Signal Analysis and Feature Extraction for MIR Applications

- What do we want to do?
 - Match, search, index, transcribe, src-sep, ...
- What do we need to know to do it?
 - Basic feature set
 - Higher-level features
 - Feature data post-processing
 - Application integration
- MIR application design
 - Many are not “IR” at all
 - How does the metadata fit in?
- Feature vector design for applications

Problem Statement: Applications

- Examples
 - Automatic playlist generation
 - Audio transcription
Music Metadata

• Introduction
 – Kinds of Audio Data and Metadata
 – Dimensions of Music Info. Retrieval
 – APIs for MIR Tools
• Multimedia Databases
 – Feature Vectors and Indexing
 – Feature Extraction and Signal Analysis
 – Numerical Processing: Clustering, Classification
• Audio Signal Processing for Feature Extraction
 – Time Sequences, Windowing
 – Analysis Domains, Transformations
 – Multi-level, High-level
• Data Smoothing and Reduction

Signal Analysis

• Time–domain Audio Analysis
 – Windowed RMS Envelope Extraction
 – Beat Detection and Tempo Analysis
 – Time–based signal segmentation
• Frequency–domain Analysis
 – Pitch Detection Techniques
 – Spectral Analysis and Interpretation
 – Spectral Peaks and Tracking
 – Other Spectral Measures
• Other Kinds of Analysis: Wavelets
• Cross–domain analysis

Numerical Processing

• Data Reduction, Smoothing
• Correlation, Grouping
• Princ./Indep. Component Analysis
• Audio Segmentation and Musical Form
• Clustering and Classification

Databases & Applications

• Database Issues
• Handling of Large or Dynamic Feature Vectors
• Application Requirements and Design
• Searching, Indexing, and Players
• Audio Summarization and Thumb–nailing
• Content Matching and Finger–printing
• Data Clustering and Genre Classification
• Other Applications: Mapping Systems

Typical Processing Stages

• Input processing
 – Streaming, decompression, reformatting
• Signal segmentation, windowing
 – window size, share, overlap
• 1st–pass windowed feature extraction
 – Basic time–, freq–domain features
• 2nd–pass feature processing
 – Feature massaging, smoothing, pruning
 – 2nd–pass features (tempo, segmentation)
• Post–processing, data output
 – Many options

MIR Application Design

• Dimensions
 – Content format
 – Low–level analysis procedures
 – High–level derived features
 – DB design
 – Application flow and integration
• Design Issues
 – System architecture and design impacted by each of the MDB dimensions
Content Format
- Impacts all levels of system
 - Data volume, storage options, analysis DSP, DB design, etc.
- Systems may or may not maintain original source content (vs. metadata)
- Systems may preserve several formats of source and metadata (n-tier)
- This is typically a given rather than a design option

Content Formats
- Audio-based
 - Properties/volume of source recordings
 - MP3/AAC/WMA decoders
- MIDI-based
 - Problems with MIDI, assumptions to make
 - Human-performed vs “dead pan” MIDI
- Score image based
 - Useful, but not treated here
- Formal language-based
 - SCORE, SMDL, Smoke, etc.
 - MusicXML

Real Applications
- DBMS issues
- Query systems, browsers, and MIR frameworks
- Informed tools
- Stand-alone delivery applications

Applications
- One-step Tools
 - Tracker, segmenter, single feature extraction
 - Interactive programs
- Multi-feature tools
 - Finger-print, thumb-nail, etc.
- Heuristic techniques
 - Blackboard, neural nets, SOMaps
- Real-world MIR applications

Typke's Appl. Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Audio</th>
<th>Video</th>
<th>Textual</th>
<th>Score</th>
<th>MIDI</th>
<th>Image</th>
<th>Formal Lang.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Blips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chords</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUI MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDI Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score Objects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Blips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chords</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUI MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDI Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score Objects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIR Systems & Retrieval Tasks
- Copyright and royalties
- Plagiarism
- Recommendation
- Sounds as
- Genre
- Mood
- Style
- Emotion
- Performance
- Feature
- Intertextuality
- Composer
MIR/MDB Applications

GT's “MIR Pipeline”

Dimensions of Music Information Retrieval Applications
• Indexing, query, access
 - Use content or metadata for query
• Understanding, transcription
 - Derive (music/speech) model
• Clustering, classification
 - Feature vector for discrimination
• Content identification, finger-printing
• Preference-matching, recommendation

Time Sequences, Windowing
• Read audio input
• Vector multiply by window function
• Perform analysis
• Step to next window
• Hop size not normally = window size
• Window features
 - Main lobe width, side lobe level, side lobe slope

Windows and their Spectra (see MAT 240B)
• Trade-offs between window characteristics
• Different windows for different analysis domains

