A Hopefully-Simple Introduction to Probabilistic Graphical Models
Outline

• What are they?
• Intro to necessary probability theory & corresponding notation
• A few simple probabilistic models
 – Naïve Bayes, latent variable models and GMMs, HMMs
• Inference overview
• Example MIR paper
• State of the art in MIR
What are probabilistic graphical models?

• Compact representation of joint probability distributions – factored joint distributions

• Tools for reasoning about conditional independence and dependence

• “a marriage between probability theory and graph theory” (Jordan 1998)
 – Graph theory used to design efficient algorithms to work with models

• Sub-types:
 – Markov Random Fields (undirected), Bayesian Belief Networks (directed)
How can graphical models be used?

• Propose a model that could explain a real-world phenomenon (build a model)

• *Infer parameters* of the proposed model from available data

• Given parameters and structure, *make predictions* for new data
 – Classification, regression
 – Causal explanations, diagnosis
 – Temporal predictions or smoothing

• Given several candidate models, pick the “best”

\[C_i \sim \mathcal{N}(\mu_{gi}, \sigma^2) \]

\[\mu_{\text{pop}} = .23 \]
Necessary probability and corresponding notation
Random variables

• A random variable is a *function* that maps events to numbers
 – e.g., event = drawing a card from a standard deck
 • r.v. $X = 1$ iff card is 2 of spades, 0 otherwise
 • r.v. $Y = 1$ iff card is a 2 of any suit, 0 otherwise
 – Or, event = measuring height of an 18-24 year old female in the USA
 • r.v. $Z =$ height measured in inches
Notation: A random variable X
Distributions, parameters, and priors

A **distribution** assigns probability to regions of sample space

- Space for X: \(p(1) = 1/52, \ p(0) = 51/52 \)
- Space for Y: \(p(1) = 4/52 = 1/13; \ p(0) = 12/13 \)
- Space for Z: \(Z \sim \mathcal{N}(65.5, 6.25) \)
 - e.g., \(p(Z < 68) = 0.841 \)

- Common distributions in the literature: Gaussian/Normal, binomial, beta, gamma, multinomial, Bernoulli, Dirichlet, uniform

- For a particular problem, the distribution is specified by the distribution type and its **parameters**
 - e.g., mean and variance for Gaussian
 - In Bayesian framework, there may be a **prior** distribution over these parameters (e.g., prior on mean is a uniform distribution over \([0, 22.5])\)
Nota5on: the distribution and parameters

• The distribution is normally not explicitly represented in the graphical notation, but it will be described in the text.
• Occasionally, you will see parameters of the distribution represented in the notation
• θ or β commonly used for unknown parameter values; π for prior distributions
• hat commonly used to represent estimate of a parameter: $\hat{\theta}$

$$X \sim \mathcal{N}(\mu, 1.0)$$

or

$X \sim \mathcal{N}(\mu, 1.0)$
Outcomes / samples

• An sample is an outcome or observation from a probability distribution (typically a number or vector of numbers)

• E.g., $x_i \sim \mathcal{N}(0, 50)$:
 – Each x_i is an outcome of sampling from the distribution, typically assumed i.i.d.
 – x_i, $i = 1$ to 5 might look like:
 $x_1 = -17.5$, $x_2 = 80.31$, $x_3 = 38.49$, $x_4 = -30.49$, $x_5 = 55.90$
Notation: sample

• Specific outcomes **not** represented in model graph
• Outcomes are lower case (X vs. x)
• Be careful: Random variable may take value of a vector
 – is x_i the i^{th} outcome or the i^{th} element?
Conditional distribution

• The conditional distribution \(P(X \mid Y = y) \) is the probability distribution of \(X \) when the value of r.v. \(Y \) is known to be a particular value, \(y \).
 – e.g., \(P(X \mid Y) \) can be specified as:
 \[
P(X \mid Y=.3) = \mathcal{N}(.2, 1.0) \text{ and } P(X \mid Y \neq .3) = \mathcal{N}(.5, 1.0)
 \]
Notation: Conditional relationships

• Distribution of r.v. X is specified conditioned on its parents in the graph
 – Parents of X defined as all nodes P s.t. exists a directed arc from P to X

\[P(W, X, Y, Z) = P(W)P(Z)P(X|W)P(Y|X, Z) \]
Independence and dependence

• Conditionally independent events:
 – A = “My favorite color is green”
 – B = “it’s going to rain in Bali tomorrow”
 – Knowledge of one != knowledge of probability of the other
 • P(A | B) = P(A), P(B | A) = P(B)
 • P(A and B) = P(A)P(B)

• Conditionally dependent events:
 – A = “It’s raining in San Francisco today”
 – B = “Jay’s lawn is wet”
 – Knowing A changes our knowledge of likelihood of B, and vice versa
 – P(A | B) != P(A)
Independence & observation

