Track birth/death

criteria

50

50

51

Spectral Peak-Tracking Example

51

Spectral Peak
Detection Algorithm
• From Blum et al.

patent # 5,918,223

52

52

Spectral Smoothness Measure

53

53

Smoothed Spectrum Types

54

54

Deriving Spectral Bands
• Octave-band loops

– outer loop - step size
doubles every octave

– inner loop - sums
bins in range

• Weighted, non-
linear bands

55

55

Pitch Detection
Techniques

• Find the period of a “periodic” signal
– First guess whether or not it’s periodic

• Simple techniques work for many signals
– Zero-crossings (with direction, slope)
– Autocorrelation (with range limitation)

• It’s hard to tell when they fail
– Random data, silence
– Octave over/under-tone errors

56

56

Filter-based Pitch Detection

• Simple adaptive process for single-frequency
source with strong fundamental (i.e., many,
but not all, instruments and voices)

• Easily implemented in analog circuitry
• Many variations

57

57

Auto-Correlation
• Slide a signal across

itself, taking the
vector product at
each step

• This AC array has a
peak at 0, and the
period of the signal

• No peaks for noise

58

58

Harmonic Product Spectra
• Decimation of FFT spectra, summation, and

spectral peak location
• Assumes overtones are significant, not that

fundamental is

59

59

Harmonic Product Spectra
• Implementation
• Outer loop (octaves)

– Scales copy of spectrum into buffer
• Inner loop

– Take max or avg of sub-window?
– Use interp. peak picker?

• Post
– first max > min_val

60

60

Mel-Freq Cepstral Coefficients
• Steps:

– Signal
– FT
– Log magnitude
– Phase unwrapping
– FT (or DCT)

• Name reversal
• Interpretations

– Quefrency
– Mel-scale
– Mel-scale filters

61

• Instead of AC, use FFT
or DCT of PDS

• Leads to interesting
statistics of higher-level
spectral properties, see
next section

61

MFCC Analysis
• Analogy

– Start with log spectrum
of mixed complex tones:
several sets of related
partial peaks

– Take, e.g., the autocorr.
of the FFT PDS

– Warped frequencies of
peaks correspond to
fundamental frequencies
of overtone series

62

62

Comparison With LPC (by Andrianakis
& White)

63

Train

Car

FFT PSD 13-pole LPC
Spectrum

20 Mel
Spectrum

Frequency [Hz]

63

Spatial-domain Features
• M/S Encoding (stereo sum & difference)
• Surround-sound processing

– L/R vs C
– L/R vs Ls/Rs

• Frequency-dependent spatial separation
• Higher-dimensional sources
• Stem tracks

64

64

Other Feature Domains
• Other time-domain features

– Beats, beat histograms
• Other frequency-domain features

– Fluctuation patterns
• Other time-frequency transforms

– Filter banks
• Wavelets
• Linear Predictive Coding

65

65

Review

• MIR Apps
• Signal analysis processing chains
• Feature vector design from app

requirements
• Kinds of audio features
• Basic feature statistics

66

66

Leigh M. Smith
Imagine Research

leigh@imagine-research.com

Beat-finding and Tempo Derivation

67

– Why?
– Tempo and Beat are strong discriminators in

judgements of music similarity, and even genre
(Tzanetakis & Cooke 2002, Dixon et. al 2004).

– Understanding the beat facilitates understanding
the importance other musical elements:
– Relative importance of tonal features.
– Diatonic or chromatic character of a piece.
– Complexity of a piece.

– Applications: musicology & ethnomusicology,
automatic DJing, query by example, composition
tools.

Beat-finding and Tempo Derivation

68

Modelling Rhythm
– “...the systematic patterning of sound in terms of

timing, accent, and grouping.” (Patel 2008 p.96)

– (Not always periodic patterns)

– Accent sources include: dynamics, melody,
harmony, articulation, timbre, onset asynchrony
etc.

– Consists of hierarchical and figural (proximal)
temporal structures.

69

69

Measuring Beat
• Inter-Onset Intervals (IOI)
• Inter-Beat Interval (IBI)
• Tempo: frequency of the beat (BPM)

70

Duration

Inter-Onset Interval

attack decay sustain

AmplitudeAmplitude

TimeTime

Articulation

Amplitude Envelope

release

70

Musical Time
• Multiple simultaneous levels of musical time

– Tactus: the foot-tapping rate.
– Tempo: estimated from tactus, typically median

IBI.
– Meter: Periodic perceived accentuation of beats.
– Tatum: Shortest interval between events.

• Rubato - change in tempo during
performance to emphasise structure.

71

71

Meter

72

(Courtesy Olivia Ladinig)

• Meter is expressed in Western music as
time-signatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):

72

Rhythmic Strata

73

– Musical rhythm can be considered as
composed of a hierarchy of temporal levels
or strata (Yeston 1976, Lerdahl & Jackendoff 1983,
Clarke 1987, Jones & Boltz 1989).

From
Jones &
Boltz ‘89

73

Hierarchical Grouping: Meter

– Meters are argued to arise from the
interaction between temporal levels (Yeston
1976).
– Therefore a meter implies two frequencies: the

pulse rate and the measure (“bar”) rate.
– The tactus is considered as the most salient

hierarchical level, consistent with the
notated meter, or the foot tapping rate (Desain
& Honing 1994).