Advanced Windows for Spectral Analysis
Windowing and the STFT

Multi-window Multi-rate Analysis
• Example: FMAK3 analysis driver
 • `-r rmsWindow_size rmsHop_size`
 - window size and hop size for the RMS time-domain analysis
 • `-f fftWindow_size fftLen fftHop_size`
 - for the FFT spectral analysis
 • `-l lpcWindow_size lpcOrder lpcHop_size`
 - for the LPC analysis
 • `-w fwtWindow_size fwtLen fwtHop_size`
 - for the wavelet analysis

Time-domain Audio Analysis and Applications
• Use rectangular window if no overlap or triangular window if overlapping
• Medium-sized window (10 Hz or better resolution desired)
• Derived windowed RMS value
• Count zero crossings

Windowed RMS Envelope Extraction
• C code for envelope extraction
 • Outer loop for windows
 • Inner loop to run window and compute RMS value
 • Silence threshold (noise gate)
 • Note-on trigger (peak detector)
 • Example sound: piano sample, drum loop

Optional Time-domain Steps
• Pre-filter to get low-freq and high-freq RMS values
• Process stereo channels to get M/S (sum/difference) signals
• Noise detection
• Silence detection
• Loop code examples and main()s

Feature-vector Design
• http://www.create.ucsb.edu/~stp/PostScript/PopeHolmKouznetsov_icmc2.pdf
• Application Requirements
 • Labeling, segmentation, etc.
 • Derive feature vector from the app requirements
• Kinds/Domains of Features
 • Time-domain
 • Simple features, onset detection
 • Frequency-domain
 • Spectrum, spectral statistics
 • Pitch, chroma, key
Feature Vectors and Indexing

- Feature = derived (numerical) parameter
- Feature vector = list of features for a single point/window in time, or average for an entire selection
- Feature table = list of feature vectors for several time slices (not always used)

Example Features

- Features:
 - Time-domain, low-level
 - Windowed RMS amplitude
 - Time-domain, high-level
 - Tempo, beat structure, segmentation
 - Frequency-domain, low-level
 - Pitch, spectrum, spectral peaks
 - Frequency-domain, high-level
 - Peak track birth/death statistics, instrument ID
 - Many other possibilities (see below)

Feature Vector Examples

Example: FMAK3 Feature Table

```cpp
class FeatureTable {
public:
  // Data members (instance variables)
  float mTimestamp;  // When do I start?
  float mTimeDur;   // How long a time-span do I represent?

  // Time-domain features
  unsigned int mRMSWindowSize; // Size of RMS window
  FeatureDatum mRMS;  // Rectangular-windowed RMS amplitude
  FeatureDatum mPeak;  // Max sample amplitude
  FeatureDatum mLPRMS; // RMS amplitude of LP-filtered signal
  FeatureDatum mHPRMS; // RMS amplitude of HP-filtered signal
  size_t mZeroCrossings; // Count of zero crossings
  FeatureDatum mDynamicRange;  // RMS dynamic range of sub-windows
  FeatureDatum mPeakIndex; // RMS peak sub-window index
  FeatureDatum mTempo; // RMS/FWT instantaneous tempo estimate
  FeatureDatum mTimeSignature; // Time signature guess
  unsigned int mBassNote; // Bass note (MIDI key number) guess
  FeatureDatum mBassDynamicity; // Bass note dynamicity (size of histogram)

  // Spatial features
  FeatureDatum mStereoWidth; // L/R difference
  FeatureDatum mSurroundDepth; // Front/Surround difference
  FeatureDatum mCenterDistinction; // Center vs. L/R sum difference

  // Frequency-domain features
  unsigned int mFFTWindowSize; // Size of FFT window
  FtVector mSpectrum;  // Hanning windowed FFT data (1024 points, or NULL)
  FtVector mReducedSpectrum; // 1-octave FFT data (10-12 points)
  FtVector mBandSpectrum; // 2.5-octave FFT data (4 points -- spectral bands)
  FPartialVector mSpectralPeaks;// List of major spectral peak indeces
  FPartialVector mSpectralTracks; // List of tracked peak frequencies
  FeatureDatum mSpectralCentroid; // Spectral centroid measure
  FeatureDatum mSpectralSlope; // Spectral slope measure
  FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure

  // Hi-frequency properties
  FeatureDatum HiFreqBalance; // Relative HF level
  FeatureDatum HiFreqVariety; // HF inter-frame spectral variety
  FeatureDatum HiFreqCorrelation;// Correlation between HF and audio-band tracks

  // LPC features
  unsigned int mLPCWindowSize; // Size of LPC window
  FPartialVector mLPCFormants; // List of LPC formant peaks
  FPartialVector mLPCTracks; // List of tracked LPC formants
  FeatureDatum mLPCResidual; // LPC residual level (noiselessness)
  FeatureDatum mLTrackBirths;  // LPC formant peak track births, deaths

  // Wavelet-domain (FWT) features
  FtVector mWaveletCoeff; // Wavelet-projected coefficients
  FtVector mWTNSpectrum; // Reduced FWT HiFreq noise spectrum
  FtVector mWTTracks;  // List of tracked FWT peaks
  FeatureDatum mWTNoise; // FWT noise estimate
};
```

