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Characterizing harmony from
audio

Pitch Helix
• The pitch helix is a pitch space where linear pitch is wrapped

around a cylinder, thus modeling the special relat ionship that
exists between octave intervals

• The model is a funct ion of 2-dimensions:
• Height :  naturally organizes pitches from low to high

• Chroma:  represents the inherent  circularity of pitch
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• Sound made out  of a superposit ion of octave- related sinusoids

• Uses only even part ials weighted by a bell-shaped envelope

• A Shepard scale is created when the f0 of the sound is
progressively changed, thus creat ing the illusion of constant ly
rising/ falling tones

• Shepard/ Tenney and RissetÕs cont inuous glissandi

Shepard Tones

¥ Chroma describes the angle of the pitch rotat ion as it  t ravels the
helix

¥ Two octave- related pitches will share the same angle in the
chroma circle.

¥ In the western tonal scale this angle can only take one of 12
possible values or pitch classes, thus the chroma can be seen as a
pitch class profile.

¥ A chord can be described as a funct ion of its pitch classes

¥ Chroma representat ion is usually considered to be well suited for
modelling harmony

Chroma :  Pitch Class Profile
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a) Calculate the FFT of a signal segment

b) Each FFT bin is mapped to its closest  note, according to:

where p is the note number. This is equivalent  to segment ing the
spect rum into note regions (± 1/ 4 tone from note center)

c) The average amplitude within regions is calculated

d) Result ing histogram is folded, collapsing bins belonging to the
same pitch class into one.

Calculating chromas (1)

! 

f (p) = 440 " 2
( p#69)/12

• This process is equivalent  to using a Constant -Q f ilterbank where
the filtersÕ center frequencies are defined as:

• With fmin as the m inimum (or reference)  frequency, and β as the
analysis resolut ion (number of bins per octave)

• The bandwidth (BW) of each filter changes to maintain the fk/BW
rat io (Q)  constant .

• The shape of the filter frequency response is important  to weight
according to the distance to the noteÕs frequency

Calculating chromas (2)
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Calculating chromas (3)

• Linear vs Logarithmic Spect ral Analysis for Music:

• The previous approach to chroma calculat ion relies on the linear
resolut ion of the FFT for its informat ion gathering

• An alternat ive to this is the Constant -Q t ransform

• That  uses a variable window length to obtain more resolut ion at
lower frequencies and less at  higher ( logarithmic dist r ibut ion of
bins in frequency)

Calculating chromas (4)
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Calculating chromas (5)

• Xcq ->  Constant -Q t ransform

• M ->  total numbers of octaves

• Xcq can be fold into a chroma:

• b in [1,β] ->  chroma bin number

• The sequence of chroma vectors is
known as a chromagram

!
=

+=
M

m

cq mbXbChroma
0

)()( "

Estimating key (1)
• During the 1980s Krumhansl and her colleagues performed a

number of subject ive studies measuring the expectat ion of each
tone in the chromat ic scale in a certain key context

• As a result  they proposed a probe tone model of key profiles
characterizing tone likelihoods for major and m inor keys
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Estimating key (2)

• A number of researchers have used (versions of)  those profiles to
est imate the key of a musical piece, e.g. Gomez and Herrera
(2004) , Pauws (2004)

• The idea is that  there is st rong cross-correlat ion between the
informat ion on those profiles and the chromas ( for segment  key)
or mean chromas ( for ent ire songs)  ext racted from the signal

Estimating key (3)

Gomez and Herrera, ISMIR 2004
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Chord Estimation (1)

• Chords can be est imated by post -processing the chroma and
matching with simple chord templates, e.g. Harte and Sandler
(2005)

Chord Estimation (2)

• Chromagram tuning

• !  =  36 bins per octave ->  3 bins per note

Peak picking

Tuning deviation

flat    ← 0 →  sharp
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Chord Estimation (3)
• We can create simple chord templates for common chords:

• E.g. Triads have a simple formulat ion of the form:
• Major:  n, n + 4, n + 7 (e.g. G =  [ g, b, d] )

• Minor:  n, n + 3, n + 7 (e.g. g =  [ g, bb, d] )

• Use simple pat terns with 1 on composing notes, 0 elsewhere

Chord Estimation (4)
• The maximum of the correlat ion between chord templates and 12-

bin chromas represents the instantaneous chord value
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Chord Estimation (5)
• We can think of chords as the states of a process (x3)  and chrom as as the

result  of that  process (y3) .

• We can calculate the probability of observing certain chrom a values for a
given chord (b3)

• Furtherm ore, states are not  independent , but  the occurrence of a certain
state depends on the previous occurrence of other states

• The sim pler of such probabilist ic processes, a Markov process, is a
random  process where the probabilit y of the occurrence of the current
state (a23)  depends only on the occurrence of the previous one

• Moreover, m y states are not  direct ly observable:  are hidden from  m e.

Chord Estimation (6)

Tuned and Beat-
synchronous chroma

Viterbi algorithm • Ergodic HMM

• Chord space:  e.g. major and
minor t r iads

• Standard algorithms for the
calculat ion of parameters

• Decoded using the Viterbi
algorithm

Bello and Pickens, 2005
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Chord Estimation (7)

Minor triads
Major
triads

Relative
minor

• xn are defined as a set  of chords (e.g. 24 m ajor and m inor t r iads)

• yn are the chrom a vectors out  of our analysis of the signal

• bn can be init ialized as sim ple chord tem plates ( like before)

• amn can be init ialized using our m usical intuit ion

• All param eters can be efficient ly est im ated using the Baum -Welch m ethod

¥ Eight  days a week Ð The Beat les

Bello and Pickens (2005)

Chord Estimation (8)

Annotated

Recognised
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Chord Estimation (9)

Start from here!!!
Melisma Music Analyzer
(Temperley 2001) Timidity++, GUS sound font

• Fully-connected ergodic HMM
• 36 output states (12xmaj/min/dim)
• Each state modeled as a single
  Gaussian

• Use symbolic files
(e.g. MIDI) to generate
a large amount of labeled
training data

Lee and Slaney (2006 a,b)
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