74

74

Mental schemas for Meter
– Metrical Profiles (Palmer & Krumhansl 1990)

– Pre-established mental frameworks (“schemas”)
for musical meter are used during listening.

75

From Palmer &
Krumhansl (1990).
Mean goodness-of-fit
ratings for musicians
(solid line) and
nonmusicians (dashed
line).

75

76

Syncopation

– Listener judgements of
musical complexity are
correlated with degree of
syncopation (i.e. note
location within the beat)
(Shmulevich & Povel 2000,
Smith & Honing 2006).

– Compared judgements
against formal model of
syncopation (Longuet-
Higgins & Lee 1984).

76

Active Rhythm Perception
– Viewed as a resonance between top down and

bottom-up processes (see e.g Desain & Honing 2001):

77

Structural

Grouping

Metrical

Grouping

(Beat Induction)

Current Rhythmic

Schema
Musical

Memory

Event Detection

Figural

Grouping

(by Proximity)

Expectation

Induction

Learning

Categorisation

77

Onset-detection vs. Beat-detection
• Traditionally beat detection relied on

accurate onset detection.
– i.e from MIDI data for Score Following

(Dannenberg 1991, Cont 2009).

• This can be difficult for MIR from polyphonic
audio recordings.
– A higher freq. Onset Detection Function from

the entire audio signal can be used for beat
tracking without all onsets being detected (Schloss
1985, Goto & Muraoka 1994, Scheirer 1998).

78

78

The Onset Detection Function
• Represents:

– Ideal: Each note that contributes to the beat.
– Practice: Combined envelopes of all notes.

• Tends to emphasise:
– strong transients (i.e. impulsive sounds)
– loud notes
– bass notes
– wide-band spectrum events (e.g. snare drums).

79

79

80

Dixon’s Envelope Onset Detection

80

Example Onset
Detection

• Pre-processing
• Filtering
• Down-sampling
• Difference function

81

81

Common ODF methods
– e.g (Bello et. al 2005, Dixon 2007, Peeters 2007)
• Optional pre-rectification filtering.
• Envelope mixture from rectification/energy.
• Smoothing of envelope (LP filter).
• Down-sampling for data reduction.
• d(log E)/dt highlights perceived impulses.
• Weighting higher frequencies captures wide-

band events.
• Spectral difference between STFT frames.

82

82

Existing Rhythmic Models
– Parsing metrical grammars (Longuet-Higgins and Lee

1982).
– Forward projection of likelihood (Desain 1992).
– Autocorrelation (Desain & Vos 1990, Brown 1993, Eck

2006).
– Oscillator bank entrainment (Toiviainen 1998, Large

& Kolen 1994, Ohya 1994, Miller, Scarborough & Jones 1989).
– Frequency of Onset Function: (Scheirer 1998,

Klapuri et al. 2006, Peeters 2007, Davies & Plumbley 2007).
– Dynamic time warping of beat interval (Dixon

2001, Ellis 2007).
– Multiresolution Approaches (Todd 1994, Todd,

O’Boyle & Lee 1999, Smith & Honing 2008).
83

83

Approaches to beat tracking considered

• Autocorrelation
– Finding Periodicity in the ODF.

• Beat Spectrum approaches:
– Spectrum of the ODF.
– Multi-resolution representation of ODF.

• Dynamic Programming approaches.
– Efficient selection of correct beat interval.

84

84

Autocorrelation of ODF
• AC peaks ⇒ time lags

where signal is most
similar to itself.

• Captures periodicities of
ODF.

• Does not capture rubato
well.

• OK for metronomic
music, not for those with
variation in tempo.

85

85

Windowed RMS and its
Autocorrelation (for drum loop)

86

Max peak = 2-bar loop

1/4 note

1st peak = 1/8 note

86

• Filterbanks of tuned
resonators (i.e. “rhythmic
reverb”) of the ODF.

• Resonator whose
resonant F matches rate
of ODF modulation will
phase-lock.

• Resonator outputs of
common freq summed
across subbands:

Beat spectrum methods (Scheirer 1998)

87human listeners. Further, empirical studies of the use of vari-

ous filterbanks with this algorithm have demonstrated that

the algorithm is not particularly sensitive to the particular

bands or implementations used; it is expected that psychoa-

coustic investigation into rhythmic perception of amplitude-

modulated noise signals created with the various vocoder

filterbanks would confirm that the same is true of human

rhythmic perception.

The filterbank implementation in the algorithm has six

bands; each band has sharp cutoffs and covers roughly a

one-octave range. The lowest band is a low-pass filter with

cutoff at 200 Hz; the next four bands are bandpass, with

cutoffs at 200 and 400 Hz, 400 and 800 Hz, 800 and 1600

Hz, and 1600 and 3200 Hz. The highest band is high pass,

with cutoff frequency at 3200 Hz. Each filter is implemented

using a sixth-order elliptic filter, with 3 dB of ripple in the

passband and 40 dB of rejection in the stopband. Figure 4

shows the magnitude responses of these filters.