Example: FMAK3 Feature Table, cont’d

```cpp
// Frequency-domain features
unsigned int mFFTWindowSize; // Size of FFT window
FVector mSpectrum;  // Hanning windowed FFT data (1024 points, or NULL)
FVector mReducedSpectrum; // 1-octave FFT data (10-12 points)
FVector mBandSpectrum; // 2.5-octave FFT data (4 points -- spectral bands)
FPartialVector mSpectralPeaks;// List of major spectral peak indeces
FPartialVector mSpectralTracks; // List of tracked peak frequencies
FeatureDatum mSpectralCentroid; // Spectral centroid measure
FeatureDatum mSpectralSlope; // Spectral slope measure
FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure

// Hi-frequency properties
FeatureDatum HiFreqBalance; // Relative HF level
FeatureDatum HiFreqVariety; // HF inter-frame spectral variety
FeatureDatum HiFreqCorrelation;// Correlation between HF and audio-band tracks

// LPC features
unsigned int mLPCWindowSize; // Size of LPC window
FPartialVector mLPCFormants; // List of LPC formant peaks
FPartialVector mLPCTracks; // List of tracked LPC formants
FeatureDatum mLPCResidual; // LPC residual level (noiselessness)
FeatureDatum mLTrackBirths;  // LPC formant peak track births, deaths

// Wavelet-domain (FWT) features
FVector mWaveletCoeff; // Wavelet-projected coefficients
FVector mWTNSpectrum; // Reduced FWT HiFreq noise spectrum
FVector mWTTracks;  // List of tracked FWT peaks
FeatureDatum mWTNoise; // FWT noise estimate
```

Windowed Feature Comparison

```cpp
class FeatureTable {
public:
  // Data members (instance variables)
  float mTimestamp;  // When do I start?
  float mTimeDur;   // How long a time-span do I represent?

  // Time-domain features
  unsigned int mRMSWindowSize; // Size of RMS window
  FeatureDatum mRMS;  // Rectangular-windowed RMS amplitude
  FeatureDatum mPeak;  // Max sample amplitude
  FeatureDatum mLPRMS; // RMS amplitude of LP-filtered signal
  FeatureDatum mHPRMS; // RMS amplitude of HP-filtered signal
  size_t mZeroCrossings; // Count of zero crossings
  FeatureDatum mDynamicRange;  // RMS dynamic range of sub-windows
  FeatureDatum mPeakIndex; // RMS peak sub-window index
  FeatureDatum mTempo; // RMS/FWT instantaneous tempo estimate
  FeatureDatum mTimeSignature; // Time signature guess
  unsigned int mBassNote; // Bass note (MIDI key number) guess
  FeatureDatum mBassDynamicity; // Bass note dynamicity (size of histogram)

  // Spatial features
  FeatureDatum mStereoWidth; // L/R difference
  FeatureDatum mSurroundDepth; // Front/Surround difference
  FeatureDatum mCenterDistinction; // Center vs. L/R sum difference

  // Frequency-domain features
  unsigned int mFFTWindowSize; // Size of FFT window
  FtVector mSpectrum;  // Hanning windowed FFT data (1024 points, or NULL)
  FtVector mReducedSpectrum; // 1-octave FFT data (10-12 points)
  FtVector mBandSpectrum; // 2.5-octave FFT data (4 points -- spectral bands)
  FPartialVector mSpectralPeaks;// List of major spectral peak indeces
  FPartialVector mSpectralTracks; // List of tracked peak frequencies
  FeatureDatum mSpectralCentroid; // Spectral centroid measure
  FeatureDatum mSpectralSlope; // Spectral slope measure
  FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure

  // Hi-frequency properties
  FeatureDatum HiFreqBalance; // Relative HF level
  FeatureDatum HiFreqVariety; // HF inter-frame spectral variety
  FeatureDatum HiFreqCorrelation;// Correlation between HF and audio-band tracks

  // LPC features
  unsigned int mLPCWindowSize; // Size of LPC window
  FPartialVector mLPCFormants; // List of LPC formant peaks
  FPartialVector mLPCTracks; // List of tracked LPC formants
  FeatureDatum mLPCResidual; // LPC residual level (noiselessness)
  FeatureDatum mLTrackBirths;  // LPC formant peak track births, deaths

  // Wavelet-domain (FWT) features
  FVector mWaveletCoeff; // Wavelet-projected coefficients
  FVector mWTNSpectrum; // Reduced FWT HiFreq noise spectrum
  FVector mWTTracks;  // List of tracked FWT peaks
  FeatureDatum mWTNoise; // FWT noise estimate
};
```
Analysis Domains and Transformations