• Independence may change when events are observed (known & fixed)

• Add a 3rd event:
 – $A = \text{“It’s raining in San Francisco today”}$
 – $B = \text{“Jay’s lawn is wet”}$
 – $C = \text{“Jay turned on his sprinkler before leaving this morning.”}$
 – A and B are independent if we observe C to be true.
Notation: Observation

- Observed variables (whose values are known) are shaded
- **NOT** restricted to particular locations in graph
- Graphical models provide a way to reason about which variables marginally independent given the observed data
 - e.g., “Bayes Ball” algorithm
Classic example

\[
\begin{array}{c|cc}
C & P(S) & P(\neg S) \\
\hline
F & .5 & .5 \\
T & .1 & .9 \\
\end{array}
\]

\[
\begin{array}{c|cc}
P(C) & P(\neg C) \\
\hline
.5 & .5 \\
\end{array}
\]

\[
\begin{array}{c|cc}
C & P(R) & P(\neg R) \\
\hline
F & .2 & .8 \\
T & .8 & .2 \\
\end{array}
\]

\[
\begin{array}{c|cc}
P(S) & P(\neg S) \\
\hline
.5 & .5 \\
\end{array}
\]

\[
\begin{array}{c|cc}
P(W) & P(\neg W) \\
\hline
F F & 0.0 & 1.0 \\
F T & .9 & .1 \\
T F & .9 & .1 \\
T T & .01 & .99 \\
\end{array}
\]

sprinkler

cloudy

rain

wet_grass
What do we get from graphical representation?

- Local structure = factorization of full joint distribution = more efficient representation of full joint probability distribution
 - Size of joint is $O(2^n)$ for n binary variables; Here only $O(n \times 2^k)$ for k max fan-in.

- Ability to simulate drawing from joint distribution (generation)

- A basis for many exact and approximate inference algorithms, using graph theory
 - e.g., infer values of unobserved nodes from observed nodes
 - or infer parameters of the model

- A set of [visually distinguishable] “design patterns” for reasoning about problem structures
Some common probabilistic models
Naïve Bayes
The Naïve Bayes assumption

• Generative model:
 – Class C drawn from a prior distribution (e.g., Bernoulli for binary classification)
 – Each feature F_i drawn from distribution conditional on C (e.g., a Normal distribution whose parameters depend on c)

• $P(F_1, F_2, \ldots, F_N \mid C) = P(F_1 \mid C)P(F_2 \mid C)\ldots P(F_N \mid C)$
 – Value of each feature independent of other features, given the class.
Naïve Bayes

Diagram showing a Naïve Bayes classifier with a central class variable (C) connected to feature variables (F₁, F₁, ..., Fₙ).
Plate notation

- Plate denotes structural repetitions, e.g. N features
More plates

• Can represent D datapoints
Making *parameters* explicit

(β_i) is chosen according to document class, c_d
Using Naïve Bayes

• Classification: which class is most likely, given the observed features and model parameters?
 – Maximize $p(C \mid F_d, \pi, \beta)$

• Requires first knowing π, β
 – Training/inference: find the values of π, β that maximize the likelihood of the training data
Gaussian Mixture Models
A mixture of Gaussians
The GMM generative model

• There exist some K “clusters” or “hidden categories”; a prior π assigns probabilities to choosing cluster k

 $- z_i \sim \pi$

• Once the cluster identity k_i has been chosen, the observed vector x_i is chosen by sampling from Gaussian k_i

 $- x_i \sim \mathcal{N}(\mu_{ki}, \Sigma_{ki})$
Graphical model notation for GMM

Z is a latent variable: useful in formulating model but not observed.
Using GMMs

• Could compute “best” cluster ID (Z) for some data
• Could compute likelihood of some data under a GMM
• Classification: Train GMM for each class, then choose GMM that maximizes the likelihood of the observed data
• Vector Quantization (VQ): Represent features with class ID only
• Possible problem: must know or assume an appropriate # of mixture components
 – Non-parametric methods, e.g. latent Dirichlet allocation, allow to infer # of hidden categories
Hidden Markov Models
Hidden Markov Models

- Models a sequence of observations in time
- Assumes an underlying time sequence of hidden states
An HMM

\[z_1, z_2, \ldots, z_n \]

\[x_1, x_2, \ldots, x_n \]
HMM applications

• Infer the most likely hidden sequence
• Predict most likely next observation(s)
• Infer single most likely hidden state at time t
• Generate likely sequences (e.g. Mark V Shaney)
• Choose most likely model for an observed sequence (e.g., word spoken, pitches played)
Inference
Inference: How to estimate model parameters from the data

• Find parameters that maximize the likelihood of the data
 – i.e., find θ to maximize $p(D \mid \theta)$
 – Often maximize log likelihood (multiplication of terms -> summation of terms)