The envelope is extracted from each band of the filtered

signal through a rectify-and-smooth method. The rectified

filterbank outputs are convolved with a 200-ms half-Hanning

�raised cosine� window. This window has a discontinuity at
time t�0, then slopes smoothly away to 0 at 200 ms. It has
a low-pass characteristic, with a cutoff frequency at about 10

Hz �‘‘frequency’’ in this case referring to envelope spectra,
not waveform spectra�, where it has a �15 dB response, and
6-dB/octave smooth rolloff thereafter.

The window’s discontinuity in time means that it has

nonlinear phase response; it passes slow envelope frequen-

cies with much more delay than rapid ones. High frequen-

cies, above 20 Hz, are passed with approximately zero delay;

0 Hz is delayed about 59 ms and 7 Hz advanced about 14

ms. Thus there is a maximum blur of about 73 ms between

these envelope frequencies.

This window performs energy integration in a way simi-

lar to that in the auditory system, emphasizing the most re-

cent inputs but masking rapid modulation; Todd �1992� ex-
amines the use of temporal integration filters which are

directly constructed from known psychoacoustic properties.

After this smoothing, the envelope can be decimated for fur-

ther analysis; the next stages of processing operate on the

decimated band envelopes sampled at 200 Hz. There is little

energy left in the envelope spectra at this frequency, but it

aids the phase-estimation process �see below� to maintain a
certain precision of oversampled envelope resolution.

After calculating the envelope, the first-order difference

function is calculated and half-wave rectified; this rectified

difference signal will be examined for periodic modulation.

The derivative-of-envelope function performs a type of onset

filtering process �see, for example, Smith’s work on

difference-of-Gaussian functions for onset segmentations

Smith, 1994� but the explicit segmentation, thresholding, or
peak-peaking of the differenced envelope is not attempted.

The subsequent modulation detectors in the algorithm are

sensitive, similar to the sensitivity of autocorrelation, to

‘‘imperfections’’ in an onset track. The half-wave rectified

envelope difference avoids this pitfall by having broader �in
time� response to perceptual attacks in the input signal. This
process might be considered similar to detecting onset points

in the signal bands, and then broadening them via low-pass

filtering.

FIG. 3. Schematic view of the processing algorithm. See text for details.

FIG. 4. Magnitude response of the frequency filterbank used in the system,

plotted in two pieces for clarity. The upper plot shows the first, third, and

fifth bands; the lower, the second, fourth, and sixth. Each filter is a sixth-

order elliptic filter, with 3 dB of passband ripple and 40 dB of stopband

rejection.

591 591J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998 Eric Scheirer: Beat-tracking acoustic signals

T = arg max
r

S�

s

Frs (1)

1

87

Beat Tracking by Peeters (2007)

88

88

Peeters 2007
• Filtered, rectified spectral energy envelope

– Onset detection function.
• Combined Fourier & autocorrelation analysis

– DFT of ODF, ACF of ODF
– ACF result mapped into Fourier domain.
– DFT * Freq(ACF) - disambiguates periodicities.
– Octave errors occur in two different domains.

• Viterbi decoding of joint estimates of meter
and tempo.

89
Time steps (time windows)

Combined
tempo and

meter
states

Combined
tempo and

meter
states

Time steps (time windows)
89

Multiresolution
– Auditory-Motor “Primal Sketch” from Sombrero

filter banks (Todd 1994, Todd, O’Boyle & Lee 1999)
– Continuous wavelet transform of rhythmic

signals (Smith 1996, Smith & Honing 2008)

90

90

Continuous wavelet transform (CWT) decomposes
(invertibly) a signal onto scaled and translated
instances of a finite time “mother function” or “basis”.

-30 -15 15 30 a = 1

-1

1
Real

-30 -15 15 30

-1

1
Imaginary

-30 -15 15 30 a = 2

-1

1

-30 -15 15 30

-1

1

Wavelet time-frequency analysis

Ws(b, a) =
1√
a

� ∞

−∞
s(τ) · ḡ(

τ − b

a
) dτ , a > 0 (1)

g(t) = e−t2/2 · eiω0t (2)

1

91

91

Wavelets for Rhythm (Smith & Honing 2008)

• The CWT enables representation of temporal
structure in terms of time varying rhythmic
frequencies.

– Produces magnitude and phase measures
which reveal time-frequency ridges
indicating the frequencies present in the
input rhythm signal (collectively a skeleton,
Tchamitchian & Torrésani ’92).

92

92

Implementation
• Implemented as a set of complex value

bandpass filters in Fourier domain.
• Scaling produces a “zooming” time window

for each frequency “scale”.
• Creates simultaneous time and frequency

localisation close to the Heisenberg
inequality.

93

93

Memory Based Tactus
Wavelet rhythm analysis is also applicable to
continuous onset salience traces from
auditory models (Coath, et. al 2009).

94

94

Memory Based Tactus

• Uses lossy windowed integrator to amass
tactus likelihood.

• Suppress all but the magnitude coefficients
of the extracted tactus ridge.

• Invert the extracted tactus ridge and original
phase plane back to the time domain.
Creates a single beat oscillation.

• Nominating a starting beat and noting its
phase, all other foot-taps are generated for
the same phase value.

95

95

• Singing examples of Dutch folk songs from
the "Onder de Groene Linde" collection
(Meertens Institute) using memory based
derivation of tactus:

• Example 1:
• Example 2: ...Original + Accompaniment.