- Time-domain Audio Analysis and Applications
- Windowed RMS Envelope Extraction
- Beat Detection and Tempo Analysis
- Time-based signal segmentation
- Frequency-domain Analysis
- Pitch Detection Techniques
- Spectral Analysis and Interpretation
- Spectral Peaks and Tracking
- Other Spectral Measures
- Other Kinds of Analysis: Wavelets
- Cross-domain analysis

Time-domain Features

- RMS, Peak
- LPF/HPF RMS
 - e.g., F < 200 Hz, F > 2000 Hz
- Dynamic range
 - What window for calc?
- Zero-crossing rate (time- or freq-domain?)
- Higher-level statistics
 - Mean/variance
 - Variance of sliding windows
 - Spacing of peaks/troughs
 - Many other options
- Time-domain onset-detection & beats

Windowed Amplitude Envelopes

- Choice of window size, hop size, window function shape
- May use several frequency bands (kick drum vs. hi-hat)
- Useful for silence detection, beat tracking, simple segmentation, summarization, etc.
- Simple, effective, well-understood techniques, many options

Frequency-domain Features

- Spectrum, Spectral bins
 - Window/hop sizes
 - Improving spectral data: phase unwrapping, time realignment
- Spectral measures (statistical moments)
- MFCCs
- Peak-picking and peak-tracking
- Pitch-estimation and pitch-tracking

Frequency-domain Analysis

- Short-time Fourier transform
 - Configuration options and trade-offs
 - Interpretation/weighting of spectral bins (perceptual scales)
- Other frequency-domain techniques
 - Filter banks
 - Linear prediction
 - Filter matching
- Loads of options

Speech Spectrogram

- Kinds of spectral plots
- Features
The Pitch/Time Trade-off

Harmonics and Formants
- Source/Filter – instr resonances

Using FFT APIs
- Simple FFT
 - See MAT240B
 - See F. R. Moore’s Elements of Computer Music
- FFTW
 - FFTW data types
 - FFTW plans
 - See CSL Spectral class

Composite Spectra
- How to disambiguate?
- Track birth/death statistics
- Vibrato (see figure)
- Statistical techniques

Spectral Analysis and Interpretation
- Spectral data extraction
 - Base frequency
 - Overtone spectrum
 - Formants, resonances, regions
 - Instrument signatures
- Spectral statistics
 - Peak, mean, average, centroid, slope, etc.
 - Spectral variety, etc.

Spectra as Time-varying
- Track peaks/regions between frames (requires thresholds of change)
- Model the dynamicity (e.g., formant trajectory, vibrato extraction)
Spectral Peaks and Tracking
- Peak finding (remember autocorrelation?)
- Peak discrimination
- Peak continuation: tracks and guides
- Derived statistics
- Problem cases

Peaks and Tracks
- Peak-finding
 - Thresholds, distances, heuristics
- Peak-continuation
 - Inter-frame distances and guides
 - Dropped frames and stretching
 - Track birth/death criteria

Spectral Peak-Tracking Example

Spectral Peak-Detection Algorithm
- From Blum et al. patent # 5,918,223

Spectral Smoothness Measure

Smoothed Spectrum Types
Deriving Spectral Bands

- Octave-band loops
 - outer loop - step size doubles every octave
 - inner loop - sums bins in range
- Weighted, non-linear bands

Filter-based Pitch Detection

- Simple adaptive process for single-frequency source with strong fundamental (i.e., many, but not all, instruments and voices)
- Easily implemented in analog circuitry
- Many variations

Auto-Correlation

- Slide a signal across itself, taking the vector product at each step
- This AC array has a peak at 0, and the period of the signal
- No peaks for noise

Harmonic Product Spectra

- Decimation of FFT spectra, summation, and spectral peak location
- Assumes overtones are significant, not that fundamental is

Pitch Detection Techniques

- Find the period of a “periodic” signal
 - First guess whether or not it’s periodic
- Simple techniques work for many signals
 - Zero-crossings (with direction, slope)
 - Autocorrelation (with range limitation)
- It’s hard to tell when they fail
 - Random data, silence
 - Octave over/under-tone errors

Harmonic Product Spectra

- Implementation
- Outer loop (octaves)
 - Scales copy of spectrum into buffer
- Inner loop
 - Take max or avg of sub-window?
- Post
 - first max > min_val
Mel–Freq Cepstral Coefficients

- **Steps:**
 - Signal
 - FT
 - Log magnitude
 - Phase unwrapping
 - FT (or DCT)

