/***************************************************/ /*! \class HevyMetl \brief STK heavy metal FM synthesis instrument. This class implements 3 cascade operators with feedback modulation, also referred to as algorithm 3 of the TX81Z. Algorithm 3 is : 4--\ 3-->2-- + -->1-->Out Control Change Numbers: - Total Modulator Index = 2 - Modulator Crossfade = 4 - LFO Speed = 11 - LFO Depth = 1 - ADSR 2 & 4 Target = 128 The basic Chowning/Stanford FM patent expired in 1995, but there exist follow-on patents, mostly assigned to Yamaha. If you are of the type who should worry about this (making money) worry away. by Perry R. Cook and Gary P. Scavone, 1995 - 2002. */ /***************************************************/ #include "HevyMetl.h" HevyMetl :: HevyMetl() : FM() { // Concatenate the STK rawwave path to the rawwave files for ( int i=0; i<3; i++ ) waves[i] = new WaveLoop( (Stk::rawwavePath() + "sinewave.raw").c_str(), TRUE ); waves[3] = new WaveLoop( (Stk::rawwavePath() + "fwavblnk.raw").c_str(), TRUE ); this->setRatio(0, 1.0 * 1.000); this->setRatio(1, 4.0 * 0.999); this->setRatio(2, 3.0 * 1.001); this->setRatio(3, 0.5 * 1.002); gains[0] = __FM_gains[92]; gains[1] = __FM_gains[76]; gains[2] = __FM_gains[91]; gains[3] = __FM_gains[68]; adsr[0]->setAllTimes( 0.001, 0.001, 1.0, 0.01); adsr[1]->setAllTimes( 0.001, 0.010, 1.0, 0.50); adsr[2]->setAllTimes( 0.010, 0.005, 1.0, 0.20); adsr[3]->setAllTimes( 0.030, 0.010, 0.2, 0.20); twozero->setGain( 2.0 ); vibrato->setFrequency( 5.5 ); modDepth = 0.0; } HevyMetl :: ~HevyMetl() { } void HevyMetl :: noteOn(MY_FLOAT frequency, MY_FLOAT amplitude) { gains[0] = amplitude * __FM_gains[92]; gains[1] = amplitude * __FM_gains[76]; gains[2] = amplitude * __FM_gains[91]; gains[3] = amplitude * __FM_gains[68]; this->setFrequency(frequency); this->keyOn(); #if defined(_STK_DEBUG_) cerr << "HevyMetl: NoteOn frequency = " << frequency << ", amplitude = " << amplitude << endl; #endif } MY_FLOAT HevyMetl :: tick() { register MY_FLOAT temp; temp = vibrato->tick() * modDepth * 0.2; waves[0]->setFrequency(baseFrequency * (1.0 + temp) * ratios[0]); waves[1]->setFrequency(baseFrequency * (1.0 + temp) * ratios[1]); waves[2]->setFrequency(baseFrequency * (1.0 + temp) * ratios[2]); waves[3]->setFrequency(baseFrequency * (1.0 + temp) * ratios[3]); temp = gains[2] * adsr[2]->tick() * waves[2]->tick(); waves[1]->addPhaseOffset(temp); waves[3]->addPhaseOffset(twozero->lastOut()); temp = (1.0 - (control2 * 0.5)) * gains[3] * adsr[3]->tick() * waves[3]->tick(); twozero->tick(temp); temp += control2 * (MY_FLOAT) 0.5 * gains[1] * adsr[1]->tick() * waves[1]->tick(); temp = temp * control1; waves[0]->addPhaseOffset(temp); temp = gains[0] * adsr[0]->tick() * waves[0]->tick(); lastOutput = temp * 0.5; return lastOutput; }