• Sometimes can compute directly: e.g., Naïve Bayes, HMM

• Sometimes must approximate: e.g., GMMs
Inference algorithms

• Exact and approximate
 – Simple MLE computation for Naïve Bayes
 – Message passing / dynamic programming methods (e.g., forward/backward for HMMs)
 – Expectation-Maximization (EM) for GMMs
 – Variational inference, Gibbs sampling, Markov chain Monte Carlo (MCMC) for other model types

• Challenges
 – If you design a new model architecture, you have to come up with an inference method
 – Certain algorithms can get stuck in local maxima
 – Inference can be computationally intensive
Reading an MIR paper

Goals

• How to assign semantic tags to audio?
 – Build a binary classifier per tag?
 – Build a GMM for each tag?
 • What does it mean to have multiple tags?

• Hoffman, Blei & Cook: Build a model for joint distribution of tags and audio features

• Use model to compute probability that a tag applies to a song
 – Annotation
 – Retrieval
A compact feature representation

- Start with 39-dimensional MFCC-Deltas
 - CAL500: 10,000 unordered feature vectors per song (!)
- Vector quantize all feature vectors
 - VQ space: K codewords total (K=5 to 2500)
- Represent song as K-dimensional vector of codeword counts (K features, 1 datapoint per song)
Building a model

• “All models are wrong, but some are useful.” – George E. P. Box
Model

\[n_{jk} = \# \text{times codeword } k \text{ appears in song } j \]
\[z_{jw} = \text{the } w\text{-th codeword in song } j, \text{ a value } 1:K \]
\[b_{kw} = \text{parameter for Bernoulli for codeword } k \text{ and tag } w \]
\[y_{jw} = \text{true iff tag } w \text{ appears in song } j \]
Generative process

For each song:
 For each possible tag:
 Draw a codeword from song j, from observed codewords
 Draw y from Bernoulli for that (codeword,tag) pair
 Apply the tag iff y is true.
Inference

• Find maximum likelihood estimators β for (codeword, tag) Bernoullis
 – i.e., find β to maximize $p(y \mid n, \beta)$

• Use EM algorithm to estimate MLEs
 – Latent variable z comes in handy here
Using the model: Annotation

• Can directly compute probability that tag w applies to new song j, using song features & parameters computed in inference step:

\[
p(y_{jw} | n_j, \beta) = \sum_k p(z_{jw} = k | n_j) p(y_{jw} | z_{jw} = k)
\]

\[
p(y_{jw} = 1 | n_j, \beta) = \frac{1}{N_j} \sum_k n_{jk} \beta_{kw}
\] (11)
Using the model: Retrieval

• Compute probability of each tag applying to each song in database
 – => rank songs for each tag

• Return first N of ranked list for a tag query
Evaluation

• Compute IR metrics for annotation and retrieval (we’ll discuss these tomorrow)
 – Compare to previously published results, “upper bound,” and “random”
• Compute for different values of K (5 to 2500)
• Compute VQ, training and classification time
• Comparable to or better than previously published results
 – \(P \leq 0.286 \) (Upper bound = 0.712)
 – \(R \leq 0.162 \) (Upper bound = 0.375)
Other example applications in MIR

- Raphael: computer accompaniment of a human soloist
- Lanckriet, Turnbull, Barrington (cal @UCSD): lots of work, including tagging
- Hoffman @ Princeton: tagging, source separation / transcription
- Many GMM applications
 - e.g., Tzanetakis & Cook 2002
Wrap-up
Probabilistic generative models vs. discriminative classifiers

• Provide full probability model of all variables, not just $P(\text{class} \mid \text{features})$
• Encode your own assumptions about data and “generative” process
• Take advantage of modularity, hierarchy, temporal behavior in data
• Leverage cutting-edge techniques from speech, vision, document analysis research
• Can be less “cookie-cutter” than classification; inference can be long; can require lots of knowledge of probability & statistics to do create new models, BUT it is still possible to read papers and appreciate contributions and assumptions without this.
Good reading

• Intro to graphical models:
 – Short: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html by Kevin Murphy
 – Video: http://videolectures.net/mlss07_ghahramani_grafm/ by Zoubin Ghahramani

• Graphical models & music:

• EM algorithm for GMMs: http://bengio.abracadoudou.com/lectures/old/tex_gmm.pdf by Samy Bengio

Good textbooks

• *Pattern Recognition and Machine Learning* by Christopher M. Bishop, 2006
 – Excellent and readable machine learning textbook covering both generative and discriminative methods

• *Bayesian Data Analysis* by Andrew Gelman, 2nd ed, 2003
 – Extremely thorough and lots of information. True to the title.

 – A standard university textbook on AI, accessible to those without any prior knowledge. Focus is broader than machine learning, but good introductory treatment of several classifiers and HMMs.