- **Name reversal**

- **Interpretations**
 - Quefrency
 - Mel–scale
 - Mel–scale filters

- Instead of AC, use FFT or DCT of PDS
- Leads to interesting statistics of higher–level spectral properties, see next section

MFCC Analysis

- **Analogy**
 - Start with log spectrum of mixed complex tones: several sets of related partial peaks
 - Take, e.g., the autocorr. of the FFT PDS
 - Warped frequencies of peaks correspond to fundamental frequencies of overtone series

Comparison With LPC (by Andrianakis & White)

<table>
<thead>
<tr>
<th>FFT PSD</th>
<th>13-pole LPC Spectrum</th>
<th>20 Mel Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>Frequency [Hz]</td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spatial–domain Features

- M/S Encoding (stereo sum & difference)
- Surround–sound processing
 - L/R vs C
 - L/R vs Ls/Rs
- Frequency–dependent spatial separation
- Higher–dimensional sources
- Stem tracks

Other Feature Domains

- Other time–domain features
 - Beats, beat histograms
- Other frequency–domain features
 - Fluctuation patterns
- Other time–frequency transforms
 - Filter banks
- Wavelets
- Linear Predictive Coding

Review

- MIR Apps
- Signal analysis processing chains
- Feature vector design from app requirements
- Kinds of audio features
- Basic feature statistics
Beat-finding and Tempo Derivation

- Why?
 - Tempo and Beat are strong discriminators in judgements of music similarity, and even genre (Tzanetakis & Cooke 2002, Dixon et al. 2004).
 - Understanding the beat facilitates understanding the importance of other musical elements:
 - Relative importance of tonal features.
 - Diatonic or chromatic character of a piece.
 - Complexity of a piece.
 - Applications: musicology & ethnomusicology, automatic DJing, query by example, composition tools.

Modelling Rhythm

- "...the systematic patterning of sound in terms of timing, accent, and grouping." (Patel 2008 p.96)
 - (Not always periodic patterns)
 - Accent sources include: dynamics, melody, harmony, articulation, timbre, onset asynchrony etc.
 - Consists of hierarchical and figural (proximal) temporal structures.

Measuring Beat

- Inter-Onset Intervals (IOI)
- Inter-Beat Interval (IBI)
- Tempo: frequency of the beat (BPM)

Musical Time

- Multiple simultaneous levels of musical time
 - Tactus: the foot-tapping rate.
 - Tempo: estimated from tactus, typically median IBI.
 - Meter: Periodic perceived accentuation of beats.
 - Tatum: Shortest interval between events.
- Rubato – change in tempo during performance to emphasise structure.

Meter

- Meter is expressed in Western music as time-signatures (4/4, 3/4 etc).

(Courtesy Olivia Ladinig)
Rhythmic Strata
- Musical rhythm can be considered as composed of a hierarchy of temporal levels or strata (Yeston 1976, Lerdahl & Jackendoff 1983, Clarke 1987, Jones & Boltz 1989).

Hierarchical Grouping: Meter
- Meters are argued to arise from the interaction between temporal levels (Yeston 1976).
 - Therefore a meter implies two frequencies: the pulse rate and the measure (“bar”) rate.
 - The tactus is considered as the most salient hierarchical level, consistent with the notated meter, or the foot tapping rate (Desain & Honing 1994).

Mental schemas for Meter
- Metrical Profiles (Palmer & Krumhansl 1990)
 - Pre-established mental frameworks (“schemas”) for musical meter are used during listening.

Syncopation
- Listener judgements of musical complexity are correlated with degree of syncopation (i.e. note location within the beat) (Shmulevich & Povel 2000, Smith & Honing 2006).
 - Compared judgements against formal model of syncopation (Longuet-Higgins & Lee 1984).

Active Rhythm Perception
- Viewed as a resonance between top down and bottom–up processes (see e.g Desain & Honing 2001):

Onset–detection vs. Beat–detection
- Traditionally beat detection relied on accurate onset detection.
 - i.e from MIDI data for Score Following (Dannenberg 1991, Cont 2009).
- This can be difficult for MIR from polyphonic audio recordings.
 - A higher freq. Onset Detection Function from the entire audio signal can be used for beat tracking without all onsets being detected (Schloss 1985, Goto & Muraoka 1994, Scheirer 1998).
The Onset Detection Function

- Represents:
 - Ideal: Each note that contributes to the beat.
 - Practice: Combined envelopes of all notes.
- Tends to emphasise:
 - strong transients (i.e. impulsive sounds)
 - loud notes
 - bass notes
 - wide-band spectrum events (e.g. snare drums).