Foot-tapping to singing

+ Accompaniment.Original...

96

96

• Goal to generate beat times that match
onsets and have near constant IBI.

• F(Δt, τ) = - log(actual IBI/ideal IBI)2.
• Ideal IBI from tempo estimation from

weighted autocorrelation.
• Recursively calculates max C*(t) starting from

t=0-2τ, finding times of max(F + C*(τ)).
• Chooses final max C*(t) from last interval,

backtraces the saved times.

Dynamic Programming (Ellis 2007)

97

formulation and realization, at the cost of a more limited
scope of application.

The rest of this paper is organized as follows: in
Section 2, we introduce the key idea of formulating beat
tracking as the optimization of a recursively-calculable
cost function. Section 3 describes our implementation,
including details of how we derived our onset strength
function from the music audio waveform. Section 4
describes the results of applying this system to
MIREX-06 beat tracking evaluation data, for which
human tapping data was available, and in Section 5 we
discuss various aspects of this system, including issues of
varying tempo, and deciding whether or not any beat is
present.

2. The dynamic programming formulation of
beat tracking

Let us start by assuming that we have a constant target
tempo which is given in advance. The goal of a beat
tracker is to generate a sequence of beat times that
correspond both to perceived onsets in the audio signal
at the same time as constituting a regular, rhythmic
pattern in themselves. We can define a single objective
function that combines both of these goals:

C ftigð Þ ¼
XN

i¼1

OðtiÞ þ a
XN

i¼2

Fðti % ti%1; tpÞ; ð1Þ

where {ti} is the sequence of N beat instants found by the
tracker, O(t) is an ‘‘onset strength envelope’’ derived
from the audio, which is large at times that would make
good choices for beats based on the local acoustic
properties, a is a weighting to balance the importance
of the two terms, and F(Dt, tp) is a function that
measures the consistency between an inter-beat interval
Dt and the ideal beat spacing tp defined by the target
tempo. For instance, we use a simple squared-error
function applied to the log-ratio of actual and ideal time
spacing, i.e.

FðDt; tÞ ¼ % log
Dt
t

! "2

; ð2Þ

which takes a maximum value of 0 when Dt¼ t, becomes
increasingly negative for larger deviations, and is sym-
metric on a log-time axis so that F(kt, t)¼F(t/k, t). In
what follows, we assume that time has been quantized on
some suitable grid; our system used a 4 ms time step (i.e.
250 Hz sampling rate).

The key property of the objective function is that the
best-scoring time sequence can be assembled recursively,
i.e. to calculate the best possible score C*(t) of all

sequences that end at time t, we define the recursive
relation:

C&ðtÞ ¼ OðtÞ þ max
t¼0...t

aFðt% t; tpÞ þ C&ðtÞ
$

: ð3Þ

This equation is based on the observation that the best
score for time t is the local onset strength, plus the best
score to the preceding beat time t that maximizes the sum
of that best score and the transition cost from that time.
While calculating C*, we also record the actual preceding
beat time that gave the best score:

P&ðtÞ ¼ arg max
t¼0...t

aFðt% t; tpÞ þ C&ðtÞ
$

: ð4Þ

In practice it is necessary only to search a limited range
of t since the rapidly-growing penalty term F will make it
unlikely that the best predecessor time lies far from
t7 tp; we search t¼ t7 2tp . . . t7 tp/2.

To find the set of beat times that optimize the
objective function for a given onset envelope, we start
by calculating C* and P* for every time starting from
zero. Once this is complete, we look for the largest value
of C* (which will typically be within tp of the end of the
time range); this forms the final beat instant tN – where
N, the total number of beats, is still unknown at this
point. We then ‘‘backtrace’’ via P*, finding the preceding
beat time tN71¼P*(tN), and progressively working
backwards until we reach the beginning of the signal;
this gives us the entire optimal beat sequence {ti}*.
Thanks to dynamic programming, we have effectively
searched the entire exponentially-sized set of all possible
time sequences in a linear-time operation. This was
possible because, if a best-scoring beat sequence includes
a time ti, the beat instants chosen after ti will not
influence the choice (or score contribution) of beat times
prior to ti, so the entire best-scoring sequence up to time ti
can be calculated and fixed at time ti without having to
consider any future events. By contrast, a cost function
where events subsequent to ti could influence the cost
contribution of earlier events would not be amenable to
this optimization.

To underline its simplicity, Figure 1 shows the com-
plete working Matlab code for core dynamic program-
ming search, taking an onset strength envelope and
target tempo period as input, and finding the set of
optimal beat times. The two loops (forward calculation
and backtrace) consist of only ten lines of code.

3. The beat tracking system

The dynamic programming search for the globally-
optimal beat sequence is the heart and the main novel
contribution of our system; in this section, we present the

52 Daniel P. W. Ellis

97

Beat Histograms
– Summarises rhythmic behaviour

of a piece for similarity
measures, classification etc.

– Pampalk, Dixon & Widmer (2003)
– Uses summation of comb

filters of Scheirer, not just
argmax, for comparison.

– Tempo histogram is weighted
using a preference model (van
Noorden & Moelants 1999).

– PCA used to reduce 2000 !
60 dimensions for matching.