Dixon’s Envelope Onset Detection

Example Onset Detection

- Pre-processing
- Filtering
- Down-sampling
- Difference function

Common ODF methods

- e.g. (Bello et. al 2005, Dixon 2007, Peeters 2007)
- Optional pre-rectification filtering.
- Envelope mixture from rectification/energy.
- Smoothing of envelope (LP filter).
- Down-sampling for data reduction.
- \(\frac{d}{dt} \log E \) highlights perceived impulses.
- Weighting higher frequencies captures wide-band events.
- Spectral difference between STFT frames.

Existing Rhythmic Models

- Parsing metrical grammars (Longuet-Higgins and Lee 1982).
- Forward projection of likelihood (Desain 1992).

Approaches to beat tracking considered

- Autocorrelation
 - Finding Periodicity in the ODF.
- Beat Spectrum approaches:
 - Spectrum of the ODF.
 - Multi-resolution representation of ODF.
- Dynamic Programming approaches.
 - Efficient selection of correct beat interval.
Resonator outputs of ODF modulation will reverb of the ODF. Filterbanks of tuned resonators (i.e. “rhythmic reverb”) of the ODF. Resonator whose resonant F matches rate of ODF modulation will phase-lock. Resonator outputs of common freq summed across subbands:

\[T = \arg \max_s \sum_s F_{rs} \]

Beat spectrum methods (Scheirer 1998)

- Filterbanks of tuned resonators (i.e. “rhythmic reverb”) of the ODF.
- Resonator whose resonant F matches rate of ODF modulation will phase-lock.
- Resonator outputs of common freq summed across subbands:

Beat Tracking by Peeters (2007)

- Onset–energy function
- Log–win
- Threshold = 15 dB
- Low-pass filter
- High-pass filter (400 Hz)
- Half-wave rectification
- Anti-alias filtering
- Hamming window

Multiresolution

- Auditory–Motor “Primal Sketch” from Sombrero filter banks (Todd 1994, Todd, O’Boyle & Lee 1999)
- Continuous wavelet transform of rhythmic signals (Smith 1996, Smith & Hering 2008)
Wavelet time–frequency analysis

Continuous wavelet transform (CWT) decomposes (invertibly) a signal onto scaled and translated instances of a finite time “mother function” or “basis”.

\[
W_s(b, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(\tau) \left(g \left(\frac{\tau - b}{a} \right) \right) d\tau, \quad a > 0
\]

\[
g(t) = e^{-t^2/2} \cdot e^{i\omega_0 t}
\]

Wavelets for Rhythm (Smith & Honing 2008)

- The CWT enables representation of temporal structure in terms of time varying rhythmic frequencies.
- Produces magnitude and phase measures which reveal time–frequency ridges indicating the frequencies present in the input rhythm signal (collectively a skeleton, Tchamitchian & Torrésani '92).

Implementation

- Implemented as a set of complex value bandpass filters in Fourier domain.
- Scaling produces a “zooming” time window for each frequency “scale”.
- Creates simultaneous time and frequency localisation close to the Heisenberg inequality.

Memory Based Tactus

Wavelet rhythm analysis is also applicable to continuous onset salience traces from auditory models (Coath, et. al 2009).

Foot–tapping to singing

- Uses lossy windowed integrator to amass tactus likelihood.
- Suppress all but the magnitude coefficients of the extracted tactus ridge.
- Invert the extracted tactus ridge and original phase plane back to the time domain.
- Creates a single beat oscillation.
- Nominating a starting beat and noting its phase, all other foot–taps are generated for the same phase value.

- Singing examples of Dutch folk songs from the "Onder de Groene Linde" collection (Meertens Institute) using memory based derivation of tactus:
 - Example 1: Original... + Accompaniment.
 - Example 2: ...Original + Accompaniment.
Dynamic Programming (Ellis 2007)

- Goal to generate beat times that match onsets and have near constant IBI.
 \[C(t_i) = \sum_{i=1}^{N} O(t_i) + \alpha \sum_{i=2}^{N} F(t_i - t_{i-1}, \tau_p). \]
- \(F(\Delta t, \tau) = -\log(\text{actual IBI/ideal IBI})^2. \)
- Ideal IBI from tempo estimation from weighted autocorrelation.
- Recursively calculates max \(C^*(t) \) starting from \(t=0-2\tau \), finding times of max(\(F + C^*(\tau) \)).
- Chooses final max \(C^*(t) \) from last interval, backtraces the saved times.

Beat Histograms

- Summarises rhythmic behaviour of a piece for similarity measures, classification etc.
- Pampalk, Dixon & Widmer (2003)
 - Uses summation of comb filters of Scheier, not just argmax, for comparison.
 - Tempo histogram is weighted using a preference model (van Noorden & Moelants 1999).
 - PCA used to reduce 2000+ 60 dimensions for matching.

Beat Histograms (Tzanetakis and Cook, 2002)

- Similar approach using Autocorrelation.
- Add the amplitudes of the top 3 AC peaks to histogram at each frame.
- Beat histograms are reducible to single features including sum and peak/mean.