98

period� of T and �; there is only reinforcement every T/�
periods, and by a similar logic as the above,

lim
n→�

yn��
�1���A

1��T/� ,

and since ����1 if the filter is to be stable, and T/��1,

1��T/��1�� .

So a filter with delay matching �or evenly dividing� the pe-
riod of a pulse train will have larger �more energetic� output
than a filter with mismatched delay.

We can see that this is true for any periodic signal by

doing the analysis in the frequency domain. The comb filter

with delay T and gain � has magnitude response

�H�e j����� 1��

1��e� j�T�,
which has local maxima wherever �e� j�T gets close to 1,

i.e., at the Tth roots of unity, which can be expressed as

e� j2�n/T, 0�n�T .

Using Fourier’s theorem we know that these frequency-

domain points are exactly those at which a periodic signal of

period T has energy. Thus the comb filter with delay T will

respond more strongly to a signal with period T than any

other, since the response peaks in the filter line up with the

frequency distribution of energy in the signal.

For each envelope channel of the frequency filterbank, a

filterbank of comb filters is implemented, in which the delays

vary by channel and cover the range of possible pulse fre-

quencies to track. The output of these resonator filterbanks is

summed across frequency subbands. By examining the en-

ergy output from each resonance channel of the summed

resonator filterbanks, the strongest periodic component of the

signal may be determined. The frequency of the resonator

with the maximum energy output is selected as the tempo of

the signal.

The � parameter for each comb filter is set differently,

so that each filter has equivalent half-energy time. That is, a

comb filter of period T has an exponential curve shaping its

impulse response. This curve reaches half-energy output at

the time t when �T/t�0.5. Thus � is set separately for each
resonator, at ��0.5t/T. A half-energy time of 1500–2000 ms
seems to give results most like human perception.

Figure 6 shows the summed filterbank output for a 2-Hz

pulse train and for a polyphonic music example. The hori-

zontal axis is labeled with ‘‘metronome marking’’ in beats

per minute; this is a direct mapping of the delay of the cor-

responding comb filter. That is, for the 2-Hz power envelope

signal, a feedback delay of 100 samples corresponds to a

500-ms resonance period, or a tempo of 120 bpm.

In the pulse train plot in Fig. 6, a clear, large peak occurs

at 120 bpm, and additional smaller peaks at tempi which bear

a simple harmonic relationship �3::2 or 4::5, for example� to
the main peak. In the music plot, there are two peaks, which

correspond to the tempi of the quarter note and half note in

this piece. If the width of the upper plot were extended, a

similar peak at 60 bpm would be visible.

C. Phase determination

It is relatively simple to extract the phase of the signal

once its tempo is known, by examining the output of the

resonators directly, or even better, by examining the internal

state of the delays of these filters. The implementations of

the comb filters for the resonator filterbank have lattices of

delay-and-hold stages. The vector w of delays can be inter-

preted at a particular point in time as the ‘‘predicted output’’

of that resonator; that is, the next n samples of envelope

output which the filter would generate in response to zero

input.

The sum of the delay vectors over the frequency chan-

nels for the resonators corresponding to the tempo deter-

mined in the frequency extraction process are examined. The

peak of this prediction vector is the estimate of when the

next beat will arrive in the input, and the ratio ��2�(tn
�t)/T , where tn is the time of the next predicted beat, t the

current time, and T the period of the resonator, is the phase �
of the tempo being tracked. The phase and period may thus

be used to estimate beat times as far into the future as de-

sired.

The implementation of the model performs the phase

analysis every 25 ms and integrates evidence between frames

in order to predict beats. Since re-estimation occurs multiple

times between beats, the results from each phase analysis can

be used to confirm the current prediction and adjust it as

FIG. 6. Tempo estimates, after tracking 5 s of a 2-Hz click track �top� and
of a polyphonic music example �bottom�. The x-axes are labeled in beats per
minute, that is, 120 MM�2 Hz. The polyphonic music shows more overall
energy, but the tempo is still seen clearly as peaks in the curve.

593 593J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998 Eric Scheirer: Beat-tracking acoustic signals

(from Scheirer 1998)

98

Beat Histograms (Tzanetakis and Cook, 2002)

– Similar approach
using
Autocorrelation.

– Add the amplitudes
of the top 3 AC
peaks to histogram
at each frame.

– Beat histograms are
reducible to single
features including
sum and peak/mean.

99

298 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 5, JULY 2002

Fig. 3. Beat histogram examples.

correspond to the tonic or dominant chord. This peak
will be higher for songs that do not have many harmonic
changes.

• UP0: Period of the maximum peak of the unfolded his-
togram. This corresponds to the octave range of the dom-
inant musical pitch of the song.

• FP0: Period of the maximum peak of the folded his-
togram. This corresponds to the main pitch class of the
song.

• IPO1: Pitch interval between the two most prominent
peaks of the folded histogram. This corresponds to the
main tonal interval relation. For pieces with simple
harmonic structure this feature will have value 1 or 1
corresponding to fifth or fourth interval (tonic-dominant).

• SUM The overall sum of the histogram. This is feature is
a measure of the strength of the pitch detection.