Fluctuation Patterns

- Also summarises rhythmic behaviour.
- FFT of envelope: the fluctuation (AM) frequency of the perceived loudness of critical bands (log spectral) (represented on the Bark scale).
- 20 Bark x 60 BF matrix \(\rightarrow \) PCA for matching

```
<table>
<thead>
<tr>
<th>Rock</th>
<th>DJ</th>
<th>11.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Stereo</td>
<td>9.9</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>3.1</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
```

Median of the fluctuation patterns of examples of (L-R) Heavy Metal, Dance and Pop. Y axis shows critical bands (Bark 1-20). X axis shows beat frequencies 0-10Hz (0-600BPM). From Pampalk, Rauber & Merkl, (2002)

Meter estimation

- Requires measure (“bar”) period and phase (downbeat) identification.
- Measure period reasonably successful, albeit with octave errors.
- Downbeat identification much harder!
- Genre dependent.

Joint estimation of chord change and downbeat (Papadopoulos & Peeters 2008)

- Hidden Markov Model:
 - States: 24 Major & Minor triads \(\times 4 \) positions within the Measure (pim) for (4/4 time signature).
 - Computes chroma features at each beat.
 - Assumes independence between beat position and chord type: \(P(O|s) = P(O|c) P(O|pim) \)
 - Transition probabilities enforce sequential beats & likelihood of chord transitions.
- Optimal state determined by Viterbi decoding.
 - Chord progression detection improved using metrical knowledge.
 - Identification of downbeats aided by harmonic information.
Review

- Modeling rhythm requires representing perception
- Onset detection functions capture significant events
- Multiple approaches to beat-tracking represent competing perceptual models
- Beat-tracking enables higher-level rhythmic features (FP, BH)
- Beat-tracking enables multi-modal estimation (e.g., down-beat)

Applications

- Low-hanging fruit
 - Basic non-real-time feature extraction
 - Bulk feature extraction into a DB
 - Real-time feature extraction and mapping to synthesis or control
 - Song clustering based on feature vector similarity, clustering, ...
 - PCA of feature spaces using Weka
 - Segmentation based on inter-frame distances

APIs for MIR Tools

- Marsyas: G. Tzanetakis (11), flexible tool set, scripting language, segmentation and classification
- LibOFA: Holm/Pope (00), simple FV for unique ID comparing to a large pre-analyzed database
- D2K/M2K: West/MIREX (06), Java-based GUI related to D2K, many apps.
- LibTSP: P. Kabal (00), C routines for DASP & IO
- CSL: STP/MAT (05), C++ class library for DASP, synthesis, control, spatialization and MIR

APIs – 2

- Libxtract
- Aubio
- SonicVisualizer plug-ins
- Loris
- SPEAR
- CSL
- LibTSP

Spectral Tools

- SPEAR
- Loris
- Marsyas
- Sonic visualizer

Code Exercises

- Buffer, Window classes (see CSL)
- Analyzer class (Marsyas)
- Driver, main(), aubio, libxtract
- IO libraries (libSndFile, PortAudio)
- DASP libraries (libTSP, etc.)
- Starter apps: simple analyzer, sing-along
Q&A

Lab 2

- Feature extraction and flexible feature vectors in MATLAB, Marsyas, Aubio, libExtract
- MATLAB/Weka code for sound clustering with a flexible feature vector
- C++ API examples Marsyas, Aubio, libExtract – pre-built examples to read and customize
- Goal: extract CAL 500 per-song features to .mat or .csv using features from today.

Example Code 1

- AFsp-v9r0 - General-purpose audio file code in C, Peter Kabal @ McGill
- aubio-0.3.2 - library for audio labeling, P. M. Brossier and J. P. Bello, http://aubio.piem.org
- beatDetect - MAT 2450C project by Philip Popp (Xcode)
- bp_proj - Neural Net demo for VisualStudio
- CNMAT-SDIF-alpha - Spectral Data Interchange Format code from UCBerkeley
- dance-o-matic - MAT 240F project by Philip Popp (Xcode)
- EricNewman - Various projects including MAGIC from Eric Newman @ UCSC (Xcode)
- fann-0.2.0.0 - Fast Artificial Neural Network Library, http://leenissen.dk/fann
- FFTW - Fastest Fourier Transform in the West, FFTW.org
- FlowDesigner-0.8.0 - Flow Designer, like SimuLink, jean-marc.valin@usherbrooke.ca
- FlowDesigner-0.9.1-Darwin.pkg - Mac installer into /usr/local/include, etc.
- getRMS2 - store the windowed RMS values of a given input file into a given output file (Xcode)