E. Whole File and Real-Time Features

In this work, both the rhythmic and pitch content feature
set are computed over the whole file. This approach poses no
problem if the file is relatively homogeneous but is not appro-
priate if the file contains regions of different musical texture.
Automatic segmentation algorithms [27], [28] can be used to
segment the file into regions and apply classification to each
region separately. If real-time performance is desired, only the
timbral texture feature set can be used. It might possible to com-

pute the rhythmic and pitch features in real-time using only
short-time information but we have not explored this possibility.

IV. EVALUATION

In order to evaluate the proposed feature sets, standard sta-
tistical pattern recognition classifiers were trained using real-
world data collected from a variety of different sources.

A. Classification
For classification purposes, a number of standard statistical

pattern recognition (SPR) classifiers were used. The basic idea
behind SPR is to estimate the probability density function (pdf)
for the feature vectors of each class. In supervised learning a la-
beled training set is used to estimate the pdf for each class. In
the simple Gaussian (GS) classifier, each pdf is assumed to be
a multidimensional Gaussian distribution whose parameters are
estimated using the training set. In the Gaussian mixture model
(GMM) classifier, each class pdf is assumed to consist of a mix-
ture of a specific number of multidimensional Gaussian dis-
tributions. The iterative EM algorithm can be used to estimate
the parameters of each Gaussian component and the mixture
weights. In this work GMM classifiers with diagonal covariance
matrices are used and their initialization is performed using the
-means algorithm with multiple random starting points. Fi-

nally, the -nearest neighbor (-NN) classifier is an example

99

Fluctuation Patterns
• Also summarises rhythmic behaviour.
• FFT of envelope: the fluctuation (AM)

frequency of the perceived loudness of
critical bands (log spectral) (represented on
the Bark scale).

• 20 Bark x 60 BF matrix " PCA for matching

100

0.4

11.5Rock DJ

0.4

9.9In Stereo

0.2

3.1Yesterday

Figure 6: The median of the rhythm patterns of Rob-
bie Williams, Rock DJ, Bomfunk MC’s, In Stereo,
and The Beatles, Yesterday. The axes represent the
same scales as in Figure 5.

Stereo, which combines the styles of Hip Hop, Electro and
House, are just as strong. However, the beats are also a lot
faster 5Hz (300bpm). The final example depicts the median
of the rhythm patterns of the song Yesterday by The Beat-

les. There are no strong reoccurring beats. The activation
in the rhythm pattern is similar to the one of Für Elise, ex-
cept that the values are generally higher and that there are
also activations in higher frequency bands.

4. ORGANIZATIONANDVISUALIZATION
We use the typical rhythm patterns as input to the Self-
Organizing Map (SOM) [12] algorithm to organize the pieces
of music on a 2-dimensional map display in such a way that
similar pieces are grouped close together. We then visualize
the clusters with a metaphor of geographic maps to create
a user interface where islands represent musical genres or
styles and the way the islands are automatically arranged
on the map represents the inherent structure of the music
archive.

4.1 Self-Organizing Maps
The SOM is a powerful tool for explorative data analysis,
and in particular to visualize clusters in high-dimensional
data. Methods with similar abilities include Principial Com-
ponent Analysis [11], Multi-Dimensional Scaling [15], Sam-
mon’s mapping [27], or the Generative Topographic Map-
ping [3]. One of the main advantages of the SOM with
regard to our application is, that new pieces of music, which
are added to the archive, can easily be placed on the map ac-
cording to the existing organization. Furthermore, the SOM
is a very efficient algorithm which has proven to be capable
of handling huge amounts of data. It has a strong tradition
in the organization of large text archives [13, 24, 18], which
makes it an interesting choice for large music archives.

The SOM usually consists of units which are ordered on
a rectangular 2-dimensional grid. A model vector in the
high-dimensional data space is assigned to each of the units.
During the training process the model vectors are fitted to
the data in such a way that the distances between the data
items and the corresponding closest model vectors are mini-
mized under the constraint that model vectors which belong
to units close to each other on the 2-dimensional grid, are
also close to each other in the data space.

For our experiments we use the batch-SOM algorithm. The
algorithm consists of two steps that are iteratively repeated
until no more significant changes occur. First the distances
between all data items {xi} and the model vectors {mj} are
computed and each data item xi is assigned to the unit ci

that represents it best.

In the second step each model vector is adapted to better
fit the data it represents. To ensure that each unit j rep-
resents similar data items as its neighbors, the model vec-
tor mj is adapted not only according to the assigned data
items but also in regard to those assigned to the units in
the neighborhood. The neighborhood relationship between
two units j and k is usually defined by a Gaussian-like func-
tion hjk = exp(−d2

jk/r2
t), where djk denotes the distance

between the units j and k on the map, and rt denotes the
neighborhood radius which is set to decrease with each iter-
ation t.

Assuming a Euclidean vector space, the two steps of the
batch-SOM algorithm can be formulated as

ci = argmin
j

�xi −mj� , and

m∗
j = i hjci xi

i�hjci�
,

where m∗
j is the updated model vector.

Several variants of the SOM algorithm exist. A particu-
larly interesting variant regarding the organization of large
music archives is the adaptive GHSOM [6] which provides
a hierarchical organization and representation of the data.
Experiments using the GHSOM to organize a music archive
are presented in [25].