Example Code 2

- ICA - Independent component analysis code, Shiro Ikeda, shiro@ikeda.cc
- JMARF - "MODULARIZED AUDIO RECOGNITION FRAMEWORK" Serguei Mokhov, The MARF Research and Development Group, Montreal
- libneural-1.0.3 - simple Back-propagation Neural Network, Daniel Franklin
- libofa - Open FingerPrint Architecture, S. T. Pope & Frode Holm, MusicIP (RIP)
- libsndfile - awesome sound file API from Erik de Castro Lopo <erikd@mega-nerd.com>
- libtsp-v7r0 - General-purpose DASP code in C, Peter Kabal @ McGill
- libextract-0.6.3 - library of audio feature extraction functions by Jamie Bullock
- m2k - Music-to-Knowledge in Java (stale?), Kris West, kw@cmp.uea.ac.uk, http://www.music-ir.org
- marf0/2 - "MODULARIZED AUDIO RECOGNITION FRAMEWORK"
- marsyas-0.4.3 - MARSYAS C++ library for MIR, George Tzanetakis
- moc-0.1.1 - "Master of Celebration" playlist generator by Dominik 'Aeneas' Schnitzer

Example Code 3

- SampleAnalyzer - MAT 240F example code, reads sample files and runs analyzers
- sing_along - MAT 240F example code by STP, play a sine wave along with a singer
- sndan - SNDAN, James Beauchamp, implementation of MQ tracking and analysis
- sonic-visualiser-1.8 - program for viewing and analysing music files
- Sonic Visualiser-1.8.dmg - Mac binary installer
- SpectralTracker - MAT 240F example code by Matthew Crossley
- SPEAR_latest.dmg - "Sinusoidal Partial Editing Analysis and Resynthesis", Michael Klingeill
- sphinx3-0.6 - CMU Sphinx Speech Recognition tools
- SPRACHcore-2004-08-26 - Connectionist speech recognition software by Dan Ellis
- STFT - Lance Putnam’s C++ wrapper object for FFTW
- svlib - C++ class library for automatic speech recognition and speaker recognition, jialong.He@bigfoot.com
- tap_alongPP - MAT 240F example code by S T Pope, play a sine wave along with a singer
- ww_beat_tracker.c - Will Wolcott’s simple beat tracker from MAT 240F

Lab 2 – Where to start

- Running C/C++ Examples
 - Using the UNIX shell
 - Using Makefiles
 - apt-get, tar xvf, cd,
 - ./configure --help,
 - ./configure, make, sudo make install
 - Using C/C++ IDEs
 - Eclipse, XCode, VisualStudio
 - Code editing
 - Project mgmnt
 - Debugger
Lab 2 – Where to start

• The Hell that is C/C++ Development
 – UNIX packages and configure scripts
 • Fixing broken configure scripts
 – “Make” packages: make, gmake, cmake
 • Fixing broken makefiles
 – Compiling: getting the right package includes
 • Versions of C, of the std headers
 – Linking: finding the (static & dynamic) libraries
 • Linux vs MacOS or MS–Windows
 – The (truly sad) good advice: minimize the number of libraries you use (JUCE + FFTW)

• Debugging C/C++
 – Anti–bugging techniques
 – Print statements
 – Breakpoints

• Problems
 – Compile–time (includes)
 – Link–time (libraries, modules)
 – Run–time
 • Initialization errors
 • Malloc/free new/delete, garbage collection
 • Logic errors

Lab 2 – DASP Coding

• Support libraries – I/O, DB, ...
 – LibSndFile
 – RTaudio/RTmidi
 – AFsp
 – JUCE
 – FFTW
 – DB APIs: MySQL, PostgreSQL, XMP, JSON ...

• General–purpose DASP Libraries
 – LibTSP, CSL, others
 – Handling main(), set-up/clean–up and data I/O

• Aubio
 – configure, make
 – audioquiet.c
 – audioonset.c
 – SWIG interfaces

• Libxtract
 – simpletest.c – spectrum extraction
 – Max/Pd plug–ins

• Marsyas
 – Setting up & using Cmake
 – sfinfo app
 – pitchextract app
 – bextract app

MIR Code Examples (in C/C++)

• Aubio
 – configure, make
 – audioquiet.c
 – audioonset.c
 – SWIG interfaces

• Libxtract
 – simpletest.c – spectrum extraction
 – Max/Pd plug–ins

• Marsyas
 – Setting up & using Cmake
 – sfinfo app
 – pitchextract app
 – bextract app

MIR Code Examples

• MAT240F examples & student code
 – SampleAnalyzer (fftw, libsndfile)
 • Single–file or file–list processing
 • DB, noDB
 – getRMS2 (libsndfile, libtsp)
 • Batch analysis
 • Windowed RMS, 2nd–stage autocorrelation
 – sing_along (portaudio, fftw, libtsp)
 • Several pitch detectors
 • Runs processing in portaudio call–back
 – Extensions...