4.2 Smoothed Data Histograms
Several methods to visualize clusters based on the SOM can
be found in the literature. The most prominent method vi-
sualizes the distances between the model vectors of units
which are immediate neighbors and is known as the U-
matrix [32]. We use Smoothed Data Histograms (SDH) [21]
where each data item votes for the map units which repre-
sent it best based on some function of the distance to the
respective model vectors. All votes are accumulated for each
map unit and the resulting distribution is visualized on the
map. As voting function we use a robust ranking where the
map unit closest to a data item gets n points, the second
n-1, the third n-2 and so forth, for the n closest map units.
All other map units are assigned 0 points. The parameter
n can interactively be adjusted by the user. The concept of
this visualization technique is basically a density estimation,
thus the results resemble the probability density of the whole
data set on the 2-dimensional map (i.e. the latent space).
The main advantage of this technique is that it is compu-
tationally not heavier than one iteration of the batch-SOM
algorithm.

To create a metaphor of geographic maps, namely Islands

of Music, we visualize the density using a specific color code
that ranges from dark blue (deep sea) to light blue (shallow
water) to yellow (beach) to dark green (forest) to light green
(hills) to gray (rocks) and finally white (snow). Results of
these color codings can be found in [20]. In this paper we use
gray shaded contour plots where dark gray represents deep
sea, followed by shallow water, flat land, hills, and finally
mountains represented by the white.

4.3 Illustrations
Figure 7 illustrates characteristics of the SOM and the clus-
ter visualization using a synthetic 2-dimensional data set.

Median of the fluctuation patterns of examples of (L-R) Heavy Metal,
Dance and Pop. Y axis shows critical bands (Bark 1-20), X axis shows beat
frequencies 0-10Hz (0-600BPM) From Pampalk, Rauber & Merkl, (2002)

100

Meter estimation
• Requires measure (“bar”) period and phase

(downbeat) identification.
• Measure period reasonably successful, albeit

with octave errors.
• Downbeat identification much harder!
• Genre dependent.

101

101

Joint estimation of chord change
and downbeat (Papadopoulos & Peeters 2008)

• Hidden Markov Model:
– States: 24 Major & Minor triads * 4 positions within

the Measure (pim) for (4/4 time signature).
– Computes chroma features at each beat.
– Assumes independence between beat position and

chord type: P(O|s) = P(O|c) P(O|pim)
– Transition probabilities enforce sequential beats &

likelihood of chord transitions.
• Optimal state determined by Viterbi decoding.

– Chord progression detection improved using
metrical knowledge.

– Identification of downbeats aided by harmonic
information.

102

102

Review
• Modeling rhythm requires representing

perception
• Onset detection functions capture significant

events
• Multiple approaches to beat-tracking

represent competing perceptual models
• Beat-tracking enables higher-level rhythmic

features (FP, BH)
• Beat-tracking enables multi-modal

estimation (e.g., down-beat)
103

103

Applications
• Low-hanging fruit

– Basic non-real-time feature extraction
– Bulk feature extraction into a DB
– Real-time feature extraction and mapping to

synthesis or control
– Song clustering based on feature vector

similarity, clustering, ...
– PCA of feature spaces using Weka
– Segmentation based on inter-frame distances

104

104

APIs for MIR Tools

• Marsyas: G. Tzanetakis (11), flexible tool set,
scripting language, segmentation and classification

• LibOFA: Holm/Pope (00), simple FV for unique ID
comparing to a large pre-analyzed database

• D2K/M2K: West/MIREX (06), Java-based GUI related
to D2K, many apps.

• LibTSP: P. Kabal (00), C routines for DASP & IO
• CSL: STP/MAT (05), C++ class library for DASP,

synthesis, control, spatialization and MIR
105

105

APIs - 2
• Libxtract
• Aubio
• SonicVisualizer plug-ins
• Loris
• SPEAR
• CSL
• LibTSP

106

106

Spectral Tools
• SPEAR
• Loris
• Marsyas
• Sonic visualizer

107

107

Code Exercises
• Buffer, Window classes (see CSL)
• Analyzer class (Marsyas)
• Driver, main(), aubio, libxtract
• IO libraries (libSndFile, PortAudio)
• DASP libraries (libTSP, etc.)
• Starter apps: simple analyzer, sing-along

108

108

Q&A

109

109

Lab 2
• Feature extraction and flexible feature vectors

in MATLAB, Marsyas, Aubio, libExtract
• MATLAB/Weka code for sound clustering with

a flexible feature vector
• C++ API examples Marsyas, Aubio, libExtract

- pre-built examples to read and customize
• Goal: extract CAL 500 per-song features

to .mat or .csv using features from today.

110

110

Example Code 1

• AFsp-v9r0 - General-purpose audio file code in C, Peter Kabal @ McGill
• aubio-0.3.2 - library for audio labeling, P. M. Brossier and J. P. Bello, http://

aubio.piem.org
• beatDetect - MAT 2450C project by Philip Popp (Xcode)
• bp_proj - Neural Net demo for VisualStudio
• CNMAT-SDIF-alpha - Spectral Data Interchange Format code from UCBerkeley
• dance-o-matic - MAT 240F project by Philip Popp (Xcode)
• EricNewman - Various projects including MAGIC from Eric Newman @ UCSB

(Xcode)
• fann-2.0.0 - Fast Artificial Neural Network Library, http://leenissen.dk/fann
• FFTW - Fastest Fourier Transform in the West, FFTW.org
• FlowDesigner-0.8.0 - Flow Designer, like SimuLink, jean-

marc.valin@usherbrooke.ca
• FlowDesigner-0.9.1-Darwin.pkg - Mac installer into /usr/local/include, etc.
• getRMS2 - store the windowed RMS values of a given input file into a given

output file (Xcode)
111

111

Example Code 2

• ICA - Independent component analysis code, Shiro Ikeda, shiro@ikeda.cc
• JMARF - "MODULARIZED AUDIO RECOGNITION FRAMEWORK" Serguei Mokhov, The

MARF Research and Development Group, Montreal
• JUCE - Jules' Utility Class Extensions (in C++), http://www.rawmaterialsoftware.com
• libneural-1.0.3 - simple Back-propagation Neural Network, Daniel Franklin
• libofa - Open FingerPrint Architecture, S. T. Pope & Frode Holm, MusicIP (RIP)
• libsndfile - awesome sound file API from Erik de Castro Lopo <erikd@mega-nerd.com>
• libtsp-v7r0 - General-purpose DASP code in C, Peter Kabal @ McGill
• libxtract-0.6.3 - library of audio feature extraction functions by Jamie Bullock
• m2k - Music-to-Knowledge in Java (stale?), Kris West, kw@cmp.uea.ac.uk, http://

www.music-ir.org
• marf0/2 - "MODULARIZED AUDIO RECOGNITION FRAMEWORK"
• marsyas-0.4.3 - MARSYAS C++ library for MIR, George Tzanetakis
• moc-0.1.1 - "Master of Celebration" playlist generator by Dominik 'Aeneas' Schnitzer
• rtaudio - cross-platform C++ API for audio input/output by Gary P. Scavone, http://

www.music.mcgill.ca/~gary/rtaudios
112

112

Example Code 3

• SampleAnalyzer - MAT 240F example code, reads sample files and runs analyzers
• sing_along - MAT 240F example code by STP, play a sine wave along with a singer
• sndan - SNDAN, James Beauchamp, implementation of MQ tracking and analysis
• sonic-visualiser-1.8 - program for viewing and analysing music files
• Sonic Visualiser-1.8.dmg - Mac binary installer
• SpectralTracker - MAT 240F example code by Matthew Crossley
• SPEAR_latest.dmg - "Sinusoidal Partial Editing Analysis and Resynthesis", Michael

Klingbeil
• sphinx3-0.6 - CMU SPHINX Speech Recognition tools
• SPRACHcore-2004-08-26 - Connectionist speech recognition software by Dan Ellis
• STFT - Lance Putnam's C++ wrapper object for FFTW
• svlib - C++ class library for automatic speech recognition and speaker recognition,

Jialong_He@bigfoot.com
• tap_alongPP - MAT 240F example code by S T Pope, play a sine wave along with a

singer
• ww_beat_tracker.c - Will Wolcott's simple beat tracker from MAT 240F

113

113

Lab 2 - Where to start
• Running C/C++ Examples

– Using the UNIX shell
– Using Makefiles

• apt-get, tar xvf, cd,
• ./configure --help,
• ./configure, make, sudo make install

– Using C/C++ IDEs
• Eclipse, XCode, VisualStudio
• Code editing
• Project mgmnt
• Debugger

114

114

Lab 2 - Where to start
• The Hell that is C/C++ Development

– UNIX packages and configure scripts
• Fixing broken configure scripts

– “Make” packages: make, gmake, cmake
• Fixing broken makefiles

– Compiling: getting the right package includes
• Versions of C, of the std headers

– Linking: finding the (static & dynamic) libraries
– Linux vs MacOS or MS-Windows
– The (truly sad) good advice: minimize the number

of libraries you use (JUCE + FFTW)
115

115

Lab 2 - Where to start
• Debugging C/C++

– Anti-bugging techniques
– Print statements
– Breakpoints

• Problems
– Compile-time (includes)
– Link-time (libraries, modules)
– Run-time

• Initialization errors
• Malloc/free new/delete, garbage collection
• Logic errors

116

116

Lab 2 - DASP Coding
• Support libraries - I/O, DB, ...

– LibSndFile
– RTaudio/RTmidi
– AFsp
– JUCE
– FFTW
– DB APIs: MySQL, PostgreSQL, XMP, JSON ...

• General-purpose DASP Libraries
– LibTSP, CSL, others
– Handling main(), set-up/clean-up and data I/O

117

117

MIR Code Examples (in C/C++)
• Aubio

– configure, make
– audioquiet.c
– audioonset.c
– SWIG interfaces

• Libxtract
– simpletest.c - spectrum extraction
– Max/Pd plug-ins

• Marsyas
– Setting up & using Cmake
– sfinfo app
– pitchextract app
– bextract app

118

118

MIR Code Examples

• MAT240F examples & student code
– SampleAnalyzer (fftw, libsndfile)

• Single-file or file-list processing
• DB, noDB

– getRMS2 (libsndfile, libtsp)
• Batch analysis
• Windowed RMS, 2nd-stage autocorrelation

– sing_along (portaudio, fftw, libtsp)
• Several pitch detectors
• Runs processing in portaudio call-back

– Extensions...
119

119

